(19)
(11)EP 3 228 012 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 15864933.5

(22)Date of filing:  07.12.2015
(51)International Patent Classification (IPC): 
H03M 1/12(2006.01)
G11C 27/02(2006.01)
H03K 19/018(2006.01)
(86)International application number:
PCT/US2015/064191
(87)International publication number:
WO 2016/090353 (09.06.2016 Gazette  2016/23)

(54)

LOAD CURRENT COMPENSATION FOR ANALOG INPUT BUFFERS

LASTSTROMAUSGLEICH FÜR ANALOGE EINGANGSPUFFER

COMPENSATION DE COURANT DE CHARGE POUR TAMPONS D'ENTRÉE ANALOGIQUES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.12.2014 US 201462088308 P
18.09.2015 US 201514858264

(43)Date of publication of application:
11.10.2017 Bulletin 2017/41

(73)Proprietor: Texas Instruments Incorporated
Dallas, TX 75265-5474 (US)

(72)Inventor:
  • SAKURAI, Satoshi
    San Carlos, CA (US)

(74)Representative: Zeller, Andreas 
Texas Instruments Deutschland GmbH Haggertystraße 1
85356 Freising
85356 Freising (DE)


(56)References cited: : 
US-A- 5 874 858
US-A1- 2011 199 130
US-A1- 2002 118 043
US-A1- 2011 261 177
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This relates generally to electronic circuits, and more particularly to systems and methods for load current compensation for analog input buffers.

    BACKGROUND



    [0002] An analog-to-digital converter (ADC) is a device that converts a continuous physical quantity (e.g., a voltage) to a digital number that represents the quantity's amplitude. The conversion involves quantization (or sampling) of the input, which the ADC performs periodically. The result is a sequence of digital values that have been converted from a continuous-time and continuous-amplitude analog signal to a discrete-time and discrete-amplitude digital signal.

    [0003] High-speed high-performance ADCs use a switched-capacitor based input sampling network. Large capacitors switched on and off at high sample speed make it difficult for the external circuits to drive the ADCs. To minimize such difficulties, high-performance on-chip analog input buffers are inserted in front of the ADCs. The on-chip analog input buffer needs to maintain high linearity (85 dB) at very high frequencies (on the order of 500 MHz), while driving a large capacitor (on the order of 3 pF) being switched at very high sampling speed (500 Msps).

    [0004] In the absence of industry standardization regarding ADC input structures, each ADC must be examined before an input interface circuitry is designed. In many implementations, the analog input to an ADC is connected directly to a sample-and-hold capacitor, which generates transient currents that must be buffered from the signal source. In those cases, an analog buffer may be provided.

    [0005] FIG. 1 shows an example of a conventional analog input buffer 100, which includes emitter-follower transistor Q1 configured to receive input signal vin at its base terminal, and thereby allowing current IQ1 to develop. The node between transistors Q1 and Q2 provides output vo across capacitor CL, which models the sample-and-hold capacitor within an ADC. Current IQ1 is divided between IQ2 (through Q2) and ICL (through CL). Transistors Q3 and Q2 are in a current mirror configuration as shown, where the collector terminal of Q3 is coupled to current source

    [0006] In buffer 100, current ICL is a dynamically changing, time-varying current. Accordingly, current IQ1 effectively contains an AC component (because IQ1 = IQ2 + ICL). When the input signal amplitude is large and the input frequency is high, the current flowing in the large sample capacitor of the ADC is a large AC current. This AC current combines with the DC bias current and flows through the emitter-follower device. This results in non-linear operation of the emitter follower, and the signal being fed to the ADC becomes distorted. Therefore, to ensure linear operation of the circuit, IQ2 must usually be provided as a DC bias current (e.g., a mirror of Ibias) that is much larger than ICL.

    [0007] FIG. 2 shows an example of a conventional input buffer design that can provide higher linearity with a smaller Ibias. Buffer 200 is similar to buffer 100, but further includes cascode transistor Q4 and capacitor C1 as shown. Cascode transistor Q4 is biased with vB, and C1 is coupled between vin and the emitter terminals of transistor Q4. The AC voltage across C1 is similar to the AC voltage across CL. Therefore, IC1 = ICL if C1 = CL. Moreover, in such a situation, IQ1 is equal to IQ2 and is proportional to the constant current Ibias.

    [0008] Another input buffer example can be found in US 5 874 858.

    SUMMARY



    [0009] In described examples of systems and methods for load current compensation for analog input buffers, an input buffer may include: a first transistor (Q1) having a collector terminal coupled to a power supply node and a base terminal coupled to a first input node (vinp); a second transistor (Q2) having a collector terminal coupled to an emitter terminal of the first transistor (Q1); a third transistor (Q3) having an emitter terminal coupled to an emitter terminal of the second transistor (Q2) and to a ground node, a collector terminal coupled to a current source (Ibias), and a base terminal coupled to the collector terminal and to a base terminal of the second transistor (Q2); and a capacitor (C1) coupled to the base terminals of the second and third transistors (Q2 and Q3) and to a second input node (vinn), wherein the first and second input nodes (vinp and vinn) are differential inputs.

    [0010] An output node (vop) between the emitter terminal of the first transistor (Q1) and the collector terminal of the second transistor (Q2) may be coupled to an input of an analog-to-digital converter (ADC). The output node (vop) may be coupled to a sample-and-hold capacitor (CL) of the analog-to-digital converter (ADC). The second transistor (Q2) may have a first size. The third transistor (Q3) may have a second size, and a ratio between the first and second sizes is n.

    [0011] In various implementations, n may have a value between 2 and 5. A capacitance of the sample-and-hold capacitor (CL) may be n times larger than a capacitance of the capacitor (C1). Also, a current (IQ1) through the first transistor (Q1) may be n times larger than a biasing current (Ibias) provided by the current source.

    [0012] In at least one example, a differential input buffer may include: an emitter-follower transistor (Q1S) having a collector terminal coupled to a power supply node, a base terminal coupled to a first differential input node (vinp), and an emitter terminal coupled to a first current source (Ibias2); a first transistor (Q1) having a collector terminal coupled to the power supply node and a base terminal coupled to the base terminal of the first emitter-follower transistor (Q1S) and to the first differential input node (vinp); a second transistor (Q2) having a collector terminal coupled to an emitter terminal of the first transistor (Q1); a third transistor (Q3) having an emitter terminal coupled to an emitter terminal of the second transistor (Q2) and to a ground node, a collector terminal coupled to a second current source (Ibias), and a base terminal coupled to the collector terminal and to a base terminal of the second transistor (Q2); and a capacitor (C1) coupled to the base terminals of the second and third transistors (Q2 and Q3) and to a first input node (vonx).

    [0013] A first differential output node (vop) between the emitter terminal of the first transistor (Q1) and the collector terminal of the second transistor (Q2) may be coupled to a first differential input of an analog-to-digital converter (ADC) including a sample-and-hold capacitor (CL). The second transistor (Q2) may have a first size, the third transistor (Q3) may have a second size, a ratio between the first and second sizes may be n, a capacitance of the sample-and-hold capacitor (CL) may be n times larger than a capacitance of the capacitor (C1), and a current (IQ1) through the first transistor (Q1) may be n times larger than a biasing current (Ibias) provided by the second current source.

    [0014] The differential input buffer may also include: another emitter-follower transistor (Q1SN) having a collector terminal coupled to the power supply node, a base terminal coupled to a second differential input node (vinn), and an emitter terminal coupled to a third current source (Ibias2N); a fourth transistor (Q1N) having a collector terminal coupled to the power supply node and a base terminal coupled to the base terminal of the other emitter-follower transistor (Q1SN) and to the second differential input node (vinn); a fifth transistor (Q2N) having a collector terminal coupled to an emitter terminal of the fourth transistor (Q1N); and a sixth transistor (Q3N) having an emitter terminal coupled to an emitter terminal of the fifth transistor (Q2N) and to a ground node, a collector terminal coupled to a third current source (IbiasN), and a base terminal coupled to the collector terminal and to a base terminal of the fifth transistor (Q2N); and another capacitor (C1N) coupled to the base terminals of the fifth and sixth transistors (Q2N and Q3N) and to a second input node (vopx).

    [0015] A second differential output node (von) between the emitter terminal of the fourth transistor (Q1N) and the collector terminal of the fifth transistor (Q2N) is coupled to a second differential input of the analog-to-digital converter (ADC). A node between the emitter terminal of the emitter-follower transistor (Q1S) and the first current source (Ibias2) provides the voltage at the second input node (vopx). A node between the emitter terminal of the other emitter-follower transistor (Q1SN) and the third current source (Ibias2N) provides the voltage at the first input node (Vonx).

    [0016] In at least one other example, a programmable input buffer may include: a first transistor (Q1) having a collector terminal coupled to a power supply node and a base terminal coupled to an input node (vinp); a second transistor (Q2) having a collector terminal coupled to an emitter terminal of the first transistor (Q1); a third transistor (Q3) having an emitter terminal coupled to an emitter terminal of the second transistor (Q2) and to a ground node, a collector terminal coupled to a current source (Ibias), and a base terminal coupled to the collector terminal and to a base terminal of the second transistor (Q2); and multiple capacitors (C1A-X), each coupled to the base terminals of the second and third transistors (Q2 and Q3) via a respective switch (M1A-X).

    [0017] An output node (vop) between the emitter terminal of the first transistor (Q1) and the collector terminal of the second transistor (Q2) may be coupled to an input of an analog-to-digital converter (ADC). The output node (vop) may be coupled to a sample-and-hold capacitor (CL) of the analog-to-digital converter (ADC). The second transistor (Q2) may have a first size, the third transistor (Q3) may have a second size, and a ratio between the first and second sizes may be n. The switches (M1A-X) may be configured to increase or decrease a combined capacitance of the capacitors (C1A-X) to match a capacitance of the sample-and-hold capacitor (CL). Moreover, the capacitance of the sample-and-hold capacitor (CL) may be n times larger than the combined capacitance of capacitors (C1A-X), and a current (IQ1) through the first transistor (Q1) may be n times larger than a biasing current (Ibias) provided by the current source.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0018] 

    FIG. 1 is a circuit diagram of an example of a conventional analog input buffer.

    FIG. 2 is a circuit diagram of an example of a conventional approach to designing an input buffer that can provide higher linearity with a smaller bias current.

    FIG. 3 is a circuit diagram of an example load current compensation circuit according to some embodiments.

    FIGS. 4 and 5 are circuit diagrams of an example differential input buffer having load compensation circuits according to some embodiments.

    FIG. 6 is a circuit diagram of an example programmable load compensation circuit according to some embodiments.

    FIG. 7 is a graph comparing the linearity of an input buffer circuit according to some embodiments versus a conventional input buffer circuit.


    DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS



    [0019] Problems exist with the conventional input buffer design of FIG. 2. For example, by adding Q4 in series with Q1, circuit 200 requires a larger operating voltage than circuit 100. For example, if the collector-emitter voltage of each transistor is 400 mV, the addition of Q4 requires increasing the supply voltage (coupled to the collector terminal of Q1) by at least the same amount. Also, the input current contains an AC current IC1, which can be large and can complicate the operation of an ADC driver. To address these and other problems, systems and methods described herein provide load current compensation circuits for analog input buffers. Using these circuits and techniques, embodiments described herein enable low-voltage, low-power, and high-speed operation with high-linearity.

    [0020] FIG. 3 is a circuit diagram of an example load current compensation circuit according to some embodiments. Input buffer 300 includes a first transistor (Q1) having a collector terminal coupled to a power supply (Vs) node and a base terminal coupled to a first input node (Vinp). Input buffer 300 also includes a second transistor (Q2) having a collector terminal coupled to an emitter terminal of the first transistor (Q1). Input buffer 300 further includes a third transistor (Q3) having an emitter terminal coupled to an emitter terminal of the second transistor (Q2) and to a ground node, a collector terminal coupled to a current source (Ibias), and a base terminal coupled to the collector terminal and to a base terminal of the second transistor (Q2).

    [0021] Moreover, input buffer 300 includes a capacitor (C1) coupled to the base terminals of the second and third transistors (Q2 and Q3) and to a second input node (vinn), where the first and second input nodes (vinp and vinn) are differential inputs.

    [0022] An output node (vop) between the emitter terminal of the first transistor (Q1) and the collector terminal of the second transistor (Q2) is coupled to an input of an analog-to-digital converter (ADC). As shown, the output node (vop) is coupled to a sample-and-hold capacitor (CL) of the ADC.

    [0023] In various implementations, the second transistor (Q2) may have a first size m2, the third transistor (Q3) may have a second size m3, and the ratio between the first and second sizes may be selected as n (such that Q2 is larger than Q3). For example, in some cases, n may have a value between 2 and 5. Accordingly, the capacitance of the sample-and-hold capacitor (CL) may be n times larger than a capacitance of the capacitor (C1), and a current (IQ1) through the first transistor (Q1) is n times larger than a biasing current (Ibias) provided by the current source.

    [0024] Among other features, input buffer 300 allows C1 to be scaled down by a factor of n (compared to CL), thus reducing the circuit's footprint. Moreover, because transistor Q4 of FIG. 2 is not used in this embodiment, input buffer 300 may be configured to operate with a lower supply voltage (Vs).

    [0025] In handling high-speed high-linearity analog signals, most circuits use differential architecture to improve the dynamic performances (SNR, SFDR, THD, etc.). Thus, the differential counterpart to a signal is readily available within the circuit.

    [0026] Load current compensation in circuit 300 is achieved without the use of the cascode device in series with the current source Q2. Such compensation is achieved through injection of IC1 at the current mirror that provides the bias current to the emitter-follower. IC1 needs to be 180 degrees phase shifted from ICL, which is achieved by putting an AC voltage across C1 with opposite sign from vop. With this approach, IQ1 = n Ibias, where n is the ratio of the device sizes of Q2 to Q3. Then, the resulting current flowing though Q1 is constant, even in the presence of an AC load current. Without the need for the cascode device, the minimum output voltage is the collector-emitter saturation voltage of Q2. Moreover, when n > 1 is chosen, the input current is reduced by the factor n compared to the load current. This reduction in the input current helps the external driver circuit. However, n cannot be made to infinity, so at least some AC current will exist at the input.

    [0027] To completely remove the AC component from the input buffer inputs, FIGS. 4 and 5 show the complete differential input buffer. Also, it contains Q1S and Q1SN, which generate Vopx and Vonx respectively. Bias currents for Q1S and Q1SN can be made much smaller than those of the main emitter followers. Vopx and Vonx are used for generating IC1N and IC1, respectively. The external driver circuits do not need to supply those currents, because they are provided by Q1S and Q1SN.

    [0028] In circuit 400, an emitter-follower transistor (Q1S) has a collector terminal coupled to a power supply node, a base terminal coupled to a first differential input node (vinp), and an emitter terminal coupled to a first current source (Ibias2). Circuit 400 also includes a first transistor (Q1) having a collector terminal coupled to the power supply node and a base terminal coupled to the base terminal of the first emitter-follower transistor (Q1S) and to the first differential input node (vinp), a second transistor (Q2) having a collector terminal coupled to an emitter terminal of the first transistor (Q1), and a third transistor (Q3) having an emitter terminal coupled to an emitter terminal of the second transistor (Q2) and to a ground node, a collector terminal coupled to a second current source (Ibias), and a base terminal coupled to the collector terminal and to a base terminal of the second transistor (Q2).

    [0029] Circuit 400 further includes a capacitor (C1) coupled to the base terminals of the second and third transistors (Q2 and Q3) and to a first input node (vonx). A first differential output node (vop) between the emitter terminal of the first transistor (Q1) and the collector terminal of the second transistor (Q2) is coupled to a first differential input of an analog-to-digital converter (ADC) including a sample-and-hold capacitor (CL).

    [0030] In various implementations, the second transistor (Q2) has a first size, the third transistor (Q3) has a second size, a ratio between the first and second sizes is n, a capacitance of the sample-and-hold capacitor (CL) is n times larger than a capacitance of the capacitor (C1), and a current (IQ1) through the first transistor (Q1) is n times larger than a biasing current (Ibias) provided by the second current source.

    [0031] Meanwhile, circuit 500 includes another emitter-follower transistor (Q1SN) having a collector terminal coupled to the power supply node, a base terminal coupled to a second differential input node (vinn), and an emitter terminal coupled to a third current source (Ibias2N). Circuit 500 also includes a fourth transistor (Q1N) having a collector terminal coupled to the power supply node and a base terminal coupled to the base terminal of the other emitter-follower transistor (Q1SN) and to the second differential input node (vinn), a fifth transistor (Q2N) having a collector terminal coupled to an emitter terminal of the fourth transistor (Q1N), and a sixth transistor (Q3N) having an emitter terminal coupled to an emitter terminal of the fifth transistor (Q2N) and to a ground node, a collector terminal coupled to a third current source (IbiasN), and a base terminal coupled to the collector terminal and to a base terminal of the fifth transistor (Q2N).

    [0032] Circuit 500 further includes another capacitor (C1N) coupled to the base terminals of the fifth and sixth transistors (Q2N and Q3N) and to a second input node (vopx). A second differential output node (von) between the emitter terminal of the fourth transistor (Q1N) and the collector terminal of the fifth transistor (Q2N) is coupled to a second differential input of the analog-to-digital converter (ADC).

    [0033] In various embodiments, a node between the emitter terminal of the emitter-follower transistor (Q1S) and the first current source (Ibias2) provides the voltage at the second input node (vopx), whereas a node between the emitter terminal of the other emitter-follower transistor (Q1SN) and the third current source (Ibias2N) provides the voltage at the first input node (vonx).

    [0034] Input buffers 400 and 500 may be used in combination to drive an ADC with differential inputs. Also, for example, in addition having some of the input buffer 300 characteristics, input buffers 400 further isolates C1 from vinn (because C1 is coupled to vonx).

    [0035] The AC load current of the input buffer is proportional to the total load capacitance, CL, seen by the input buffer. The value of CL is dominated by the sampling capacitor of the ADC, but many parasitic components will add to CL. Parasitic capacitances are difficult to predict exactly. Consequently, to generate the load compensation current that is very close to the actual load current, C1 (for generating the replica load current) may be digitally programmable. For example, C1 may be split into many pieces, C1A, C1B ...C1X. The capacitors are connected to MOS switches, which are turned on or off by digitally control voltages D1A, D1B .... D1X. They can be used for generating the optimal load compensation current that results in the best dynamic performance of the input buffer.

    [0036] To illustrate the foregoing, FIG. 6 is a circuit diagram of an example programmable load compensation circuit according to some embodiments. Input buffer 600 is similar to buffers 300-500, but it also includes multiple capacitors (C1A-X), each coupled to the base terminals of the second and third transistors (Q2 and Q3) via a respective switch (M1A-X). In various embodiments, switches (M1A-X) are configurable to increase or decrease a combined capacitance of the capacitors (C1A-X) to match a capacitance of the sample-and-hold capacitor (CL). The capacitance of the sample-and-hold capacitor (CL) is n times larger than the combined capacitance of the capacitors (C1A-X).

    [0037] Input buffer 600 is useful to enable programming an effective value for C1 based upon the actual load presented by the ADC. For example, such programming may be performed after the electronic components have been manufactured in silicon. In some cases, a corresponding differential buffer, otherwise similar to buffer 600, is useful to drive an ADC with differential inputs.

    [0038] FIG. 7 is a graph comparing the linearity of an input buffer circuit according to some embodiments versus a conventional input buffer circuit. Specifically, graph 700 shows the measured third order harmonic distortion (the "HD3" axis) against the frequency (the "Fin" axis) of an input signal at Vinp - Vinn nodes. Curve 701 shows that the linearity of the conventional input buffer circuit drops by several dB at high frequencies (above approximately 370MHz). Curve 702 shows that an input buffer as described herein maintains linear operation in that same frequency range.

    [0039] In sum, the techniques described herein do not need a cascode device inserted in series with the emitter-follower's current source to subtract the replica load compensation current. Instead, the subtraction is done at the current mirror input terminal. The cascode device would have increased the minimum required voltage of the input buffer output node by VCE_SAT, which can be 400 mV for a typical process.

    [0040] In some implementations, the amount of the current seen at the input terminals is reduced by the current mirror ratio n. Additionally or alternatively, the AC current seen at the input terminals is eliminated by connecting the compensation capacitors to small emitter-followers. By keeping the minimum required output voltage of the input buffer to 1 * VCE_SAT, the ADC input can swing down to 400mV. With the prior approach, the minimum voltage would have been 2 * VCE_SAT, which would have been 800 mV. With the ADC power supply of 1.2 V, 400 mV less input swing would be a significant reduction in the signal swing at the ADC input. Moreover, reduction or elimination of the input AC current of the input buffer makes the external driver's job much easier.

    [0041] Modifications are possible in the described embodiments, and other embodiments are possible, within the scope of the claims. For example, a load current compensation circuit may include any combination of electronic components that can perform the indicated operations. Also, in some embodiments, the operations performed by the illustrated components may be performed by fewer components or distributed across additional components. Similarly, in other embodiments, the operations of some of the illustrated components may not be provided and/or other additional operations may be available. Accordingly, systems and methods described herein may be implemented or executed with other circuit configurations.

    [0042] Various operations discussed herein may be executed simultaneously and/or sequentially. Each operation may be performed in any order and may be performed once or repetitiously.


    Claims

    1. An input buffer, comprising:

    a first transistor (Q1) having a collector terminal coupled to a power supply node and a base terminal coupled to a first input node (vinp);

    a second transistor (Q2) having a collector terminal coupled to an emitter terminal of the first transistor (Q1);

    a third transistor (Q3) having an emitter terminal coupled to an emitter terminal of the second transistor (Q2) and to a ground node, a collector terminal coupled to a current source (Ibias), and a base terminal coupled to the collector terminal and to a base terminal of the second transistor (Q2); and

    a capacitor (C1) coupled to the base terminals of the second and third transistors (Q2 and Q3) and to a second input node (vinn), wherein the first and second input nodes (vinp and vinn) are differential inputs.


     
    2. A differential input buffer, comprising:

    an emitter-follower transistor (Q1S) having a collector terminal coupled to a power supply node, a base terminal coupled to a first differential input node (vinp), and an emitter terminal coupled to a first current source (Ibias2);

    a first transistor (Q1) having a collector terminal coupled to the power supply node and a base terminal coupled to the base terminal of the first emitter-follower transistor (Q1S) and to the first differential input node (vinp);

    a second transistor (Q2) having a collector terminal coupled to an emitter terminal of the first transistor (Q1);

    a third transistor (Q3) having an emitter terminal coupled to an emitter terminal of the second transistor (Q2) and to a ground node, a collector terminal coupled to a second current source (Ibias), and a base terminal coupled to the collector terminal and to a base terminal of the second transistor (Q2); and

    a capacitor (C1) coupled to the base terminals of the second and third transistors (Q2 and Q3) and to a first input node (vonx).


     
    3. The differential input buffer of claim 2, wherein a first differential output node (vop) between the emitter terminal of the first transistor (Q1) and the collector terminal of the second transistor (Q2) is coupled to a first differential input of an analog-to-digital converter (ADC) including a sample-and-hold capacitor (CL).
     
    4. The differential input buffer of claim 3, wherein the second transistor (Q2) has a first size, the third transistor (Q3) has a second size, a ratio between the first and second sizes is n, a capacitance of the sample-and-hold capacitor (CL) is n times larger than a capacitance of the capacitor (C1), and a current (IQ1) through the first transistor (Q1) is n times larger than a biasing current (Ibias) provided by the second current source.
     
    5. The differential input buffer of claim 3, further comprising:

    another emitter-follower transistor (Q1SN) having a collector terminal coupled to the power supply node, a base terminal coupled to a second differential input node (vinn), and an emitter terminal coupled to a third current source (Ibias2N);

    a fourth transistor (Q1N) having a collector terminal coupled to the power supply node and a base terminal coupled to the base terminal of the other emitter-follower transistor (Q1SN) and to the second differential input node (vinn);

    a fifth transistor (Q2N) having a collector terminal coupled to an emitter terminal of the fourth transistor (Q1N); and

    a sixth transistor (Q3N) having an emitter terminal coupled to an emitter terminal of the fifth transistor (Q2N) and to a ground node, a collector terminal coupled to a third current source (IbiasN), and a base terminal coupled to the collector terminal and to a base terminal of the fifth transistor (Q2N); and

    another capacitor (C1N) coupled to the base terminals of the fifth and sixth transistors (Q2N and Q3N) and to a second input node (vopx).


     
    6. The differential input buffer of claim 5, wherein a second differential output node (von) between the emitter terminal of the fourth transistor (Q1N) and the collector terminal of the fifth transistor (Q2N) is coupled to a second differential input of the analog-to-digital converter (ADC).
     
    7. The differential input buffer of claim 5, wherein a node between the emitter terminal of the emitter-follower transistor (Q1S) and the first current source (Ibias2) provides the voltage at the second input node (vopx); optionally wherein a node between the emitter terminal of the other emitter-follower transistor (Q1SN) and the third current source (Ibias2N) provides the voltage at the first input node (vonx).
     
    8. A programmable input buffer, comprising:

    a first transistor (Q1) having a collector terminal coupled to a power supply node and a base terminal coupled to an input node (vinp);

    a second transistor (Q2) having a collector terminal coupled to an emitter terminal of the first transistor (Q1);

    a third transistor (Q3) having an emitter terminal coupled to an emitter terminal of the second transistor (Q2) and to a ground node, a collector terminal coupled to a current source (Ibias), and a base terminal coupled to the collector terminal and to a base terminal of the second transistor (Q2); and

    multiple capacitors (C1A-X), each coupled to the base terminals of the second and third transistors (Q2 and Q3) via a respective switch (M1A-X).


     
    9. The input buffer of claim 1 or the programmable input buffer of claim 8, wherein an output node (vop) between the emitter terminal of the first transistor (Q1) and the collector terminal of the second transistor (Q2) is coupled to an input of an analog-to-digital converter (ADC).
     
    10. The input buffer or programmable input buffer of claim 9, wherein the output node (vop) is coupled to a sample-and-hold capacitor (CL) of the analog-to-digital converter (ADC).
     
    11. The input buffer or programmable input buffer of claim 10, wherein the second transistor (Q2) has a first size, the third transistor (Q3) has a second size, and a ratio between the first and second sizes is n.
     
    12. The input buffer of claim 11, wherein n has a value between 2 and 5.
     
    13. The input buffer of claim 11, wherein a capacitance of the sample-and-hold capacitor (CL) is n times larger than a capacitance of the capacitor (C1).
     
    14. The input buffer of claim 11, wherein a current (IQ1) through the first transistor (Q1) is n times larger than a biasing current (Ibias) provided by the current source.
     
    15. The programmable input buffer of claim 10, wherein the switches (M1A-X) are configured to increase or decrease a combined capacitance of the capacitors (C1A-X) to match a capacitance of the sample-and-hold capacitor (CL); optionally wherein the capacitance of the sample-and-hold capacitor (CL) is n times larger than the combined capacitance of the capacitors (C1A-X), and wherein a current (IQ1) through the first transistor (Q1) is n times larger than a biasing current (Ibias) provided by the current source.
     


    Ansprüche

    1. Eingangspuffer, der Folgendes umfasst:

    einen ersten Transistor (Q1), der einen Kollektoranschluss, der an einen Stromversorgungsknoten gekoppelt ist, und einen Basisanschluss, der an einen ersten Eingangsknoten (vinp) gekoppelt ist, aufweist;

    einen zweiten Transistor (Q2), der einen Kollektoranschluss aufweist, der an einen Emitteranschluss des ersten Transistors (Q1) gekoppelt ist;

    einen dritten Transistor (Q3), der einen Emitteranschluss, der an einen Emitteranschluss des zweiten Transistors (Q2) und an einen Masseknoten gekoppelt ist, einen Kollektoranschluss, der an eine Stromquelle (Ibias) gekoppelt ist, und einen Basisanschluss, der an den Kollektoranschluss und an einen Basisanschluss des zweiten Transistors (Q2) gekoppelt ist, aufweist; und

    einen Kondensator (C1), der an den Basisanschluss des zweiten und des dritten Transistors (Q2 und Q3) und an einen zweiten Eingangsknoten (vinn) gekoppelt ist, wobei der erste und der zweite Eingangsknoten (vinp und vinn) Differenzeingängen entsprechen.


     
    2. Differenzeingangspuffer, der Folgendes umfasst:

    einen Emitterfolger-Transistor (Q1S), der einen Kollektoranschluss, der an einen Stromversorgungsknoten gekoppelt ist, einen Basisanschluss, der an einen ersten Differenzeingangsknoten (vinp) gekoppelt ist, und einen Emitteranschluss, der an eine erste Stromquelle (Ibias2) gekoppelt ist, aufweist;

    einen ersten Transistor (Q1), der einen Kollektoranschluss, der an den Stromversorgungsknoten gekoppelt ist, und einen Basisanschluss, der an den Basisanschluss des ersten Emitterfolger-Transistors (Q1S) und an den ersten Differenzeingangsknoten (vinp) gekoppelt ist, aufweist;

    einen zweiten Transistor (Q2), der einen Kollektoranschluss aufweist, der an einen Emitteranschluss des ersten Transistors (Q1) gekoppelt ist;

    einen dritten Transistor (Q3), der einen Emitteranschluss, der an einen Emitteranschluss des zweiten Transistors (Q2) und an einen Masseknoten gekoppelt ist, einen Kollektoranschluss, der an eine zweite Stromquelle (Ibias) gekoppelt ist, und einen Basisanschluss, der an den Kollektoranschluss und an einen Basisanschluss des zweiten Transistors (Q2) gekoppelt ist, aufweist; und

    einen Kondensator (C1), der an den Basisanschluss des zweiten und des dritten Transistors (Q2 und Q3) und an einen ersten Eingangsknoten (vonx) gekoppelt ist.


     
    3. Differenzeingangspuffer nach Anspruch 2, wobei ein erster Differenzausgangsknoten (vop) zwischen dem Emitteranschluss des ersten Transistors (Q1) und dem Kollektoranschluss des zweiten Transistors (Q2) an einen ersten Differenzeingang eines Analog/Digital-Umsetzers (ADC) gekoppelt ist, der einen Abtast-Halte-Kondensator (CL) enthält.
     
    4. Differenzeingangspuffer nach Anspruch 3, wobei der zweite Transistor (Q2) eine erste Größe aufweist, der dritte Transistor (Q3) eine zweite Größe aufweist, ein Verhältnis zwischen der ersten und der zweiten Größe gleich n ist, eine Kapazität des Abtast-Halte-Kondensators (CL) n-Mal größer ist als eine Kapazität des Kondensators (C1), und ein Strom (IQ1) durch den ersten Transistor (Q1) n-Mal größer ist als ein Vorspannstrom (Ibias), der von der zweiten Stromquelle bereitgestellt wird.
     
    5. Differenzeingangspuffer nach Anspruch 3, der ferner Folgendes umfasst:

    einen weiteren Emitterfolger-Transistor (Q1SN), der einen Kollektoranschluss, der an den Stromversorgungsknoten gekoppelt ist, einen Basisanschluss, der an einen zweiten Differenzeingangsknoten (vinn) gekoppelt ist, und einen Emitteranschluss, der an eine dritte Stromquelle (Ibias2N) gekoppelt ist, aufweist;

    einen vierten Transistor (Q1N), der einen Kollektoranschluss, der an den Stromversorgungsknoten gekoppelt ist, und einen Basisanschluss, der an den Basisanschluss des anderen Emitterfolger-Transistors (Q1SN) und an den zweiten Differenzeingangsknoten (vinn) gekoppelt ist, aufweist;

    einen fünften Transistor (Q2N), der einen Kollektoranschluss, der an einen Emitteranschluss des vierten Transistors (Q1N) gekoppelt ist, aufweist; und

    einen sechsten Transistor (Q3N), der einen Emitteranschluss, der an einen Emitteranschluss des fünften Transistors (Q2N) und an einen Masseknoten gekoppelt ist, einen Kollektoranschluss, der an eine dritte Stromquelle (IbiasN) gekoppelt ist, und einen Basisanschluss, der an den Kollektoranschluss und an einen Basisanschluss des fünften Transistors (Q2N) gekoppelt ist, aufweist; und

    einen weiteren Kondensator (C1N), der an den Basisanschluss des fünften und des sechsten Transistors (Q2N und Q3N) und an einen zweiten Eingangsknoten (vopx) gekoppelt ist.


     
    6. Differenzeingangspuffer nach Anspruch 5, wobei ein zweiter Differenzausgangsknoten (von) zwischen dem Emitteranschluss des vierten Transistors (Q1N) und dem Kollektoranschluss des fünften Transistors (Q2N) an einen zweiten Differenzeingang des Analog/Digital-Umsetzers (ADC) gekoppelt ist.
     
    7. Differenzeingangspuffer nach Anspruch 5, wobei ein Knoten zwischen dem Emitteranschluss des Emitterfolger-Transistors (Q1S) und der ersten Stromquelle (Ibias2) die Spannung an dem zweiten Eingangsknoten (vopx) bereitstellt; wobei wahlweise ein Knoten zwischen dem Emitteranschluss des anderen Emitterfolger-Transistors (Q1SN) und der dritten Stromquelle (Ibias2N) die Spannung an dem ersten Eingangsknoten (vonx) bereitstellt.
     
    8. Programmierbarer Eingangspuffer, der Folgendes umfasst:

    einen ersten Transistor (Q1), der einen Kollektoranschluss, der an einen Stromversorgungsknoten gekoppelt ist, und einen Basisanschluss, der an einen ersten Eingangsknoten (vinp) gekoppelt ist, aufweist;

    einen zweiten Transistor (Q2), der einen Kollektoranschluss aufweist, der an einen Emitteranschluss des ersten Transistors (Q1) gekoppelt ist;

    einen dritten Transistor (Q3), der einen Emitteranschluss, der an einen Emitteranschluss des zweiten Transistors (Q2) und an einen Masseknoten gekoppelt ist, einen Kollektoranschluss, der an eine Stromquelle (Ibias) gekoppelt ist, und einen Basisanschluss, der an den Kollektoranschluss und an einen Basisanschluss des zweiten Transistors (Q2) gekoppelt ist, aufweist; und

    mehrere Kondensatoren (C1A-X), die jeweils über einen entsprechenden Schalter (M1A-X) an den Basisanschluss des zweiten und des dritten Transistors (Q2 und Q3) gekoppelt sind.


     
    9. Eingangspuffer nach Anspruch 1 oder programmierbarer Eingangspuffer nach Anspruch 8, wobei ein Ausgangsknoten (vop) zwischen dem Emitteranschluss des ersten Transistors (Q1) und dem Kollektoranschluss des zweiten Transistors (Q2) an einen Eingang eines Analog/Digital-Umsetzers (ADC) gekoppelt ist.
     
    10. Eingangspuffer oder programmierbarer Eingangspuffer nach Anspruch 9, wobei der Ausgangsknoten (vop) an einen Abtast-Halte-Kondensator (CL) des Analog/Digital-Umsetzers (ADC) gekoppelt ist.
     
    11. Eingangspuffer oder programmierbarer Eingangspuffer nach Anspruch 10, wobei der zweite Transistor (Q2) eine erste Größe aufweist, der dritte Transistor (Q3) eine zweite Größe aufweist, und ein Verhältnis zwischen der ersten und der zweiten Größe gleich n ist.
     
    12. Eingangspuffer nach Anspruch 11, wobei n einen Wert zwischen 2 und 5 aufweist.
     
    13. Eingangspuffer nach Anspruch 11, wobei eine Kapazität des Abtast-Halte-Kondensators (CL) n-Mal größer ist als eine Kapazität des Kondensators (C1).
     
    14. Eingangspuffer nach Anspruch 11, wobei ein Strom (IQ1) durch den ersten Transistor (Q1) n-Mal größer ist als ein Vorspannstrom (Ibias), der von der Stromquelle bereitgestellt wird.
     
    15. Programmierbarer Eingangspuffer nach Anspruch 10, wobei die Schalter (M1A-X) konfiguriert sind, eine kombinierte Kapazität der Kondensatoren (C1A-X) zu erhöhen oder zu verringern, so dass sie an eine Kapazität des Abtast-Halte-Kondensators (CL) angepasst wird; wobei wahlweise die Kapazität des Abtast-Halte-Kondensators (CL) n-Mal größer ist als die kombinierte Kapazität der Kondensatoren (C1A-X), und wobei ein Strom (IQ1) durch den ersten Transistor (Q1) n-Mal größer ist als ein Vorspannstrom (Ibias), der von der Stromquelle bereitgestellt wird.
     


    Revendications

    1. Tampon d'entrée, comprenant :

    un premier transistor (Q1) ayant une borne collectrice couplée à un noeud d'alimentation électrique et une borne de base couplée à un premier noeud d'entrée (vinp) ;

    un deuxième transistor (Q2) ayant une borne collectrice couplée à une borne émettrice du premier transistor (Q1) ;

    un troisième transistor (Q3) ayant une borne émettrice couplée à une borne émettrice du deuxième transistor (Q2) et à un noeud de terre, une borne collectrice couplée à une source de courant (Ibias), et une borne de base couplée à la borne collectrice et à une borne de base du deuxième transistor (Q2) ; et

    un condensateur (C1) couplé aux bornes de base des deuxième et troisième transistors (Q2 et Q3) et à un second noeud d'entrée (vinn), dans lequel les premier et second noeuds d'entrée (vinp et vinn) sont des entrées différentielles.


     
    2. Tampon d'entrée différentiel, comprenant :

    un transistor émetteur-suiveur (Q1S) ayant une borne collectrice couplée à un noeud d'alimentation électrique, une borne de base couplée à un premier noeud d'entrée différentiel (vinp), et une borne émettrice couplée à une première source de courant (Ibias2) ;

    un premier transistor (Q1) ayant une borne collectrice couplée au noeud d'alimentation électrique et une borne de base couplée à la borne de base du premier transistor émetteur-suiveur (Q1S) et au premier noeud d'entrée différentiel (vinp) ;

    un deuxième transistor (Q2) ayant une borne collectrice couplée à une borne émettrice du premier transistor (Q1) ;

    un troisième transistor (Q3) ayant une borne émettrice couplée à une borne émettrice du deuxième transistor (Q2) et à un noeud de terre, une borne collectrice couplée à une deuxième source de courant (Ibias), et une borne de base couplée à la borne collectrice et à une borne de base du deuxième transistor (Q2) ; et

    un condensateur (C1) couplé aux bornes de base des deuxième et troisième transistors (Q2 et Q3) et à un premier noeud d'entrée (vonx).


     
    3. Tampon d'entrée différentiel selon la revendication 2, dans lequel un premier noeud de sortie différentiel (vop) entre la borne émettrice du premier transistor (Q1) et la borne collectrice du deuxième transistor (Q2) est couplé à une première entrée différentielle d'un convertisseur analogique-numérique (ADC) incluant un condensateur échantillonneur-bloqueur (CL).
     
    4. Tampon d'entrée différentiel selon la revendication 3, dans lequel le deuxième transistor (Q2) a une première taille, le troisième transistor (Q3) a une seconde taille, un rapport entre les première et seconde tailles est n, une capacitance du condensateur échantillonneur-bloqueur (CL) est n fois supérieure à une capacitance du condensateur (C1), et un courant (IQ1) à travers le premier transistor (Q1) est n fois supérieur à un courant de polarisation (Ibias) fourni par la deuxième source de courant.
     
    5. Tampon d'entrée différentiel selon la revendication 3, comprenant en outre :

    un autre transistor émetteur-suiveur (Q1SN) ayant une borne collectrice couplée au noeud d'alimentation électrique, une borne de base couplée à un second noeud d'entrée différentiel (vinn), et une borne émettrice couplée à une troisième source de courant (Ibias2N) ;

    un quatrième transistor (Q1N) ayant une borne collectrice couplée au noeud d'alimentation électrique et une borne de base couplée à la borne de base de l'autre transistor émetteur-suiveur (Q1SN) et au second noeud d'entrée différentiel (vinn) ;

    un cinquième transistor (Q2N) ayant une borne collectrice couplée à une borne émettrice du quatrième transistor (Q1N) ; et

    un sixième transistor (Q3N) ayant une borne émettrice couplée à une borne émettrice du cinquième transistor (Q2N) et à un noeud de terre, une borne collectrice couplée à une troisième source de courant (IbiasN), et une borne de base couplée à la borne collectrice et à une borne de base du cinquième transistor (Q2N) ; et

    un autre condensateur (C1N) couplé aux bornes de base des cinquième et sixième transistors (Q2N et Q3N) et à un second noeud d'entrée (vopx).


     
    6. Tampon d'entrée différentiel selon la revendication 5, dans lequel un second noeud de sortie différentiel (von) entre la borne émettrice du quatrième transistor (Q1N) et la borne collectrice du cinquième transistor (Q2N) est couplé à une seconde entrée différentielle du convertisseur analogique-numérique (ADC).
     
    7. Tampon d'entrée différentiel selon la revendication 5, dans lequel un noeud entre la borne émettrice du transistor émetteur-suiveur (Q1S) et la première source de courant (Ibias2) fournit la tension au second noeud d'entrée (vopx) ; optionnellement dans lequel un noeud entre la borne émettrice de l'autre transistor émetteur-suiveur (Q1SN) et la troisième source de courant (Ibias2N) fournit la tension au premier noeud d'entrée (vonx).
     
    8. Tampon d'entrée programmable, comprenant :

    un premier transistor (Q1) ayant une borne collectrice couplée à un noeud d'alimentation électrique et une borne de base couplée à un noeud d'entrée (vinp) ;

    un deuxième transistor (Q2) ayant une borne collectrice couplée à une borne émettrice du premier transistor (Q1) ;

    un troisième transistor (Q3) ayant une borne émettrice couplée à une borne émettrice du deuxième transistor (Q2) et à un noeud de terre, une borne collectrice couplée à une source de courant (Ibias), et une borne de base couplée à la borne collectrice et à une borne de base du deuxième transistor (Q2) ; et

    de multiples condensateurs (C1A-X), chacun couplé aux bornes de base des deuxième et troisième transistors (Q2 et Q3) par l'intermédiaire d'un commutateur respectif (M1A-X).


     
    9. Tampon d'entrée selon la revendication 1 ou tampon d'entrée programmable selon la revendication 8, dans lequel un noeud de sortie (vop) entre la borne émettrice du premier transistor (Q1) et la borne collectrice du deuxième transistor (Q2) est couplé à une entrée d'un convertisseur analogique-numérique (ADC).
     
    10. Tampon d'entrée ou tampon d'entrée programmable selon la revendication 9, dans lequel le noeud de sortie (vop) est couplé à un condensateur échantillonneur-bloqueur (CL) du convertisseur analogique-numérique (ADC).
     
    11. Tampon d'entrée ou tampon d'entrée programmable selon la revendication 10, dans lequel le deuxième transistor (Q2) a une première taille, le troisième transistor (Q3) a une seconde taille, et un rapport entre les première et seconde tailles est n.
     
    12. Tampon d'entrée selon la revendication 11, dans lequel n a une valeur entre 2 et 5.
     
    13. Tampon d'entrée selon la revendication 11, dans lequel une capacitance du condensateur échantillonneur-bloqueur (CL) est n fois supérieure à une capacitance du condensateur (C1).
     
    14. Tampon d'entrée selon la revendication 11, dans lequel un courant (IQ1) à travers le premier transistor (Q1) est n fois supérieur à un courant de polarisation (Ibias) fourni par la source de courant.
     
    15. Tampon d'entrée programmable selon la revendication 10, dans lequel les commutateurs (M1A-X) sont configurés pour augmenter ou réduire une capacitance combinée des condensateurs (C1A-X) pour correspondre à une capacitance du condensateur échantillonneur-bloqueur (CL); optionnellement dans lequel la capacitance du condensateur échantillonneur-bloqueur (CL) est n fois supérieure à la capacitance combinée du condensateurs (C1A-X), et dans lequel un courant (IQ1) à travers le premier transistor (Q1) est n fois supérieur à un courant de polarisation (Ibias) fourni par la source de courant.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description