(19)
(11)EP 3 231 540 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 17166371.9

(22)Date of filing:  12.04.2017
(51)International Patent Classification (IPC): 
B32B 15/01(2006.01)
B22F 7/00(2006.01)
F02C 7/12(2006.01)
F02K 1/78(2006.01)
B23K 26/40(2014.01)
B23K 103/02(2006.01)
B22F 3/11(2006.01)
C22C 1/08(2006.01)
F02K 1/04(2006.01)
B23K 26/361(2014.01)
B23K 103/08(2006.01)

(54)

METHOD OF MAKING A LIGHT WEIGHT COMPONENT

VERFAHREN ZUR HERSTELLUNG EINER LEICHTBAUKOMPONENTE

PROCÉDÉ DE FABRICATION D'UN COMPOSANT LÉGER


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.04.2016 US 201615096685

(43)Date of publication of application:
18.10.2017 Bulletin 2017/42

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventor:
  • ROBERGE, Gary D.
    Tolland, CT 06084 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
WO-A1-98/33621
WO-A1-2007/073952
DE-C1- 19 526 057
US-A1- 2002 121 157
WO-A1-2007/073592
WO-A2-2011/010874
US-A- 3 834 881
US-A1- 2007 003 806
  
  • DAVIES G J ET AL: "METALLIC FOAMS: THEIR PRODUCTION, PROPERTIES AND APPLICATIONS", JOURNAL OF MATERIALS SCIENCE, KLUWER ACADEMIC PUBLISHERS, DORDRECHT, vol. 18, no. 7, 1 July 1983 (1983-07-01), pages 1899-1911, XP000617083, ISSN: 0022-2461, DOI: 10.1007/BF00554981
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND



[0001] This disclosure relates generally to methods of making low cost, light weight components and components formed by the aforementioned methods. In particular, the present application is directed to a component formed from a composite of metallic foam and an external metallic shell. In addition, various embodiments of the present disclosure are also directed to methods for making such a component.

[0002] Commercially suitable components need to meet specific performance criteria. However, while a component may meet certain performance criteria it may be at the cost of other desirable factors such as component weight, time to manufacture and cost to manufacture. For example, subtractive manufacturing or machining oversized blocks, materials or forgings until a desired final part shape is achieved may be one process. However, and in this process, the monolithic nature of the raw input material means that the final part weight is driven by the final volume of the part and density of material used.

[0003] Accordingly, it is desirable to provide low cost, light weight components and components formed by such methods.

[0004] DE 19526057 C1 discloses a method according to the preamble of claim 1.

[0005] WO 2007/073592 discloses methods of preparing aluminum based composite materials.

[0006] US 2007/0003806 A1 discloses a heat exchanger for a fuel cell stack that can optionally comprise a thermal barrier coating.

[0007] WO 2011/010874 A1 discloses a process for the production of a metal foam body integrated in a housing.

[0008] WO 98/33621 discloses a method for forming low density core metal parts comprising a porous, foam metal core and first and second solid metal face sheets.

BRIEF DESCRIPTION



[0009] In one embodiment, a method of making a light weight component, comprising: forming a metallic foam core into a desired configuration by a machining process selected from the group comprising: milling; electrical discharge machining (EDM); water-jet machining; and laser machining, wherein the desired configuration is slightly smaller than the final dimensions of the light weight component; depositing an interim coat on an exterior surface of the metallic foam core after the metallic foam core has been formed into the desired configuration; and applying an external metallic shell to an exterior surface of the metallic foam core after the interim coat has been deposited thereon, wherein the external metallic shell is applied via an application process selected from the group comprising: flame spray application process; plasma spray application process; cold-spray application process; electron beam physical vapor deposition (EB/PVD) application process; chemical vapor deposition (CVD) application process; electroplating application process, and wherein the external metallic shell is deposited around the entire exterior surface of the metallic foam core; wherein the component is provided with localised structural rigidity by varying a thickness of the external metallic shell; characterised in that the interim coat is a ceramic based thermal barrier coating and in that the metallic foam core is formed from an alloy that is different from the alloy of the external metallic shell.

[0010] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the metal of the metallic foam core is selected from the group comprising: titanium; cobalt; aluminum; nickel; steel alloys, magnesium, copper, molybdenum, niobium, tungsten, zinc alloys, titanium aluminide, nickel aluminide and molybdenum disilicide.

[0011] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the metallic foam core is an open cell structure.

[0012] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the metallic foam core is a closed cell structure.

[0013] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, wherein the metallic foam core is a sheet of metallic foam and, prior to the step of forming a metallic foam core into a desired configuration by a machining process selected from the group comprising: milling; electrical discharge machining (EDM); water-jet machining; and laser machining, the sheet of metallic foam is formed into the desired configuration by a hot or cold forming process, wherein the sheet of metallic foam is placed in a die.

[0014] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further including the step of: heat treating the metallic foam core after the external metallic shell has been applied to the exterior surface of the metallic foam core.

[0015] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further including the step of: forming additional features in the metallic foam core after the external metallic shell has been applied to the exterior surface of the metallic foam core.

[0016] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, wherein the additional features are formed by a drilling process.

[0017] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, wherein a supplemental application of the external metallic outer shell is applied to the metallic foam core after the drilling process.

[0018] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, wherein the component is a bracket.

[0019] The external metallic shell may be selectively applied to the exterior surface of the metallic foam core.

[0020] In yet another disclosure, a component is provided. The component having:
a metallic foam core having a desired configuration; an interim coat on an exterior surface of the metallic foam core, wherein the interim coat is a ceramic based thermal barrier coating; and an external metallic shell applied to an exterior surface of the metallic foam core after the interim coat has been deposited thereon, wherein a thickness of the external metallic shell varies in order to provide localized structural rigidity to the component and wherein the metal of the metallic foam core is selected from the group comprising: titanium; cobalt; aluminum; nickel; steel alloys, magnesium, copper, molybdenum, niobium, tungsten, zinc alloys, titanium aluminide, nickel aluminide and molybdenum disilicide. The metallic foam core is formed into the desired configuration by a machining process selected from the group comprising: milling; electrical discharge machining (EDM); water-jet machining; and laser machining, and wherein the external metallic shell is applied via an application process selected from the group comprising: flame spray application process; plasma spray application process; cold-spray application process; electron beam physical vapor deposition (EB/PVD) application process; chemical vapor deposition (CVD) application process; electroplating application process, and wherein the external metallic shell is deposited around the entire exterior surface of the metallic foam core.

BRIEF DESCRIPTION OF THE DRAWINGS



[0021] The subject matter which is regarded as the present invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the present disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

FIG. 1 is a perspective view of an un-machined block of metallic foam;

FIG. 2 is a perspective view of a machined block of metallic foam;

FIG. 3 is a perspective view of an un-formed sheet of metallic foam;

FIG. 3A is a perspective view of the un-formed sheet of metallic foam placed in a die for forming the un-formed sheet of metallic foam;

FIG. 4 is a perspective view of a formed sheet of metallic foam;

FIG. 5 illustrates the application of an external metallic shell to the formed or machined metallic foam of FIGS. 2 or 4;

FIG. 6 illustrates the formed or machined metallic foam of FIGS. 2 or 4 with an applied external metallic shell;

FIG. 7 illustrates the formed or machined metallic foam of FIG. 6 with additional features formed therein;

FIG. 8 is a cross-sectional view of a portion of the formed or machined metallic foam of FIGS. 6 or 7;

FIG. 8A is an enlarged cross-sectional view of a portion of the formed or machined metallic foam of FIGS. 6 or 7;

FIGS. 9 and 10 are non-limiting examples of components formed by the methods of the present disclosure; and

FIG. 11 is a flow chart illustrating a method of making a component according to non-limiting methods of the present disclosure.


DETAILED DESCRIPTION



[0022] Various embodiments of the present disclosure are related to methods of making low cost, light weight components and components formed by the aforementioned methods. In particular, the present application is directed to a component having an internal foam core, which is a metallic foam core and an external metallic shell surrounding the metallic foam core and methods for making such a component.

[0023] The present disclosure is directed to a method of making a component using a combination of subtractive and additive manufacturing processes. The method starts with a metallic foam core using alloy and foam density that is compatible with a specific design application. The metallic foam core is then machined or formed to a shaped pre-form for subsequent manufacturing steps. After the metallic foam core is formed to the desired shape, a metallic skin is applied to the external surface of the metallic foam core creating a lightweight, rigid structure which can have characteristics similar to existing non-metallic foam core or metallic or non-metallic honeycomb components. After the metallic skin is applied a final machining of the component may occur wherein dimensional characteristics and/or features are added to the component.

[0024] Referring now to FIG. 1, an unformed block of metallic foam 10 is illustrated. The block of metallic foam 10 may be formed from any suitable metal either commercially pure or alloy including but not limited to anyone of the following; titanium (including Ti 6-4, Ti 6-2-4-2, beta phase alloys including Beta 21s), cobalt, aluminum, nickel (including Inconel 625, Inconel 718), steel alloy, magnesium, copper, molybdenum, niobium, tungsten and zinc alloys as well as intermetallic alloys including titanium aluminide, nickel aluminide and molybdenum disilicide and equivalents thereof. In general, a metallic foam may be referred to as a cellular structure comprising a solid metal with a large volume fraction of pores. These pores may be sealed (closed-cell foam) or interconnected (open-cell foam). In one non-limiting embodiment, the porosity of the foam may be within the range of 5% to 80%. Of course, ranges of porosity greater or less than the aforementioned range are considered to be with the scope of various embodiments of the present disclosure. Selection of the porosity of the metallic foam may be dependent upon the ultimate end use of the component to be formed. For example and in some applications, it may be desirable to have a more porous foam core or a less porous foam core. The metallic foam block 10 is large enough to contain a desired part or component geometry 12 illustrated by the dashed lines 12 in FIG. 1.

[0025] In FIG. 2, the block of metallic foam 10 has been machined into a foam core 11 having the desired interim part or interim component geometry 12 via any of the processes defined below. As used herein the interim part or interim component geometry is slightly smaller than the final part or component geometry in order to account for the applied external metallic shell 20. In some applications, it may be desirable to form the metallic foam core to near net shape as part of the initial foam manufacturing process. Machining processes according to the present invention are milling, grinding, electrical discharge machining (EDM), water-jet machining and laser machining capable of machining the block 10 into the metallic foam core 11 having the component geometry 12.

[0026] Alternatively and as illustrated in FIGS. 3, 3A and 4, a sheet of metallic foam 14 may be provided. In this alternative process, the sheet of metallic foam 14 is formed into the foam core 11 having the desired part or component geometry 12 via a hot or cold forming process wherein the sheet of metallic foam 14 is placed in a die 16. The die 16 may include a pair of complementary halves 18 configured to form the desired part or component geometry 12. In alternative embodiments, the die 16 may have more than one pair of elements or die halves 18.

[0027] The formed component or metallic core 11 is illustrated in FIG. 4. The formed sheet of metallic foam is further shaped to a final configuration using the aforementioned machining processes such as milling, electrical discharge machining (EDM), water-jet machining and laser machining.

[0028] Referring now to at least FIG. 5, the formed metallic foam core 11 from any of the aforementioned processes (machining, forming or combinations thereof) depicted in at least FIGS. 1-4, has an external metallic shell 20 deposited on the exterior surface of the formed metallic foam core 11. According to the present invention, the external metallic shell 20 is deposited about the entire exterior surface of the formed metallic foam core 11. Also disclosed is that discrete areas of the formed metallic foam core may be masked such that the external metallic shell 20 is prohibited from covering certain areas. The external metallic shell 20 may also be referred to as an outer reinforcing metallic skin 20. Accordingly, the metallic foam pre-form or core 11 is used as a base for application of the external metallic shell 20. According to the present invention, an interim coat or applique to form a non-porous intermediate layer for metallic deposition is applied. In this embodiment, the interim coat is first applied and then the external metallic shell 20 is applied to the metallic foam pre-form or core 11. In FIG. 5, the interim coat is illustrated by the dashed lines 22. The external metallic shell 20 is a metallic material chemically and metalurgically compatible with that of the metallic foam and the external metallic outer shell 20 is applied via an application process selected from the following application processes: flame spray application; plasma spray application; cold-spray application; electron beam physical vapor deposition, (EB/PVD), chemical vapor deposition (CVD), and electroplating. Also disclosed is additive manufacturing (including but not limited to electron beam melt, direct metal later sintering, free-form laser deposition, etc.) or any other suitable means. Disclosed is that the external metallic outer skin can be made of any of the same alloys listed in the core section which includes but is not limited to titanium (including Ti 6-4, Ti 6-2-4-2, beta phase alloys including Beta 21s), cobalt, aluminum, nickel (including Inconel 625, Inconel 718), steel alloy, magnesium, copper, molybdenum, niobium, tungsten and zinc alloys as well as intermetallic alloys including titanium aluminide, nickel aluminide and molybdenum disilicide and equivalents thereof. The material used in the external metallic outer skin is according to the present invention different than that used in the foam core. In addition and in some instances when a different alloys is used for the external skin 20 as opposed to that used for the foam core, one or more intermediate alloys may be used as interim coat or coats 22 covering portions or all of the part to bridge the compatibility of the core alloy 11 and the outermost skin alloy 20.

[0029] Other non-metallic materials may be deposited in place of or in addition to the metallic coatings. According to the present invention a ceramic based thermal barrier coating is applied.

[0030] In FIG. 5, a nozzle 24 is illustrated and in one embodiment, the nozzle 24 may be used in conjunction with a plasma spray application process. Once the external metallic outer shell 20 is applied to the exterior surface of the metallic foam pre-form or core 11, this part, as illustrated in FIG. 6, is inspected for surface coverage and may be further subjected to a heat treating step in order to relieve residuals stresses imparted by manufacturing and outer skin deposition processes and/or to provide desired final material properties. In applications where the foam core is an open cell structure, the outer skin may be perforated with a plurality of venting holes to allow for internal air to escape from the part as it is heated during the heat treating step. In one embodiment, the venting holes may be sealed after the heat treating step and in other embodiments, the venting holes may be subsequently sealed after the heat treating step.

[0031] At the next step, additional features 26 are introduced to the coated metallic foam pre-form or core 11 in order to form the desired part or component 28. These additional features may be added by any suitable process such as milling, spot-face drilling, counter-bore drilling, conventional drilling, etc. In FIG. 7, the features 26 are illustrated as openings, of course, any other configurations are considered to be within the scope of various embodiments of the present disclosure. Still further and in the event that the drilling process removes some of the external metallic outer shell 20 and the metallic foam is exposed, a supplemental application process of the external metallic outer shell 20 may be employed to cover the exposed metallic foam. In yet another embodiment, the part 28 may not require any additional features 26 to be added. In one non-limiting embodiment, the component 28 may comprise the formed metallic core 11, an applied external metallic shell 20 and if applicable feature 26 as well as an intermediary layer 22 located between an external surface of the formed metallic core 11 and the applied external metallic shell 20.

[0032] Since the external metallic outer shell 20 is applied via a process wherein the localized thickness of the external metallic outer shell 20 is varied with respect to other locations, the thickness of the external metallic outer shell 20 on the exterior of the part may be tailored in thickness, pattern and orientation to provide preferential strength and thus the part or component 28 may have localized structural features such as ribs or gussets, which are provided by the applied external metallic outer shell 20.

[0033] According to the present invention and referring at least to the cross-sectional view of FIGS. 8 and 8A, a thickness 30 of the external metallic outer shell 20 is varied. In FIG. 8, the dashed line 32 is provided to illustrate the varying thickness of the external metallic outer shell 20 that surrounds the internal metallic foam core 11. Also shown in FIGS. 8 and 8A is the intermediary layer 22, which is applied prior to the application of the external metallic outer shell 20.

[0034] In yet another implementation and for parts designed to be capable of bending in certain areas over others, the applied metallic skin on the external surface of the formed part in some applications places the load carrying material away from a neutral axis of the part for high structural efficiency.

[0035] In accordance with various embodiments of the present disclosure, machining or forming of the metallic foam core 11 can be done very quickly and at lower expense than machining a solid block of material. This will result in a significant reduction in raw material waste vs. machining processes applied to solid blocks of material. In addition, the metallic deposition on the outside of foam core is tailored in thickness to provide preferential strength.

[0036] FIGS. 9 and 10 illustrate non-limiting examples of a part or component 28 formed by the various methods of the present disclosure. Some additional non-limiting examples of contemplated components or parts include brackets, housings, ducts, liner assemblies, (commercial engine tail cones, nozzles, etc.). In one non-limiting embodiment, the part or component 28 may be an aviation component. In another embodiment, the component may be used in any application where the component weight and cost are key design constraints.

[0037] Referring now to FIG. 11, a flow chart 40 illustrating a method for forming a part or component 28 in accordance with various embodiments of the present disclosure is illustrated. At a first step 42, an unformed block of metallic foam 10 is machined to foam core 11. As mentioned above, machining processes include milling, electrical discharge machining (EDM), water-jet machining, and laser machining capable of machining the block 10 into the metallic foam core 11 having the component geometry 12. Alternatively and at the first step 42, a sheet of metallic foam 14 may be provided and the sheet of metallic foam 14 is formed into the foam core 11 having the desired part or component geometry 12 via a hot or cold forming process wherein the sheet of metallic foam 14 is placed into a die 16. The die 16 may include a pair of complementary halves 18 configured to form the desired part or component geometry 12. The formed sheet of metallic foam is further shaped to a final configuration using the aforementioned machining processes.

[0038] Thereafter and at step 44, the formed component or metallic core 11 from any of the aforementioned processes (machining, forming or combinations thereof) has an external metallic shell 20 deposited on the exterior surface of the formed metallic foam core 11. As a precursor to step 44, an interim coat or applique is applied to the foam core 11 prior to the application of the external metallic shell 20. This is illustrated as step 43, which is illustrated in dashed lines. As mentioned above, the external metallic outer shell 20 is according to the invention applied via any one of the aforementioned processes including : flame spray application; plasma spray application; cold-spray application; electron beam physical vapor deposition (EB/PVD), chemical vapor deposition (CVD), and electroplating; also disclosed is additive manufacturing (including but not limited to electron beam melt, etc.) or any other suitable means.

[0039] Once the external metallic outer shell 20 is applied to the exterior surface of the metallic foam pre-form or core 11, this part, may be further subjected to a heat treating step 46, which is illustrated in dashed lines as this step may not be required in all processes.

[0040] At step 48, additional features 26, if required, are introduced to the coated metallic foam pre-form or core 11 in order to form the desired part or component 28. These additional features may be added by any suitable process such as milling, spot-face drilling, counter-bore drilling, conventional drilling, etc. Still further and in the event that the drilling process removes some of the external metallic outer shell 20 and the metallic foam is exposed, a supplemental application process of the external metallic outer shell 20 may be employed to cover the exposed metallic foam. In yet another embodiment, the part 28 may not require any additional features 26 to be added. In addition and as illustrated by the dashed lines in FIG. 11, an alternative step 49 may be provided wherein a final machining step of any key attachment, interface or functionally critical surfaces of the part or component occurs after step 48. This would yield the final part shape.

[0041] As discussed herein various methods for producing light weight, low cost components and/or part are provided. Still further components and/or parts formed by the various methods are also provided.

[0042] While the present disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present disclosure is not limited to such disclosed embodiments. Rather, the present disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the scope of the present disclosure. Additionally, while various embodiments of the present disclosure have been described, it is to be understood that aspects of the present disclosure may include only some of the described embodiments. Accordingly, the present disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.


Claims

1. A method of making a light weight component (28), comprising:

forming (42) a metallic foam core (11) into a desired configuration by a machining process selected from the group comprising: milling; electrical discharge machining (EDM); water-jet machining; and laser machining, wherein the desired configuration is slightly smaller than the final dimensions of the light weight component (28);

depositing (43) an interim coat (22) on an exterior surface of the metallic foam core (11) after the metallic foam core has been formed into the desired configuration; and

applying (44) an external metallic shell (20) to an exterior surface of the metallic foam core after the interim coat has been deposited thereon, wherein the external metallic shell (20) is applied via an application process selected from the group comprising: flame spray application process; plasma spray application process; cold-spray application process; electron beam physical vapor deposition (EB/PVD) application process; chemical vapor deposition (CVD) application process; electroplating application process, and wherein the external metallic shell is deposited around the entire exterior surface of the metallic foam core;

wherein the component is provided with localised structural rigidity by varying a thickness (30) of the external metallic shell (20);

characterised in that the interim coat (22) is a ceramic based thermal barrier coating and in that the metallic foam core is formed from an alloy that is different from the alloy of the external metallic shell.


 
2. The method as in claim 1, wherein the metal of the metallic foam core (11) is selected from the group comprising: titanium; cobalt; aluminum; nickel; steel alloys, magnesium, copper, molybdenum, niobium, tungsten, zinc alloys, titanium aluminide, nickel aluminide and molybdenum disilicide.
 
3. The method as in claim 1, wherein the metallic foam core (11) is an open cell structure, or wherein the metallic foam core (11) is a closed cell structure.
 
4. The method as in any preceding claim, wherein the metallic foam core (11) is a sheet of metallic foam (14) and, prior to the step of forming (42) a metallic foam core (11) into a desired configuration by a machining process selected from the group comprising: milling; electrical discharge machining (EDM); water-jet machining; and laser machining, the sheet of metallic foam is formed into the desired configuration by a hot or cold forming process, wherein the sheet of metallic foam is placed in a die (16).
 
5. The method as in any preceding claim, further comprising the step of: heat treating (46) the metallic foam core (11) after the external metallic shell (20) has been applied to the exterior surface of the metallic foam core.
 
6. The method as in any preceding claim, further comprising the step of: forming (48) additional features (26) in the metallic foam core (11) after the external metallic shell (20) has been applied to the exterior surface of the metallic foam core.
 
7. The method as in claim 6, wherein the additional features (26) are formed by a drilling process.
 
8. The method as in claim 7, wherein a supplemental application of the external metallic outer shell (20) is applied to the metallic foam core (11) after the drilling process.
 
9. The method as in any preceding claim, wherein the component (28) is a bracket.
 
10. The method of making a light weight component (28) as in any preceding claim, wherein the external metallic shell (20) is selectively applied to vary the thickness (30) of the external metallic shell in order to provide the localised structural rigidity to the component.
 


Ansprüche

1. Verfahren zur Herstellung einer Leichtbaukomponente (28), Folgendes umfassend:

Formen (42) eines Metallschaumkerns (11) durch ein Bearbeitungsverfahren in eine gewünschte Konfiguration, wobei das Bearbeitungsverfahren aus der Gruppe ausgewählt ist, die Folgendes umfasst: Fräsen; Funkenerodieren (EDM); Wasserstrahlbearbeiten; und Laserbearbeiten, wobei die gewünschte Konfiguration geringfügig kleiner ist als die endgültigen Dimensionen der Leichtbaukomponente (28);

Auftragen (43) einer Zwischenbeschichtung (22) an einer äußeren Fläche des Metallschaumkerns (11), nachdem der Metallschaumkern in die gewünschte Konfiguration geformt wurde; und

Anbringen (44) einer äußeren Metallhülle (20) an eine äußere Fläche des Metallschaumkerns, nachdem die Zwischenbeschichtung darauf aufgetragen wurde, wobei die äußere Metallhülle (20) über ein Auftragsverfahren angebracht wird, das aus der Gruppe ausgewählt ist, die Folgendes umfasst: Flammspritzauftragsverfahren; Plasmaspritzauftragsverfahren; Kaltspritzauftragsverfahren; Elektronenstrahl-Dampfabscheidungsverfahren (EB/PVD); chemisches Aufdampfverfahren (CVD); Elektroplattierungsverfahren, und wobei die äußere Metallhülle um die gesamte äußere Fläche des Metallschaumkerns aufgetragen ist;

wobei der Komponente durch Variieren einer Stärke (30) der äußeren Metallhülle (20) lokale strukturelle Festigkeit bereitgestellt wird;

dadurch gekennzeichnet, dass die Zwischenbeschichtung (22) eine auf Keramik basierende Wärmedämmschicht ist und dadurch gekennzeichnet, dass der Metallschaumkern aus einer Legierung geformt ist, die sich von der Legierung der äußeren Metallhülle unterscheidet.


 
2. Verfahren nach Anspruch 1, wobei das Metall des Metallschaumkerns (11) aus der Gruppe ausgewählt ist, die Folgendes umfasst: Titan; Cobalt; Aluminium; Nickel; Stahllegierungen, Magnesium, Kupfer, Molybdän, Niob, Wolfram, Zinklegierungen, Titanaluminid, Nickelaluminid und Molybdändisilizid.
 
3. Verfahren nach Anspruch 1, wobei der Metallschaumkern (11) eine offene Zellstruktur ist oder wobei der Metallschaumkern (11) eine geschlossene Zellstruktur ist.
 
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Metallschaumkern (11) ein Blech aus Metallschaum (14) ist und, vor dem Schritt, in dem ein Metallschaumkern (11) durch ein Bearbeitungsverfahren, das aus der Gruppe ausgewählt ist, die Folgendes umfasst: Fräsen; Funkenerodieren (EDM); Wasserstrahlbearbeiten; und Laserbearbeiten, in eine gewünschte Konfiguration geformt (42) wird, das Blech aus Metallschaum durch ein Heiß- oder Kaltformverfahren in eine gewünschte Konfiguration geformt wird, wobei des Blech aus Metallschaum in einem Gesenk (16) platziert wird.
 
5. Verfahren nach einem der vorhergehenden Ansprüche, ferner den folgenden Schritt umfassend: Wärmebehandeln (46) des Metallschaumkerns (11), nachdem die äußere Metallhülle (20) auf die äußere Fläche des Metallschaumkerns aufgetragen wurde.
 
6. Verfahren nach einem der vorhergehenden Ansprüche, ferner den folgenden Schritt umfassend: Formen (48) von zusätzlichen Merkmalen (26) in dem Metallschaumkern (11), nachdem die äußere Metallhülle (20) auf die äußere Fläche des Metallschaumkerns aufgetragen wurde.
 
7. Verfahren nach Anspruch 6, wobei die zusätzlichen Merkmale (26) durch ein Bohrverfahren geformt werden.
 
8. Verfahren nach Anspruch 7, wobei nach dem Bohrverfahren ein ergänzendes Auftragen der äußeren Metallhülle (20) auf den Metallschaumkern (11) erfolgt.
 
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Komponente (28) eine Klammer ist.
 
10. Verfahren zur Herstellung einer Leichtbaukomponente (28) nach einem der vorhergehenden Ansprüche, wobei die äußere Metallhülle (20) selektiv aufgetragen wird, um die Stärke (30) der äußeren Metallhülle zu variieren, um die lokale strukturelle Festigkeit der Komponente bereitzustellen.
 


Revendications

1. Procédé de fabrication d'un composant léger (28), comprenant :

la formation (42) d'une âme en mousse métallique (11) dans une configuration souhaitée par un processus d'usinage sélectionné dans le groupe comprenant : le fraisage ; l'usinage par décharge électrique (EDM) ; l'usinage au jet d'eau ; et l'usinage au laser, dans lequel la configuration souhaitée est légèrement plus petite par rapport aux dimensions finales du composant léger (28) ;

le dépôt (43) du revêtement intermédiaire (22) sur une surface extérieure de l'âme en mousse métallique (11) après que l'âme en mousse métallique a été formée dans la configuration souhaitée ; et

l'application (44) d'une coque métallique externe (20) sur une surface extérieure de l'âme en mousse métallique après que le revêtement intermédiaire a été déposé dessus, dans lequel la coque métallique externe (20) est appliquée par l'intermédiaire d'un procédé d'application sélectionné dans le groupe comprenant : un procédé d'application par pulvérisation de flamme ; un procédé d'application par pulvérisation de plasma ; un procédé d'application par pulvérisation à froid ; un procédé d'application par dépôt physique en phase vapeur par faisceau d'électrons (EB/PVD) ; un procédé d'application par dépôt chimique en phase vapeur (CVD) ; un procédé d'application de galvanoplastie, et dans lequel la coque métallique externe est déposée sur la surface extérieure entière de l'âme en mousse métallique ;

dans lequel le composant est doté d'une rigidité structurelle localisée par la variation d'une épaisseur (30) de la coque métallique externe (20) ;

caractérisé en ce que le revêtement intermédiaire (22) est un revêtement de barrière thermique à base de céramique et en ce que l'âme en mousse métallique est formée d'un alliage différent de l'alliage de la coque métallique externe.


 
2. Procédé selon la revendication 1, dans lequel le métal de l'âme en mousse métallique (11) est sélectionné dans le groupe comprenant : le titane, le cobalt, l'aluminium, le nickel, les alliages d'acier, le magnésium, le cuivre, le molybdène, le niobium, le tungstène, les alliages de zinc, l'aluminure de titane, l'aluminure de nickel et le disiliciure de molybdène.
 
3. Procédé selon la revendication 1, dans lequel l'âme en mousse métallique (11) est une structure à cellules ouvertes, ou dans lequel l'âme en mousse métallique (11) est une structure à cellules fermées.
 
4. Procédé selon une quelconque revendication précédente, dans lequel l'âme en mousse métallique (11) est une feuille de mousse métallique (14) et, avant l'étape de formation (42) d'une âme en mousse métallique (11) dans une configuration souhaitée par un procédé d'usinage sélectionné dans le groupe comprenant : le broyage ; l'usinage par décharge électrique (EDM) ; l'usinage au jet d'eau ; et l'usinage au laser, la feuille de mousse métallique est formée dans la configuration souhaitée par un processus de formage à chaud ou à froid, dans lequel la feuille de mousse métallique est placée dans une matrice (16).
 
5. Procédé selon une quelconque revendication précédente, comprenant en outre l'étape : de traitement thermique (46) de l'âme en mousse métallique (11) après que la coque métallique externe (20) a été appliquée sur la surface extérieure de l'âme en mousse métallique.
 
6. Procédé selon une quelconque revendication précédente, comprenant en outre l'étape : de formation (48) de caractéristiques supplémentaires (26) dans l'âme en mousse métallique (11) après que la coque métallique externe (20) a été appliquée sur la surface extérieure de l'âme en mousse métallique.
 
7. Procédé selon la revendication 6, dans lequel les caractéristiques supplémentaires (26) sont formées par un processus de forage.
 
8. Procédé selon la revendication 7, dans lequel une application supplémentaire de la coque extérieure métallique externe (20) est appliquée sur l'âme en mousse métallique (11) après le processus de forage.
 
9. Procédé selon une quelconque revendication précédente, dans lequel le composant (28) est un support.
 
10. Procédé de fabrication d'un composant léger (28) selon une quelconque revendication précédente, dans lequel la coque métallique externe (20) est appliquée sélectivement pour faire varier l'épaisseur (30) de la coque métallique externe afin de fournir la rigidité structurelle localisée au composant.
 




Drawing




















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description