(19)
(11)EP 3 227 599 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
23.09.2020 Bulletin 2020/39

(21)Application number: 15798082.2

(22)Date of filing:  20.11.2015
(51)Int. Cl.: 
F21S 41/16  (2018.01)
F21S 41/663  (2018.01)
F21S 41/176  (2018.01)
(86)International application number:
PCT/EP2015/077235
(87)International publication number:
WO 2016/087235 (09.06.2016 Gazette  2016/23)

(54)

LASER BASED LIGHTING SYSTEM AND METHOD

LASERBASIERTES BELEUCHTUNGSSYSTEM UND VERFAHREN

SYSTÈME D'ÉCLAIRAGE À BASE DE LASER ET PROCÉDÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.12.2014 EP 14195824

(43)Date of publication of application:
11.10.2017 Bulletin 2017/41

(73)Proprietor: Lumileds Holding B.V.
1118 CL Schiphol (NL)

(72)Inventors:
  • VAN BOMMEL, Ties
    52068 Aachen (DE)
  • HIKMET, Rifat Ata Mustafa
    52068 Aachen (DE)

(74)Representative: Rüber, Bernhard Jakob 
Lumileds Germany GmbH Intellectual Property Philipsstraße 8
52068 Aachen
52068 Aachen (DE)


(56)References cited: : 
US-A1- 2012 026 721
US-A1- 2013 235 601
US-A1- 2014 218 893
US-B1- 6 350 041
US-A1- 2012 236 536
US-A1- 2013 294 049
US-A1- 2014 321 151
US-B2- 8 256 941
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] This invention relates to laser based lighting.

    BACKGROUND OF THE INVENTION



    [0002] Lasers are considered to be the light sources of the future for producing special effects. They are currently used for producing high intensity white light where laser beams are focused onto a light conversion element, such as a phosphor. Such light sources are interesting in applications such as stage lighting, projection and automotive front lighting systems. The patent application US2014/321151 A1 discloses a vehicle headlamp including a plurality of laser light sources and a light emitting section containing phosphor, wherein the laser light sources generate light of a plurality of wavelengths different from one another.

    [0003] There are many applications in which it is desirable to produce a light source where the beam shape can be adjusted. One example is automotive headlights, for example where different beam directions and shapes are required for main beam lighting and for dipped beam lighting. Directional control may also be used to provide beam steering when a driver is making a turn.

    [0004] Laser based automotive lighting systems have been proposed. For example, US 8256941 discloses a system in which a laser output can be optically switched to different phosphors, each forming part of a system which can give a different directional output.

    SUMMARY OF THE INVENTION



    [0005] The invention is defined by the claims.

    [0006] According to an aspect of the invention, there is provided a laser based lighting system, comprising:

    a first laser light source;

    a second laser light source;

    a light conversion element; and

    an optical element for directing the outputs from first and second laser light sources to the light conversion element, which generates a wavelength-converted light output in response to excitation by laser light,

    wherein the first and second laser light sources generate laser light of different wavelength having different absorption characteristics within the light conversion element, such that the range of depths within the light conversion element from which wavelength-converted light is generated is different for excitation by the first laser light source output and the second laser light source output.



    [0007] This system uses at least two lasers which emit two different wavelengths to pump a light converter. The light conversion element converts the laser light, and comprises a luminescent material such as an inorganic phosphor. The luminescent material might also be an organic luminescent material(s) and/or quantum dot or rod based luminescent material (s).

    [0008] The laser wavelengths and the absorption characteristics of the light converter are chosen such that the penetration depth of the wavelengths is different. In this way, the length of a light emitting region from the light conversion element can be adjusted. By providing different sizes of light output, different beam directions and/or sizes can then be produced.

    [0009] The optical element may for example direct the outputs from the first and second laser light sources to the same location of the light conversion element. In this way, both laser light sources cause an output for the same initial depth part of the light conversion element, but one laser light source causes a light output from a deeper part as well. The optical element is for example a dichroic prism or a dichroic cross. In another embodiment a single dichroic mirror is used. The dichroic mirror reflects light from the first laser light source and transmits light from the second laser light source.

    [0010] The system further comprises an optical output element which shapes the output light from the light conversion element as a function of the depth from which wavelength-converted light is generated.

    [0011] By adjusting the ratio of the intensity of the two laser sources, the shape of the final exit beam can be adjusted.

    [0012] In one example, the optical output element comprises a specular reflector spaced from the light conversion element. The shape of the reflector can be designed so that the overall output beam has a different shape and/or direction when it is emitted from a larger area of the light conversion element, compared to when it is emitted from a smaller area of the light conversion element. In another example, the optical output element comprises a slab of material providing total internal reflection.

    [0013] The reflector may comprise a first portion associated with a first range of depths of the light conversion element, and a second portion having a different shape associated with an adjacent second range of depths of the light conversion element. Thus, differently shaped reflector portions can be used to create a desired output beam profile resulting from illumination by the two laser sources.

    [0014] In another example, the optical output element comprises a diffractive, refractive, reflective, scattering or wavelength conversion element.

    [0015] There are also various possible adaptations to the light conversion element.

    [0016] In a most simple implementation it comprises a uniform slab of light conversion material, having a dimension in the direction of illumination which is greater than the absorption depth for at least one of the laser sources.

    [0017] In another example, the light conversion element has a non-uniform absorption characteristic in the depth direction. This can be used to vary the intensity of the light output from different depths along the light conversion element.

    [0018] In another example, the light conversion element has a first portion with the same absorption characteristic for the light output of the first and second laser light sources, and a second portion which has a different absorption characteristic for the light output of the first and second laser light sources.

    [0019] In another example, the light conversion element has different portions with different light output characteristics.

    [0020] These different approaches enable different optical output effects to be generated.

    [0021] The light conversion element may comprise:

    scattering particles;

    a rough scattering outer surface.



    [0022] The use of scattering in this way assists in the out-coupling of light from the light conversion element with reduced total internal reflection.

    [0023] The light conversion element may have a cross sectional shape which varies along the length of the light conversion element. This can be used to adjust the light output characteristics at different positions (i.e. depths) along the light conversion element.

    [0024] Each laser light source may comprise one or more laser diodes.

    [0025] A controller is preferably used for controlling the first and second laser light source output intensities. The controller may operate one or other of the laser light sources as two different modes of operation, but there may also be a third mode of operation with both laser light sources operated. The output intensities of the two laser light sources may be independently controllable.

    [0026] A sensor may also be provided for providing sensor information to the controller. This can be used to provide automated control of the output beam shape, for example automatic headlight operation, dimming or light steering.

    [0027] The invention also provides an automobile front light comprising a laser lighting system as defined above.

    [0028] Other examples in accordance with another aspect of the invention provide a method of generating laser based lighting, comprising:

    operating a first laser light source;

    operating a second laser light source;

    directing the outputs from first and second laser light sources to a light conversion element, thereby generating a wavelength-converted light output in response to excitation by laser light,

    wherein the first and second laser light sources generate laser light of different wavelength having different absorption characteristics within the light conversion element,

    wherein the method comprises generating wavelength-converted light from a range of depths within the light conversion element, which range of depths is different for light from the first laser light source output and light from the second laser light source output, and

    wherein the method further comprises shaping, by an optical output element, an output light from the light conversion element as a function of the depth from which the wavelength-converted light is generated.



    [0029] The invention is not limited to the use of two laser light sources. There may be more than two laser light sources having different emission wavelengths.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0030] Examples of the invention will now be described in detail with reference to the accompanying drawings, in which:
    Figure 1
    shows an example of part of a lighting system in accordance with the invention in simplified schematic form;
    Figure 2
    shows the absorption characteristic of the light conversion element and the emission characteristics the laser light sources used in the system of Figure 1;
    Figure 3
    shows a plot of transmission versus wavelength for a particular phosphor;
    Figure 4
    shows a plot of transmission versus wavelength for a particular phosphor;
    Figure 5
    shows in generic form the use of an optical output element;
    Figures 6 to 18
    show different examples of lighting system in accordance with the invention; and
    Figure 19
    shows an automotive lighting application which can make use of the lighting system in accordance with examples of the invention.

    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0031] The invention provides a laser based lighting system which has a first laser light source, a second laser light source and a light conversion element. The outputs from the first and second laser light sources are directed to the light conversion element, which generates wavelength-converted light output in response to excitation by laser light. The first and second laser light sources generate laser light of different wavelength having different absorption characteristics within the light conversion element, such that the range of depths within the light conversion element from which wavelength-converted light is generated is different. This difference in converted output can be used to create different optical effects so that beam steering or beam shaping can be performed.

    [0032] Figure 1 is used to explain the approach of the invention in simplified schematic form.

    [0033] Figure 1(a) shows the basic components, of a first laser light source 10, a second laser light source 12 and a light conversion element 14. An optical element 16 directs the outputs from first and second laser light sources 10, 12 to the light conversion element 14. The optical element 16 may comprise a pair of dichroic mirrors which reflect the light of the laser wavelength to the light conversion element.

    [0034] In another configuration a single dichroic element can be used. This dichroic element can be arranged to reflect the light of the first laser light source and transmit the light of the second laser light source. In this configuration the first laser light source is positioned at an angle different form zero with respect to the conversion element, while the second laser light source is positioned at an angle of zero degrees with respect to the light conversion element (not shown).

    [0035] Of course, other configurations are possible for delivering the light output from two (or more) laser light sources to a shared light conversion element 14. The outputs from the first and second laser light sources can be directed to the same location (i.e. fully overlapping) of the light conversion element or to areas of the light conversion element which are at least partially overlapping.

    [0036] The wavelength conversion element generates wavelength-converted light output in response to excitation by the laser light. The light conversion element for example comprises a luminescent material such as a phosphor.

    [0037] The first and second laser light sources 10, 12 generate laser light of different wavelength, and with different absorption characteristics within the light conversion element. As a result, the range of depths within the light conversion element from which wavelength-converted light is generated is different when excited by the first laser light source output and the second laser light source output. Both laser light sources cause an output for the same initial depth part of the light conversion element, but one laser light source causes a light output from a deeper part as well.

    [0038] Figure 1(b) shows the wavelength converted light output 18 when the light conversion element 14 is excited by the output from the first laser light source 10. The laser light only penetrates partially into the depth of the light conversion element 14.

    [0039] If the conversion element 14 is fully transparent and the surface is extremely smooth (polished) than part of the light will be emitted sideways and part of the light will be guided via total internal reflection through the conversion element. If the surface is rough or contains light out-coupling means, then most of the light is emitted to the sides. A roughened surface will result in a broad light distribution. However, a well-defined surface structure can be used to ensure that the output light is directed to a preferred range of output directions. Thus, the light output can be controlled to have a generally sideways direction as shown, although generally there will be light emission with some beam spread.

    [0040] Figure 1(c) shows the wavelength converted light output 20 when the light conversion element 14 is excited by the output from the second laser light source 12. The laser light penetrates fully into the depth of the light conversion element 14 giving a larger light output area.

    [0041] In this way, the laser wavelengths and the absorption characteristics of the light converter are chosen such that the penetration depth of the wavelengths is different. In this way, the length of the light emitting region can be adjusted based on which of the laser light sources is used. By providing different sizes of light output, different beam directions and/or sizes can then be produced.

    [0042] Figure 2 shows the absorption characteristic A of the light conversion element 14 (plot 22) and the emission characteristic E of the first laser light source (plot 24) and the emission characteristic of the second laser light source (plot 26).

    [0043] The different light emission areas shown in Figure 1 can be used to create different optical effects.

    [0044] Figure 3 shows a plot of transmission versus wavelength for a phosphor (Y0.9+Gd0.1)(2.994)Ce(0.00006)Al(5)O(12). Plots are shown for the transmission to three depths; 1.5cm, 3cm and 6cm. As can be seen, at a wavelength of around 460nm, there is full absorption by around 6cm depth, so that light is emitted by the phosphor only at lower depths. There is already only 30% transmission after a depth of 1.5cm so that 70% of the incident light is absorbed/converted by this depth. At the shorter wavelength of around 340nm, there is much greater penetration into the depth of the converter layer so that there is a reduced intensity output at shallow depths and a more even intensity output over the full depth of the light conversion element.

    [0045] Figure 4 shows a plot of transmission versus wavelength for a phosphor Lu(2.985)Ce(0.0005)Al(5)O(12). It shows a similar characteristic.

    [0046] Figure 5 shows in generic form an optical output element 30. This is used to shape the output light from the light conversion element 14 as a function of the depth from which wavelength-converted light is generated. By adjusting the ratio of the intensity of the two laser sources, the shape of the final exit beam can then be adjusted. The optical output element is a diffractive, refractive, light scattering, light reflecting or light conversion element.

    [0047] Figure 6 shows a first example, in which the optical output element comprises a specular reflector 40 spaced from the light conversion element 14. There may be other optical components in addition to the reflector. The shape of the reflector 40 can be designed so that the overall output beam has a different shape and/or direction when it is emitted from a larger area of the light conversion element, compared to when it is emitted from a smaller area of the light conversion element.

    [0048] For laterally emitted light, a parabolic mirror can be used to create a narrow beam from light emitted near the base of the mirror (i.e. near the optical element 16), and to create a broader beam from light emitted near the opposite end of the mirror.

    [0049] Figure 7 shows a second example, in which the optical output element comprises a slab 50 of material providing total internal reflection at the outside boundary between the slab 50 and the surrounding air.

    [0050] Figure 8 shows a third example, in which the optical output element comprises a diffractive or refractive element 60.

    [0051] The refractive design might for example be based on pyramid shape structures. With an air gap between the conversion element and the pyramid shape structures, the light can be collimated towards the reflector.

    [0052] A diffraction grating can be used, which is an optical component with a periodic structure of e.g. dots or elongated features, which splits and diffracts light into several beams travelling in different directions.

    [0053] Figure 9 shows a fourth example, which shows that when a reflector is used, it may comprise a first portion 70 associated with a first range of depths of the light conversion element 14, and a second portion 72 having a different shape associated with an adjacent second range of depths of the light conversion element 14. In this way, differently shaped reflector portions 70, 72 can be used to create a desired output beam profile resulting from illumination by the two laser sources. For example the first reflector portion 70 may be designed to generate a narrow beam from the excited light caused by the first laser light source (as shown in Figure 1(b)) and the second reflector portion 72 may be designed to generate a broader beam from the excited light caused by the second laser light source (as shown in Figure 1(c)).

    [0054] In all examples above, the lighting system may be controlled with one laser light source on and the other off, to provide two distinct modes of operation. However, more modes may be provided by allowing both laser light sources to be turned on at the same time, and with controllable intensity. For example, the relative intensities can be controlled more freely. In this way, the intensity of the narrow beam part can be controlled relative to the intensity of the broad beam part.

    [0055] The ability to provide broad and narrow beams is only one example. The optical system can be used to direct output light in different directions, or with different output beam shape and direction, for example for automotive front light control.

    [0056] The design of the optical arrangement is used to create a desired optical output shape and direction from the system when illuminated by one or other of the laser light sources (and the shape and direction will be a combination of the two when both laser light sources are illuminated).

    [0057] The design of the light conversion element may also be selected in dependence on the desired optical output.

    [0058] In a most simple implementation, the light conversion element comprises a uniform slab of light conversion material, having a dimension in the direction of illumination which is greater than the absorption depth for at least one of the laser sources, so that only a part of the depth is excited by that laser light source.

    [0059] As shown schematically in Figure 10, the light conversion element 14 may instead have a non-uniform absorption characteristic in the depth direction. This can be used to vary the intensity of the light output from different depths along the light conversion element.

    [0060] Figure 11 shows another example, in which the light conversion element has a first portion 14a with the same absorption characteristic for the light output of the first and second laser light sources, and a second portion 14b which has a different absorption characteristic for the light output of the first and second laser light sources. In this way, the light output from the section 14a may be the same regardless of which laser light source is used, and only the light output from the second section 14b changes.

    [0061] In another example shown in Figure 12, the light conversion element has different portions 14c, 14d with different light output characteristics, by using different materials. This use of different materials may for example be used for color correction, so that both beam shapes have the same color temperature or color point, or so that the two beams have desired different color temperatures or color points.

    [0062] These different approaches enable different optical output effects to be generated.

    [0063] Figure 13 shows that the light conversion element 14 may have a rough scattering outer surface 80. The use of scattering in this way assists in the out-coupling of light from the light conversion element with reduced total internal reflection.

    [0064] The same advantage can be achieved using scattering particles 82 as shown in Figure 14. These particles are preferably applied on the outer side of the conversion element, but they may instead be internal particles.

    [0065] Each laser light source may comprise one or more laser diodes.

    [0066] Figure 15 shows the first laser light source as a stack of two laser diodes 10a, 10b and shows the second laser light source as a stack of two laser diodes 12a, 12b.

    [0067] There may also be more than two types of laser diode. Figure 16 shows an arrangement with three types of laser diode 10, 12, 13, which each excite the light conversion element to a different depth.

    [0068] As mentioned above, the relative intensity of the two laser diodes is controlled to provide a change in the output beam shape and/or direction. The control may be as simple as selecting which laser diode to turn on, but it may instead involve selecting the intensity of each, so that one may be turned on to a desired intensity and the other turned off, or both may be turned on to desired respective intensities.

    [0069] As shown in Figure 17, a controller 90 is provided for controlling the first and second laser light source output intensities, to provide a lighting system. The output intensities of the two laser light sources is independently controllable by the controller 90.

    [0070] Figure 18 shows the system of Figure 17 supplemented with a sensor 92 for providing sensor information to the controller 90. This can be used to provide automated control of the output beam shape, for example automatic headlight operation, dimming or light steering.

    [0071] As one example, the invention can be applied to an automotive front light system. There are however many other possible applications including office lighting systems, household application systems, shop lighting systems, home lighting systems, accent lighting systems, spot lighting systems, theatre lighting systems, fiber-optic systems, projection systems, self-lit display systems, pixelated display systems, segmented display systems, warning sign systems, healthcare / medical lighting application systems, indicator sign systems, decorative lighting systems, portable systems, other automotive applications, green house lighting systems, or horticulture lighting.

    [0072] By way of example, Figures 19a to 19c show a vehicle 100 illuminating a road 101. As shown in Figure 19a, the headlight of the vehicle 100 is arranged to illuminate the road 101 in a highway light beam pattern 102 (full beam). The highway light beam pattern 102 is preferably used when traveling with the vehicle 100 along the road 101, for example a highway, at a relatively high speed. In this case, the optical axis of the light emitted from the headlight of the vehicle 100 is essentially parallel to the road 101.

    [0073] However, when moving into a cross country environment, it is preferred to tilt the optical axis of the headlight of the vehicle 100 downwards towards the road 101, thereby obtaining a cross country light beam pattern 103 (dipped beam). The cross country light beam pattern 103 will prevent dazzling of oncoming vehicles and is preferably used when traveling at a medium speed.

    [0074] In Fig. 19c, the light beam pattern 104 has been adapted for town lighting conditions. The optical axis of the headlight of the vehicle 100 has been tilted further downwards, and the emitted light has also been broadened, thereby obtaining a town light beam pattern. The town light beam pattern 104 is preferably used when traveling at a relatively low speed. The town light beam pattern 104 will increase the illumination of the shoulders of the road 101, increasing traffic safety in relation to, for example, pedestrians and cyclists moving on the side of the road 101.

    [0075] All the different illumination patterns shown in Figs. 19a to 19c can be accomplished with an adaptive front lighting system (AFS) comprising a light source and a lamp unit with luminescent concentrator based light sources according to the present invention.

    [0076] The light conversion element is based on a luminescent material. The luminescent material may for example comprise an inorganic phosphor, organic phosphor or quantum dots / rods.

    [0077] By way of example, an inorganic luminescent material may essentially be made of material selected from the group comprising:

            (M<I>1-x-yM<II>xM<III>y)3(M<IV>1-zM<V>z)5O12

    where M<I >is selected from the group comprising Y, Lu or mixtures thereof, M<II >is selected from the group comprising Gd, La, Yb or mixtures thereof, M<III >is selected from the group comprising Tb, Pr, Ce, Er, Nd, Eu or mixtures thereof, M<IV >is Al, M<V >is selected from the group comprising Ga, Sc or mixtures thereof, and 0<=x<=1, 0<=y<=0.1, 0<=z<=1; or

            (M<I>1-x-yM<II>xM<III>y)2O3

    where M<I >is selected from the group comprising Y, Lu or mixtures thereof, M<II >is selected from the group comprising Gd, La, Yb or mixtures thereof, M<III >is selected from the group comprising Tb, Pr, Ce, Er, Nd, Eu, Bi, Sb or mixtures thereof, and 0<=x<=1, 0<=y<=0.1; or

            (M<I>1-x-yM<II>xM<III>y)S1-zSez

    where M<I >is selected from the group comprising Ca, Sr, Mg, Ba or mixtures thereof, M<II >is selected from the group comprising Ce, Eu, Mn, Tb, Sm, Pr, Sb, Sn or mixtures thereof, M<III >is selected from the group comprising K, Na, Li, Rb, Zn or mixtures thereof, and 0<=x<=0.01, 0<=y<=0.05, 0<=z<=1; or

            (M<I>1-x-yM<II>xM<III>y)O

    where M<I >is selected from the group comprising Ca, Sr, Mg, Ba or mixtures thereof, M<II >is selected from the group comprising Ce, Eu, Mn, Tb, Sm, Pr or mixtures thereof, M<III >is selected from the group comprising K, Na, Li, Rb, Zn or mixtures thereof, and 0<=x<=0.1, 0<=y<=0.1; or

            (M<I>2-xM<II>xM<III>2)O7

    where M<I >is selected from the group comprising La, Y, Gd, Lu, Ba, Sr or mixtures thereof, M<II >is selected from the group comprising Eu, Tb, Pr, Ce, Nd, Sm, Tm or mixtures thereof, M<III >is selected from the group comprising Hf, Zr, Ti, Ta, Nb or mixtures thereof, and 0<=x<=1; or

            (M<I>1-xM<II>xM<III>1-yM<IV>y)O3

    where M<I >is selected from the group comprising Ba, Sr, Ca, La, Y, Gd, Lu or mixtures thereof, M<II >is selected from the group comprising Eu, Tb, Pr, Ce, Nd, Sm, Tm or mixtures thereof, M<III >is selected from the group comprising Hf; Zr, Ti, Ta, Nb or mixtures thereof, and M<IV >is selected from the group comprising Al, Ga, Sc, Si or mixtures thereof, and 0<=x<=0.1, 0<=y<=0.1;
    or mixtures thereof.

    [0078] By way of example Ce doped Yttrium aluminum garnet may be used (YAG, Y3Al5O12) or Lutetium-Aluminum-Granat (LuAG)

    [0079] Examples of suitable organic wavelength converting materials are organic luminescent materials based on perylene derivatives, for example compounds sold under the name Lumogen® by BASF. Examples of suitable compounds that are commercially available include, but are not limited to, Lumogen® Red F305, Lumogen® Orange F240, Lumogen® Yellow F083, and Lumogen® F170, and combinations thereof.

    [0080] Advantageously, an organic luminescent material may be transparent and non-scattering.

    [0081] Quantum dots (or rods) are small crystals of semiconducting material generally having a width or diameter of only a few nanometers. When excited by incident light, a quantum dot emits light of a color determined by the size and material of the crystal. Light of a particular color can therefore be produced by adapting the size of the dots. Most known quantum dots with emission in the visible range are based on cadmium selenide (CdSe) with shell such as cadmium sulfide (CdS) and zinc sulfide (ZnS). Cadmium free quantum dots such as indium phosphide (InP), and copper indium sulfide (CuInS2) and/or silver indium sulfide (AgInS2) can also be used. Quantum dots show very narrow emission band and thus they show saturated colors. Furthermore the emission color can easily be tuned by adapting the size of the quantum dots. Any type of quantum dot known in the art may be used in the present invention. However, it may be preferred for reasons of environmental safety and concern to use cadmium-free quantum dots or at least quantum dots having a very low cadmium content.

    [0082] The lighting system described above may be used in various applications, not only in automotive lighting. The system may be used as part of a lamp or a luminaire, or as part of a lighting system for use in digital projection, automotive lighting, stage lighting, shop lighting, home lighting, accent lighting, spot lighting, theatre lighting, fiber optic lighting, display systems, warning lighting systems, medical lighting applications, and decorative lighting applications.

    [0083] In the example of Figures 10 to 18 above, the optical arrangement is shown as a simple reflector. However, in each of these embodiments, the other possible optical arrangements described above may instead be used.

    [0084] In the examples above, the laser light from both sources is coupled to the same input face of the phosphor. However, they may instead couple to different faces of the phosphor, but still use a shared phosphor which generates light over a different area for the two laser light sources. The optical output element may use reflection, refraction or diffraction to create the desired optical output properties, and these may provide control of beam steering, beam shaping and/or beam spread.

    [0085] Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measured cannot be used to advantage. Any reference signs in the claims should not be construed as limiting the scope.


    Claims

    1. A laser based lighting system, comprising:

    a first laser light source (10);

    a second laser light source (12);

    a light conversion element (14); and

    an optical element (16) for directing the outputs from first and second laser light sources (10, 12) to the light conversion element (14), which generates a wavelength-converted light output in response to excitation by laser light, an optical output element (30) which shapes an output light (18, 20) from the light conversion element (14), characterised in that

    the first and second laser light sources (10, 12) generate laser light of different wavelength having different absorption characteristics within the light conversion element (14), such that the range of depths within the light conversion element (14) from which wavelength-converted light is generated is different for excitation by the first laser light source output and the second laser light source output, and

    wherein the light conversion element (14) is designed for outputting part of the wavelength-converted light ; sideways (18, 20), in a direction transverse to a depth of the light conversion element (14), and is further designed such that the range of depths within the light conversion element (14) from which wavelength-converted light is emitted sideways is different for the wavelength-converted light generated from excitation by the first laser light source output and the wavelength-converted light generated from excitation by the second laser light source output,

    whereby the optical output element (30) shapes an output light (18, 20) from the light conversion element (14) as a function of the depth from which the wavelength-converted light is sideways output.


     
    2. A system as claimed in claim 1, wherein the optical element (16) directs the outputs from the first and second laser light sources (10, 12) to the same location of the light conversion element (14).
     
    3. A system as claimed in claim 1 or 2, wherein the optical output element (30) comprises a diffractive, refractive, reflective, scattering or wavelength conversion element (60).
     
    4. A system as claimed in claim 1 or 2, wherein the optical output element (30) comprises a specular reflector (40) spaced from the light conversion element (14) or a slab (50) of material providing total internal reflection or a combination thereof.
     
    5. A system as claimed in claim 4, comprising a specular reflector (40) or slab (50) which comprises a first portion (70) associated with a first range of depths of the light conversion element (14), and a second portion (72) having a different shape associated with an adjacent second range of depths of the light conversion element (14).
     
    6. A system as claimed in claim 1 or 2, wherein the light conversion element (14) has a non-uniform absorption characteristic in the depth direction.
     
    7. A system as claimed in claim 1 or 2, wherein the light conversion element (14) has a first portion (14a) with the same absorption characteristic for the light output of the first and second laser light sources (10, 12), and a second portion (14b) which has a different absorption characteristic for the light output of the first and second laser light sources (10, 12).
     
    8. A system as claimed in claim 1 or 2, wherein the light conversion element (14) has different portions (14c, 14d) with different light output characteristics.
     
    9. A system as claimed in claim 1 or 2, wherein the light conversion element (14) comprises:

    scattering particles (82); or

    a rough scattering outer surface (80).


     
    10. A system as claimed in claim 1 or 2, wherein each laser light source (10, 12) comprises one or more laser diodes (10a, 10b, 12a, 12b).
     
    11. A system as claimed in claim 1 or 2, further comprising a controller (90) for controlling the first and second laser light source output intensities.
     
    12. A system as claimed in claim 11, further comprising a sensor (92) providing sensor information to the controller (90).
     
    13. An automobile front light comprising a laser based lighting system as claimed in claim 1 or 2.
     
    14. A method of generating laser based lighting, comprising:

    operating a first laser light source (10);

    operating a second laser light source (12); and

    directing the outputs from first and second laser light sources (10, 12) to a light conversion element (14), thereby generating a wavelength-converted light output in response to excitation by laser light,

    wherein the first and second laser light sources (10, 12) generate laser light of different wavelength having different absorption characteristics within the light conversion element (14),

    wherein the method comprises generating wavelength-converted light from a range of depths within the light conversion element (14), which range of depths is different for light from the first laser light source output and light from the second laser light source output,

    wherein the light conversion element (14) is designed for outputting part of the wavelength-converted light sideways, in a direction transverse to a depth of the light conversion element (14), and is further designed such that the range of depths within the light conversion element (14) from which wavelength-converted light is emitted sideways is different for the wavelength-converted light generated from excitation by the first laser light source output and the wavelength-converted light generated from excitation by the second laser light source output, and

    wherein the method further comprises shaping, by an optical output element (30), an output light (18, 20) from the light conversion element (14) as a function of the depth from which the wavelength-converted light is sideways output.


     


    Ansprüche

    1. Laserbasiertes Beleuchtungssystem, Folgendes umfassend:

    eine erste Laserlichtquelle (10),

    eine zweite Laserlichtquelle (12),

    ein Lichtumwandlungselement (14) und

    ein optisches Element (16) zum Lenken der Ausgaben der ersten und der zweiten Laserlichtquelle (10, 12) zum Lichtumwandlungselement (14), das in Reaktion auf eine Anregung durch Laserlicht eine Ausgabe wellenlängenumgewandelten Lichts erzeugt, ein optisches Ausgabeelement (30), das ein Ausgabelicht (18, 20) von dem Lichtumwandlungselement (14) formt,

    dadurch gekennzeichnet, dass

    die erste und die zweite Laserlichtquelle (10, 12) Laserlicht unterschiedlicher Wellenlänge mit unterschiedlichen Absorptionseigenschaften in dem Lichtumwandlungselement (14) erzeugen, so dass der Bereich von Tiefen in dem Lichtumwandlungselement (14), aus denen wellenlängenumgewandeltes Licht erzeugt wird, für die Anregung durch die Ausgabe der ersten Laserlichtquelle und die Ausgabe der zweiten Laserlichtquelle unterschiedlich ist, und

    wobei das Lichtumwandlungselement (14) dafür gestaltet ist, einen Teil des wellenlängenumgewandelten Lichts seitwärts (18, 20) auszugeben, in eine Richtung quer zu einer Tiefe des Lichtumwandlungselements (14), und ferner derart gestaltet ist, dass der Bereich von Tiefen in dem Lichtumwandlungselement (14), aus denen wellenlängenumgewandeltes Licht seitwärts emittiert wird, für das wellenlängenumgewandelte Licht, das aus der Anregung durch die Ausgabe der ersten Laserlichtquelle erzeugt wird, und das wellenlängenumgewandelte Licht, das aus der Anregung durch die Ausgabe der zweiten Laserlichtquelle erzeugt wird, unterschiedlich ist,

    wobei das optische Ausgabeelement (30) ein Ausgabelicht (18, 20) von dem Lichtumwandlungselement (14) als eine Funktion der Tiefe formt, aus welcher das wellenlängenumgewandelte Licht seitwärts ausgegeben wird.


     
    2. System nach Anspruch 1, wobei das optische Element (16) die Ausgaben von der ersten und der zweiten Laserlichtquelle (10, 12) zur gleichen Stelle des Lichtumwandlungselements (14) lenkt.
     
    3. System nach Anspruch 1 oder 2, wobei das optische Ausgabeelement (30) ein beugendes, brechendes, reflektierendes, streuendes oder Wellenlängenumwandlungselement (60) umfasst.
     
    4. System nach Anspruch 1 oder 2, wobei das optische Ausgabeelement (30) einen Spiegelreflektor (40), der von dem Lichtumwandlungselement (14) beabstandet ist, oder eine Platte (50) aus einem Material, das Totalreflexion bereitstellt, oder eine Kombination daraus umfasst.
     
    5. System nach Anspruch 4, einen Spiegelreflektor (40) oder eine Platte (50) umfassend, der/die einen ersten Abschnitt (70) umfasst, der einem ersten Bereich von Tiefen des Lichtumwandlungselements (14) zugeordnet ist, und einen zweiten Abschnitt (72), der eine andere Form aufweist, die einem angrenzenden zweiten Bereich von Tiefen des Lichtumwandlungselements (14) zugeordnet ist.
     
    6. System nach Anspruch 1 oder 2, wobei das Lichtumwandlungselement (14) eine nicht gleichmäßige Absorptionseigenschaft in der Tiefenrichtung aufweist.
     
    7. System nach Anspruch 1 oder 2, wobei das Lichtumwandlungselement (14) einen ersten Abschnitt (14a) mit der gleichen Absorptionseigenschaft für die Lichtausgabe der ersten und der zweiten Laserlichtquelle (10, 12) und einen zweiten Abschnitt (14b), der eine andere Absorptionseigenschaft für die Lichtausgabe der ersten und der zweiten Laserlichtquelle (10, 12) aufweist, umfasst.
     
    8. System nach Anspruch 1 oder 2, wobei das Lichtumwandlungselement (14) unterschiedliche Abschnitte (14c, 14d) mit unterschiedlichen Lichtausgabeeigenschaften aufweist.
     
    9. System nach Anspruch 1 oder 2, wobei das Lichtumwandlungselement (14) Folgendes umfasst:

    streuende Partikel (82) oder

    eine raue streuende Außenfläche (80).


     
    10. System nach Anspruch 1 oder 2, wobei jede Laserlichtquelle (10, 12) eine oder mehrere Laserdioden (10a, 10b, 12a, 12b) umfasst.
     
    11. System nach Anspruch 1 oder 2, ferner eine Steuerung (90) zum Steuern der Intensitäten der Ausgaben der ersten und der zweiten Laserlichtquelle umfassend.
     
    12. System nach Anspruch 11, ferner einen Sensor (92) umfassend, der Sensorinformationen für die Steuerung (90) bereitstellt.
     
    13. Kraftfahrzeug-Frontscheinwerfer, ein laserbasiertes Beleuchtungssystem nach Anspruch 1 oder 2 umfassend.
     
    14. Verfahren zum Erzeugen laserbasierter Beleuchtung, Folgendes umfassend:

    Betreiben einer ersten Laserlichtquelle (10),

    Betreiben einer zweiten Laserlichtquelle (12) und

    Lenken der Ausgaben der ersten und der zweiten Laserlichtquelle (10, 12) zu einem Lichtumwandlungselement (14), wodurch in Reaktion auf eine Anregung durch Laserlicht eine Ausgabe wellenlängenumgewandelten Lichts erzeugt wird,

    wobei die erste und die zweite Laserlichtquelle (10, 12) Laserlicht unterschiedlicher Wellenlänge mit unterschiedlichen Absorptionseigenschaften in dem Lichtumwandlungselement (14) erzeugen,

    wobei das Verfahren das Erzeugen wellenlängenumgewandelten Lichts aus einem Bereich von Tiefen in dem Lichtumwandlungselement (14) umfasst, wobei der Bereich von Tiefen für Licht einer Ausgabe der ersten Laserlichtquelle und Licht einer Ausgabe der zweiten Laserlichtquelle unterschiedlich ist,

    wobei das Lichtumwandlungselement (14) dafür gestaltet ist, einen Teil des wellenlängenumgewandelten Lichts seitwärts auszugeben, in eine Richtung quer zu einer Tiefe des Lichtumwandlungselements (14), und ferner derart gestaltet ist, dass der Bereich von Tiefen in dem Lichtumwandlungselement (14), aus denen wellenlängenumgewandeltes Licht seitwärts emittiert wird, für das wellenlängenumgewandelte Licht, das aus der Anregung durch die Ausgabe der ersten Laserlichtquelle erzeugt wird, und das wellenlängenumgewandelte Licht, das von der Anregung durch die Ausgabe der zweiten Laserlichtquelle erzeugt wird, unterschiedlich ist, und

    wobei das Verfahren ferner das Formen eines Ausgabelichts (18, 20) von dem Lichtumwandlungselement (14) als eine Funktion der Tiefe, aus welcher das wellenlängenumgewandelte Licht seitwärts ausgegeben wird, durch ein optisches Ausgabeelement (30) umfasst.


     


    Revendications

    1. Système d'éclairage laser, comprenant :

    une première source de lumière laser (10) ;

    une seconde source de lumière laser (12) ;

    un élément de conversion de lumière (14) ; et

    un élément optique (16) destiné à orienter les sorties de la première et de la seconde sources de lumière laser (10, 12) vers l'élément de conversion de lumière (14), qui génère une sortie lumineuse à conversion de longueur d'onde en réponse à l'excitation par la lumière laser, un élément de sortie optique (30) qui met en forme une lumière de sortie (18, 20) qui provient de l'élément de conversion de lumière (14), caractérisé en ce que

    la première et la seconde sources de lumière laser (10, 12) génèrent une lumière laser de longueur d'onde différente ayant différentes caractéristiques d'absorption au sein de l'élément de conversion de lumière (14), de sorte que la plage de profondeurs au sein de l'élément de conversion de lumière (14) à partir desquelles la lumière à conversion de longueur d'onde est générée soit différente pour l'excitation par la sortie de la première source de lumière laser et la sortie de la seconde source de lumière laser, et

    dans lequel l'élément de conversion de lumière (14) est conçu pour délivrer une partie de la lumière à conversion de longueur d'onde de manière latérale (18, 20), dans une direction transversale par rapport à une profondeur de l'élément de conversion de lumière (14), et est en outre conçu de sorte que la plage de profondeurs au sein de l'élément de conversion de lumière (14) à partir desquelles la lumière à conversion de longueur d'onde est émise latéralement soit différente pour la lumière à conversion de longueur d'onde générée par excitation par la sortie de la première source de lumière laser et pour la lumière à conversion de longueur d'onde générée par excitation par la sortie de la seconde source de lumière laser,

    moyennant quoi l'élément de sortie optique (30) met en forme une lumière de sortie (18, 20) qui provient de l'élément de conversion de lumière (14) en fonction de la profondeur à partir de laquelle la lumière à conversion de longueur d'onde est délivrée latéralement.


     
    2. Système selon la revendication 1, dans lequel l'élément optique (16) oriente les sorties de la première et de la seconde sources de lumière laser (10, 12) vers le même emplacement de l'élément de conversion de lumière (14).
     
    3. Système selon la revendication 1 ou 2, dans lequel l'élément de sortie optique (30) comprend un élément de conversion diffractif, réfractif, réfléchissant, à diffusion, ou un élément de conversion de longueur d'onde (60).
     
    4. Système selon la revendication 1 ou 2, dans lequel l'élément de sortie optique (30) comprend un réflecteur spéculaire (40) espacé de l'élément de conversion de lumière (14) ou une plaque (50) en matériau qui assure une réflexion interne totale ou une combinaison de ceux-ci.
     
    5. Système selon la revendication 4, comprenant un réflecteur spéculaire (40) ou une plaque (50) qui comprend une première partie (70) associée à une première plage de profondeurs de l'élément de conversion de lumière (14), et une seconde partie (72) ayant une forme différente associée à une seconde plage de profondeurs adjacente de l'élément de conversion de lumière (14).
     
    6. Système selon la revendication 1 ou 2, dans lequel l'élément de conversion de lumière (14) possède une caractéristique d'absorption non uniforme dans la direction de profondeur.
     
    7. Système selon la revendication 1 ou 2, dans lequel l'élément de conversion de lumière (14) possède une première partie (14a) avec la même caractéristique d'absorption pour la sortie lumineuse de la première et de la seconde sources de lumière laser (10, 12), et une seconde partie (14b) qui possède une caractéristique d'absorption différente pour la sortie lumineuse de la première et de la seconde sources de lumière laser (10, 12).
     
    8. Système selon la revendication 1 ou 2, dans lequel l'élément de conversion de lumière (14) possède des parties différentes (14c, 14d) avec des caractéristiques de sortie lumineuse différentes.
     
    9. Système selon la revendication 1 ou 2, dans lequel l'élément de conversion de lumière (14) comprend :

    des particules en diffusion (82) ; ou

    une surface externe de diffusion rugueuse (80).


     
    10. Système selon la revendication 1 ou 2, dans lequel chaque source de lumière laser (10, 12) comprend une ou plusieurs diodes laser (10a, 10b, 12a, 12b).
     
    11. Système selon la revendication 1 ou 2, comprenant en outre un contrôleur (90) destiné à contrôler les intensités de sortie de la première et de la seconde sources de lumière laser.
     
    12. Système selon la revendication 11, comprenant en outre un capteur (92) qui fournit des informations de capteur au contrôleur (90).
     
    13. Phare avant d'automobile comprenant un système d'éclairage laser selon la revendication 1 ou 2.
     
    14. Procédé de génération d'éclairage laser, comprenant :

    le fonctionnement d'une première source de lumière laser (10) ;

    le fonctionnement d'une seconde source de lumière laser (12) ; et

    l'orientation des sorties de la première et de la seconde sources de lumière laser (10, 12) vers un élément de conversion de lumière (14), afin de générer une sortie lumineuse à conversion de longueur d'onde en réponse à l'excitation par la lumière laser,

    dans lequel la première et la seconde sources de lumière laser (10, 12) génèrent une lumière laser de longueur d'onde différente ayant des caractéristiques d'absorption différentes au sein de l'élément de conversion de lumière (14),

    dans lequel le procédé comprend la génération d'une lumière à conversion de longueur d'onde à partir d'une plage de profondeurs au sein de l'élément de conversion de lumière (14), ladite plage de profondeurs étant différente pour la lumière qui provient de la première source de lumière laser et la lumière qui provient de la seconde source de lumière laser,

    dans lequel l'élément de conversion de lumière (14) est conçu pour délivrer une partie de la lumière à conversion de longueur d'onde de manière latérale, dans une direction transversale par rapport à une profondeur de l'élément de conversion de lumière (14), et est en outre conçu de sorte que la plage de profondeurs au sein de l'élément de conversion de lumière (14) à partir desquelles la lumière à conversion de longueur d'onde est émise latéralement soit différente pour la lumière à conversion de longueur d'onde générée par excitation par la première source de lumière laser et pour la lumière à conversion de longueur d'onde générée par excitation par la seconde source de lumière laser, et

    dans lequel le procédé comprend en outre la mise en forme, par un élément de sortie optique (30), d'une lumière de sortie (18, 20) qui provient de l'élément de conversion de lumière (14) en fonction de la profondeur à partir de laquelle la lumière à conversion de longueur d'onde est délivrée latéralement.


     




    Drawing





















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description