(19)
(11)EP 3 228 028 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
16.09.2020 Bulletin 2020/38

(21)Application number: 15813977.4

(22)Date of filing:  30.11.2015
(51)International Patent Classification (IPC): 
H04B 10/50(2013.01)
H04B 10/40(2013.01)
G02B 6/42(2006.01)
(86)International application number:
PCT/US2015/063030
(87)International publication number:
WO 2016/089784 (09.06.2016 Gazette  2016/23)

(54)

2 X 40 GBPS BIDI OPTICAL TRANSCEIVER

OPTISCHER BIDI-SENDER-EMPFÄNGER MIT 2 X 40 GBPS

ÉMETTEUR- RÉCEPTEUR OPTIQUE BIDI GBPS 2 X 40


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.12.2014 US 201414557326

(43)Date of publication of application:
11.10.2017 Bulletin 2017/41

(73)Proprietor: Cisco Technology, Inc.
San Jose, CA 95134 (US)

(72)Inventors:
  • CAFIERO, Luca
    San Jose, California 95134 (US)
  • TOMADA, Franco
    San Jose, California 95134 (US)

(74)Representative: Jarrett, Daniel Phillip et al
Kilburn & Strode LLP Lacon London 84 Theobalds Road
London WC1X 8NL
London WC1X 8NL (GB)


(56)References cited: : 
US-A1- 2014 314 425
  
  • CHRIS COLE: "Beyond 100G client optics", IEEE COMMUNICATIONS MAGAZINE, IEEE SERVICE CENTER, PISCATAWAY, US, vol. 50, no. 2, 1 February 2012 (2012-02-01), pages s58-s66, XP011417043, ISSN: 0163-6804, DOI: 10.1109/MCOM.2012.6146486
  • Rev ET AL: "QSFP28 4X Base Electrical Specification SFF-8679 Specification for QSFP28 4X Base Electrical Specification", , 12 August 2014 (2014-08-12), XP055251883, Retrieved from the Internet: URL:ftp://ftp.seagate.com/sff/SFF-8679.PDF
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present disclosure relates to optical communications for improving bandwidth in fiber optic networks using existing multi-mode optical fibers.

BACKGROUND



[0002] Currently, legacy data centers are built to accommodate a link speed of 10 Gigabytes per second (Gbps) for transmission of Ethernet data over optical fibers. However, each fiber is actually capable of handling 20 Gpbs. There is currently a market transition to change the link speed from 10 Gbps Ethernet to 40 Gbps Ethernet in the data center.

[0003] US 2014/314425 describes techniques to facilitate higher bandwidth communications in a data center using existing multi-mode fibers and full-duplex optical communication techniques. A first device transmits to a second device a first optical signal at a first wavelength on a first optical fiber. The first optical signal carries a first portion of Ethernet traffic. The first device receives a second optical signal transmitted at a second wavelength on the first optical fiber from the second device. The second optical signal carries a first portion of Ethernet traffic. On a second optical fiber, the first device transmits to the second device a third optical signal at a third wavelength. The third optical signal carries a second portion of Ethernet traffic. The first device receives a fourth optical signal at a fourth wavelength on the second optical fiber, the fourth optical signal carrying a second portion of Ethernet.

BRIEF DESCRIPTION OF THE DRAWINGS



[0004] There are shown in the drawings embodiments that are presently preferred it being understood that the disclosure is not limited to the arrangements and instrumentalities shown, wherein:

FIG. 1 illustrates a full-duplex communication of Ethernet traffic over four multi-mode optical fibers between first and second devices incorporating the principles of the present disclosure;

FIG. 2 is a block diagram of a QSFP module used in connection with the present disclosure;

FIG. 3 illustrates a perspective view of the QSFP module housing;

FIG. 4 illustrates a perspective view of the QSFP module housing coupled to four optical fibers; and

FIG. 5 illustrates a flowchart depicting steps taken by an example of the present disclosure.


DESCRIPTION OF EXAMPLE EMBODIMENTS



[0005] The detailed description set forth below is intended as a description of various configurations of the subject technology and is not intended to represent the only configurations in which the subject technology can be practiced. The appended drawings are incorporated herein and constitute a part of the detailed description. The detailed description includes specific details for the purpose of providing a more thorough understanding of the subject technology. However, it will be clear and apparent that the subject technology is not limited to the specific details set forth herein and may be practiced without these details. In some instances, structures and components are shown in block diagram form in order to avoid obscuring the concepts of the subject technology.

Overview



[0006] In one aspect of the present disclosure, there is provided a device according to claim 1.

[0007] In another aspect of the present disclosure, there is provided a system according to claim 2.

[0008] In yet another aspect of the present disclosure, there is provided a method according to claim 9.

Detailed Description



[0009] In order to accommodate the previously mentioned market transition to change the link speed from 10 Gbps Ethernet in the data center, the existing fiber would need to be replaced. Changing the fibers is a costly process for data centers, particularly large data centers where labor costs and material costs would make the transition an exorbitant and perhaps cost-prohibitive undertaking. The present disclosure describes an apparatus and method for improved bandwidth capabilities in a data center using existing fiber optic fibers. FIG. 1 illustrates a high-level diagram of an optical communication system in a data center 10. In the optical communication system, network traffic, for example, Ethernet traffic, is communicated between a first device 20 and a second device 30, denoted in FIG. 1 as Device A and Device B, respectively. A plurality of optical fibers are coupled to each of device 20 and device 30 in order to carry optical signals between the two devices.

[0010] According to the example shown in FIG. 1, each of four multi-mode fibers, 40, 42, 44, and 46 carries a portion of a predetermined bandwidth of Ethernet traffic in the form of optical signals between device 20 and device 30. In one example, optical fibers 40 and 42 carry a first portion of the predetermined bandwidth of Ethernet traffic from device 20 to device 30 and optical fibers 44 and 46 carry a second portion of the predetermined bandwidth of Ethernet traffic from device 20 to device 30. In one example, optical fiber 40 carries a first optical signal 48 at a first wavelength λ1 from device 20 to device 30. Optical fiber 42 carries a second optical signal 52 at a second wavelength λ2 from device 20 to device 30. Optical fiber 44 carries a third optical signal 56 at a third wavelength λ3 from device 20 to device 30. Optical fiber 46 carries a fourth optical signal 60 at a fourth wavelength λ4 from device 20 to device 30.

[0011] Optical fibers 40, 42, 44, and 46 can be full-duplex fibers, capable of transmitting and receiving optical signals in the same fiber. This is accomplished due to the differences in wavelengths between the transmitted optical signals. For example, optical fiber 40 can carry a first return optical signal 50 from device 30 to device 20 having a fifth wavelength λ5 that is different from the first wavelength λ1, thus allowing both first optical signal 48 and first return optical signal 50 to be carried by the same fiber, i.e., optical fiber 40.

[0012] Similarly, optical fiber 42 can carry a second return optical signal 54 from device 30 to device 20 having a sixth wavelength λ6 that is different from the second wavelength λ2, thus allowing both the second optical signal 52 and the second return optical signal 54 to be carried by the same fiber, i.e., optical fiber 42. Optical fiber 44 can carry a third return optical signal 58 from device 30 to device 20 having a seventh wavelength λ7 that is different from wavelength λ3, thus allowing both the third optical signal 56 and the third return optical signal 58 to be carried by the same fiber, i.e., fiber 44. Finally, optical fiber 46 can carry a fourth return optical signal 62 from device 30 to device 20 having an eighth wavelength λ8 that is different from the fourth wavelength λ4, thus allowing both the fourth optical signal 60 and the fourth return optical signal 62 to be carried on the same fiber, i.e., fiber 46.

[0013] FIG. 2 illustrates an example of the present disclosure where device 20 is a Quad Small Form-factor Pluggable (QSFP) module 80. QSFP module 80 can house transceiver 1 66 and transceiver 2 68. Transceiver 1 66 and transceiver 2 68 each include the necessary components, including modems, to convert the incoming electrical signals of the Ethernet traffic to optical signals for transmission over optical fibers 40, 42, 44, and 46 and to convert incoming optical signals from an optical fiber back into electronic signals, as is known in the art. QSFP 80 also includes an electrical interface 74 that receives electrical signals and an optical interface 78 that receives a plurality of optical fibers. Note that the use of QSFP module 80 to house the electrical components of device 20 is merely exemplary and other modules or housings may be used. Ethernet traffic in the form of electrical signals is received by QSFP module 80 at electrical interface 74 and these signals converted into optical signals and transmitted along full-duplex optical cables 40, 42, 44, and 46 in the manner described above.

[0014] Using the techniques illustrated in FIG. 1, QSFP 80 receives a predetermined bandwidth of Ethernet traffic in the form of electrical signals that is to be sent to second device 30. In one example, a predetermined bandwidth of Ethernet traffic is 80 Gbps and the first portion of predetermined bandwidth of Ethernet traffic allocated to transceiver 1 66 is 40 Gbps and the second portion of Ethernet traffic allocated to transceiver 2 68 is 40 Gbps. In this example, electrical signals are received at electrical interface 74 of QSFP module 80 along links 70 and 71 at 20 Gb per link. Transceiver 1 66 converts these electrical signals, which form the first portion of the predetermined bandwidth of Ethernet traffic, to optical signals which are transmitted at optical interface 78 over optical links 40 and 42 to device 30 at 20 Gb per link. Similarly, electrical signals are received at electrical interface 74 of QSFP module 80 along links 72 and 73 at 20 Gb per link. Transceiver 2 68 converts these electrical signals, which form the second portion of the predetermined bandwidth of Ethernet traffic, to optical signals which are transmitted at optical interface 78 over optical links 44 and 46 to device 30 at 20 Gb per link.

[0015] Incoming optical signals from device 30 over links 40 and 42 are converted back to electrical signals by transceiver 1 66 and, in one example, transmitted to other devices along links 75 and 77 via electrical interface 74 at 20 Gb per link. Similarly, incoming optical signals over links 44 and 46 are converted back to electrical signals by transceiver 2 68 and, in one example, transmitted to other devices along links 79 and 81 via electrical interface 74 at 20 Gb per link.

[0016] FIGS. 3 and 4 illustrate QSFP module 80 which, as described in greater detail above, includes modem 64 and transceivers 66 and 68 such that signals received by QSFP module 80 at its electrical interface 74 are converted to optical signals in the manner described above and transmitted to another device, i.e., device 30. As shown in FIG. 3, optical interface 78 of device 20 includes four ports, each port configured to receive an optical fiber. Advantageously, a single QSFP module 80 is used to house transceivers 66 and 68, and which via its optical interface 78, is able to couple to four optical fibers in order to transmit and receive optical signals. In certain embodiments QSFP module 80 can include an optical interface 78 that can receive more or less than four optical cables. The dimensions of QSFP module 80 can be modified accordingly in order to house the electrical components including modem 64, transceiver A 66 and transceiver B 68 and its optical interface 78 configured to receive two pairs of optical fibers, i.e., a first pair of optical fibers (optical fibers 40 and 42) and a second pair of optical fibers (optical fibers 44 and 46) as shown in FIG. 4. QSFP module 80 can also include one or more heat sinks to safely account for heat dissipation due to the modified size of QSFP 80.

[0017] FIG. 5 is a flowchart showing the interaction between first device 20 and second device 30 utilizing the principles of the present disclosure. At step 80, first device 20 transmits to a second device 30, a first portion of a predetermined bandwidth of Ethernet traffic, the first portion including signal 48 transmitted over a first optical fiber 40 at a first wavelength λ1 and signal 52 transmitted over a second optical fiber 42 at a second wavelength λ2. At step 82, first device 20 receives from second device 30, a first return optical signal 50 over the first optical fiber 40 at a wavelength λ5 different from the first wavelength λ1 and a second return optical signal 54 over the second optical fiber 42 at a wavelength λ6 that is different from the second wavelength λ2.

[0018] Continuing to refer to FIG. 5, at step 84, first device 20 transmits to second device 30, a second portion of the predetermined bandwidth of Ethernet traffic, the second portion including signal 56 transmitted over a third optical fiber 44 at a third wavelength λ3 and including signal 60 transmitted over a fourth optical fiber at a fourth wavelength λ4. At step 86, first device 20 receives from second device 30, a third return optical signal 58 over the third optical fiber 44 at a wavelength λ7 that is different from the third wavelength λ3 and a fourth return optical signal 62 over the fourth optical fiber 46 at a wavelength λ8 that is different from the fourth wavelength λ4.

[0019] The present disclosure provides techniques for facilitating higher bandwidth in a data center using multi-mode fibers and full-duplex optical communications. Specifically, the present disclosure describes methods for compressing two bidirectional transceivers within a single module, i.e., a QSFP module. Combining transceivers in this fashion improves integration of the electronic components therein and reduces the overall data center/enterprise network switch footprint.

[0020] The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean "one and only one" unless specifically so stated, but rather "one or more."

[0021] A phrase such as an "aspect" does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology. A disclosure relating to an aspect may apply to all configurations, or one or more configurations. A phrase such as an aspect may refer to one or more aspects and vice versa. A phrase such as a "configuration" does not imply that such configuration is essential to the subject technology or that such configuration applies to all configurations of the subject technology. A disclosure relating to a configuration may apply to all configurations, or one or more configurations. A phrase such as a configuration may refer to one or more configurations and vice versa.

[0022] The word "exemplary" is used herein to mean "serving as an example or illustration." Any aspect or design described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other aspects or designs.

[0023] The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that various modifications and changes may be made thereunto without departing from the scope of various aspects of the disclosure as set forth in the claims.


Claims

1. A device (80) comprising:

an electrical interface (74) for receiving a predetermined bandwidth of Ethernet traffic over four links (70-73), each link carrying an electrical signal at 20 Gbps;

an optical interface (78) for receiving a plurality of optical fibers (40-46);

a modem configured to allocate the received predetermined bandwidth of Ethernet traffic into first and second optical portions;

a first optical transceiver (66) configured to transmit, via the optical interface, the first optical portion of Ethernet traffic over a first optical fiber (40) at a first wavelength (λ1) and over a second optical fiber (42) at a second wavelength (λ2); and

a second optical transceiver (68) configured to transmit, via the optical interface, the second optical portion of the Ethernet traffic over a third optical fiber (44) at a third wavelength (λ3) and over a fourth optical fiber (46) at a fourth wavelength (λ4),

wherein the device is a Quad Small Form-factor Pluggable, QSFP, module.


 
2. A system comprising:

a first device (20) according to claim 1;

a second device (30) according to claim 1; and

the plurality of optical fibers (40-46), wherein the plurality of optical fibers is coupled between the first device and the second device.


 
3. The device of claim 1 or system of claim 2, wherein the first optical transceiver is further configured to receive a first return optical signal (50) over the first optical fiber at a wavelength (λ5) different from the first wavelength and receive a second return optical signal (54) over the second optical fiber at a wavelength (λ6) that is different from the second wavelength, and wherein the second optical transceiver is further configured to receive a third return optical signal (58) over the third optical fiber at a wavelength (λ7) that is different from the third wavelength and receive a fourth return optical signal (62) over the fourth optical fiber at a wavelength (λ8) that is different from the fourth wavelength.
 
4. The device of claim 1 or system of claim 2, wherein the predetermined bandwidth of Ethernet traffic is 80 Gbps.
 
5. The device of claim 3, wherein the first optical portion and the second optical portion of the predetermined bandwidth of Ethernet traffic are each 40 Gbps.
 
6. The device of claim 4, wherein the first optical portion of the predetermined bandwidth of Ethernet traffic transmitted over the first optical fiber and the second optical fiber is each 20 Gbps and the second optical portion of the predetermined bandwidth of Ethernet traffic transmitted over the third optical fiber and the fourth optical fiber is 20 Gbps.
 
7. The device of claim 4, wherein the first optical portion and the second optical portion of the predetermined bandwidth of Ethernet traffic are each 40 Gbps.
 
8. The system of claim 2, further comprising a heat sink configured to dissipate heat away from at least one of the first device or the second device.
 
9. A method comprising:

receiving, by a first device (20), a predetermined bandwidth of Ethernet traffic over four links (70-73), the first device being a Quad Small Form-factor Pluggable, QSFP, module, and each link carrying an electrical signal at 20 Gbps;

transmitting (80), from the first device (20) to a second device (30), a first portion of the predetermined bandwidth of Ethernet traffic over a first optical fiber (40) at a first wavelength (λ1) and over a second optical fiber (42) at a second wavelength (λ2);

receiving (82), by the first device from the second device, a first return optical signal (50) over the first optical fiber at a wavelength (λ5) different from the first wavelength and a second return optical signal (54) over the second optical fiber at a wavelength (λ6) that is different from the second wavelength;

transmitting (84), from the first device to the second device, a second portion of the predetermined bandwidth of Ethernet traffic over a third optical fiber (44) at a third wavelength (λ3) and over a fourth optical fiber (46) at a fourth wavelength (λ4); and

receiving (86), by the first device from the second device, a third return optical signal (58) over the third optical fiber at a wavelength (λ7) that is different from the third wavelength and a fourth return optical signal (62) over the fourth optical fiber at a wavelength (λ8) that is different from the fourth wavelength.


 
10. The method of claim 9, wherein the predetermined bandwidth of Ethernet traffic is 80 Gbps, and wherein the first optical portion and the second optical portion of the predetermined bandwidth of Ethernet traffic are each 40 Gbps.
 
11. The method of claim 10, wherein the first optical portion of the predetermined bandwidth of Ethernet traffic transmitted over the first optical fiber and the second optical fiber is each 20 Gbps.
 
12. The method of claim 10, wherein the second optical portion of the Ethernet traffic transmitted over the third optical fiber and the fourth optical fiber is each 20 Gbps.
 
13. The method of claim 9, further comprising dissipating heat away from at least one of the first device or the second device.
 


Ansprüche

1. Vorrichtung (80), die aufweist:

eine elektrische Schnittstelle (74) zum Empfangen einer vorgegebenen Bandbreite von Ethernet-Verkehr über vier Verbindungen (70-73), wobei jede Verbindung ein elektrisches Signal mit 20 Gbps trägt;

eine optische Schnittstelle (78) zum Empfangen einer Vielzahl optischer Fasern (40-46);

ein Modem, das dazu konfiguriert ist, die empfangene vorgegebene Bandbreite von Ethernet-Verkehr in erste und zweite optische Abschnitte zu verteilen;

einen ersten optischen Transceiver (66), der dazu konfiguriert ist, über die optische Schnittstelle den ersten optischen Abschnitt von Ethernet-Verkehr über eine erste optische Faser (40) mit einer ersten Wellenlänge (λ1) und über eine zweite optische Faser (42) mit einer zweiten Wellenlänge (λ2) zu senden; und

einen zweiten optischen Transceiver (68), der dazu konfiguriert ist, über die optische Schnittstelle den zweiten optischen Abschnitt des Ethernet-Verkehrs über eine dritte optische Faser (44) mit einer dritten Wellenlänge (λ3) und über eine vierte optische Faser (46) mit einer vierten Wellenlänge (λ4) zu senden,

wobei die Vorrichtung ein Quad Small Form-factor Pluggable, QSFP, -Modul ist.


 
2. System, das aufweist:

eine erste Vorrichtung (20) nach Anspruch 1;

eine zweite Vorrichtung (30) nach Anspruch 1; und

die Vielzahl optischer Fasern (40-46), wobei die Vielzahl optischer Fasern zwischen die erste Vorrichtung und die zweite Vorrichtung geschaltet sind.


 
3. Vorrichtung nach Anspruch 1 oder System nach Anspruch 2, wobei der erste optische Transceiver des Weiteren dazu konfiguriert ist, ein erstes optisches Rücksignal (50) über die erste optische Faser mit einer Wellenlänge (λ5), die sich von der ersten Wellenlänge unterscheidet, zu empfangen, und ein zweites optisches Rücksignal (54) über die zweite optische Faser mit einer Wellenlänge (λ6), die sich von der zweiten Wellenlänge unterscheidet, zu empfangen, und wobei der zweite optische Transceiver des Weiteren dazu konfiguriert ist, ein drittes optisches Rücksignal (58) über die dritte optische Faser mit einer Wellenlänge (λ7), die sich von der dritten Wellenlänge unterscheidet, zu empfangen, und ein viertes optisches Rücksignal (62) über die vierte optische Faser mit einer Wellenlänge (λ8), die sich von der vierten Wellenlänge unterscheidet, zu empfangen.
 
4. Vorrichtung nach Anspruch 1 oder System nach Anspruch 2, wobei die vorgegebene Wellenlänge von Ethernet-Verkehr 80 Gbps ist.
 
5. Vorrichtung nach Anspruch 3, wobei der erste optische Abschnitt und der zweite optische Abschnitt der vorgegebenen Bandbreite von Ethernet-Verkehr jeweils 40 Gbps ist.
 
6. Vorrichtung nach Anspruch 4, wobei der erste optische Abschnitt der vorgegebenen Bandbreite von Ethernet-Verkehr, der über die erste optische Faser und die zweite optische Faser gesendet wird, jeweils 20 Gbps ist, und der zweite optische Abschnitt der vorgegebenen Bandbreite von Ethernet-Verkehr, der über die dritte optische Faser und die vierte optische Faser gesendet wird, 20 Gbps ist.
 
7. Vorrichtung nach Anspruch 4, wobei der erste optische Abschnitt und der zweite optische Abschnitt der vorgegebenen Bandbreite von Ethernet-Verkehr jeweils 40 Gbps ist.
 
8. System nach Anspruch 2, das des Weiteren eine Wärmesenke aufweist, die dazu konfiguriert ist, Wärme von wenigstens einer der ersten Vorrichtung oder der zweiten Vorrichtung abzuleiten.
 
9. Verfahren, das aufweist:

Empfangen, durch eine erste Vorrichtung (20), einer vorgegebenen Bandbreite von Ethernet-Verkehr über vier Verbindungen (70-73), wobei die erste Vorrichtung ein Quad Small Form-factor Pluggable, QSFP, -Modul ist, und wobei jede Verbindung ein elektrisches Signal mit 20 Gbps trägt;

Senden (80), von der ersten Vorrichtung (20) an eine zweite Vorrichtung (30), eines ersten Abschnitts der vorgegebenen Bandbreite von Ethernet-Verkehr über eine erste optische Faser (40) mit einer ersten Wellenlänge (λ1) und über eine zweite optische Faser (42) mit einer zweiten Wellenlänge (λ2);

Empfangen (82), durch die erste Vorrichtung von der zweiten Vorrichtung, eines ersten optischen Rücksignals (50) über die erste optische Faser mit einer Wellenlänge (λ5), die sich von der ersten Wellenlänge unterscheidet, und eines zweiten optischen Rücksignals (54) über die zweite optische Faser mit einer Wellenlänge (λ6), die sich von der zweiten Wellenlänge unterscheidet;

Senden (84), von der ersten Vorrichtung an die zweite Vorrichtung, eines zweiten Abschnitts der vorgegebenen Bandbreite von Ethernet-Verkehr über eine dritte optische Faser (44) mit einer dritten Wellenlänge (λ3) und über eine vierte optische Faser (46) mit einer vierten Wellenlänge (λ4); und

Empfangen (86), durch die erste Vorrichtung von der zweiten Vorrichtung, eines dritten optischen Rücksignals (58) über die dritte optische Faser mit einer Wellenlänge (λ7), die sich von der dritten Wellenlänge unterscheidet, und eines vierten optischen Rücksignals (62) über die vierte optische Faser mit einer Wellenlänge (λ8), die sich von der vierten Wellenlänge unterscheidet.


 
10. Verfahren nach Anspruch 9, wobei die vorgegebene Bandbreite von Ethernet-Verkehr 80 Gbps ist, und wobei der erste optische Abschnitt und der zweite optische Abschnitt der vorgegebenen Bandbreite von Ethernet-Verkehr jeweils 40 Gbps ist.
 
11. Verfahren nach Anspruch 10, wobei der erste optische Abschnitt der vorgegebenen Bandbreite von Ethernet-Verkehr, der über die erste optische Faser und die zweite optische Faser gesendet wird, jeweils 20 Gbps ist.
 
12. Verfahren nach Anspruch 10, wobei der zweite optische Abschnitt des Ethernet-Verkehrs, der über die dritte optische Faser und die vierte optische Faser gesendet wird, jeweils 20 Gbps ist.
 
13. Verfahren nach Anspruch 9, das des Weiteren das Ableiten von Wärme von wenigstens einer der ersten Vorrichtung oder der zweiten Vorrichtung aufweist.
 


Revendications

1. Dispositif (80) comprenant :

une interface électrique (74) destinée à recevoir une bande passante prédéterminée de trafic Ethernet sur quatre liaisons (70-73), chaque liaison portant un signal électrique à 20 Gbps ;

une interface optique (78) destinée à recevoir une pluralité de fibres optiques (40-46) ;

un modem configuré pour attribuer la bande passante prédéterminée reçue de trafic Ethernet dans des première et seconde parties optiques ;

un premier émetteur-récepteur optique (66) configuré pour émettre, par le biais de l'interface optique, la première partie optique de trafic Ethernet sur une première fibre optique (40) dans une première longueur d'onde (λ1) et sur une deuxième fibre optique (42) dans une deuxième longueur d'onde (λ2) ; et

un second émetteur-récepteur optique (68) configuré pour émettre, par le biais de l'interface optique, la seconde partie optique du trafic Ethernet sur une troisième fibre optique (44) dans une troisième longueur d'onde (λ3) et sur une quatrième fibre optique (46) dans une quatrième longueur d'onde (λ4),

dans lequel le dispositif est un module Quad Small Form-factor Pluggable, QSFP.


 
2. Système comprenant :

un premier dispositif (20) selon la revendication 1 ;

un second dispositif (30) selon la revendication 1 ; et

la pluralité de fibres optiques (40-46) dans lequel la pluralité de fibres optiques est couplée entre le premier dispositif et le second dispositif.


 
3. Dispositif selon la revendication 1 ou système selon la revendication 2, dans lequel le premier émetteur-récepteur optique est en outre configuré pour recevoir un premier signal optique de retour (50) sur la première fibre optique dans une longueur d'onde (λ5) différente de la première longueur d'onde et recevoir un deuxième signal optique de retour (54) sur la seconde fibre optique dans une longueur d'onde (λ6) qui est différente de la deuxième longueur d'onde, et dans lequel le second émetteur-récepteur optique est en outre configuré pour recevoir un troisième signal optique de retour (58) sur la troisième fibre optique dans une longueur d'onde (λ7) qui est différente de la troisième longueur d'onde et recevoir un quatrième signal optique de retour (62) sur la quatrième fibre optique dans une longueur d'onde (λ8) qui est différente de la quatrième longueur d'onde.
 
4. Dispositif selon la revendication 1 ou système selon la revendication 2, dans lequel la bande passante prédéterminée de trafic Ethernet est de 80 Gbps.
 
5. Dispositif selon la revendication 3, dans lequel la première partie optique et la seconde partie optique de la bande passante prédéterminée de trafic Ethernet sont chacune de 40 Gbps.
 
6. Dispositif selon la revendication 4, dans lequel la première partie optique de la bande passante prédéterminée de trafic Ethernet émise sur la première fibre optique et la deuxième fibre optique sont chacune de 20 Gbps et la seconde partie optique de la bande passante prédéterminée de trafic Ethernet émise sur la troisième fibre optique et la quatrième fibre optique sont de 20 Gbps.
 
7. Dispositif selon la revendication 4, dans lequel la première partie optique et la seconde partie optique de la bande passante prédéterminée de trafic Ethernet sont chacune de 40 Gbps.
 
8. Système selon la revendication 2, comprenant en outre un dissipateur thermique configuré pour dissiper la chaleur à distance d'au moins un dispositif parmi le premier dispositif ou le second dispositif.
 
9. Procédé comprenant :

la réception, par un premier dispositif (20), d'une bande passante prédéterminée de trafic Ethernet sur quatre liaisons (70-73), le premier dispositif étant un module Quad Small Form-factor Pluggable, QSFP, et chaque liaison portant un signal électrique à 20 Gbps ;

l'émission (80), depuis le premier dispositif (20) vers un second dispositif (30), d'une première partie de la bande passante prédéterminée de trafic Ethernet sur une première fibre optique (40) dans une première longueur d'onde (λ1) et sur une deuxième fibre optique (42) dans une deuxième longueur d'onde (λ2) ;

la réception (82), par le premier dispositif depuis le second dispositif, d'un premier signal optique de retour (50) sur la première fibre optique dans une longueur d'onde (λ5) différente de la première longueur d'onde et d'un deuxième signal optique de retour (54) sur la seconde fibre optique dans une longueur d'onde (λ6) qui est différente de la deuxième longueur d'onde ;

l'émission (84), depuis le premier dispositif vers le second dispositif, d'une seconde partie de la bande passante prédéterminée de trafic Ethernet sur une troisième fibre optique (44) dans une troisième longueur d'onde (λ3) et sur une quatrième fibre optique (46) dans une quatrième longueur d'onde (λ4) ; et

la réception (86), par le premier dispositif depuis le second dispositif, d'un troisième signal optique de retour (58) sur la troisième fibre optique dans une longueur d'onde (λ7) qui est différente de la troisième longueur d'onde et d'un quatrième signal optique de retour (62) sur la quatrième fibre optique dans une longueur d'onde (λ8) qui est différente de la quatrième longueur d'onde.


 
10. Procédé selon la revendication 9, dans lequel la bande passante prédéterminée de trafic Ethernet est de 80 Gbps, et dans lequel la première partie optique et la seconde partie optique de la bande passante prédéterminée de trafic Ethernet sont chacune de 40 Gbps.
 
11. Procédé selon la revendication 10, dans lequel la première partie optique de la bande passante prédéterminée de trafic Ethernet émise sur la première fibre optique et la deuxième fibre optique sont chacune de 20 Gbps.
 
12. Procédé selon la revendication 10, dans lequel la seconde partie optique du trafic Ethernet émise sur la troisième fibre optique et la quatrième fibre optique sont chacune de 20 Gbps.
 
13. Procédé selon la revendication 9, comprenant en outre la dissipation de la chaleur à distance d'au moins un dispositif parmi le premier dispositif ou le second dispositif.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description