(19)
(11)EP 3 234 208 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 15828603.9

(22)Date of filing:  18.12.2015
(51)International Patent Classification (IPC): 
C22C 21/00(2006.01)
C22F 1/04(2006.01)
C22C 21/08(2006.01)
C22F 1/047(2006.01)
(86)International application number:
PCT/US2015/066638
(87)International publication number:
WO 2016/100800 (23.06.2016 Gazette  2016/25)

(54)

ALUMINUM ALLOY SUITABLE FOR THE HIGH SPEED PRODUCTION OF ALUMINUM BOTTLE AND THE PROCESS OF MANUFACTURING THEREOF

ALUMINIUMLEGIERUNG FÜR DIE SCHNELLE HERSTELLUNG VON ALUMINIUMFLASCHEN UND VERFAHREN ZUR HERSTELLUNG DAVON

ALLIAGE D'ALUMINIUM APPROPRIÉ POUR LA PRODUCTION À GRANDE VITESSE D'UNE BOUTEILLE EN ALUMINIUM ET PROCÉDÉ DE FABRICATION ASSOCIÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.12.2014 US 201462094358 P

(43)Date of publication of application:
25.10.2017 Bulletin 2017/43

(73)Proprietor: Novelis Inc.
Atlanta, GA 30326 (US)

(72)Inventors:
  • GO, Johnson
    Marietta, Georgia 30068 (US)
  • WEN, Wei
    Kennesaw, Georgia 30152 (US)
  • KANG, DaeHoon
    Kennesaw, Georgia 30144 (US)
  • KADILAK, Jeffrey John
    Baldwinsville, New York 13027 (US)

(74)Representative: Weickmann & Weickmann PartmbB 
Postfach 860 820
81635 München
81635 München (DE)


(56)References cited: : 
EP-A1- 1 870 481
JP-A- H11 181 558
WO-A1-2014/184450
US-A1- 2008 041 501
  
  • YU T M ET AL: "The effect of cold working and annealing practice on earing in 3104 Al alloy sheet", MATERIALS CHARACTERIZATION, ELSEVIER, NEW YORK, NY, US, vol. 30, no. 4, 1 June 1993 (1993-06-01), pages 251-259, XP024173630, ISSN: 1044-5803, DOI: 10.1016/1044-5803(93)90072-4 [retrieved on 1993-06-01]
  • LIU W C ET AL: "Evolution of microstructures in severely deformed AA 3104 aluminum alloy by multiple constrained compression", MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS: PROPERTIES, MICROSTRUCTURES AND PROCESSING, ELSEVIER BV, NL, vol. 528, no. 16, 25 March 2011 (2011-03-25), pages 5405-5410, XP028204510, ISSN: 0921-5093, DOI: 10.1016/J.MSEA.2011.03.100 [retrieved on 2011-04-06]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The invention relates to a method of producing highly shaped aluminum products, such as bottles or cans, using the aluminum alloy. In one aspect, the invention further relates to a new aluminum alloy product made by a method according to the invention.

BACKGROUND



[0002] Many modern methods of aluminum can or bottle manufacture require highly shapeable aluminum alloys. For shaped bottles, the manufacturing process typically involves first producing a cylinder using a drawing and wall ironing (DWI) process. The resulting cylinder is then formed into a bottle shape using, for example, a sequence of full-body necking steps, blow molding, or other mechanical shaping, or a combination of these processes. The demands on any alloy used in such a process or combination of processes are complex.

[0003] There is a need for alloys that can sustain high levels of deformation during mechanical shaping or blow molding for the bottle shaping process and that function well in the DWI process used to make the starting cylindrical preform.

[0004] Further requirements of the alloy are that it must be possible to produce a bottle which meets the targets for mechanical performance (e.g., column strength, rigidity, and a minimum bottom dome reversal pressure in the final shaped product) with lower weight than the current generation of aluminum bottles. The only way to achieve lower weight without significant modification of the design is to reduce the wall thickness of the bottle. This makes meeting the mechanical performance requirement even more challenging.

[0005] A final requirement is the ability to form the bottles at a high speed. To achieve a high throughput (e.g., 1000 bottles per minute) in commercial production, the shaping of the bottle must be completed in a very short time. Thus, methods are needed for making preforms from the alloy at high speeds and levels of runability, such as that demonstrated by the current can body alloy AA3104. AA3104 contains a high volume fraction of coarse intermetallic particles formed during casting and modified during homogenization and rolling. These particles play a major role in die cleaning during the DWI process, helping to remove any aluminum or aluminum oxide build-up on the dies, which improves both the metal surface appearance and also the runability of the sheet.

[0006] EP 1 870 481 A1 describes aluminum alloy sheet for bottle cans which can have improved high-temperature properties without impairing its formability.

[0007] WO 2014/184450 A1 describes an aluminum alloy sheet for metallic bottle or aerosol container.

[0008] JP H11 181558 A relates to the production of aluminum alloy sheet for low and positive pressure can body.

[0009] Yu, T.M. et al., Materials characterization, Elsevier, Vol. 30, Issue 4, June 1993, pages 251-259 describes the effect of cold working and annealing practice on earing in 3104 Al alloy sheet.

[0010] US 2008/0041501 A1 describes a method for producing aluminum automotive heat shields or panels such as from scrap derived molten aluminum alloy using a continuous caster to cast the alloy into a slab.

[0011] Liu, W:C. et al, Material Science and Engineering: A; Vol. 528, Issue 16-17, 15 June 2011, pages 5405-5410 describes the evolution of microstructures in severely deformed AA3104 aluminum alloy by multiple constrained compression.

[0012] In meeting all the requirements as stated above, different embodiments of the alloys and methods of the current invention have the following specific chemical composition and properties (all elements are expressed in weight percent (wt. %)).

SUMMARY



[0013] Provided herein are novel alloys that display high strain rate formability at elevated temperatures. The alloys can be used for producing highly shaped aluminum products, including bottles and cans.

[0014] In one embodiment, the aluminum alloy described herein comprises 0.15-0.50 % Si, 0.35-0.65 % Fe, 0.05-0.30 % Cu, 0.60-1.10 % Mn, 0.80-1.30 % Mg, 0.000-0.0080 % Cr, 0.000-0.500 % Zn, 0.000-0.080 % Ti, up to 0.15 % of impurities, with the remainder as Al (all in weight percentage (wt. %)).

[0015] Also provided herein are products (e.g., bottles and cans) comprising an aluminum alloy as described herein

[0016] Further provided herein are methods of producing the aluminum alloys described. In one embodiment, the methods include direct chill (DC) casting of an aluminum alloy as described herein to form a metal product, homogenizing the metal product, hot rolling the metal product to produce a metal sheet, cold rolling the metal sheet (e.g., with a 60 % to 90 % thickness rejection), recrystallization annealing the rolled sheet, cold rolling the annealed sheet, and stabilization annealing the rolled sheet. Products (e.g., bottles or cans) obtained according to the methods are also provided herein.

[0017] Other objects and advantages of the invention will be apparent from the following detailed description of embodiments of the invention.

BRIEF DESCRIPTION OF THE FIGURES



[0018] 

Figure 1 is a scanning transmission electron microscopy (STEM) micrograph of an aluminum alloy according to an embodiment of the invention showing a substructure with average geometrically necessary boundary (GNB) spacing larger than 300 nm.

Figure 2 is a STEM micrograph of an aluminum alloy according to an embodiment of the invention showing a GNB-containing substructure with average GNB spacing larger than 2.5 µm.

Figure 3 is a STEM micrograph of an aluminum alloy according to an embodiment of the invention showing a GNB-containing substructure with average GNB spacing larger than 8 µm.

Figure 4 is a STEM micrograph of an aluminum alloy according to an embodiment of the invention showing a GNB-free substructure.


DETAILED DESCRIPTION OF THE INVENTION


Definitions and Descriptions



[0019] The terms "invention," "the invention," "this invention" and "the present invention" used herein are intended to refer broadly to all of the subject matter of this patent application and the claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below.

[0020] As used herein, the meaning of "a," "an," or "the" includes singular and plural references unless the context clearly dictates otherwise.

[0021] Reference is made in this application to alloy temper or condition. For an understanding of the alloy temper descriptions most commonly used, see "American National Standards (ANSI) H35 on Alloy and Temper Designation Systems."

[0022] The following aluminum alloys are described in terms of their elemental composition in weight percentage (wt. %) based on the total weight of the alloy. In certain embodiments of each alloy, the remainder is aluminum, with a maximum wt. % of 0.15 % for the sum of the impurities.

Aluminum Alloy Systems



[0023] In one aspect, the invention is related to a new aluminum alloy system for aluminum bottle applications. The alloy compositions exhibit good high strain rate formability at elevated temperatures. The high strain rate formability is achieved due to the elemental compositions of the alloys.

[0024] In one aspect, the invention provides highly formable alloys for use in manufacturing highly shaped cans and bottles. In one aspect, the invention provides chemistry and manufacturing processes that are optimized for the high-speed production of aluminum bottles.

[0025] In one embodiment, the aluminum alloy comprises:

0.15-0.50 wt. % Si,

0.35-0.65 wt. % Fe,

0.05-0.30 wt. % Cu,

0.60-1.10 wt. % Mn,

0.80-1.30 wt. % Mg,

0.000-0.080 wt. % Cr,

0.000-0.500 wt. % Zn,

0.000-0.080 wt. % Ti, and
up to 0.15 wt. % impurities, with the remainder as Al.



[0026] In another embodiment, the aluminum alloy comprises:

0.20-0.40 wt. % Si,

0.40-0.60 wt. % Fe,

0.08-0.20 wt. % Cu,

0.70-1.00 wt. % Mn,

0.85-1.22 wt. % Mg,

0.000-0.070 wt. % Cr,

0.000-0.400 wt. % Zn,

0.000-0.070 wt. % Ti,
up to 0.15 wt. % impurities, with the remainder as Al.



[0027] In yet another embodiment, the aluminum alloy comprises:

0.22-0.38 wt. % Si,

0.42-0.58 wt. % Fe,

0.10-0.18 wt. % Cu,

0.75-0.98 wt. % Mn,

0.90-1.15 wt. % Mg,

0.000-0.060 wt. % Cr,

0.000-0.300 wt. % Zn,

0.000-0.060 wt. % Ti,
up to 0.15 wt. % impurities, with the remainder as Al.



[0028] In still another embodiment, the aluminum alloy comprises:

0.27-0.33 wt. % Si,

0.46-0.54 wt. % Fe,

0.11-0.15 wt. % Cu,

0.80-0.94 wt. % Mn,

0.93-1.07 wt. % Mg,

0.000-0.050 wt. % Cr,

0.000-0.250 wt. % Zn,

0.000-0.050 wt. % Ti,
up to 0.15 wt. % impurities, with the remainder as Al.



[0029] In still another embodiment, the aluminum alloy comprises:

0.25-0.35 wt. % Si,

0.44-0.56 wt. % Fe,

0.09-0.16 wt. % Cu,

0.78-0.94 wt. % Mn,

0.90-1.10 wt. % Mg,

0.000-0.050 wt. % Cr,

0.000-0.250 wt. % Zn,

0.000-0.050 wt. % Ti,
up to 0.15 wt. % impurities, with the remainder as Al.



[0030] In another embodiment, the aluminum alloy comprises:

0.27-0.33 wt. % Si,

0.46-0.54 wt. % Fe,

0.11-0.15 wt. % Cu,

0.80-0.94 wt. % Mn,

0.93-1.07 wt. % Mg,

0.000-0.050 wt. % Cr,

0.000-0.250 wt. % Zn,

0.000-0.050 wt. % Ti,
up to 0.15 wt. % impurities, with the remainder as Al. In one aspect, the aluminum alloy comprises 0.296 wt. % Si, 0.492 wt. % Fe, 0.129 wt. % Cu, 0.872 wt. % Mn, 0.985 wt. % Mg, 0.026 wt. % Cr, 0.125 wt. % Zn, 0.010 wt. Ti, up to 0.15 wt. % impurities, with the remainder as Al.



[0031] In certain aspects, the disclosed alloy includes silicon (Si) in an amount from 0.15 % to 0.50 % (e.g., from 0.20 % to 0.40 %, from 0.22 % to 0.38 %, from 0.25 % to 0.35 %, or from 0.27 % to 0.33 %, based on the total weight of the alloy. For example, the alloys can include 0.15 %, 0.16 %, 0.17 %, 0.18 %, 0.19 %, 0.20 %, 0.21 %, 0.22 %, 0.23 %, 0.24 %, 0.25 %, 0.26 %, 0.27 %, 0.28 %, 0.29 %, 0.30 %, 0.31 %, 0.32 %, 0.33 %, 0.34 %, 0.35 %, 0.36 %, 0.37 %, 0.38 %, 0.39 %, 0.40 %, 0.41 %, 0.42 %, 0.43 %, 0.44 %, 0.45 %, 0.46 %, 0.47 %, 0.48 %, 0.49 %, or 0.50 % Si. All expressed in wt. %.

[0032] In certain aspects, the alloy also includes iron (Fe) in an amount from 0.35 % to 0.65 % (e.g., 0.40 % to 0.60 %, from 0.42 % to 0.58 %, from 0.44 % to 0.56 %, or from 0.46 % to 0.54 %) based on the total weight of the alloy. For example, the alloys can include 0.35 %, 0.36 %, 0.37 %, 0.38 %, 0.39 %, 0.40 %, 0.41 %, 0.42 %, 0.43 %, 0.44 %, 0.45 %, 0.46 %, 0.47 %, 0.48 %, 0.49 %, 0.50 %, 0.51 %, 0.52 %, 0.53 %, 0.54 %, 0.55 %, 0.56 %, 0.57 %, 0.58 %, 0.59 %, 0.60 % 0.61 %, 0.62 %, 0.63 %, 0.64 %, or 0.65 % Fe. All expressed in wt. %.

[0033] In certain aspects, the disclosed alloy includes copper (Cu) in an amount from 0.05 % to 0.30 % (e.g., from 0.08 % to 0.20 %, from 0.10 % to 0.18 %, from 0.09 % to 0.16 %, from 0.10% to 0.16%, from 0.109 % to 0.16 %, or from 0.11 % to 0.15 %) based on the total weight of the alloy. For example, the alloys can include 0.05 %, 0.06 %, 0.07 %, 0.08 %, 0.09 %, 0.10 %, 0.11 %, 0.12 %, 0.13 %, 0.14 %, 0.15 %, 0.16 %, 0.17 %, 0.18 %, 0.19 %, 0.20 %, 0.21 %, 0.22 %, 0.23 %, 0.24 %, 0.25 %, 0.26 %, 0.27 %, 0.28 %, 0.29 %, or 0.30 % Cu. All expressed in wt. %.

[0034] In certain embodiments, the disclosed alloy includes manganese (Mn) in an amount from 0.60 % to 1.10 % (e.g., 0.70 % to 1.00 %, from 0.75 % to 0.98 %, from 0.78 % to 0.94 %, from 0.78 % to 0.96 %, or from 0.80 % to 0.94 %,) based on the total weight of the alloy. For example, the alloy can include 0.60 %, 0.61 %, 0.62 %, 0.63 %, 0.64 %, 0.65 %, 0.66 %, 0.67 %, 0.68 %, 0.69 %, 0.70 %, 0.71 %, 0.72 %, 0.73 %, 0.74 %, 0.75 %, 0.76 %, 0.77 %, 0.78 %, 0.79 %, 0.80 %, 0.81 %, 0.82 %, 0.83 %, 0.84 %, 0.85 %, 0.86 %, 0.87 %, 0.88 %, 0.89 %, 0.90 %, 0.91 %, 0.92 %, 0.93 %, 0.94 %, 0.95 %, 0.96 %, 0.97 %, 0.98 %, 0.99 %, 1.00 %, 1.01 %, 1.02 %, 1.03 %, 1.04 %, 1.05 %, 1.06 %, 1.07 %, 1.08 %, 1.09 %, or 1.10 % Mn. All expressed in wt. %.

[0035] In some embodiments, the disclosed alloy includes magnesium (Mg) in an amount from 0.80 % to 1.30 % (e.g., from 0.85 % to 1.22 %, from 0.90 % to 1.15 %, from 0.90 % to 1.10 %, or from 0.93 % to 1.07 %) based on the total weight of the alloy. For example, the alloy can include 0.80 %, 0.81 %, 0.82 %, 0.83 %, 0.84 %, 0.85 %, 0.86 %, 0.87 %, 0.88 %, 0.89 %, 0.90 %, 0.91 %, 0.92 %, 0.93 %, 0.94 %, 0.95 %, 0.96 %, 0.97 %, 0.98 %, 0.99 %, 1.00 %, 1.01 %, 1.02 %, 1.03 %, 1.04 %, 1.05 %, 1.06 %, 1.07 %, 1.08 %, 1.09 %, 1.10 %, 1.11 %, 1.12 %, 1.13 %, 1.14 %, 1.15 %, 1.16 %, 1.17 %, 1.18 %, 1.19 %, 1.20 %, 1.21 %, 1.22 %, 1.23 %, 1.24 %, 1.25 %, 1.26 %, 1.27 %, 1.28 %, 1.29 % or 1.30 Mg. All expressed in wt. %.

[0036] In certain aspects, the alloy includes chromium (Cr) in an amount up to 0.80 % (e.g., from 0 % to 0.05 %, 0 % to 0.06 %, from 0 % to 0.07 %, from 0 % to 0.08 %, from 0.03 to 0.06 %, from 0.005 % to 0.05 %, or from 0.001 % to 0.06 %) based on the total weight of the alloy. For example, the alloy can include 0.001 %, 0.002 %, 0.003 %, 0.004 %, 0.005 %, 0.006 %, 0.007 %, 0.008 %, 0.009 %, 0.010 %, 0.011 %, 0.012 %, 0.013 %, 0.014 %, 0.015 %, 0.016 %, 0.017 %, 0.018 %, 0.019 %, 0.020 %, 0.021 %, 0.022 %, 0.023 %, 0.024 %, 0.025 %, 0.026 %, 0.027 %, 0.028 %, 0.029 %, 0.030 %, 0.031 %, 0.032 %, 0.033 %, 0.034 %, 0.035 %, 0.036 %, 0.037 %, 0.038 %, 0.039 %, 0.040 %, 0.05 %, 0.051 %, 0.052 %, 0.053 %, 0.054 %, 0.055 %, 0.056 %, 0.057 %, 0.058 %, 0.059 %, 0.060 %, 0.065 %, 0.070 %, 0.075 %, or 0.08 % Cr. In certain aspects, Cr is not present in the alloy (i.e., 0 %). All expressed in wt. %.

[0037] In certain aspects, the alloy described herein includes zinc (Zn) in an amount up to 0.5 % (e.g., from 0 % to 0.25 %, from 0 % to 0.2 %, from 0 % to 0.30 %, from 0 % to 0.40 %, from 0.01 % to 0.35 %, or from 0.01 % to 0.25 %) based on the total weight of the alloy. For example, the alloy can include 0.001 %, 0.002 %, 0.003 %, 0.004 %, 0.005 %, 0.006 %, 0.007 %, 0.008 %, 0.009 %, 0.01 %, 0.02 %, 0.03 %, 0.04 %, 0.05 %, 0.06 %, 0.07 %, 0.08 %, 0.09 %, 0.10 %, 0.11 %, 0.12 %, 0.13 %, 0.14 %, 0.15 %, 0.16 %, 0.17 %, 0.18 %, 0.19 %, 0.20 %, 0.21 %, 0.22 %, 0.23 %, 0.24 %, 0.25 %, 0.26 %, 0.27 %, 0.28 %, 0.29 %, 0.30 %, 0.31 %, 0.32 %, 0.33 %, 0.34 %, 0.35 %, 0.36 %, 0.37 %, 0.38 %, 0.39 %, 0.40 %, 0.41 %, 0.42 %, 0.43 %, 0.44 %, 0.45 %, 0.46 %, 0.47 %, 0.48 %, 0.49 %, or 0.50 % Zn. In certain cases, Zn is not present in the alloy (i.e., 0 %). All expressed in wt. %.

[0038] In certain aspects, the alloy includes titanium (Ti) in an amount up to 0.08 % (e.g., from 0 % to 0.05 %, 0 % to 0.06 %, from 0 % to 0.07 %, from 0.03 to 0.06 %, from 0.005 % to 0.05 %, or from 0.001 % to 0.06 %) based on the total weight of the alloy. For example, the alloy can include 0.001 %, 0.002 %, 0.003 %, 0.004 %, 0.005 %, 0.006 %, 0.007 %, 0.008 %, 0.009 %, 0.01 %, 0.011 %, 0.012 %, 0.013 %, 0.014 %, 0.015 %, 0.016 %, 0.017 %, 0.018 %, 0.019 %, 0.02 %, 0.021 %, 0.022 %, 0.023 %, 0.024 %, 0.025 %, 0.026 %, 0.027 %, 0.028 %, 0.029 %, 0.03 %, 0.031 %, 0.032 %, 0.033 %, 0.034 %, 0.035 %, 0.036 %, 0.037 %, 0.038 %, 0.039 %, 0.04 %, 0.05 %, 0.051 %, 0.052 %, 0.053 %, 0.054 %, 0.055 %, 0.056 %, 0.057 %, 0.058 %, 0.059 %, 0.06 %, 0.065 %, 0.07 %, 0.075 %, or 0.08 % Ti. In certain aspects, Ti is not present in the alloy (i.e., 0 %). All expressed in wt. %.

[0039] Optionally, the alloy compositions can further include other minor elements, sometimes referred to as impurities, in amounts of 0.15 % or below, 0.14 % or below, 0.13 % or below, 0.12 % or below, 0.11 % or below, 0.10 % or below, 0.09 % or below, 0.08 % or below, 0.07 % or below, 0.06 % or below, 0.05 % or below, 0.04 % or below, 0.03 % or below, 0.02 % or below, or 0.01 % or below. These impurities may include, but are not limited to, V, Ga, Ni, Sc, Zr, Ca, Hf, Sr, or combinations thereof. In certain aspects, the alloy composition comprises only unavoidable impurities. In certain aspects, the remaining percentage of the alloy is aluminum. All expressed in wt. %.

Alloy Properties



[0040] In certain embodiments, the aluminum alloys of the present invention display one or more of the following properties: very low earing (maximum mean earing level of 3 %); high recycled content (e.g., at least 60 %, 65 %, 70 %, 75 %, 80 %, 82 % or 85 %); yield strength 25-36 ksi; excellent die cleaning performance which allows the application of very low die striping pressure; excellent formability which allows extensive neck shaping progression without fracture; excellent surface finished in the final bottles with no visible markings; excellent coating adhesion; high strength to meet the typical axial load (>300 lbs) and dome reversal pressure (>90 psi); overall scrap rate of the bottle making process can be as low as less than 1 %.

[0041] In certain embodiments, the substructure of the aluminum alloy coil made by this method has a geometrically necessary boundary (GNB)-free substructure. In certain embodiments, the substructure has a GNB-containing substructure with an average GNB spacing larger than 10 microns. In certain embodiments, the substructure aluminum alloy coil made by this method has a GNB-containing substructure with average GNB spacing larger than 300 nm (e.g., FIG. 1), average GNB spacing larger than 2.5 µm (FIG. 2), average GNB spacing larger than 8 µm (e.g., FIG. 3), or a GNB-free substructure (e.g., FIG. 4).

[0042] In certain embodiments, the alloy sheet has very low earing. In certain embodiments, the earing balance from the edge, sides, and center (over the coil width) is less than 1.5 % (e.g., less than 1.25 %, less than 1 %). In certain embodiments, the mean earing is less than 4 %. For example, the mean earing is less than 3.75 %, less than 3.5 %, less than 3.25 %, less than 3 %, less than 2.75 %, or less than 2.5 %.

[0043] In certain embodiments, the alloy sheet has high recycled content.

Methods of Making the Alloy



[0044] The disclosed alloy composition is a product of a disclosed method. Without intending to limit the invention, aluminum alloy properties are partially determined by the formation of microstructures during the alloy's preparation. In certain aspects, the method of preparation for an alloy composition may influence or even determine whether the alloy will have properties adequate for a desired application.

[0045] In one aspect, the invention sets forth a method of making an aluminum alloy described herein. Typically, can body stocks are provided to the customer in the H19 temper. For aluminum bottle application, the typical H19 temper does not work well as H19 alloys are too brittle. In one aspect, to meet the high formability requirement for the shaping of aluminum bottles, an inventive alloy must be processed in a different way, by direct chill (DC) casting, homogenizing, hot rolling, cold rolling, recrystallization annealing, cold rolling, and stabilization annealing.

[0046] In one embodiment, the method of making an aluminum alloy as described herein comprises the sequential steps of:

DC casting;

Homogenizing;

Hot rolling;

Cold rolling (60-90 % thickness reduction);

Recrystallization annealing (290-500 °C/0.5-4 hrs);

Cold rolling (15-30 % reduction);

Stabilization annealing (100-300 °C/0.5-4 hrs).



[0047] In another embodiment, the method of making the aluminum alloy as described herein comprises the sequential steps of:

DC casting;

Homogenizing;

Hot rolling;

Cold rolling (60-90 % thickness reduction);

Recrystallization annealing (300-450 °C/1-2 hrs);

Cold rolling (15-30 % reduction); and,

Stabilization annealing (120-250 °C/1-2 hrs).



[0048] In another embodiment, the method of making an aluminum alloy as described herein comprises direct chill casting an aluminum ingot; homogenizing the ingot; hot rolling the homogenized ingot to form a hot rolled product; cold rolling the hot rolled product in a first cold rolling step to produce a first cold rolled product, wherein the first cold rolling step produces an 60-90 % thickness reduction. The method further comprises cold rolling the first cold rolled product in a second cold rolling step to produce a second cold rolled product, wherein the second cold rolling step produces an 15-30 % thickness reduction.

[0049] In embodiments having two cold rolling steps, the method further comprises recrystallization annealing the first cold rolled product, wherein the recrystallization annealing is at a metal temperature from 290-500 °C for 0.5-4 hrs. In certain embodiments, the recrystallization annealing is at a metal temperature from 300-450 °C. In certain embodiments, the recrystallization annealing is for 1-2 hrs.

[0050] In embodiments having two cold rolling steps, the method further comprises stabilization annealing of the second cold rolled product if two cold rolling steps are used, wherein the stabilization annealing is at a metal temperature from 100-300 °C for 0.5-4 hrs. In certain embodiments, the stabilization annealing is at a metal temperature of from 120-250 °C. In certain embodiments, the stabilization annealing is for 1-2 hrs.

[0051] In certain other embodiments the method of making an aluminum alloy as described herein comprises direct chill casting an aluminum ingot; homogenizing the ingot; hot rolling the ingot to form a hot rolled product; cold rolling the hot rolled product in a first cold rolling step, wherein the cold rolling produces an 60-90 % thickness reduction in the hot rolled product; recrystallization annealing of the cold rolled product, wherein the recrystallization annealing is at a metal temperature from 290-500 °C for 0.5-4 hrs; cold rolling the annealed product in a second cold rolling step to produce a second cold rolled product, wherein the second cold rolling step produces an 15-30 % thickness reduction in the annealed product; and stabilization annealing of the cold rolled product, wherein the stabilization annealing is at a metal temperature from 100-300 °C for 0.5-4 hrs. In certain embodiments, the recrystallization annealing is at a metal temperature from 300 to 450 °C. In certain embodiments, the recrystallization annealing is for 1-2 hrs. In certain embodiments the stabilization annealing is at a metal temperature of 120-250 °C. In certain embodiments the stabilization annealing is for 1-2 hrs.

[0052] The final temper of the alloys could be either H2x (without interannealing) or H3x or H1x (with interannealing). The combination of rolling reduction gives optimized earing and excellent performance in the bodymaker. The stabilization annealing cycle was designed to induce specific working hardening characteristics and formability in the alloys allowing extensive neck shaping without fracture.

Casting



[0053] The alloys described herein can be cast into ingots using a direct chill (DC) process. The DC casting process is performed according to standards commonly used in the aluminum industry as known to one of skill in the art. Optionally, the casting process can include a continuous casting process. The continuous casting may include, but are not limited to, twin roll casters, twin belt casters, and block casters. In some embodiments, to achieve the desired microstructure, mechanical properties, and physical properties of the products, the alloys are not processed using continuous casting methods.

[0054] The cast ingot can then be subjected to further processing steps to form a metal sheet. In some embodiments, the further processing steps include subjecting a metal ingot to a homogenization cycle, a hot rolling step, a cold rolling step, a recrystallization annealing step, a second cold rolling step, and a stabilization annealing step.

Homogenization



[0055] The homogenization step can involve a one-step homogenization or a two-step homogenization. In some embodiments of the homogenization step, a one-step homogenization is performed in which an ingot prepared from the alloy compositions described herein is heated to attain a peak metal temperature (PMT). The ingot is then allowed to soak (i.e., held at the indicated temperature) for a period of time during the first stage.

[0056] In some embodiments of the homogenization step, a two-step homogenization is performed where an ingot prepared from an alloy composition described herein is heated to attain a first temperature and then allowed to soak for a period of time In the second stage, the ingot can be cooled to a temperature lower than the temperature used in the first stage and then allowed to soak for a period of time during the second stage.

Hot Rolling



[0057] Following the homogenization, a hot rolling process can be performed. In some embodiments, the ingots can be hot rolled to an 5 mm thick gauge or less. For example, the ingots can be hot rolled to a 4 mm thick gauge or less, 3 mm thick gauge or less, 2 mm thick gauge or less, or 1 mm thick gauge or less.

[0058] In some embodiments, to obtain an appropriate balance of texture in the final materials, the hot rolling speed and temperature can be controlled such that full recrystallization of the hot rolled materials is achieved during coiling at the exit of the tandem mill.

Cold Rolling



[0059] In some embodiments, the hot rolled products can then be cold rolled to a final gauge thickness. In some embodiments, a first cold rolling step produces a reduction in thickness of from 60-90 % (e.g. 50-80 %, 60-70 %, 50-90 %, or 60-80 %). For example, the first cold rolling step produces a reduction in thickness of 65 %, 70 %, 75 %, 80 %, 85 %, or 90 %. In some embodiments, a second cold rolling step produces a further reduction in thickness of from 15-30 % (e.g., from 20-25%, 15-25%, 15-20%, 20-30%, or 25-30 %). For example, the second cold rolling step produces a further reduction in thickness of 15 %, 20 %, 25 %, or 30 %.

Annealing



[0060] In some embodiments, an annealing step is a recrystallization annealing (e.g., after the initial cold rolling). In one embodiment, the recrystallization annealing is at a metal temperature from 290-500 °C for 0.5-4 hrs. In one embodiment, the recrystallization annealing is at a metal temperature from 300-450 °C. In one embodiment, the recrystallization is for about 1-2 hrs.

[0061] The recrystallization annealing step can include heating the alloy from room temperature to a temperature from 290 °C to about 500 °C (e.g., from 300 °C to 450 °C, from 325 °C to 425 °C, from 300 °C to 400 °C, from 400 °C to 500 °C, from 330 °C to 470 °C, from 375 °C to 450 °C, or from 450 °C to 500 °C).

[0062] In certain aspects, an annealing step is stabilization annealing (e.g., after the final cold rolling). In one embodiment, the stabilization annealing is at a metal temperature from 100-300 °C for 0.5-4 hrs. In one embodiment, the stabilization annealing is at a metal temperature from 120-250 °C for 1-2 hrs.

[0063] The stabilization annealing step can include heating the alloy from room temperature to a temperature from 100°C to 300 °C (e.g., from 120 °C to 250 °C, from 125 °C to 200 °C, from 200 °C to 300 °C, from 150 °C to 275 °C, from 225 °C to 300 °C, or from 100 °C to 175 °C).

Methods of Preparing Highly Shaped Metal Objects



[0064] The methods described herein can be used to prepare highly shaped metal objects, such as aluminum cans or bottles. The cold rolled sheets described above can be subjected to a series of conventional can and bottle making processes to produce preforms. The preforms can then be annealed to form annealed preforms. Optionally, the preforms are prepared from the aluminum alloys using a drawing and wall ironing (DWI) process and the cans and bottles are made according to other shaping processes as known to those of ordinary skill in the art.

[0065] The shaped aluminum bottle of the present invention may be used for beverages including but not limited to soft drinks, water, beer, energy drinks and other beverages.


Claims

1. A method of making an aluminum alloy product comprising:
direct chill casting an aluminum alloy comprising:

0.15-0.50 wt. % Si,

0.35-0.65 wt. % Fe,

0.05-0.30 wt. % Cu,

0.60-1.10 wt. % Mn,

0.80-1.30 wt. % Mg,

0.000-0.080 wt. % Cr,

0.000-0.500 wt. % Zn,

0.000-0.080 wt. % Ti,

up to 0.15 wt. % impurities, with the remainder Al, into an ingot; homogenizing the ingot;

hot rolling the homogenized ingot to form a hot rolled product;

cold rolling the hot rolled product in a first cold rolling step to form a first cold rolled product, wherein the first cold rolling step produces an 60-90 % thickness reduction;

prior to a second cold rolling step, recrystallization annealing the first cold rolled product, wherein the recrystallization annealing is at a metal temperature from 290-500 °C for 0.5-4 hrs,

cold rolling the first cold rolled product in a second cold rolling step to form a second cold rolled product, wherein the second cold rolling produces an 15-30 % thickness reduction, and

stabilization annealing of the second cold rolling product, wherein the stabilization annealing is at a metal temperature from 100-300 °C for 0.5-4 hrs.


 
2. The method of claim 1, wherein the stabilization annealing is at a metal temperature from 120-250 °C for 1-2 hrs.
 
3. The method of claim 1, wherein the recrystallization annealing is at a metal temperature from 300-450 °C for 1-2 hrs.
 
4. An aluminum alloy product made by the method of any of claims 1-3.
 
5. The aluminum alloy product according to claim 4, having a geometrically necessary boundary (GNB)-free substructure or a substructure with an average GNB spacing larger than 8 microns.
 
6. The aluminum alloy product according to any of claims 4-5, comprising:

0.20-0.40 wt. % Si,

0.40-0.60 wt. % Fe,

0.08-0.20 wt. % Cu,

0.70-1.00 wt. % Mn,

0.85-1.22 wt. % Mg,

0.000-0.070 wt. % Cr,

0.000-0.400 wt. % Zn,

0.000-0.070 wt. % Ti,

up to 0.15 wt. % impurities, with the remainder Al.


 
7. The aluminum alloy product according to claim 6 comprising:

0.22-0.38 wt. % Si,

0.42-0.58 wt. % Fe,

0.10-0.18 wt. % Cu,

0.75-0.98 wt. % Mn,

0.90-1.15 wt. % Mg,

0.000-0.060 wt. % Cr,

0.000-0.300 wt. % Zn,

0.000-0.060 wt. % Ti,

up to 0.15 wt. % impurities, with the remainder Al.


 
8. The aluminum alloy product according to claim 7 comprising:

0.27-0.33 wt. % Si,

0.46-0.54 wt. % Fe,

0.11-0.15 wt. % Cu,

0.80-0.94 wt. % Mn,

0.93-1.07 wt. % Mg,

0.000-0.050 wt. % Cr,

0.000-0.250 wt. % Zn,

0.000-0.050 wt. % Ti,

up to 0.15 wt. % impurities, with the remainder as Al.


 
9. The aluminum alloy product according to claim 7 comprising:

0.25-0.35 wt. % Si,

0.44-0.56 wt. % Fe,

0.09-0.160 wt. % Cu,

0.78-0.94 wt. % Mn,

0.90-1.1 wt. % Mg,

0.000-0.050 wt. % Cr,

0.000-0.250 wt. % Zn,

0.000-0.050 wt. % Ti,

up to 0.15 wt. % impurities, with the remainder Al.


 
10. The aluminum alloy product according to any of claims 4-9, being a bottle or can.
 
11. The aluminum alloy product according to any of claims 4-10, being a shaped aluminum bottle.
 
12. The aluminum alloy product according to any of claims 4-9, being a sheet.
 


Ansprüche

1. Verfahren zur Herstellung eines Aluminiumlegierungsprodukts, umfassend:
direktes Kokillengießen einer Aluminiumlegierung, umfassend:

0,15 - 0,50 Gew.-% Si,

0,35 - 0,65 Gew.-% Fe,

0,05 - 0,30 Gew.-% Cu,

0,60 - 1,10 Gew.-% Mn,

0,80 - 1,30 Gew.-% Mg,

0,000 - 0,080 Gew.-% Cr,

0,000 - 0,500 Gew.-% Zn,

0,000 - 0,080 Gew.-% Ti,

bis zu 0,15 Gew.-% Verunreinigungen, wobei der Rest Al ist, in einen Barren; Homogenisieren des Barrens;

Warmwalzen des homogenisierten Barrens, um ein warmgewalztes Produkt zu bilden; Kaltwalzen des warmgewalzten Produkts in einem ersten Kaltwalzschritt, um ein erstes kaltgewalztes Produkt zu bilden, wobei der erste Kaltwalzschritt eine Dickenabnahme von 60 - 90% herstellt;

vor einem zweiten Kaltwalzschritt Rekristallisationsglühen des ersten kaltgewalzten Produkts, wobei das Rekristallisationsglühen bei einer Metalltemperatur von 290 - 500 °C für 0,5 - 4 Stunden erfolgt,

Kaltwalzen des ersten kaltgewalzten Produkts in einem zweiten Kaltwalzschritt, um ein zweites kaltgewalztes Produkt zu bilden, wobei der zweite Kaltwalzschritt eine Dickenabnahme von 15 - 30% herstellt und

Stabilisationsglühen des zweiten kaltgewalzten Produkts, wobei das Stabilisationsglühen bei einer Metalltemperatur von 100 - 300 °C für 0,5 - 4 Stunden erfolgt.


 
2. Verfahren nach Anspruch 1, wobei das Stabilisationsglühen bei einer Metalltemperatur von 120 - 250 °C für 1 - 2 Stunden erfolgt.
 
3. Verfahren nach Anspruch 1, wobei das Rekristallisationsglühen bei einer Metalltemperatur von 300 - 450 °C für 1 - 2 Stunden erfolgt.
 
4. Aluminiumlegierungsprodukt, das durch das Verfahren nach einem der Ansprüche 1 - 3 hergestellt wurde.
 
5. Aluminiumlegierungsprodukt nach Anspruch 4, mit einer geometrisch notwendigen Umgrenzungs (GNB, geometrically necessary boundary) -freien Unterstruktur oder einer Unterstruktur mit einem durchschnittlichen GNB-Abstand größer als 8 Mikrometer.
 
6. Aluminiumlegierungsprodukt nach einem der Ansprüche 4 - 5, umfassend:

0,20 - 0,40 Gew.-% Si,

0,40 - 0,60 Gew.-% Fe,

0,08 - 0,20 Gew.-% Cu,

0,70 - 1,00 Gew.-% Mn,

0,85 - 1,22 Gew.-% Mg,

0,000 - 0,070 Gew.-% Cr,

0,000 - 0,400 Gew.-% Zn,

0,000 - 0,070 Gew.-% Ti,

bis zu 0,15 Gew.-% Verunreinigungen, wobei der Rest Al ist.


 
7. Aluminiumlegierungsprodukt nach Anspruch 6, umfassend:

0,22 - 0,38 Gew.-% Si,

0,42 - 0,58 Gew.-% Fe,

0,10 - 0,18 Gew.-% Cu,

0,75 - 0,98 Gew.-% Mn,

0,90 - 1,15 Gew.-% Mg,

0,000 - 0,060 Gew.-% Cr,

0,000- 0,300 Gew.-% Zn,

0,000 - 0,060 Gew.-% Ti,

bis zu 0,15 Gew.-% Verunreinigungen, wobei der Rest Al ist.


 
8. Aluminiumlegierungsprodukt nach Anspruch 7, umfassend:

0,27 - 0,33 Gew.-% Si,

0,46 - 0,54 Gew.-% Fe,

0,11 - 0,15 Gew.-% Cu,

0,80 - 0,94 Gew.-% Mn,

0,93 - 1,07 Gew.-% Mg,

0,000 - 0,050 Gew.-% Cr,

0,000 - 0,250 Gew.-% Zn,

0,000 - 0,050 Gew.-% Ti,

bis zu 0,15 Gew.-% Verunreinigungen, wobei der Rest Al ist.


 
9. Aluminiumlegierungsprodukt nach Anspruch 7, umfassend:

0,25 - 0,35 Gew.-% Si,

0,44 - 0,56 Gew.-% Fe,

0,09 - 0,160 Gew.-% Cu,

0,78 - 0,94 Gew.-% Mn,

0,90 - 1,1 Gew.-% Mg,

0,000 - 0,050 Gew.-% Cr,

0,000 - 0,250 Gew.-% Zn,

0,000 - 0,050 Gew.-% Ti,

bis zu 0,15 Gew.-% Verunreinigungen, wobei der Rest Al ist.


 
10. Aluminiumlegierungsprodukt nach einem der Ansprüche 4 - 9, das eine Flasche oder eine Dose ist.
 
11. Aluminiumlegierungsprodukt nach einem der Ansprüche 4 -10, das eine geformte Aluminiumflasche ist.
 
12. Aluminiumlegierungsprodukt nach einem der Ansprüche 4 - 9, das ein Blech ist.
 


Revendications

1. Procédé de fabrication d'un produit en alliage d'aluminium comprenant :
la coulée en lingotière ouverte d'un alliage d'aluminium comprenant :

0,15-0,50 % en poids de Si,

0,35-0,65 % en poids de Fe,

0,05-0,30 % en poids de Cu,

0,60-1,10 % en poids de Mn,

0,80-1,30 % en poids de Mg,

0,000-0,080 % en poids de Cr,

0,000-0,500 % en poids de Zn,

0,000-0,080 % en poids de Ti,

jusqu'à 0,15 % en poids d'impuretés, avec le reste de Al, en un lingot ;

l'homogénéisation du lingot ;

le laminage à chaud du lingot homogénéisé pour former un produit laminé à chaud ;

le laminage à froid du produit laminé à chaud dans une première étape de laminage à froid pour former un premier produit laminé à froid, où la première étape de laminage à froid produit une réduction de l'épaisseur de 60-90 % ;

avant une seconde étape de laminage à froid, le recuit de recristallisation du premier produit laminé à froid, où le recuit de recristallisation est à une température du métal de 290-500°C pendant 0,5-4 heures,

le laminage à froid du premier produit laminé à froid dans une seconde étape de laminage à froid pour former un second produit laminé à froid, où le second laminage à froid produit une réduction de l'épaisseur de 15-30 %, et

le recuit de stabilisation du second produit laminé à froid, où le recuit de stabilisation est à une température du métal de 100-300°C pendant 0,5-4 heures.


 
2. Procédé selon la revendication 1, où le recuit de stabilisation est à une température du métal de 120-250°C pendant 1-2 heures.
 
3. Procédé selon la revendication 1, où le recuit de recristallisation est à une température du métal de 300-450°C pendant 1-2 heures.
 
4. Produit en alliage d'aluminium fabriqué par le procédé selon l'une quelconque des revendications 1-3.
 
5. Produit en alliage d'aluminium selon la revendication 4, ayant une substructure sans limites géométriquement nécessaires (LGN) ou une substructure avec un espacement des LGN plus grand que 8 micromètres.
 
6. Produit en alliage d'aluminium selon l'une quelconque des revendications 4-5, comprenant :

0,20-0,40 % en poids de Si,

0,40-0,60 % en poids de Fe,

0,08-0,20 % en poids de Cu,

0,70-1,00 % en poids de Mn,

0,85-1,22 % en poids de Mg,

0,000-0,070 % en poids de Cr,

0,000-0,400 % en poids de Zn,

0,000-0,070 % en poids de Ti,

jusqu'à 0,15 % en poids d'impuretés, avec le reste de Al.


 
7. Produit en alliage d'aluminium selon la revendication 6 comprenant :

0,22-0,38 % en poids de Si,

0,42-0,58 % en poids de Fe,

0,10-0,18 % en poids de Cu,

0,75-0,98 % en poids de Mn,

0,90-1,15 % en poids de Mg,

0,000-0,060 % en poids de Cr,

0,000-0,300 % en poids de Zn,

0,000-0,060 % en poids de Ti,

jusqu'à 0,15 % en poids d'impuretés, avec le reste de Al.


 
8. Produit en alliage d'aluminium selon la revendication 7 comprenant :

0,27-0,33 % en poids de Si,

0,46-0,54 % en poids de Fe,

0,11-0,15 % en poids de Cu,

0,80-0,94 % en poids de Mn,

0,93-1,07 % en poids de Mg,

0,000-0,050 % en poids de Cr,

0,000-0,250 % en poids de Zn,

0,000-0,050 % en poids de Ti,

jusqu'à 0,15 % en poids d'impuretés, avec le reste de Al.


 
9. Produit en alliage d'aluminium selon la revendication 7 comprenant :

0,25-0,35 % en poids de Si,

0,44-0,56 % en poids de Fe,

0,09-0,160 % en poids de Cu,

0,78-0,94 % en poids de Mn,

0,90-1,1 % en poids de Mg,

0,000-0,050 % en poids de Cr,

0,000-0,250 % en poids de Zn,

0,000-0,050 % en poids de Ti,

jusqu'à 0,15 % en poids d'impuretés, avec le reste de Al.


 
10. Produit en alliage d'aluminium selon l'une quelconque des revendications 4-9, qui est une bouteille ou une boîte.
 
11. Produit en alliage d'aluminium selon l'une quelconque des revendications 4-10, qui est une bouteille en aluminium mise en forme.
 
12. Produit en alliage d'aluminium selon l'une quelconque des revendications 4-9, qui est une tôle.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description