(19)
(11)EP 3 223 932 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 15797736.4

(22)Date of filing:  02.11.2015
(51)International Patent Classification (IPC): 
B01D 53/50(2006.01)
C01B 17/50(2006.01)
C10G 27/06(2006.01)
C01B 17/04(2006.01)
B01D 53/52(2006.01)
C01B 17/20(2006.01)
C10G 19/02(2006.01)
(86)International application number:
PCT/US2015/058547
(87)International publication number:
WO 2016/085619 (02.06.2016 Gazette  2016/22)

(54)

INTEGRATED HYDROCARBON DESULFURIZATION WITH OXIDATION OF DISULFIDES AND CONVERSION OF SO2 TO ELEMENTAL SULFUR

INTEGRIERTE KOHLENWASSERSTOFFENTSCHWEFELUNG MIT OXIDATION VON DISULFIDEN UND UMWANDLUNG VON SO2 ZU ELEMENTAREM SCHWEFEL

DÉSULFURATION D'HYDROCARBURE INTÉGRÉE AVEC OXYDATION DE DISULFURES ET CONVERSION DE SO2 EN SOUFRE ÉLÉMENTAIRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.11.2014 US 201414552222

(43)Date of publication of application:
04.10.2017 Bulletin 2017/40

(73)Proprietor: Saudi Arabian Oil Company
Dhahran 31311 (SA)

(72)Inventor:
  • KOSEOGLU, Omer Refa
    Dhahran 31311 (SA)

(74)Representative: Palladino, Saverio Massimo et al
Notarbartolo & Gervasi S.p.A. Viale Achille Papa, 30
20149 Milano
20149 Milano (IT)


(56)References cited: : 
US-A- 5 508 013
US-A1- 2013 028 822
US-A1- 2014 208 998
US-A1- 2006 057 056
US-A1- 2013 277 236
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] This invention relates to an integrated process for treating hydrocarbon disulfides to produce clean hydrocarbon fuels and elemental sulfur.

    Background of the Invention



    [0002] Mercaptans are undesirable because of their unpleasant odor and corrosivity and also because they degrade the stability of end-product fuels. The liquid disulfides created by conversion of the mercaptans do not have these undesirable characteristics and can be retained in the Merox treated fuels or removed and used elsewhere in the petroleum refinery. The Merox process is generally more economical than a catalytic hydrodesulfurization process and achieves much the same result. Economic and practical drawbacks associated with hydrodesulfurization processes include additional dedicated facilities to which the disulfide compounds must be transferred, use of expensive and sensitive catalysts and the treatment and disposal of the by-product sulfur-containing compounds.

    [0003] Processes in oil refineries and natural gas processing plants that remove mercaptans and/or hydrogen sulfide (H2S) are commonly referred to as sweetening processes because they result in products which no longer have the sour, foul odors of mercaptans and hydrogen sulfide. The liquid hydrocarbon disulfides can remain in the sweetened end products; or they can be used as part of the petroleum refinery or natural gas processing plant fuel; or they may be subjected to further downstream processing.

    [0004] One proprietary catalytic mercaptan oxidation process widely used in petroleum refineries and natural gas processing plants to remove mercaptans contained in end-products such as LPG, propane, butanes, light naphthas, kerosene and jet fuel by converting them into liquid hydrocarbon disulfides is known as the Merox process. It is an integrated process comprising the mercaptan extraction step in which mercaptans react with an aqueous caustic solution in the presence of a catalyst, to form sodium alkylthiolate, which is then oxidized in a wet air oxidation step to produce disulfides and a regenerated caustic solution which is recycled back to the extraction step. The Merox process requires an alkaline environment which, in some versions of the process, is provided by an aqueous solution of sodium hydroxide (NaOH), a strong base, commonly referred to as caustic. In other versions of the process, the alkalinity is provided by ammonia, which is a relatively weaker base than sodium hydroxide and must be handled with special care due to its irritant and toxicity properties.

    [0005] The stepwise reaction schemes for the Merox process beginning with the treatment of the mercaptan is as follows:

            2RSH + 2 NaOH → 2NaSR + 2 H2O     (1)



    [0006] In the above reaction, RSH is a mercaptan and R is an organic group such as a methyl, ethyl, propyl or other hydrocarbon group. For example, the ethyl mercaptan (ethanethiol) has the formula C2H5SH.

    [0007] The catalyst used in some versions of the Merox process is a water-soluble liquid and in other versions, the catalyst is impregnated onto charcoal granules.

    [0008] The second step is referred to as regeneration and it involves heating and oxidizing the caustic solution leaving the extractor. The oxidation results in converting the extracted mercaptans to organic disulfides (RSSR). These disulfides are water-insoluble liquids that are separated and decanted from the aqueous caustic solution. The regeneration reaction scheme is as follows:

            4NaSR + O2 + 2H2O → 2RSSR + 4NaOH     (2)



    [0009] On a global basis, Merox mercaptan oxidation units are commonly found in refineries and the disulfides generated are blended with the fuel oil and are typically burned as fuel to produce stream or provide other utilities. This use can raise environmental concerns where the combustion gases with sulfur-containing constituents are emitted in the refinery. In some cases, the disulfides are added to an automotive fuel, or retained as part of the fuel blend; however with increasingly stringent fuel sulfur specifications, it is foreseeable that this use may be eliminated entirely.

    [0010] The Claus process is a well-established commercial process for recovering elemental sulfur from gaseous hydrogen sulfide found in oil refineries, natural gas processing plants and other industrial facilities. The Claus process includes a thermal and a catalytic step. In the controlled thermal step, one third of the H2S is oxidized to SO2 in a furnace operating at a temperature of about 1000°C. This ensures a stoichiometric reaction for the subsequent catalytic step in which a 2:1 mix of H2S and SO2 passes through a fixed bed of activated alumina or titania-based catalysts maintained at a temperature in the range of from 200°-350°C to produce elemental sulfur and water.

            2 H2S + SO2 →3 S + 2 H2O     (3)



    [0011] The problem addressed by the present invention is the need for an economical and effective method for the recovery of a clean, sulfur-free hydrocarbon fuel from liquid disulfides, and particularly the hydrocarbon disulfides produced in the caustic processing of mercaptan-containing hydrocarbon product streams, and specifically the Merox process. US 2014/0208998 discloses a process for treating a sulfur-containing hydrocarbon.

    Summary of the Invention



    [0012] The above needs are met and other advantages are provided by the process of the present invention as defined in the appended claims that integrates a catalytic oxidation step to treat the liquid hydrocarbon disulfide product of the Merox Process to produce SO2 which is separated from the remaining desulfurized hydrocarbons that form the clean sulfur-free hydrocarbon product stream. The SO2 is introduced into a Claus processing unit with the required stoichiometric amount of hydrogen sulfide (H2S) gas to produce elemental sulfur.

    [0013] One particular advantage of converting the sulfur dioxide generated in the oxidation step is the complete or partial elimination of the thermal hydrogen sulfide conversion step in the conventional Claus Process.

    Brief Description of the Drawings



    [0014] The invention will be described in greater detail below and with reference to the attached drawings in which:

    Fig. 1 is a simplified schematic illustration of the process;

    Fig. 2 is a comparative plot of the percent conversion of dimethyldisulfide (DMDS) for two different catalyst systems with a ratio of O2/S equal to 12; and

    Fig. 3 is a comparative plot of the percent conversion of DMDS for varying ratios of O2/S for the two catalyst systems shown in Fig. 2.


    Detailed Description of Preferred Embodiments



    [0015] Referring now to the schematic illustration Fig. 1, the integrated process of the invention for treating liquid hydrocarbon disulfide products, e.g., by-products of the Merox process, comprises the following steps:
    1. (a) a mercaptan oxidation step to produce spent caustic solution and mercaptan-free hydrocarbons;
    2. (b) a wet air oxidation step to regenerate the spent caustic solution and produce by-product liquid hydrocarbon disulfides;
    3. (c) an oxidation step to oxidize the hydrocarbon disulfides to produce sulfur dioxide (SO2) and hydrocarbons which are separated to provide a sulfur-free liquid hydrocarbon product stream; and
    4. (d) a gaseous desulfurization step in which SO2 is reacted with hydrogen sulfide to produce elemental sulfur.


    [0016] It will be understood by one of ordinary skill in the art that steps (a) and (b) correspond to the conventional Merox process and step (d) corresponds to the conventional Claus process. The liquid mercaptan hydrocarbon stream can have a sulfur content of from about 10 to about 60 wt %.

    [0017] Addition of the oxidation step (c) between the Merox and Claus processes efficiently converts hydrocarbon disulfides into sulfur dioxide and light hydrocarbon gases and/or liquids which can be used as clean fuel in the refinery. The sulfur dioxide generated is sent to the Claus process unit and fully or partially eliminates the need for the conventional thermal hydrogen sulfide conversion step, because there is no need to produce sulfur dioxide from a portion of the H2S as in the conventional Claus process to react with the remaining hydrogen sulfide in the production of elemental sulfur.

    Oxidation of Dimethyldisulfide



    [0018] A comparative study was undertaken of the activity of the catalyst systems: MoO3/Al2O3 and CuCr2O4/12%CeO2 in the oxidative desulfurization of octane containing 0.5 W% of S as dimethyldisulfide (DMDS) under a representative range of conditions. The reactions were carried out under conditions that included the same GHSV=10000 h-1 and temperatures in the range of 300°C plus or minus 30°C. The catalyst loading was 2 cm3, and the O2/S ratio was varied in the range of from 12-60, and a WHSV h-1 as indicated below. The results are summarized in Table 1 and the data is illustrated in Figs. 2 and 3. As shown by the data, 100 W% conversion of DMDS was achieved over the CuCr2O4/CeO2/Al2O3 catalyst, at an O2/S ratio of 26 and the other conditions as indicated.
    Table 1
    #CatalystsTemp., °CO2/SGHSV, h-1WHSV, h-1DMDS Conversion. W%DS in liquid, W%
    1 MoO3/Al2O3 300 60 10000 16 51  
    2 MoO3/Al2O3 330 12 10000 41 36 46
    3 MoO3/Al2O3 300 28 10000 27 35  
    4 MoO3/Al2O3 300 57 10000 15 51  
    5 MoO3/Al2O3 270 14 10000 30 49 46
    6 CuCr2O4/CeO2/Al2O3 291 26 10000 26 100 85
    7 CuCr2O4/CeO2/Al2O3 315 13 10000 19 88  
    8 CuCr2O4/CeO2/Al2O3 310 13 10000 30 70 70


    [0019] From the above description and examples, it is apparent that the present invention provides an economical and effective method for the recovery of a clean, sulfur-free hydrocarbon fuel from liquid disulfides, including specifically the liquid hydrocarbon disulfides produced in the caustic processing of mercaptan-containing hydrocarbon product streams. The disclosed process has widespread applicability to large scale operations such as refineries and gas processing plants where the disulfides can be processed to remove their sulfur constituent and provide an environmentally acceptable clean-burning hydrocarbon fuel.

    [0020] Modifications and variations on the process can be made and derived from the above description and the scope of the invention is to be determined by the claims that follow.


    Claims

    1. A process for treating a liquid hydrocarbon feedstream to remove mercaptans present in the stream by

    a. contacting the mercaptan-containing hydrocarbon feedstream with an aqueous caustic solution to oxidize the mercaptans and produce a spent caustic solution and mercaptan-free hydrocarbons;

    b. subjecting the spent caustic and hydrocarbons to a wet air oxidation step to regenerate the spent caustic and produce a liquid hydrocarbon disulfide product;

    c. separating the regenerated aqueous caustic solution from the hydrocarbon disulfide and recycling the caustic to step (a);

    d. oxidizing the hydrocarbon disulfide product in the presence of a catalytic composition to produce sulfur dioxide and a hydrocarbon product stream that is substantially free of sulfur, where the catalytic composition comprises CuCr2O4/CeO2/Al2O3;

    e. separating and recovering the hydrocarbon product stream;

    f. reacting the sulfur dioxide with H2S in a predetermined stoichiometric ratio to produce an elemental sulfur product and water; and

    g. recovering the sulfur.


     
    2. The process of claim 1 in which the caustic is selected from the group consisting of aqueous solutions of sodium hydroxide, ammonia, potassium hydroxide, and combinations thereof.
     
    3. The process of claim 1 which includes subjecting the H2S to an oxidation reaction to convert a predetermined portion of the H2S to sulfur dioxide in order to achieve a stoichiometric ratio of 2 H2S:SO2 to complete the sulfur-producing reaction:

            2H2S + SO2 →3S + 2H2O.


     
    4. The process of claim 1 in which the liquid hydrocarbon disulfide product has a sulfur content in the range of from 10 to 60 wt%.
     
    5. The process of claim 1 in which the hydrocarbon disulfide is contacted with the oxidation catalyst at a temperature in the range of from 200 °C to 600 °C, and in certain embodiments from about 250 °C to about 550 °C, and in further embodiments from about 300 °C to about 500 °C.
     
    6. The process of claim 1 in which the hydrocarbon disulfide is contacted with the oxidation catalyst under conditions that include a molar ratio of O2:C in a range of from 1:100 to 1:10, in certain embodiments from 1:50 to 1:10, and in further embodiments from 1:20 to 1:10, and a molar ratio of O2:S is in the range of from 1:1 to about 150:1, in certain embodiments from 10:1 to 100:1, and in further embodiments from 20:1 to 50:1.
     
    7. The process of claim 1 in which the hydrocarbon disulfide is contacted with the oxidation catalyst under conditions that include a weight hourly space velocity (WHSV) that is in the range of from 1 h-1 to 100 h-1, in certain embodiments 5 h-1 to 50 h-1, and in further embodiments 10 h-1 to 30 h-1.
     
    8. The process of claim 1 in which the hydrocarbon disulfide is contacted with the oxidation catalyst under conditions that include a gas hourly space velocity (GHSV) that is in the range of from 1,000 h-1 to 25,000 h-1, in certain embodiments from 5,000 h-1 to 15,000 h-1, and in further embodiments 5,000 h-1 to 10,000 h-1.
     
    9. The process of claim 1 in which the hydrocarbon disulfide is contacted with the oxidation catalyst under conditions that include an operating pressure that is in the range of from 1 bar to 30 bars, in certain embodiments from 1 bar to 10 bars, and in further embodiments from 1 bar to 5 bars.
     
    10. The process of claim 1 in which the hydrocarbon disulfide is contacted with the oxidation catalyst under conditions that include an operating pressure that is in the range of from 1 bar to 5 bars, a weight hourly space velocity (WHSV) that is in the range of from 10 h-1 to 30 h-1, and a gas hourly space velocity (GHSV) that is in the range of from 5,000 h-1 to 10,000 h-1.
     


    Ansprüche

    1. Verfahren zur Aufbereitung eines flüssigen Kohlenwasserstoff-Zustroms zur Entfernung von im Strom vorhandener Mercaptane mittels:

    a. Kontaktieren des mercaptanhaltigen Kohlenwasserstoff-Zustroms mit einer wässrigen, kaustischen Lösung, um die Mercaptane zu oxidieren und eine verwendete kaustische Lösung sowie Mercaptan-freie Kohlenwasserstoffe zu erzeugen;

    b. Behandeln der verwendeten Kaustikum und der Kohlenwasserstoffe in einem Nassluft-Oxidationsschritt, um das verwendeten Kaustikum zu regenerieren und ein flüssiges Kohlenwasserstoff-Disulfid-Erzeugnis zu erzeugen;

    c. Trennen der regenerierten wässrigen kaustischen Lösung von dem Kohlenwasserstoff-Disulfid und Rückführen des Kaustikums zu Schritt (a);

    d. Oxidieren des Kohlenwasserstoff-Disulfid-Erzeugnisses in Anwesenheit einer katalytischen Zusammensetzung, um Schwefeldioxid und einen Kohlenwasserstoff-Erzeugnissstrom zu erzeugen, der im Wesentlichen schwefelfrei ist, wobei die katalytische Zusammensetzung CuCr2O4 / CeO2 / Al2O3 aufweist;

    e. Trennen und Rückgewinnen des Kohlenwasserstoff-Erzeugnis-Stroms;

    f. Reagieren lassen des Schwefeldioxids mit H2S in einem vorgegebenen stöchiometrischen Verhältnis, um ein Elementarschwefel-Produkt und Wasser zu erzeugen; und

    g. Rückgewinnen des Schwefels.


     
    2. Verfahren gemäß Anspruch 1, wobei das Kaustikum ausgewählt ist aus der Gruppe bestehend aus wässrigen Lösungen von Natronlauge, Ammoniak, Kaliumhydroxid und Kombinationen davon.
     
    3. Verfahren gemäß Anspruch 1, weiter beinhaltend den Schritt, das H2S einer Oxidationsreaktion zu unterziehen, um einen vorgegebenen Teil des H2S in Schwefeldioxid umzuwandeln, damit ein stöchiometrisches Verhältnis von 2 H2S:SO2 erreicht wird, um die Schwefelproduktionsreaktion zu vervollständigen:

            2 H2S + SO2 →3 S + 2 H2O.


     
    4. Verfahren gemäß Anspruch 1, wobei das flüssige Kohlenwasserstoff-Disulfid-Produkt einen Schwefelgehalt zwischen 10 und 60 Gew.-% aufweist.
     
    5. Verfahren gemäß Anspruch 1, wobei das Kohlenwasserstoff-Disulfid mit dem Oxidationskatalysator bei einer Temperatur zwischen 200°C und 600°C und in bestimmten Ausführungsformen zwischen 250°C und 550°C und in weiteren Ausführungsformen zwischen 300°C und 500°C in Kontakt gebracht wird.
     
    6. Verfahren gemäß Anspruch 1, wobei das Kohlenwasserstoff-Disulfid mit dem Oxidationskatalysator unter Bedingungen in Kontakt gebracht wird, die ein Molverhältnis von O2:C im Bereich von 1:100 bis 1:10, in bestimmten Ausführungsformen von 1:50 bis 1:10 und in weiteren Ausführungsformen von 1:20 bis 1:10 beinhalten und ein Molverhältnis von O2:S im Bereich von 1:1 bis etwa 150:1, in bestimmten Ausführungsformen von 10:1 bis 100:1 und in weiteren Ausführungsformen von 20:1 bis 50:1.
     
    7. Verfahren gemäß Anspruch 1, wobei das Kohlenwasserstoff-Disulfid mit dem Oxidationskatalysator unter Bedingungen in Kontakt gebracht wird, die eine gewichtsbezogene Katalysatorbelastung (WHSV) im Bereich von 1h-1 bis 100h-1, in bestimmten Ausführungsformen von 5h-1 bis 50h-1 und in weiteren Ausführungsformen von 10h-1 bis 30h-1 beinhalten.
     
    8. Verfahren gemäß Anspruch 1, wobei das Kohlenwasserstoff-Disulfid mit dem Oxidationskatalysator unter Bedingungen in Kontakt gebracht wird, die eine gasbezogene Katalysatorbelastung (GHSV) im Bereich von 1.000 h-1 bis 25.000 h-1, in bestimmten Ausführungsformen von 5.000 h-1 bis 15.000 h-1 und in weiteren Ausführungsformen von 5.000 h-1 bis 10.000 h-1beinhalten.
     
    9. Verfahren gemäß Anspruch 1, wobei das Kohlenwasserstoff-Disulfid mit dem Oxidationskatalysator unter Bedingungen in Kontakt gebracht wird, die einen Betriebsdruck im Bereich von 1 bar bis 30 bar, in bestimmten Ausführungsformen von 1 bar bis 10 bar und in weiteren Ausführungsformen von 1 bar bis 5 bar beinhalten.
     
    10. Verfahren gemäß Anspruch 1, wobei das Kohlenwasserstoff-Disulfid mit dem Oxidationskatalysator unter Bedingungen in Kontakt gebracht wird, die einen Betriebsdruck im Bereich von 1 bar bis 5 bar, eine gewichtsbezogene Katalysatorbelastung (WHSV) im Bereich von 10 h-1 bis 30 h-1 und eine gasbezogene Katalysatorbelastung (GHSV) im Bereich von 5.000 h-1 bis 10.000 h-1 beinhalten.
     


    Revendications

    1. Procédé pour traiter un courant d'alimentation d'hydrocarbures liquide pour éliminer les mercaptans présents dans le courant consistant à

    a. mettre en contact le courant d'alimentation d'hydrocarbures contenant des mercaptans avec une solution aqueuse caustique pour oxyder les mercaptans et produire une solution caustique usée et des hydrocarbures exempts de mercaptans ;

    b. soumettre la solution caustique usée et les hydrocarbures à une étape d'oxydation à l'air humide pour régénérer la solution caustique usée et produire un produit de disulfure d'hydrocarbures liquide ;

    c. séparer la solution aqueuse caustique régénérée du disulfure d'hydrocarbures et recycler la solution caustique à l'étape (a) ;

    d. oxyder le produit de disulfure d'hydrocarbures en présence d'une composition catalytique pour produire du dioxyde de soufre et un courant de produit d'hydrocarbures qui est sensiblement exempt de soufre, où la composition catalytique comprend CuCr2O4/CeO2/Al2O3;

    e. séparer et récupérer le courant de produit d'hydrocarbures ;

    f. faire réagir le dioxyde de soufre avec du H2S dans un rapport stœchiométrique prédéterminé afin de produire un produit de soufre élémentaire et de l'eau ; et

    g. récupérer le soufre.


     
    2. Procédé selon la revendication 1, dans lequel la solution caustique est sélectionnée parmi le groupe constitué de solutions aqueuses telles que l'hydroxyde de sodium, l'ammoniaque, l'hydroxyde de potassium, et leurs combinaisons.
     
    3. Procédé selon la revendication 1, qui comporte la soumission du H2S à une réaction d'oxydation pour convertir une partie prédéterminée de H2S en dioxyde de soufre afin d'obtenir un rapport stœchiométrique de 2 H2S:SO2 pour compléter la réaction de production de soufre :

            2H2S + SO2 →3S + 2H2O.


     
    4. Procédé selon la revendication 1, dans lequel le produit de disulfure d'hydrocarbures liquide a une teneur en soufre dans la plage comprise entre 10 et 60 % en poids.
     
    5. Procédé selon la revendication 1, dans lequel le disulfure d'hydrocarbures est mis en contact avec le catalyseur d'oxydation à une température dans la plage comprise entre 200 °C et 600 °C, et dans certains modes de réalisations entre environ 250 °C et environ 550 °C, et dans des modes de réalisations ultérieurs entre environ 300 °C et environ 500 °C.
     
    6. Procédé selon la revendication 1, dans lequel le disulfure d'hydrocarbures est mis en contact avec le catalyseur d'oxydation sous des conditions qui comportent un rapport molaire O2:C dans une plage comprise entre 1:100 et 1:10, dans certains modes de réalisations entre 1:50 et 1:10, et dans des modes de réalisations ultérieurs entre 1:20 et 1:10, et un rapport molaire O2:S est dans une plage comprise entre 1:1 et environ 150:1, dans certains modes de réalisations entre 10:1 et 100:1, et dans des modes de réalisations ultérieurs entre 20:1 et 50:1.
     
    7. Procédé selon la revendication 1, dans lequel le disulfure d'hydrocarbures est mis en contact avec le catalyseur d'oxydation sous des conditions qui comportent une vitesse spatiale horaire en poids (WHSV) qui est dans la plage comprise entre 1 h-1 et 100 h-1, dans certains modes de réalisations entre 5 h-1 et 50 h-1, et dans des modes de réalisations ultérieurs entre 10 h1 et 30 h-1.
     
    8. Procédé selon la revendication 1, dans lequel le disulfure d'hydrocarbures est mis en contact avec le catalyseur d'oxydation sous des conditions qui comportent une vitesse spatiale horaire du gaz (GHSV) qui est dans la plage comprise entre 1 000 h-1 et 25 000 h-1, dans certains modes de réalisations entre 5 000 h-1 et 15 000 h-1, et dans des modes de réalisations ultérieurs entre 5 000 h-1 et 10 000 h-11.
     
    9. Procédé selon la revendication 1, dans lequel le disulfure d'hydrocarbures est mis en contact avec le catalyseur d'oxydation sous des conditions qui comportent une pression de fonctionnement qui est dans la plage comprise entre 1 bar et 30 bar, dans certains modes de réalisations entre 1 bar et 10 bar, et dans des modes de réalisations ultérieurs entre 1 bar et 5 bar.
     
    10. Procédé selon la revendication 1, dans lequel le disulfure d'hydrocarbures est mis en contact avec le catalyseur d'oxydation sous des conditions qui comportent une pression de fonctionnement qui est dans la plage comprise entre 1 bar et 5 bar, une vitesse spatiale horaire en poids (WHSV) qui est dans la plage comprise entre 10 h-1 et 30 h-1, et une vitesse spatiale horaire du gaz (GHSV) qui est dans la plage comprise entre 5 000 h-1 et 10 000 h-11.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description