(19)
(11)EP 3 225 038 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.09.2018 Bulletin 2018/36

(21)Application number: 15810768.0

(22)Date of filing:  23.11.2015
(51)Int. Cl.: 
H04R 3/00  (2006.01)
H04R 29/00  (2006.01)
(86)International application number:
PCT/IB2015/059029
(87)International publication number:
WO 2016/083971 (02.06.2016 Gazette  2016/22)

(54)

LOW FREQUENCY ACTIVE ACOUSTIC ABSORBER BY ACOUSTIC VELOCITY CONTROL THROUGH POROUS RESISTIVE LAYERS

NIEDERFREQUENTER AKTIVER SCHALLABSORBER DURCH AKUSTISCHE GESCHWINDIGKEITSSTEUERUNG DURCH PORÖSE RESISTIVE SCHICHTEN

ABSORBEUR ACOUSTIQUE ACTIF BASSE FRÉQUENCE PAR COMMANDE DE LA VITESSE ACOUSTIQUE À TRAVERS DES COUCHES RÉSISTIVES POREUSES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.11.2014 GB 201421213

(43)Date of publication of application:
04.10.2017 Bulletin 2017/40

(73)Proprietor: Relec SA
1400 Yverdon-les-Bains (CH)

(72)Inventors:
  • ROUX, Alain
    CH-1400 Yverdon-les-Bains (CH)
  • MARTIN, Christian
    CH-1400 Yverdon-les-Bains (CH)
  • PITTET, Antoine
    CH-1202 Genève (CH)
  • STROBINO, David
    CH-1202 Genève (CH)

(74)Representative: Weihs, Bruno Konrad 
ANDRE ROLAND SA P.O. Box 5107
1002 Lausanne
1002 Lausanne (CH)


(56)References cited: : 
DE-C1- 4 027 511
GB-A- 2 265 520
US-B1- 7 970 148
FR-A1- 2 778 741
US-B1- 6 778 673
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] The invention relates to acoustic absorbers.

    Background


    Technical domain of the invention



    [0002] All premises used for sound measurement, recording, processing and diffusion, such as recording or post production studios, concert halls, sound laboratories, etc. need to be acoustically treated to obtain the adequate reverberation and echo that is required for their use.

    [0003] It is relatively easy to install passive dampening systems made of fiber material to adequately absorb frequencies above 500 Hz approximately. However, these passive absorbers are not suitable for lower frequencies as the necessary thickness of material increases with the wavelength. As an example, a minimum thickness of 1 m of material is necessary to suitably absorb frequencies of 100 Hz.

    [0004] In a standard sized room, the natural standing resonance frequencies are in general relatively low and therefore represent a serious problem to be controlled.

    [0005] Many attempts to solve this problem have been made but they all have several limitations.

    State of the art


    Electronic equalization of a room



    [0006] In order to reduce the resonance in a room, an equalizing system compensates the signal transmitted to the loudspeaker by reducing the frequencies that resonate in a particular room with particular equipment, furniture and people inside it.

    [0007] A main problem with this system is that it alters the primary sound emitted by the loudspeaker thus reducing the fidelity of the source-this is not acceptable to some users. A second problem is that the equalizing is not adaptive and the setup process must be done each time the room specifics change, e.g. if an extra person enters the room.

    Passive bass-trap



    [0008] There are several different ways of designing a passive bass-trap. In general the passive bass-trap comprises a resonating membrane in front of a damping material or air volume with a size tuned to the frequency that needs to be absorbed-typically 20-100 Hz.

    [0009] The system needs to have large dimensions and is dedicated to a single frequency when typically several frequencies need to be treated and these several frequencies vary according to the specificities of the room. The large amount of absorbing equipment needed also increases the cost as well as significantly reduces the volume of the room.

    E-bass trap (Bag End Loudspeakers patent US 7,190,796)



    [0010] This system comprises a microphone that controls a loudspeaker to absorb specific low frequencies. An advantage of this system is that the footprint is smaller than with a passive bass-trap. A main limitation to this system is that it needs to be adjusted to a specific frequency and therefore is also dependent on the room specificities. It must therefore be set up using precise sound measurements and adjusted each time the room specificities change, e.g., if a person enters the room.

    Active acoustic impedance control system for noise reduction (international publication WO 99/59377 to X. Meynial)



    [0011] An active acoustic impedance system comprises a loudspeaker in a closed cabinet connected to a feedback control loop based on a combination of pressure measured with a microphone and the velocity of the loudspeaker's membrane, acquired through an impedance bridge-motional feedback principle patented by Philips.

    [0012] Although this system covers a large bandwidth, it rapidly becomes instable as the gain of the counter reaction is increased. Furthermore it is difficult to adjust the central frequency that the loudspeaker will absorb.

    Electroacoustic absorber (international publication WO 2014/053994 A1 to H. Lissek, R. Boulandet and E. Rivet)



    [0013] An active impedance control system comprises a loudspeaker in a closed cabinet and connected to a specific electric impedance synthetized and made up of a combination of digital electric filter in a digital processor associated to a transconductance amplifier and a setup of analog components.

    [0014] One limitation of this system is that it is intrinsically instable depending on the type of electric impedance that is connected to the loudspeaker.

    [0015] Further example is disclosed in US 7,970,148 B1.

    Problems solved by the invention



    [0016] It is an aim of the invention to provide an adaptive device that adjusts to absorb the predominant resonant frequencies of a closed area.

    [0017] It is further an aim of the invention to provide a device that presents a large active absorption area, significantly larger than the area of the transducers used.

    Summary of the invention



    [0018] The invention provides an electroacoustic device for wide band low frequency absorption. The device comprises at least one electroacoustic transducer, mounted on an acoustic baffle, separating a closed rear volume and a front volume, the front volume being closed by an acoustic fabric of determined acoustic air-flow resistance; a power amplification electronic with membrane velocity feedback control, configured to obtain a transducer membrane velocity proportional to an input voltage, coming from a microphone located in front of the acoustic fabric on a side opposite from the front volume, connected to a microphone preamplifier; and a feedforward control, with adjustable gain and band-pass filter, taking a first pressure signal coming from the microphone preamplifier and driving the power amplifier input, the feedforward control gain being equal to

    where Af is the fabric area, Als the projected transducer membrane area, R the fabric air-flow resistance and G1 the preamplifier gain, minimizing the acoustic pressure in the front volume, thus having a specific impedance, defined as pressure/velocity ratio, in front of the acoustic fabric equal to the determined acoustic air-flow resistance of the acoustic fabric.

    [0019] In a preferred embodiment the membrane velocity feedback control is based on an impedance bridge.

    [0020] In a further preferred embodiment the electroacoustic device further comprises an additional microphone located behind the acoustic fabric in the front volume, with an additional microphone preamplifier; and a feedback control loop, with adjustable gain and band-pass filter, taking a second pressure signal coming from the additional microphone preamplifier, the signals coming from the feedforward control and the membrane velocity feedback control being added to drive the power amplifier input, the feedforward control gain being equal to

    and the feedback control gain being equal to a significantly larger value than the feedforward control gain, minimizing the acoustic pressure in the front volume, thus having the specific impedance in front of the acoustic fabric equal to the specific air-flow resistance of the fabric.

    [0021] In a further preferred embodiment, the membrane velocity feedback control is realized using an integrator circuit, configured to integrate over time a signal coming from an accelerometer located on the transducer membrane.

    [0022] In a further preferred embodiment, the membrane velocity feedback control is realized using a differentiator circuit, configured to differentiate over time a signal coming from an additional microphone preamplifier, with an additional microphone located in the closed rear volume and connected to the additional microphone preamplifier.

    [0023] In a further preferred embodiment, the electroacoustic transducer is equipped with two coils, one of which is connected to the output of the power amplification electronic and the other of which produces an induced voltage representative of a velocity measurement, the induced voltage being proportional to the transducer membrane velocity and output as membrane velocity feedback control to the power amplification electronic.

    [0024] In a further preferred embodiment, the electroacoustic device further comprises at least one additional acoustic fabric layer in front of the acoustic fabric, whereby the first microphone is located between the two acoustic fabric layers.

    [0025] In a further preferred embodiment, the electroacoustic device further comprises at least one additional microphone in front of a second acoustic fabric, on a side opposite to the first microphone, with its microphone preamplifier and feedforward control with adjustable gain and band-pass filter, the signal coming from the two feedforward controls being linearly combined to drive the power amplifier input, the first feedforward control gain being equal to

    and the second feedforward control gain being equal to

    where G2 is the second preamplifier gain and ρ1 and ρ2 are weighting coefficients linked by ρ1 + ρ2 = 1, minimizing the acoustic pressure in the front volume, thus having the specific impedance in front of the acoustic fabric equal to the sum of specific air-flow resistances of the fabrics.

    Brief description of the drawings



    [0026] The invention will be better understood in view of the description of preferred embodiments of the invention and in light of the drawings, wherein:

    Fig. 1 shows the general principle of acoustic pressure cancellation behind a resistive acoustic fabric;

    Fig. 2 is a schematic of a preferred embodiment of the invention;

    Fig. 3 shows the voltage to acoustic velocity converter used in the power amplifier;

    Fig. 4 shows a modification of the embodiment of Fig. 2 with the use of an additional microphone;

    Fig. 5 shows the embodiment of Fig. 2, wherein an accelerometer is used to measure the loudspeaker membrane velocity;

    Fig. 6 shows the embodiment of Fig. 2, using a microphone inside the closed rear volume to measure the loudspeaker membrane velocity;

    Fig. 7 shows the general principle of using a dual coil loudspeaker to get the membrane velocity from the induced voltage in the second coil;

    Fig. 8 shows a modification of the embodiment of Fig. 2 with the use of an additional fabric layer;

    Fig. 9 is a further modification of the embodiment in Fig. 8, comprising two microphones.


    Legend



    [0027] 
    (1)
    Transducer (loudspeaker)
    (2)
    Acoustic baffle
    (3)
    Closed rear volume
    (4)
    Front volume
    (5)
    Acoustic resistive fabric
    (6)
    Power amplifier with velocity feedback control
    (7)
    Velocity measurement
    (8)
    Microphone
    (9)
    Microphone preamplifier
    (10)
    Feedforward control (electronic filter)
    (11)
    Feedback microphone
    (12)
    Additional microphone preamplifier
    (13)
    Additional feedback control (electronic filter)
    (14)
    Accelerometer
    (15)
    Integrator circuit
    (16)
    Rear volume microphone
    (17)
    Microphone preamplifier
    (18)
    Differentiator circuit
    (19)
    Additional acoustic resistive fabric
    (20)
    Additional microphone
    (21)
    Additional microphone preamplifier
    (22)
    Additional feedforward control (electronic filter)

    General description of the invention



    [0028] The present invention generally concerns an active low-frequency acoustic absorber system which has a relatively small footprint compared to systems from prior art, is auto-adaptive and avoids any altering of the sound source.

    [0029] The invention allows controlling modal acoustic resonances in closed areas by using one or more absorbers and avoiding any initial setup. The invention further allows doing away with any adjustment in case the room specifics are changed, such as moving people or furniture. The bandwidth of action is also much larger than in any other system from prior art.

    [0030] The realization of a low frequency passive absorption system with low acoustic impedance involves physical dimensions around a quarter of the wavelength. Compared to a passive system of prior art, the inventive device is much smaller in volume and footprint, and is a mobile asset. The footprint and lateral area of the absorber box are small compared to the area of the walls of the room.

    Absorption principle



    [0031] Given a medium of impedance Zc and a wall of impedance Zw and considering plane waves in normal incidence, the reflection factor r and the absorption factor α are given by:



    [0032] Absorption is maximal when α = 1; i.e. when Zw = Zc. However if the absorber does not entirely cover the wall surface, the target impedance has to be smaller than Zc, as demonstrated in [1]. Passive absorbers cannot present a surface impedance lower than Zc, hence an active system is required.

    [0033] The invention is built starting from a layer of porous acoustic fabric of given flow resistance. As the layer is thin, the flow resistance is essentially resistive, i.e. with negligible reactive part.

    [0034] At low frequencies, viscous forces in a porous material predominate over inertial ones and the acoustic velocity across a resistive layer can be approximated using Darcy's law [2]. This means that the acoustic velocity v is proportional to the pressure difference between both sides of the resistive layer and inversely proportional to its flow resistance R, as given by:



    [0035] Hence, when acoustic pressure on the rear side of the layer is cancelled (pint = 0), the surface impedance Z is given by the flow resistance R, according to:



    [0036] In order to cancel the internal pressure, the invention uses a predictive setpoint (feedforward control). Considering the schematic given in Fig. 1, the in-going volume flow rate q has to match:

    where Af is the fabric area. This volume flow rate q is realized with a velocity transducer. At low frequencies, the physical dimensions of the device are significantly smaller than the wavelength. Assuming volume flow rate continuity, the transducer velocity setpoint vls is given by:

    where Als is the projected transducer membrane area.

    [0037] The absorption area is significantly increased by this method, as Af can be easily ten times bigger than Als.

    [0038] In order to increase the precision of the internal pressure cancellation, one can add a feedback control loop using the internal pressure pint. As the internal pressure setpoint is zero, the pressure pint is equivalent to an error signal that can be used directly: a positive internal pressure has to produce a positive transducer velocity, according to Fig. 1. With this additional control loop, the velocity setpoint becomes:

    where the feedback gain K is chosen significantly larger than the feedforward gain Af · Als-1 · R-1.

    [0039] A different embodiment of the invention can include a second layer of acoustic fabric of resistance R' in front of the first one, on a side opposite to the transducer. Naming pmid the pressure between the two layers, the acoustic velocity across the resistive layers is given by:



    [0040] Hence, when acoustic pressure on the rear side of the inner layer is cancelled (pint = 0), the surface impedance Z is given by the sum of the flow resistances R and R' according to:



    [0041] Using only the pressure between the layers pmid, the velocity setpoint is given by:



    [0042] Using only the external pressure pext, the velocity setpoint is given by:



    [0043] The velocity setpoint can be expressed as the linear combination of the last two equations:

    where the weighting coefficients ρ1 and ρ2 are linked by ρ1 + ρ2 =1.

    Description of preferred embodiments of the invention



    [0044] Fig. 2 shows a schematic of a preferred embodiment of the invention, starting with a resistive acoustic fabric (5). These fabrics are manufactured with precise and well-known characteristics and with flow resistance lower than Zc. In a preferred embodiment of the invention, the acoustic fabric is a synthetic weaved mesh with an air-flow resistance of 100 Pa·s/m-an optimal value to efficiently absorb modal resonances in the range 10-200 Hz for a room of 40-60 m3. As the layer is thin (about 50 µm), the air-flow resistance is essentially resistive, i.e. with negligible reactive part at low frequencies.

    [0045] The acoustic fabric (5) forms the front side of a closed volume (4), of which the back side is a baffle (2) including one or more velocity transducers (1). The transducers are then mounted on a closed rear volume (3).

    [0046] The acoustic pressure in front of the fabric (5) is acquired by a microphone (8). The pressure signal is then converted to an appropriate voltage level by a preamplifier (9). A feedforward control (10) takes the preamplifier output signal and drives a power amplifier input (6), including a transfer function H1 given by:

    where Af is the fabric area (5), Als the projected transducer membrane area (1), R the fabric air-flow resistance and G1 the preamplifier (9) gain. The feedforward control (10) also includes a band-pass filter to control the bandwidth of the system and guarantee its stability.

    [0047] To end with, the power amplifier (6) uses a measurement (7) of the transducer (1) membrane velocity in a feedback loop in order that the membrane velocity matches the input signal of the amplifier.

    [0048] In a preferred embodiment of the invention, the velocity transducer-consisting of the transducer (1), the power amplifier (6) and the velocity measurement (7)-is based on an impedance bridge shown in Fig. 3, where the input voltage Vin is the power amplifier input.

    [0049] The voltage Vis is given by:

    where Zls = Re + jω·Le is the electric impedance of the loudspeaker, I the current through the loudspeaker coil, Bl the force factor and vls the membrane velocity. Resistor R0 is chosen small in order to save power.

    [0050] Resistors R1 and R2 are proportional to R0 and Re respectively. Inductor L0 is given by:



    [0051] Hence the induced voltage in the loudspeaker coil Bl·vls is proportional to the input voltage Vin. This leads to a membrane velocity given by:



    [0052] This bridge can also be realized without the inductor L0. In this case, complex impedances Z1 and Z2 shall be used in place of resistors R1 and R2 respectively. This is also true when a more accurate loudspeaker model is used for Zis, e.g. to account for eddy currents, according to [3]. In practical applications, the accuracy of this model will determine the bandwidth of the system.

    [0053] In other embodiments of the invention, the velocity measurement (7) can be realized with an accelerometer (Fig. 5), a microphone in the closed rear volume (Fig. 6) or a dual coil loudspeaker (Fig. 7).

    [0054] In a particular embodiment shown in Fig. 5, the membrane (1) acceleration is acquired by means of an accelerometer (14) located on the loudspeaker (1) membrane. This acceleration signal is then integrated over time in an integrator circuit (15) to get the proper velocity signal to drive the power amplifier (6) feedback input.

    [0055] In a particular embodiment shown in Fig. 6, the membrane (1) displacement is acquired by means of an additional microphone (16) located inside the closed rear volume (3) with the help of an additional preamplifier (17). The microphone gets the pressure inside the closed volume, which is proportional to the membrane displacement. A derivative circuit (18) takes the derivative over time of this displacement signal, which is used to drive the power amplifier (6) feedback input.

    [0056] In a particular embodiment shown in Fig. 7, the loudspeaker (1) is equipped with two coils, one of which is connected to the output of the amplifier (6) and the other of which produces an induced voltage that is used as a velocity measurement (7). This velocity voltage is proportional to the membrane velocity and is used to drive the power amplifier (6) feedback input.

    [0057] In order to increase the precision of the internal pressure cancellation, a particular embodiment of the invention shown in Fig. 4 includes an additional microphone (11) located behind the acoustic fabric (5), on a side opposite to the first microphone (8), an additional preamplifier (12) and a feedback control (13). As the internal pressure setpoint is zero, the second microphone delivers an error signal, which is used in a feedback loop. The feedback control (13), including a transfer function H2 = K, where K is a large value in comparison to the feedforward gain, and a band-pass filter, takes the second preamplifier (12) output signal and drives the power amplifier input (6) in addition to the feedforward control (10).

    [0058] In a different embodiment shown in Fig. 8, the invention of the preferred embodiment further comprises an additional acoustic fabric (19) of air-flow resistance R' in front of the first one, on a side opposite to the transducer (1). The acoustic pressure between the two fabrics (5) and (19) is acquired by the first microphone (8). The feedforward control (10) takes the microphone pressure signal and drives the power amplifier input (6), including the transfer function H1 and the band-pass filter.

    [0059] In addition to this additional acoustic fabric, the invention of a last embodiment shown in Fig. 9 further comprises an additional microphone (20) in front of the additional acoustic fabric (19), on a side opposite to the transducer (1), an additional microphone preamplifier (21) and an additional feedforward control (22), including a band-pass filter, which takes the second preamplifier (21) output signal and drives the power amplifier input (6) in addition to the first feedforward control (10).

    [0060] The transfer function H1 of the first feedforward control (10) is replaced by H3, given by:



    [0061] The second feedforward control (21) includes the transfer function H4, given by:

    where G2 is the second preamplifier (21) gain. The weighting coefficients ρ1 and ρ2 are linked by ρ1 + ρ2 = 1 .

    Industrial applications



    [0062] The invention may advantageously be used to build an adaptive acoustic absorber, compact and mobile, destined to be used in single or several units in rooms typically the size of cabin studios up to large recording studios.

    [0063] The inventive technology may also advantageously be put to use to achieve small dimension anechoic chambers as well as laboratory measurement of acoustic impedance on surfaces.

    [0064] In summary the invention provides a target acoustic impedance lower than the characteristic impedance of the medium (air); works on a broad bandwidth; and provides a large active absorption area, significantly larger than the area of the transducers used.

    References



    [0065] 
    1. [1] Karkar et al., Electroacoustic absorbers for the low-frequency modal equalization of a room: what is the optimal target impedance for maximum modal damping, depending on the total area of absorbers?, Forum Acusticum 2014, Krakow, Poland, 2014
    2. [2] Betgen et al., Implementation and non-intrusive characterization of a hybrid active-passive liner with grazing flow, Applied Acoustics, vol. 73, pages 624-638, 2012
    3. [3] Turner and Wilson, The use of negative source impedance with moving coil loudspeaker drive units: an analysis and review, 122nd AES Convention, Vienna, Austria, 2007



    Claims

    1. Art electroacoustic device for wide band low frequency absorption, the device comprising:

    at least one electroacoustic transducer (1), mounted on an acoustic baffle (2), separating a closed rear volume (3) and a front volume (4), the front volume being closed by an acoustic fabric (5) of determined acoustic air-flow resistance;

    a power amplifier (6) with membrane velocity feedback control (7), configured to obtain a transducer membrane velocity proportional to an input voltage, said voltage coming from a microphone (8) located in front of the acoustic fabric (5) on a side opposite from the front volume (4), connected to a microphone preamplifier (9);

    a feedforward control (10), with adjustable gain and band-pass filter, taking a first pressure signal coming from the microphone preamplifier (9) and driving the power amplifier input (6), the feedforward control gain being equal to

    where Af is the fabric area (5), Als the projected transducer membrane area (1), R the fabric air-flow resistance and G1 the preamplifier (9) gain, minimizing the acoustic pressure in the front volume (4), thus having a specific impedance, defined as pressure/velocity ratio, in front of the acoustic fabric equal to the determined air-flow resistance of the acoustic fabric.


     
    2. The electroacoustic device of claim 1, wherein the membrane velocity feedback control (7) is based on an impedance bridge.
     
    3. The electroacoustic device of claim 1, further comprising:

    an additional microphone (11) located behind the acoustic fabric (5) in the front volume (4), with an additional microphone preamplifier (12);

    a feedback control loop (13), with adjustable gain and band-pass filter, taking a second pressure signal coming from the additional microphone preamplifier (12), the signals coming from the feedforward control (10) and the feedback control (13) being added to drive the power amplifier input (6), the feedforward control gain being equal to

    and the feedback control gain being equal to a significantly larger value than the feedforward control gain, minimizing the acoustic pressure in the front volume (4), thus having the specific impedance in front of the acoustic fabric equal to the specific air-flow resistance of the fabric.


     
    4. The electroacoustic device of claim 1, wherein the membrane velocity feedback control (7) is realized using
    an integrator circuit (15), configured to integrate over time a signal coming from
    an accelerometer (14) located on the transducer membrane (1).
     
    5. The electroacoustic device of claim 1, wherein the membrane velocity feedback control (7) is realized using
    a differentiator circuit (18), configured to differentiate over time a signal coming from
    an additional microphone preamplifier (17), with an additional microphone (16) located in the closed rear volume (3) and connected to the additional microphone preamplifier.
     
    6. The electroacoustic device of claim 1, wherein the electroacoustic transducer (1) is equipped with two coils, one of which is connected to the output of the power amplifier (6) and the other of which produces an induced voltage representative of a velocity measurement, the induced voltage being proportional to the transducer (1) membrane velocity and output as membrane velocity feedback control (7) to the power amplifier (6).
     
    7. The electroacoustic device of claim 1, further comprising at least one additional acoustic fabric layer (19) in front of the acoustic fabric (5), whereby the first microphone (8) is located between the two acoustic fabric layers (5 and 19).
     
    8. The electroacoustic device of claim 7, further comprising at least one additional microphone (20) in front of a second acoustic fabric (19), on a side opposite to the first microphone (8), with its microphone preamplifier (21) and feedforward control with adjustable gain and band-pass filter (22), the signal coming from the two feedforward controls being linearly combined to drive the power amplifier input (6), the first feedforward control gain being equal to

    and the second feedforward control gain being equal to

    where G2 is the second preamplifier (21) gain and ρ1 and ρ2 are weighting coefficients linked by ρ1 + ρ2 = 1, minimizing the acoustic pressure in the front volume (4), thus having the specific impedance in front of the acoustic fabric equal to the sum of specific air-flow resistances of the fabrics.
     


    Ansprüche

    1. Elektroakustische Vorrichtung für breitbandige Niederfrequenzabsorption, wobei die Vorrichtung Folgendes umfasst:

    mindestens einen elektroakustischen Wandler (1), montiert an einer Schalltrennwand (2), die ein geschlossenes Rückvolumen (3) und ein Frontvolumen (4) trennt, wobei das Frontvolumen durch ein Schallgewebe (5) eines bestimmten akustischen Luftstromwiderstands abgeschlossen wird;

    einen Leistungsverstärker (6) mit Membrangeschwindigkeitsrückkopplungsregelung (7), ausgelegt zum Erhalten einer zu einer Eingangsspannung proportionalen Wandlermembrangeschwindigkeit, wobei die Spannung von einem vor dem Schallgewebe (5) auf einer dem Frontvolumen (4) entgegengesetzten Seite platzierten Mikrofon (8) stammt, das mit einem Mikrofon-Vorverstärker (9) verbunden ist;

    eine Vorwärtsregelung (10) mit einstellbarer Verstärkung und einem Bandpassfilter, welche ein erstes von dem Mikrofon-Vorverstärker (9) kommendes Drucksignal aufnimmt und den Leistungsverstärkereingang (6) ansteuert, wobei die Vorwärtsregelungsverstärkung gleich dem Folgenden ist:

    wobei Af die Gewebefläche (5), Als die projizierte Wandlermembranfläche (1), R der Gewebeluftstromwiderstand und G1 die Verstärkung des Vorverstärkers (9) sind, zum Minimieren des Schalldrucks in dem Frontvolumen (4), somit einen spezifischen Widerstand, der als Druck/Geschwindigkeits-Verhältnis definiert ist, vor dem Schallgewebe aufweisend, der gleich dem bestimmten Luftstromwiderstand des Schallgewebes ist.


     
    2. Elektroakustische Vorrichtung nach Anspruch 1, wobei die Membrangeschwindigkeitsrückkopplungsregelung (7) auf einer Impedanzbrücke basiert.
     
    3. Elektroakustische Vorrichtung nach Anspruch 1, ferner umfassend:

    ein zusätzliches Mikrofon (11), hinter dem Schallgewebe (5) in dem Frontvolumen (4) platziert, mit einem zusätzlichen Mikrofon-Vorverstärker (12);

    eine Rückkopplungsregelschleife (13) mit einstellbarer Verstärkung und einem Bandpassfilter, welche ein zweites von dem zusätzlichen Mikrofon-Vorverstärker (12) kommendes Drucksignal aufnimmt, wobei die von der Vorwärtsregelung (10) und der Rückkopplungsregelung (13) kommenden Signale addiert werden, um den Leistungsverstärkereingang (6) anzusteuern, wobei die Vorwärtsregelungsverstärkung gleich dem Folgenden ist:

    und die Rückkopplungsregelungsverstärkung gleich einem signifikant größeren Wert als der Vorwärtsregelungsverstärkung ist, zum Minimieren des akustischen Drucks in dem Frontvolumen (4), somit den spezifischen Widerstand vor dem Schallgewebe aufweisend, der gleich dem spezifischen Luftstromwiderstand des Gewebes ist.


     
    4. Elektroakustische Vorrichtung nach Anspruch 1, wobei die Membrangeschwindigkeitsrückkopplungsregelung (7) realisiert ist unter Verwendung
    einer Integratorschaltung (15), die ausgelegt ist zum zeitlichen Integrieren eines Signals, das von
    einem auf der Wandlermembran (1) platzierten Beschleunigungsmesser (14) kommt.
     
    5. Elektroakustische Vorrichtung nach Anspruch 1, wobei die Membrangeschwindigkeitsrückkopplungsregelung (7) realisiert ist unter Verwendung
    einer Differenziererschaltung (18), die ausgelegt ist zum zeitlichen Differenzieren eines Signals, das von
    einem zusätzlichen in dem abgeschlossenen Rückvolumen (3) platzierten und mit dem zusätzlichen Mikrofon-Vorverstärker (17) verbundenen Mikrofon (16) kommt.
     
    6. Elektroakustische Vorrichtung nach Anspruch 1, wobei der elektroakustische Wandler (1) mit zwei Spulen ausgestattet ist, von welchen eine mit dem Ausgang des Leistungsverstärkers (6) verbunden ist und die andere eine induzierte Spannung erzeugt, die eine Geschwindigkeitsmessung repräsentiert, wobei die induzierte Spannung zu der Membrangeschwindigkeit des Wandlers (1) proportional ist und als Membrangeschwindigkeitsrückkopplungsregelung (7) an den Leistungsverstärker (6) ausgegeben wird.
     
    7. Elektroakustische Vorrichtung nach Anspruch 1, ferner umfassend mindestens eine zusätzliche Schallgewebeschicht (19) vor dem Schallgewebe (5), wodurch das erste Mikrofon (8) zwischen den zwei Schallgewebeschichten (5 und 19) platziert wird.
     
    8. Elektroakustische Vorrichtung nach Anspruch 7, ferner umfassend mindestens ein zusätzliches Mikrofon (20) vor dem zweiten Schallgewebe (19), auf einer dem ersten Mikrofon (8) entgegengesetzten Seite, mit dessen Mikrofon-Vorverstärker (21) und einer Rückkopplungsregelung mit einstellbarer Verstärkung und einem Bandpassfilter (22), wobei die von den zwei Vorwärtsregelungen kommenden Signale linear kombiniert werden, um den Leistungsverstärkereingang (6) anzusteuern, wobei die Vorwärtsregelungsverstärkung gleich dem Folgenden ist:

    und die zweite Vorwärtsregelungsverstärkung gleich dem Folgenden ist:

    wobei G2 die Verstärkung des zweiten Vorverstärkers (21) und ρ1 und ρ2 Gewichtskoeffizienten sind, die durch ρ1 + ρ2 = 1 gekoppelt sind, zum Minimieren des Schalldrucks in dem Frontvolumen (4), somit die spezifische Impedanz vor dem Schallgewebe aufweisend, die gleich der Summe der spezifischen Luftstromwiderstände der Gewebe ist.
     


    Revendications

    1. Dispositif électroacoustique pour absorption basse fréquence à large bande, le dispositif comprenant :

    au moins un transducteur électroacoustique (1), monté sur un écran acoustique (2), séparant un volume arrière fermé (3) et un volume avant (4), le volume avant étant fermé par un tissu acoustique (5) de résistance acoustique à l'écoulement de l'air prédéterminée ;

    un amplificateur de puissance (6) avec un asservissement de vitesse de membrane (7), configuré pour obtenir une vitesse de membrane de transducteur proportionnelle à une tension d'entrée, ladite tension provenant d'un microphone (8) situé devant le tissu acoustique (5) sur un côté opposé au volume avant (4), relié à un préamplificateur de microphone (9) ;

    une commande prédictive (10), avec gain réglable et filtre passe-bande, prenant un premier signal de pression provenant du préamplificateur de microphone (9) et commandant l'entrée de l'amplificateur de puissance (6), le gain de la commande prédictive étant égal

    Af est la surface du tissu (5), Als la surface projetée de la membrane du transducteur (1), R la résistance à l'écoulement de l'air du tissu et G1 le gain du préamplificateur (9), minimisant la pression acoustique dans le volume avant (4), ayant ainsi une impédance spécifique, définie comme le rapport pression/vitesse, devant le tissu acoustique égale à la résistance à l'écoulement de l'air déterminée du tissu acoustique.


     
    2. Dispositif électroacoustique de la revendication 1, dans lequel l'asservissement de vitesse de membrane (7) est basé sur un pont d'impédance.
     
    3. Dispositif électroacoustique de la revendication 1, comprenant en outre :

    un microphone supplémentaire (11) situé derrière le tissu acoustique (5) dans le volume avant (4), avec un préamplificateur de microphone supplémentaire (12) ;

    une boucle d'asservissement (13), avec gain réglable et filtre passe-bande, prenant un deuxième signal de pression provenant du préamplificateur de microphone supplémentaire (12), les signaux provenant de la commande prédictive (10) et de l'asservissement (13) étant ajoutés pour commander l'entrée de l'amplificateur de puissance (6), le gain de la commande prédictive étant égal à

    et le gain de l'asservissement étant égal à une valeur sensiblement supérieure au gain de la commande prédictive, minimisant la pression acoustique dans le volume avant (4), ayant ainsi l'impédance spécifique devant le tissu acoustique égale à la résistance à l'écoulement de l'air spécifique du tissu.


     
    4. Dispositif électroacoustique de la revendication 1, dans lequel l'asservissement de vitesse de membrane (7) est réalisé en utilisant
    un circuit intégrateur (15), configuré pour intégrer dans le temps un signal provenant
    d'un accéléromètre (14) situé sur la membrane du transducteur (1).
     
    5. Dispositif électroacoustique de la revendication 1, dans lequel l'asservissement de vitesse de membrane (7) est réalisé en utilisant
    un circuit différenciateur (18), configuré pour différencier dans le temps un signal provenant
    d'un préamplificateur de microphone supplémentaire (17), avec un microphone supplémentaire (16) situé dans le volume arrière fermé (3) et relié au préamplificateur de microphone supplémentaire.
     
    6. Dispositif électroacoustique de la revendication 1, dans lequel le transducteur électroacoustique (1) est équipé de deux bobines, dont une est reliée à la sortie de l'amplificateur de puissance (6) et l'autre produit une tension induite représentative d'une mesure de vitesse, la tension induite étant proportionnelle à la vitesse de membrane du transducteur (1) et délivrée en tant qu'asservissement de vitesse de membrane (7) à l'amplificateur de puissance (6).
     
    7. Dispositif électroacoustique de la revendication 1, comprenant en outre au moins une couche de tissu acoustique supplémentaire (19) devant le tissu acoustique (5), le premier microphone (8) étant ainsi situé entre les deux couches de tissu acoustique (5 et 19) .
     
    8. Dispositif électroacoustique de la revendication 7, comprenant en outre au moins un microphone supplémentaire (20) devant un deuxième tissu acoustique (19), sur un côté opposé au premier microphone (8), avec son préamplificateur de microphone (21) et une commande prédictive avec gain réglable et filtre passe-bande (22), le signal provenant des deux commandes prédictives étant combiné linéairement pour commander l'entrée de l'amplificateur de puissance (6), le gain de la première commande prédictive étant égal à

    et le gain de la deuxième commande prédictive étant égal à

    G2 est le gain du deuxième préamplificateur (21) et ρ1 et ρ2 sont des coefficients de pondération liés par ρ1 + ρ2 = 1, minimisant la pression acoustique dans le volume avant (4), ayant ainsi l'impédance spécifique devant le tissu acoustique égale à la somme des résistances à l'écoulement de l'air spécifiques des tissus.
     




    Drawing



























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description