(19)
(11)EP 3 230 873 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.01.2021 Bulletin 2021/02

(21)Application number: 15868489.4

(22)Date of filing:  09.11.2015
(51)International Patent Classification (IPC): 
G06F 12/02(2006.01)
G06F 12/06(2006.01)
G06F 3/06(2006.01)
(86)International application number:
PCT/US2015/059739
(87)International publication number:
WO 2016/094003 (16.06.2016 Gazette  2016/24)

(54)

COMPUTING METHOD AND APPARATUS WITH PERSISTENT MEMORY

BERECHNUNGSVERFAHREN UND -VORRICHTUNG MIT PERSISTENTEM SPEICHER

PROCÉDÉ ET APPAREILS INFORMATIQUES À MÉMOIRE PERSISTANTE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 11.12.2014 US 201414567662

(43)Date of publication of application:
18.10.2017 Bulletin 2017/42

(73)Proprietor: Intel Corporation
Santa Clara, CA 95054 (US)

(72)Inventors:
  • KUMAR, Sanjay
    Hillsboro, Oregon 97124 (US)
  • SANKARAN, Rajesh M.
    Portland, Oregon 97229 (US)
  • DULLOOR, Subramanya R.
    Hillsboro, Oregon 97124 (US)
  • SUBBAREDDY, Dheeraj R.
    Hillsboro, Oregon 97124 (US)
  • ANDERSON, Andrew V.
    Forest Grove, Oregon 97116 (US)

(74)Representative: Rummler, Felix et al
Maucher Jenkins 26 Caxton Street
London SW1H 0RJ
London SW1H 0RJ (GB)


(56)References cited: : 
WO-A2-2011/019216
US-A1- 2010 241 815
US-A1- 2013 191 578
US-A1- 2014 181 367
DE-A1-102013 106 242
US-A1- 2013 086 309
US-A1- 2013 198 453
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] Embodiments of the present disclosure are related to the field of computing, and in particular, to computing method and apparatus with persistent memory.

    BACKGROUND



    [0002] The background description provided herein is for the purpose of generally presenting the context of the disclosure. Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.

    [0003] Volatile memory (e.g., static random access memory (SRAM), dynamic random access memory (DRAM), etc.) has traditionally been orders of magnitude faster in both latency and bandwidth than persistent storage (e.g., magnetic disk, Flash, etc.). However, volatile memory may come at a higher cost/bit and therefore a more limited capacity when compared with persistent storage. Given these limitations and strengths of volatile memory versus persistent storage, computing systems have traditionally organized them into a tiered architecture. In such an architecture, volatile memory may be directly coupled with a central processing unit (CPU) (e.g., via a memory bus) of a computing device and hence may be directly accessible by instructions of the CPU. Persistent storage, on the other hand, may be coupled with the CPU through an input/output (I/O) controller (e.g., small computer system interface (SCSI), serial advanced technology attachment (SATA), peripheral component interconnect (PCI)-Express, etc.). As a result, volatile memory may be in the CPU's address domain but persistent storage may be in the CPU's I O controller's address domain. Such a configuration may require an operating system to manage the volatile memory and the persistent storage as distinct volatile and storage domains, respectively. This may lead to certain inefficiencies and additional processes, for example, when loading a data item from persistent storage to volatile memory for access by the CPU.

    [0004] US 2014/181367 A1 describes a system pertaining to the features of the preamble of claim 1.

    SUMMARY OF INVENTION



    [0005] The present invention is defined in the independent claims. Preferred features are recited by the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] 

    Figure 1 depicts an illustrative computing system having persistent memory with regions dynamically allocated as volatile type memory or persistent type memory, in accordance with various embodiments of the present disclosure.

    Figure 2 illustrates an example system for dynamically allocating regions of persistent memory as volatile type memory, in accordance with various embodiments of the present disclosure.

    Figure 3 illustrates an example memory configuration having dynamically allocated persistent/volatile memory pages, in accordance with various embodiments of the present disclosure.

    Figure 4 illustrates an example process flow for dynamically allocating regions of persistent memory as persistent type memory and volatile type memory, in accordance with various embodiments of the present disclosure.

    Figure 5 is a schematic illustration of an example computing device, in accordance with various embodiments of the present disclosure.

    Figure 6 illustrates an example non-transitory computer-readable storage medium having instructions configured to practice all or selected ones of the operations associated with the processes described above.


    DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS



    [0007] Methods, computer-readable media, and computing devices associated with having persistent memory are described herein. In the following detailed description, reference is made to the accompanying drawings which form a part hereof wherein like numerals designate like parts throughout, and in which is shown, by way of illustration, embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the appended claims.

    [0008] Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims.

    [0009] Various operations may be described as multiple discrete actions or operations in turn, in a manner that is most helpful in understanding the claimed subject matter. However, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations may not be performed in the order of presentation. Operations described may be performed in a different order than the described embodiment. Various additional operations may be performed and/or described operations may be omitted in additional embodiments.

    [0010] For the purposes of the present disclosure, the phrase "A and/or B" means (A), (B), or (A and B). For the purposes of the present disclosure, the phrase "A, B, and/or C" means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). The description may use the phrases "in an embodiment," or "in embodiments," which may each refer to one or more of the same or different embodiments. Furthermore, the terms "comprising," "including," "having," and the like, as used with respect to embodiments of the present disclosure, are synonymous.

    [0011] Figure 1 depicts an illustrative portion of a computing system 100 having persistent memory where regions of which may be dynamically allocated as either volatile type memory or persistent type memory, in accordance with various embodiments of the present disclosure. Computing system 100 may include a central processing unit (CPU) 102. As depicted, computing system 100 may have a 2-level memory (2LM) configuration, although other memory configurations may be utilized without departing from the scope of this disclosure. The 2LM configuration may include a first level of memory represented by software transparent near memory cache 104 and a second level of memory represented by persistent memory 106, which may also be referred to in such a configuration as main memory.

    [0012] As used herein, persistent memory may refer to media having properties of both conventional volatile memory (e.g., dynamic random access memory (DRAM)) and conventional persistent storage devices (e.g., magnetic disk). Like volatile memory, persistent memory may be byte-addressable, which is not possible with conventional persistent storage devices. In addition, persistent memory may be capable of achieving data read and write speeds that are closer to that of volatile memory than conventional storage devices. However, as with conventional persistent storage devices, data stored in persistent memory may be persistent, or non-volatile. As used herein persistent and non-volatile may be treated as synonymous unless the context clearly indicates otherwise. As such, even though the underlying media of persistent memory may be persistent, persistent memory may also be utilized in place of volatile memory to store volatile data in addition to persistent data. An example of volatile data may include, but is not limited to, data concerning an operational state of computing system 100. Volatile data is so named because it is data that may be lost upon reset or shut-down (power off) of computing system 100. Persistent data, on the other hand, may refer to data that may need to be preserved even when computing system 100 may be reset or shut-down (power off). Persistent memory 106 may be formed with memory technology that includes, but is not limited to, phase change memory (PCM), memrister, spin-transfer torque-random access memory (STT-RAM), and so forth.

    [0013] Persistent memory 106 may be coupled with CPU 102 via a memory bus (not shown). As a result, persistent memory 106 may be part of the CPU 102 addressable physical address space. Because persistent memory 106 may be part of the CPU 102 addressable physical address space, all of persistent memory 106 may be designated by the hardware platform (e.g. a basic input/output system (BIOS)) as capable of storing both volatile and persistent data as depicted by volatile region 108 and persistent region 110. In embodiments, a region may refer to a plurality of memory pages. While volatile region 108 and persistent region 110 may be depicted as being disjoint regions of persistent memory 106, it will be appreciated that this is merely for illustrative purposes and that, in some embodiments, volatile region 108 may include volatile type memory pages interspersed with persistent type memory pages of persistent region 110.

    [0014] Designating all of persistent memory 106 as capable of storing both volatile and persistent data may enable system software (e.g., system software 202 of Figure 2) of computing system 100, operated by CPU 102, to receive and service volatile and persistent memory allocation requests from one or more applications, or processes, that may be executed by CPU 102. The system software, in response to such an allocation request, may dynamically allocate memory pages, or regions, of persistent memory 106 as either volatile type memory pages, or regions, or persistent type memory pages, or regions. As such, the system software may be able to dynamically grow or shrink the volatile type memory pages available to CPU 102. As used herein, volatile type memory pages may refer to memory pages of persistent memory 106 allocated in response to volatile memory allocation requests, or reserved for such an allocation request, while persistent type memory pages may refer to memory pages of persistent memory allocated in response to persistent memory allocation requests, or reserved for such an allocation requests.

    [0015] Such dynamic allocation requests may be serviced by system software through metadata generated by the system software. The metadata may include a memory type indicator that may identify each allocated memory page of persistent memory 106 as either a volatile type page or a persistent type page. This metadata may also enable dynamic conversion of persistent type memory pages to volatile type memory pages, or vice versa. This dynamic conversion may be accomplished without the need to physically copy the data from a persistent type page to a volatile type page, or vice versa. Such a dynamic conversion may be achieved in some embodiments by merely changing the memory type indicator of the metadata from one memory type to the other.

    [0016] Enabling dynamic conversion of persistent type memory pages to volatile type memory pages, and vice versa, may enable a reduction in power that would be consumed by copying data from a conventional persistent storage device to conventional volatile memory to make the data accessible by CPU 102, or vice versa to free volatile memory or make volatile data persistent. In addition, because the copying of data may be reduced, the number of write operations to each location in memory may be correspondingly reduced. This reduction in write operations may increase the longevity of the underlying memory media due to physical limitations on the number of write operations that can be endured by some types of memory media. Another advantage of such a configuration is that, because volatile type memory and persistent type memory coexist on the same underlying media, and may be dynamically converted from one type to another, a single encryption scheme may be utilized for both volatile type memory pages and persistent type memory pages.

    [0017] In embodiments, because persistent type memory is in the addressable physical address space of CPU 102, CPU 102 may have direct access to the data within persistent type memory pages without the need for going through an I/O controller to access the persistent type memory pages. As such, an application, or process, being executed by CPU 102 may not need to utilize an OS's storage stack (e.g., block driver and/or file system) to access the persistent type pages and may be able to access the persistent type pages directly. To accomplish this, in some embodiments, physical addresses for persistent memory 106 may be loaded into, for example, a page table of the application to enable direct access of persistent type memory pages by CPU 102. This is discussed in further detail in reference Figures 2 and 3 below.

    [0018] While depicted here as a 2LM configuration, it will be appreciated that other memory configurations may be utilized as well. For example, in other embodiments, computing system 100 may include a single level memory (1LM) configuration that may include distinct volatile memory (e.g., DRAM) as main memory that may be utilized to store volatile data and persistent memory 106 that may be utilized to store persistent data. However, because, as discussed above, persistent memory 106 may also be utilized to store volatile data, system software may be configured to allocate a portion of persistent memory 106 as volatile type memory in the event that a volatile memory allocation request is received that is not able to be serviced out of the volatile memory. As such, persistent memory 106 may act as an overflow for main memory. In still other embodiments, computing system 100 may include only persistent memory 106, without any volatile memory or near memory cache.

    [0019] Figure 2 illustrates an example system 200 with persistent memory, in accordance with various embodiments of the present disclosure. The system may include a number of applications, or processes, (e.g. applications 1 and 2) being executed by one or more processors (e.g., CPU 102 of Figure 1 or processor(s) 502 of Figure 5). Applications 1 and 2 may utilize memory page tables 1 and 2 (hereinafter, simply page tables), respectively, to access data stored on persistent memory modules 212. Page tables 1 and 2 may provide a mapping between logical memory of applications 1 and 2 and physical memory addresses of data stored within persistent memory modules 212. Page tables 1 and 2 may be managed e.g., by system software 202. In embodiments, system software 202 may be a part of an OS or a virtual machine monitor (VMM). System software 202 may in turn be communicatively coupled with file system 204 to utilize file system 204 in accessing persistent type allocation region 210 and page tables 1 and 2 to manage page tables 1 and 2.

    [0020] System software 202 may be configured to receive volatile and persistent memory allocation requests from applications 1 and 2. In response to the memory allocation requests, system software 202 may dynamically allocate memory pages of persistent memory modules 212 as either volatile type memory pages or persistent type memory pages. As such, the system software may be able to dynamically grow or shrink the amount of volatile type memory available to the one or more applications.

    [0021] As discussed above in reference to Figure 1, such dynamic allocations may be serviced by system software 202 through metadata generated by system software 202. The metadata may include a memory type indicator that may identify each allocated memory page of persistent memory modules 212 as either a volatile type page or a persistent type page. This metadata may also enable dynamic conversion of persistent type memory pages to volatile type memory pages, or vice versa. Such a dynamic conversion may be achieved in some embodiments by merely changing the memory type indicator of the metadata from one memory type to the other.

    [0022] In some embodiments, system software 202 may be configured to initialize at least a subset of memory pages of the persistent memory modules 212 as persistent type memory pages and a subset of memory pages of persistent memory modules 212 as volatile type memory pages. In other embodiments, system software 202 may be configured to initialize all of the available memory pages of persistent memory modules 212 as persistent type memory pages and may dynamically allocate memory pages of the persistent memory modules as volatile type memory pages, in response to volatile memory allocation requests, by converting persistent type memory pages to volatile type memory pages. In addition, system software 202 may be configured to release volatile type memory pages for re-allocation in response to a reset procedure or shut-down procedure to replicate the volatility of conventional volatile memory (e.g., DRAM).

    [0023] File system 204 may provide access of persistent type allocation region 210 to applications 1 and 2. It will be appreciated that file system 204 is merely meant to be representative of one mechanism for accessing persistent type allocation region 210 in a legacy manner. File system 204 may represent any type of traditional persistent storage management.

    [0024] Application 1 may be configured to access persistent type memory module 212 in two different ways based upon whether the allocation was volatile or persistent. Such a configuration may be utilized, for example, by legacy applications configured to utilize two distinct access methodologies, one access methodology for volatile type memory (e.g., DRAM) and another access methodology for a persistent storage device (e.g., magnetic disk). However, because system 200 includes persistent memory modules 212, this single type of media may contain both volatile type allocations and persistent type allocations. As such, regardless of the access methodology utilized by application 1, accesses of both volatile and persistent data may lead to persistent memory modules 212. For example, as depicted, application 1 may access volatile type allocation region 208 of persistent memory modules 212 via page table 1 and may access persistent type allocation region 210 via system software 202 and file system 204. To accomplish this, system software 202 may be configured with legacy application programming interfaces (APIs) exposed to application 1 to enable application 1 to function properly in system 200 without the need to update or adapt the underlying code of application 1 for system 200.

    [0025] In addition to the legacy APIs discussed above, system software 202 may expose additional API's to the applications that may be configured to further optimize the performance of these applications. For example, system software 202 may expose storage abstractions that include a dynamic memory conversion request type to allow applications to dynamically convert volatile type pages into persistent type pages and vice-versa. The additional API's may also enable an application to have persistent type pages loaded into the page table for direct access by the application. Such a configuration is depicted by application 2. As depicted, application 2 is capable of accessing both volatile type allocation region 208 and persistent type allocation region 210 via page table 2. This may be accomplished by utilizing the additional API's to load persistent type memory pages into page table 2. Such a page table is depicted in reference to Figure 3.

    [0026] In addition, in some embodiments, an application, such as applications 1 or 2, may be configured to utilize a volatile memory allocation primitive, such as, for example, "malloc_ip," which may be similar in some aspects to malloc. It will be appreciated that malloc_ip is utilized for illustrative purposes only, and such a volatile memory allocation primitive may be called by any other name. By invoking malloc_ip, the application may cause system software 202 to both allocate volatile type memory pages to the application and indicate to system software 202 that the application may intend to persist the data contained within the volatile type allocation at a later time instead of freeing it. After the data is written to the volatile type allocation, the application can request that the data become persistent, for example, by invoking a call to system software 202 to convert the data contained within the volatile type allocation to a persistent type allocation along with the name/path of a file to persist the data to. Instead of copying the data to the specified file/object, system software 202 can simply convert the volatile type memory pages to persistent type memory pages, as discussed elsewhere herein, along with associating the converted memory pages with the file/object name. As an example, the above discussed configuration can be used to support an operation where a file can be downloaded directly from a network to persistent type allocation region 210.

    [0027] Figure 3 illustrates an example memory access configuration 300 having dynamically allocated persistent and volatile memory pages, in accordance with various embodiments of the present disclosure. As depicted, memory configuration 300 may include logical memory 302 depicting consecutive memory pages for use by an application (e.g., applications 1 or 2 of Figure 2). Page table 304 may correlate the memory pages of logical memory 302 with physical memory locations of physical memory 306. Physical memory locations of physical memory 306 may alternatively be referred to as physical memory frames. As used herein, physical memory 306 may refer to persistent memory modules (e.g., persistent memory 106 of Figure 1 or persistent memory modules 212 of Figure 2). As depicted, page table 304 may be loaded with metadata describing the individual pages. For example, page table 304, as depicted, may include a column containing either a 'V' that may designate the corresponding memory location as a volatile type memory page or a 'P' that may designate the corresponding memory location as persistent type memory page. In addition, the metadata concerning the allocation types of individual pages may be stored in a reserved location of physical memory 306 (e.g., V/P metadata 308). This reserved location may be accessible to system software (e.g., system software 202 of Figure 2) during a device boot procedure or during a device shut-down procedure. For example, memory pages allocated as volatile type memory pages may be released for reallocation during a shut-down procedure, while memory pages allocated as persistent may need to be maintained. While v/p metadata 308 is depicted as being aggregated into a single location, it will be appreciated that v/p metadata 308 may be divided into two or more pieces of metadata. For example, volatile metadata referencing volatile type memory pages and persistent metadata referencing persistent type memory pages may be maintained in separate metadata locations. In another example, the volatile/persistent metadata may be distributed through the physical memory locations such that each physical memory location may have metadata contained therein describing the data stored therein as volatile type data or persistent type data. It will be appreciated that any format and/or location of v/p metadata 308 is contemplated by this disclosure.

    [0028] Figure 4 illustrates an example process flow 400 for dynamically allocating persistent memory by a computing device, in accordance with various embodiments of the present disclosure. Process flow 400 may be carried out by, for example, system software 202 of Figure 2 disposed on the computing device. Process flow 400 may begin at block 402 where a memory allocation request may be received, by system software of the computing device, from one or more applications or processes executing on the computing device. In some embodiments, such a memory allocation request may be received by one or more application programming interfaces (APIs) exposed by system software to the one or more applications or processes.

    [0029] At block 404, system software may determine if the allocation request is for a persistent type allocation or a volatile type allocation. In embodiments where it is determined that the allocation request is for a persistent type allocation, the process may proceed to block 406. In embodiments, where it is determined that the allocation request is a volatile type allocation the process may proceed to block 418.

    [0030] At block 406 a determination may be made as to whether unallocated persistent type memory is available. If unallocated persistent type memory is available then the process may proceed to block 414 where the unallocated persistent type memory may be allocated (e.g., by updating a file allocation table of a file system) to satisfy the memory allocation request, after which, the process may end at block 416. If, however, unallocated persistent type memory is unavailable, then the process may proceed from block 406 to block 408.

    [0031] At block 408 a determination may be made as to whether unallocated volatile type memory is available. If unallocated volatile type memory is available then the process may proceed to block 412 where the unallocated volatile type memory may be converted to persistent type memory. If, however, unallocated volatile type memory is unavailable, then the process may proceed from block 408 to block 410. At block 410, system software may free volatile type memory. This may be accomplished, for example, by de-allocating volatile type memory that may no longer be used. Such an instance may occur, for example, if an application or process that had volatile type memory allocated to it is no longer active. Once volatile type memory has been freed the process may proceed to block 412. At block 412, the freed volatile type memory may be converted to persistent type memory to make persistent type memory available for satisfying the allocation request. This may be accomplished, as discussed above, by manipulating metadata associated with the freed volatile type memory.

    [0032] Once persistent type memory is available to satisfy the memory allocation request, the persistent type memory may be allocated (e.g., by updating a file allocation table of a file system). Once the allocation request has been satisfied, the process may proceed to block 416 where the process may end.

    [0033] Returning to block 404, if the memory allocation request is for the allocation of volatile type memory, the process may proceed to block 418. At block 418 a determination may be made as to whether unallocated volatile type memory is available. If unallocated volatile type memory is available then the process may proceed to block 424 where the unallocated volatile type memory may be allocated to satisfy the memory allocation request (e.g., by updating a page table associated with the application, or process, making the memory allocation request), after which, the process may end at block 416. If, however, unallocated volatile type memory is unavailable, then the process may proceed from block 418 to block 420.

    [0034] At block 420 a determination may be made as to whether unallocated persistent type memory is available. If unallocated persistent type memory is available then the process may proceed to block 422 where the unallocated persistent type memory may be converted to volatile type memory, this may be accomplished in a similar manner to that described elsewhere herein. If, however, unallocated persistent type memory is unavailable, then the process may proceed from block 420 to block 410. At block 410, system software may free volatile type memory. This may accomplished, for example, by de-allocating volatile type memory that may no longer be used. Such an instance may occur, for example, if an application or process that had volatile type memory allocated to it is no longer active. Once volatile type memory has been freed the process may proceed to block 424. Once persistent type memory is available to satisfy the memory allocation request, the persistent type memory may be allocated (e.g., by updating a file allocation table of a file system). Once the allocation request has been satisfied, the process may proceed to block 416 where the process may end.

    [0035] Referring now to Figure 5, wherein an example computing device with persistent memory, in accordance with various embodiments, is illustrated. As shown, computing device 500 may include one or more processors or processor cores 502, and persistent memory 506. In embodiments, multiple processor cores 502 may be disposed on one die. For the purpose of this application, including the claims, the terms "processor" and "processor cores" may be considered synonymous, unless the context clearly requires otherwise. Computing device 500 may also include volatile memory (e.g., DRAM) and/or mass storage device(s) (e.g., diskette, hard drive, compact disc read-only memory (CD-ROM), and so forth), input/output (I/O) device(s) 508 (such as camera, display device, keyboard, cursor control, gyroscope, accelerometer, and so forth), and communication interfaces 510 (such as network interface cards, modems, and so forth). In embodiments, a display device may be touch screen sensitive and may include a display screen, one or more processors, storage medium, and communication elements. Further, it may be removably docked or undocked from a base platform having the keyboard. The elements may be coupled to each other via system bus 512, which may represent one or more buses. In the case of multiple buses, they may be bridged by one or more bus bridges (not shown). In embodiments, persistent memory 506 may be coupled with processor(s) 502 via a memory bus.

    [0036] Each of these elements may perform its conventional functions known in the art. Persistent memory 506 may be employed to store a copy, both operational and permanent, of programming instructions implementing the operations described earlier, e.g., but not limited to, operations associated with system software 202 of Figure 2. Persistent memory 506 may be employed to store a copy, both operational and permanent, of programming instructions implementing other applications as well. Collectively, these instructions are denoted as computational logic 522. The various operations may be implemented by assembler instructions supported by processor(s) 502 or high-level languages, such as, for example, C, that may be compiled into such instructions.

    [0037] The copy of the programming instructions may be placed into persistent memory 506 in the factory, or in the field, through, for example, a distribution medium (not shown), such as a compact disc (CD), or through communication interface 510 (from a distribution server (not shown)). That is, one or more distribution media having an implementation of system software 202 may be employed to distribute these components to various computing devices.

    [0038] The number, capability, and/or capacity of these elements 510-512 may vary, depending on the intended use of example computing device 500, e.g., whether example computer 500 is a smartphone, tablet, ultrabook, laptop, desktop, or server. The constitutions of these elements 510-512 are otherwise known, and accordingly will not be further described.

    [0039] Figure 6 illustrates an example non-transitory computer-readable storage medium having instructions configured to practice all or selected ones of the operations associated with the processes described above. As illustrated, non-transitory computer-readable storage medium 602 may include a number of programming instructions 604. Programming instructions 604 may be configured to enable a device, e.g., computing device 500, in response to execution of the programming instructions, to perform one or more operations of the processes described in reference to Figures 1-4. In alternate embodiments, programming instructions 604 may be disposed on multiple non-transitory computer-readable storage media 602 instead. In still other embodiments, programming instructions 604 may be encoded in transitory computer-readable signals.

    [0040] Referring back to Figure 5, for one embodiment, at least one of processors 502 may be packaged together with memory having computational logic 522 (in lieu of storing in persistent memory 506) configured to perform one or more operations of the processes described with reference to Figures 1-4. For one embodiment, at least one of processors 502 may be packaged together with memory having computational logic 522 configured to practice aspects of the methods described in reference to Figures 1-4 to form a System in Package (SiP). For one embodiment, at least one of processors 502 may be integrated on the same die with memory having computational logic 522 configured to perform one or more operations of the processes described in reference to Figures 1-4. For one embodiment, at least one of processors 502 may be packaged together with memory having computational logic 522 configured to perform one or more operations of the process described in reference to Figures 1-4 to form a System on Chip (SoC). Such an SoC may be utilized in any suitable computing device.

    [0041] Although certain embodiments have been illustrated and described herein for purposes of description, a wide variety of alternate embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope of the appended claims.

    [0042] This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments described herein be limited only by the claims.

    [0043] Where the disclosure recites "a" or "a first" element or the equivalent thereof, such disclosure includes one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal indicators (e.g., first, second, or third) for identified elements are used to distinguish between the elements, and do not indicate or imply a required or limited number of such elements, nor do they indicate a particular position or order of such elements unless otherwise specifically stated.

    [0044] Embodiments of the disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements. In various embodiments, software, may include, but is not limited to, firmware, resident software, microcode, and the like. Furthermore, the disclosure can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. As used herein, module may refer to a software module, a hardware module, or any number or combination thereof.

    [0045] As used herein, the term module includes logic that may be implemented in a hardware component or device, software or firmware that may be run or running on a processor, or a combination of processors. The modules may be distinct and independent components integrated by sharing or passing data, or the modules may be subcomponents of a single module, or be split among several modules. The components may be processes running on, or implemented on, a single compute node or distributed among a plurality of compute nodes running in parallel, concurrently, sequentially or a combination, as described more fully in conjunction with the flow diagrams in the figures.

    [0046] For the purposes of this description, a computer-usable or computer-readable medium can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk - read only memory (CD-ROM), compact disk - read/write (CD-R/W) and DVD.

    [0047] Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate implementations may be substituted for the specific embodiments shown and described, without departing from the scope of the appended claims.

    [0048] This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that the embodiments of the disclosure be limited only by the appended claims.


    Claims

    1. An computing system (100, 200) comprising:

    one or more processors (102, 502);

    a plurality of persistent memory modules (212) coupled with the one or more processors; and

    system software (202) to be operated by the one or more processors to:

    receive volatile memory allocation requests and persistent memory allocation requests from one or more applications executed by the one or more processors; and

    dynamically allocate memory pages of the persistent memory modules as volatile

    type memory pages in response to the volatile memory allocation requests; and persistent type memory pages in response to the persistent memory allocation requests,
    characterized in that the computing system (100, 200) further comprises:
    one or more page tables to provide a mapping between logical memory of the one or more applications and physical addresses of data stored within the persistent memory modules (212), whereby the applications have direct access to the data within the persistent memory modules (212) without the need for going through an I/O controller.


     
    2. The computing system (100, 200) of claim 1, wherein to dynamically allocate memory pages further comprises: generation of persistent type metadata associated with each of the memory pages allocated, wherein the metadata includes a memory type indicator that identifies the respective memory page associated with the metadata as either a volatile type or a persistent type.
     
    3. The computing system (100, 200) of claim 2, wherein the system software (202) includes a dynamic memory conversion request type to enable the system software to:

    receive a conversion request to change a memory page, or each memory page of a plurality of memory pages, from one type of memory page to another type of memory page; and

    convert, in response to the conversion request, the memory page from the one type of memory page to the another type of memory page.


     
    4. The computing system (100, 200) of claim 3, wherein the one type of memory page and the another type of memory page are selected, without repetition, from the group consisting of: a persistent type and a volatile type; and wherein to convert the memory page from the one type of memory page to the other type of memory page involves a change of the type indicator of the metadata respectively associated with the memory pages allocated.
     
    5. The computing system (100, 200) of claim 2, wherein the system software (202) is further to:

    receive a page load request to make one or more persistent type memory pages available to the one or more processors; and

    update, in response to the page load request, a page table associated with the page load request to include the one or more persistent type memory pages.


     
    6. The computing system (100, 200) of claim 2, wherein the system software (202) is further to: initialize at least a subset of the memory pages of the plurality of persistent memory modules as persistent type memory pages, and wherein to dynamically allocate memory pages of the persistent memory modules as volatile type memory pages involves conversion of persistent type memory pages to volatile type memory pages.
     
    7. The computing system (100, 200) of any one of claims 1-6, wherein the system software (202) is further to: release volatile type memory pages for re-allocation in response to a reset procedure or shut-down procedure of the computing system; and wherein the system software is part of an operating system (OS) or a virtual machine monitor (VMM) of the computing system.
     
    8. The computing system (100, 200) of any one of claims 1-6, wherein the plurality of persistent memory modules are coupled with the one or more processors via a memory bus.
     
    9. A method of computing, comprising:

    receiving (402), by a system software of a computing device, volatile memory allocation requests and persistent memory allocation requests from one or more applications of the computing device;

    dynamically allocating, by the system software, memory pages of a plurality of persistent memory modules as volatile type memory pages in response to the volatile memory allocation requests; and persistent type memory pages in response to the persistent memory allocation requests; and

    using one or more page tables to map between logical memory of the one or more applications and physical addresses of data stored within the persistent memory modules, whereby the applications have direct access to the data within the persistent memory modules without the need for going through an I/O controller.


     
    10. The method of claim 9, wherein dynamically allocating memory pages further comprises:
    generating metadata associated with each of the memory pages allocated, wherein the metadata includes a memory type indicator that identifies the respective memory page associated with the metadata as either a volatile type or a persistent type.
     
    11. The method of claim 10, further comprising:

    receiving, by the system software, a conversion request to change a memory page allocated from one type of memory page to another type of memory page; and

    converting (412, 422), by the system software, in response to the conversion request, the memory page allocated from the one type of memory page to the another type of memory page, wherein the one type of memory page and the another type of memory page are selected, without repetition, from the group consisting of: a persistent type and a volatile type.


     
    12. The method of claim 11, wherein converting (412, 422) the memory page from the one type of memory page to the other type of memory page involves changing the type indicator of the metadata respectively associated with the memory pages allocated.
     
    13. The method of any one of claims 9-12, further comprising:

    receiving, by the system software, a page load request to make one or more persistent type memory pages available to the one or more processors; and

    updating, by the system software, in response to the page load request, a page table associated with the page load request to include the one or more persistent type memory pages.


     
    14. The method of any one of claims 9-12, further comprising: initializing, by the system software, at least a subset of the memory pages of the plurality of persistent memory modules as persistent type memory pages, and wherein dynamically allocating memory pages of the persistent memory modules as volatile type memory pages involves converting persistent type memory pages to volatile type memory pages; or
    releasing, by the system software, volatile type memory pages for re-allocation in response to a reset procedure or shut-down procedure of the apparatus.
     
    15. One or more computer-readable media (602) having instructions (604) stored thereon to cause the system of claims 1-8 to execute the steps of the method of claims 9-14.
     


    Ansprüche

    1. Rechensystem (100, 200), das aufweist:

    einen oder mehrere Prozessoren (102, 502);

    eine Mehrzahl von Modulen (212) persistenten Speichers, die mit dem einen oder den mehreren Prozessoren gekoppelt sind; und

    Systemsoftware (202), die von dem einen oder den mehreren Prozessoren zu betreiben ist, um:

    Zuweisungsanfragen für flüchtigen Speicher und Zuweisungsanfragen für persistenten Speicher von einer oder mehreren Anwendungen zu erhalten, die von dem einen oder den mehreren Prozessoren ausgeführt werden; und

    Speicherseiten der Module persistenten Speichers als Speicherseiten vom flüchtigen Typ als Reaktion auf die Zuweisungsanfragen für flüchtigen Speicher dynamisch zuzuweisen; und Speicherseiten vom persistenten Typ als Reaktion auf die Zuweisungsanfragen für persistenten Speicher,

    dadurch gekennzeichnet, dass das Rechensystem (100, 200) ferner aufweist:
    eine oder mehrere Seitentabellen, um ein Mapping zwischen logischem Speicher der einen oder der mehreren Anwendungen und physischen Adressen von Daten, die in den Modulen (212) persistenten Speichers gespeichert sind, bereitzustellen, wodurch die Anwendungen direkten Zugriff auf die Daten in den Modulen (212) persistenten Speichers haben, ohne dass es erforderlich ist, einen E/A-Controller zu durchlaufen.


     
    2. Rechensystem (100, 200) nach Anspruch 1, wobei Speicherseiten dynamisch zuzuweisen ferner umfasst: die Erzeugung von Metadaten vom persistenten Typ, die jeder der zugewiesenen Speicherseiten zugeordnet sind, wobei die Metadaten einen Speichertypanzeiger enthalten, der die jeweilige Speicherseite, die den Metadaten zugeordnet ist, als entweder einen flüchtigen Typ oder einen persistenten Typ kennzeichnet.
     
    3. Rechensystem (100, 200) nach Anspruch 2, wobei die Systemsoftware (202) eine Anfrageart für dynamische Speicherkonvertierung enthält, um zu ermöglichen, dass die Systemsoftware:

    eine Konvertierungsanfrage erhält, eine Speicherseite oder jede Speicherseite einer Mehrzahl von Speicherseiten von einem Typ von Speicherseite in einen anderen Typ von Speicherseite zu ändern; und

    als Reaktion auf die Konvertierungsanfrage die Speicherseite von dem einen Typ von Speicherseite in den anderen Typ von Speicherseite konvertiert.


     
    4. Rechensystem (100, 200) nach Anspruch 3, wobei der eine Typ von Speicherseite und der andere Typ von Speicherseite ohne Wiederholung ausgewählt sind aus der Gruppe, die besteht aus: einem persistenten Typ und einem flüchtigen Typ; und wobei die Speicherseite von dem einen Typ von Speicherseite in den anderen Typ von Speicherseite zu konvertieren eine Änderung des Typanzeigers der Metadaten, die den zugewiesenen Speicherseiten jeweils zugeordnet sind, einschließt.
     
    5. Rechensystem (100, 200) nach Anspruch 2, wobei die Systemsoftware (202) ferner dafür vorgesehen ist:

    eine Seitenladeanfrage zu erhalten, dem einen oder den mehreren Prozessoren eine oder mehrere Speicherseiten vom persistenten Typ verfügbar zu machen; und

    als Reaktion auf die Seitenladeanfrage eine Seitentabelle, die der Seitenladeanfrage zugeordnet ist, zu aktualisieren, um die eine oder die mehreren Speicherseiten vom persistenten Typ einzubeziehen.


     
    6. Rechensystem (100, 200) nach Anspruch 2, wobei die Systemsoftware (202) ferner dafür vorgesehen ist:
    mindestens einen Teilsatz der Speicherseiten der Mehrzahl von Modulen persistenten Speichers als Speicherseiten vom persistenten Typ zu initialisieren und wobei Speicherseiten der Module persistenten Speichers als Speicherseiten vom flüchtigen Typ dynamisch zuzuweisen die Konvertierung von Speicherseiten vom persistenten Typ in Speicherseiten vom flüchtigen Typ einschließt.
     
    7. Rechensystem (100, 200) nach einem der Ansprüche 1-6, wobei die Systemsoftware (202) ferner dafür vorgesehen ist: Speicherseiten vom flüchtigen Typ zur Neuzuweisung freizugeben als Reaktion auf eine Rücksetzprozedur oder Abschaltprozedur des Rechensystems; und wobei die Systemsoftware Teil eines Betriebssystems (OS, Operating System) oder eines VMM (Virtual Machine Monitor) des Rechensystems ist.
     
    8. Rechensystem (100, 200) nach einem der Ansprüche 1-6, wobei die Mehrzahl von Modulen persistenten Speichers mit dem einen oder den mehreren Prozessoren über einen Speicherbus gekoppelt ist.
     
    9. Berechnungsverfahren, das umfasst:

    Erhalten (402), durch eine Systemsoftware einer Rechenvorrichtung, von Zuweisungsanfragen für flüchtigen Speicher und Zuweisungsanfragen für persistenten Speicher von einer oder mehreren Anwendungen der Rechenvorrichtung;

    dynamisches Zuweisen, durch die Systemsoftware, von Speicherseiten einer Mehrzahl von Modulen persistenten Speichers als Speicherseiten vom flüchtigen Typ als Reaktion auf die Zuweisungsanfragen für flüchtigen Speicher; und Speicherseiten vom persistenten Typ als Reaktion auf die Zuweisungsanfragen für persistenten Speicher; und

    Verwenden einer oder mehrerer Seitentabellen, um zwischen logischem Speicher der einen oder der mehreren Anwendungen und physischen Adressen von Daten, die in den Modulen persistenten Speichers gespeichert sind, zu mappen, wodurch die Anwendungen direkten Zugriff auf die Daten in den Modulen persistenten Speichers haben, ohne dass es erforderlich ist, einen E/A-Controller zu durchlaufen.


     
    10. Verfahren nach Anspruch 9, wobei dynamisches Zuweisen von Speicherseiten ferner umfasst: das Erzeugen von Metadaten, die jeder der zugewiesenen Speicherseiten zugeordnet sind, wobei die Metadaten einen Speichertypanzeiger enthalten, der die jeweilige Speicherseite, die den Metadaten zugeordnet ist, als entweder einen flüchtigen Typ oder einen persistenten Typ kennzeichnet.
     
    11. Verfahren nach Anspruch 10, das ferner umfasst:

    Erhalten, durch die Systemsoftware, einer Konvertierungsanfrage, eine zugewiesene Speicherseite von einem Typ von Speicherseite in einen anderen Typ von Speicherseite zu ändern; und

    Konvertieren (412, 422), durch die Systemsoftware als Reaktion auf die Konvertierungsanfrage, der zugewiesenen Speicherseite von dem einen Typ von Speicherseite in den anderen Typ von Speicherseite, wobei der eine Typ von Speicherseite und der andere Typ von Speicherseite ohne Wiederholung ausgewählt sind aus der Gruppe, die besteht aus: einem persistenten Typ und einem flüchtigen Typ.


     
    12. Verfahren nach Anspruch 11, wobei das Konvertieren (412, 422) der Speicherseite von dem einen Typ von Speicherseite in den anderen Typ von Speicherseite das Ändern des Typanzeigers der Metadaten, die den zugewiesenen Speicherseiten jeweils zugeordnet sind, einschließt.
     
    13. Verfahren nach einem der Ansprüche 9-12, das ferner umfasst:

    Erhalten, durch die Systemsoftware, einer Seitenladeanfrage, dem einen oder den mehreren Prozessoren eine oder mehrere Speicherseiten vom persistenten Typ verfügbar zu machen; und

    Aktualisieren, durch die Systemsoftware als Reaktion auf die Seitenladeanfrage, einer Seitentabelle, die der Seitenladeanfrage zugeordnet ist, um die eine oder die mehreren Speicherseiten vom persistenten Typ einzubeziehen.


     
    14. Verfahren nach einem der Ansprüche 9-12, das ferner umfasst:

    Initialisieren, durch die Systemsoftware, mindestens eines Teilsatzes der Speicherseiten der Mehrzahl von Modulen persistenten Speichers als Speicherseiten vom persistenten Typ und wobei dynamisches Zuweisen von Speicherseiten der Module persistenten Speichers als Speicherseiten vom flüchtigen Typ das Konvertieren von Speicherseiten vom persistenten Typ in Speicherseiten vom flüchtigen Typ einschließt; oder

    Freigeben, durch die Systemsoftware, von Speicherseiten vom flüchtigen Typ zur Neuzuweisung als Reaktion auf eine Rücksetzprozedur oder Abschaltprozedur der Vorrichtung.


     
    15. Ein oder mehrere computerlesbare Medien (602) mit darauf gespeicherten Anweisungen (604), um zu bewirken, dass das System nach den Ansprüchen 1-8 die Schritte des Verfahrens nach den Ansprüchen 9-14 durchführt.
     


    Revendications

    1. Système informatique (100, 200) comprenant :

    un ou plusieurs processeurs (102, 502),

    une pluralité de modules de mémoire permanente (212) couplés avec le ou les processeurs, et

    un logiciel système (202) exploité par le ou les processeurs pour :

    recevoir des demandes d'allocations de mémoire volatile et des demandes d'allocations de mémoire permanente en provenance d'une ou plusieurs applications exécutées par le ou les processeurs, et

    allouer dynamiquement des pages de mémoire des modules de mémoire permanente en tant que pages de mémoire de type volatile en réponse aux demandes d'allocation de mémoire volatile et en tant que pages de mémoire de type permanente en réponse aux demandes d'allocation de mémoire permanente,

    caractérisé en ce que le système informatique (100, 200) comprend en outre :
    une ou plusieurs tables de pages afin de fournir un mappage entre la mémoire logique de la ou des applications et des adresses physiques des données stockées dans les modules de mémoire permanente (212), grâce à quoi les applications possèdent un accès direct aux données dans les modules de mémoire permanente (212) sans avoir besoin de passer par un contrôleur d'entrées/sorties.


     
    2. Système informatique (100, 200) selon la revendication 1, dans lequel l'allocation dynamique de pages de mémoire comprend en outre : la génération de métadonnées de type permanentes associées à chacune des pages de mémoire allouées, les métadonnées incluant un indicateur de type de mémoire qui identifie la page respective de mémoire associée aux métadonnées comme étant soit de type volatile, soit de type permanent.
     
    3. Système informatique (100, 200) selon la revendication 2, dans lequel le logiciel système (202) inclut le type de demande de conversion de mémoire dynamique afin d'autoriser le logiciel système à :

    recevoir une demande de conversion pour changer une page de mémoire ou chaque page de mémoire d'une pluralité de pages de mémoire d'un premier type de page de mémoire en un autre type de page de mémoire ; et

    convertir, en réponse à la demande de conversion, la page de mémoire du premier type de page de mémoire en l'autre type de page de mémoire.


     
    4. Système informatique (100, 200) selon la revendication 3, dans lequel le premier type de page de mémoire et l'autre type de page de mémoire sont sélectionnés, sans répétition, à partir du groupe constitué du type permanent et du type volatile ; et dans lequel la conversion de la page de mémoire du premier type de page de mémoire en l'autre type de page de mémoire met en jeu un changement de l'indicateur de type de métadonnées associé respectivement aux pages de mémoire allouées.
     
    5. Système informatique (100, 200) selon la revendication 2, dans lequel le logiciel système (202) est en outre destiné à :

    recevoir une demande de chargement de pages afin de rendre une ou plusieurs pages de mémoire de type permanent disponibles à ce ou ces processeurs ; et

    mettre à jour, en réponse à la demande de chargement de pages, une table de pages associée à la demande de chargement de pages afin d'inclure la ou les pages de mémoire de type permanent.


     
    6. Système informatique (100, 200) selon la revendication 2, dans lequel le logiciel système (202) est en outre destiné à : initialiser au moins un sous-ensemble de pages mémoire de la pluralité de modules de mémoire permanente en tant que pages de mémoire de type permanent, et où l'allocation dynamique de page de mémoire des modules de mémoire permanente comme pages de mémoire de type volatile met en jeu la conversion de pages de mémoire de type permanente en pages de mémoire de type volatile.
     
    7. Système informatique (100, 200) selon l'une quelconque des revendications 1 à 6, dans lequel le logiciel système (202) est en outre destiné à : libérer des pages de mémoire de type volatile en vue d'une réallocation en réponse à une procédure de réinitialisation ou à une procédure d'arrêt du système informatique ; et où le logiciel système fait partie d'un système d'exploitation (OS) ou d'un moniteur de machine virtuelle (VMM) du système informatique.
     
    8. Système informatique (100, 200) selon l'une quelconque des revendications 1 à 6, dans lequel les différents modules de mémoire permanente sont couplés avec le ou les processeurs par l'intermédiaire d'un bus mémoire.
     
    9. Procédé de calcul comprenant :

    la réception (402) par un logiciel système de dispositif informatique, de demandes d'allocation de mémoire volatile et de demandes d'allocation de mémoire permanente en provenance d'une ou plusieurs applications du dispositif informatique ;

    l'allocation dynamique, par le logiciel système, de pages de mémoire d'une pluralité de modules de mémoire permanente en tant que pages de mémoire de type volatile en réponse aux demandes d'allocation de mémoire volatile et de pages de mémoire de type permanente en réponse aux demandes d'allocation de mémoire permanente ; et

    l'utilisation d'une ou plusieurs tables de pages pour effectuer un mappage entre la mémoire logique de la ou des applications et les adresses physiques de données stockées dans les modules de mémoire permanente, grâce à quoi les applications possèdent un accès direct aux données stockées dans les modules de mémoire permanente sans avoir besoin de passer par un contrôleur d'entrées/sorties.


     
    10. Procédé selon la revendication 9, dans lequel l'allocation dynamique de pages de mémoire comprend en outre : la génération de métadonnées associées à chacune des pages de mémoire allouées, les métadonnées incluant un indicateur de type de mémoire qui identifie la page respective de mémoire associée aux métadonnées comme étant soit de type volatile, soit de type permanent.
     
    11. Procédé selon la revendication 10, comprenant en outre :

    la réception, par le logiciel système, d'une demande de conversion pour changer une page de mémoire allouée d'un premier type de page de mémoire en un autre type de page de mémoire ; et

    la conversion (412, 422), par le logiciel système, en réponse à la demande de conversion, de la page de mémoire allouée du premier type de page de mémoire en l'autre type de page de mémoire, le premier type de page de mémoire et l'autre type de page de mémoire étant sélectionnés, sans répétition, à partir du groupe constitué du type permanent et du type volatile.


     
    12. Procédé selon la revendication 11, dans lequel la conversion (412, 422) de la page de mémoire du premier type de page de mémoire en l'autre type de page de mémoire met en jeu la modification de l'indicateur de type des métadonnées associées respectivement aux pages de mémoire allouées.
     
    13. Procédé selon l'une quelconque des revendications 9 à 12, comprenant en outre :

    la réception, par le logiciel système, d'une demande de chargement de pages afin de rendre une ou plusieurs pages de mémoire de type permanente disponibles à ce ou à ces processeurs ; et

    la mise à jour, par le logiciel système, en réponse à la demande de chargement de pages, d'une table de pages associée à la demande de chargement de pages afin d'inclure la ou les pages de mémoire de type permanente.


     
    14. Procédé selon l'une quelconque des revendications 9 à 12, comprenant en outre :

    l'initialisation, par le logiciel système, d'au moins un sous-ensemble des pages mémoire de la pluralité des modules de mémoire permanente comme étant des pages de mémoire de type permanente, et où l'allocation dynamique de pages de mémoire des modules de mémoire permanente comme pages de mémoire de type volatile met en jeu la conversion de pages de mémoire de type permanente en pages de mémoire de type volatile ; ou

    la libération, par le logiciel système, des pages de mémoire de type volatile en vue d'une réallocation en réponse à une procédure de réinitialisation ou à une procédure d'arrêt de l'appareil.


     
    15. Support (602) unique ou multiple pouvant être lu par ordinateur comportant des instructions (604) stockées afin d'amener le système conforme aux revendications 1 à 8 à exécuter les étapes du procédé conforme aux revendications 9 à 14.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description