(19)
(11)EP 3 236 512 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 15873695.9

(22)Date of filing:  24.12.2015
(51)International Patent Classification (IPC): 
H01M 2/20(2006.01)
H01M 2/30(2006.01)
G01R 31/364(2019.01)
H01M 2/10(2006.01)
H01M 10/48(2006.01)
(86)International application number:
PCT/KR2015/014281
(87)International publication number:
WO 2016/105168 (30.06.2016 Gazette  2016/26)

(54)

METHOD FOR WELDING ELECTRODE LEADS OF SECONDARY BATTERY MODULE AND COMPACT SECONDARY BATTERY MODULE USING THE SAME

VERFAHREN ZUM SCHWEISSEN VON ELEKTRODENLEITUNGEN EINES SEKUNDÄRBATTERIEMODULS UND KOMPAKTES SEKUNDÄRBATTERIEMODUL, BEI DEM DAS VERFAHREN ANGEWANDT WURDE

PROCÉDÉ PERMETTANT DE SOUDER DES CONDUCTEURS D'ÉLECTRODE D'UN MODULE DE BATTERIE RECHARGEABLE ET MODULE DE BATTERIE RECHARGEABLE COMPACT POUR LEQUEL LE PROCÉDÉ A ÉTÉ UTILISÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.12.2014 KR 20140188072

(43)Date of publication of application:
25.10.2017 Bulletin 2017/43

(73)Proprietor: LG Chem, Ltd.
Seoul 07336 (KR)

(72)Inventors:
  • LEE, Bum-Hyun
    Daejeon 34122 (KR)
  • SHIN, Jin-Kyu
    Daejeon 34122 (KR)
  • CHAE, Seang-Hee
    Daejeon 34122 (KR)

(74)Representative: Plasseraud IP 
66, rue de la Chaussée d'Antin
75440 Paris Cedex 09
75440 Paris Cedex 09 (FR)


(56)References cited: : 
EP-A2- 2 416 436
WO-A1-2014/185567
KR-A- 20090 093 222
KR-A- 20130 076 499
KR-A- 20140 056 836
US-A1- 2013 130 071
WO-A1-2013/191478
JP-A- 2014 238 938
KR-A- 20100 109 857
KR-A- 20130 108 691
KR-A- 20150 062 777
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates to a method for welding electrode leads of a secondary battery module and a compact secondary battery module using the same, and more particularly, to a method for welding electrode leads and bus bars of a lithium secondary battery module and a lithium secondary battery module using the same.

    BACKGROUND ART



    [0002] Along with technical development and increased demands on mobile devices, secondary batteries have been consumed more and more as energy sources. In the past, nickel cadmium batteries or hydrogen ion batteries have been used as secondary batteries, but recently, lithium ion batteries and lithium polymer batteries with a high energy density are widely used.

    [0003] Among these secondary batteries, a lithium secondary battery using lithium transition metal oxide, lithium complex oxide or the like as a positive electrode active material and ensuring high output and capacity receives a great interest. Generally, a lithium secondary battery has a structure in which an electrode assembly composed of a positive electrode, a separator and a negative electrode is embedded in a sealed container together with an electrolyte.

    [0004] Meanwhile, the lithium secondary battery includes a positive electrode, a negative electrode, and a separator and an electrolyte interposed therebetween. Depending on which material is used as a positive electrode active material and a negative electrode active material, the lithium secondary battery is classified into a lithium ion battery (LIB), a polymer lithium ion battery (PLIB) and so on. Typically, electrodes of these lithium secondary batteries are formed by applying a positive electrode active material or a negative electrode active material to a current collector such as aluminum or copper sheet, mesh, film, or foil, and then drying the same.

    [0005] In the secondary battery module, cells accommodated in each cartridge by performing welding, bolting, riveting or the like between cell leads. In addition, when cells are arranged in series or in parallel in the secondary battery module, three members, namely the positive electrode lead made of aluminum, the negative electrode lead made of copper and the bus bar made of copper and disposed for sensing should be electrically connected by using the above method.

    [0006] According to the prior art, there are various secondary battery modules, and the cartridges of the modules and bus bars for sensing are structured and located in different ways. For this reason, it is difficult to efficiently perform the connection work and the welding quality of the sensing structure is deteriorated. In addition, an unnecessary space of the secondary battery module should be provided for welding or the like, and resultantly energy density of the secondary battery module is lowered.

    [0007] In addition, secondary battery modules used in energy storage devices or power storage devices have been developed for designing developing secondary battery modules as compact as possible in order to increase energy efficiency or density.

    [0008] Meanwhile, in the configuration of a general secondary battery module, when welding (especially, laser welding) is performed to electrode leads (Al)(Cu) and bus bars (Cu) of cells, due to the different melting points of materials, generally, base materials are disposed in the order of an aluminum lead, a copper lead and bus bars, and then laser is irradiated from a cell lead for welding. However, if welding is performed in this order, the cell lead may be deformed first by the laser.

    [0009] EP 2 416 436 A2 discloses a voltage sensing member for sensing voltages of battery cells constituting a battery module, the voltage sensing member including (a) front and rear supporting parts mounted to a bottom of the module at front and rear parts of the module corresponding to electrode terminal connections of the battery cells, (b) a connection part for electrically interconnecting the front and rear supporting parts, (c) conductive sensing parts having one-side ends coupled to the corresponding supporting parts via wires, each of the conductive sensing parts having a larger contact surface than each of the wires, and (d) a connector mounted on the front or rear supporting part for transmitting the sensed voltages of the battery cells to a battery control device, wherein the conductive sensing parts are connected to the electrode terminal connections of the battery cells in a surface contact manner.

    [0010] WO 2013/191478 A1 discloses a method for welding a battery module and a welded structure, in which battery cells provided with an electrode tab are assembled to comprise a module, and a voltage measurement portion of a voltage measurement means is welded to the electrode tabs to provide more stability and a more reliable voltage measurement, and to improve productivity due to ease of work by enabling welding between same type of materials.

    [0011] KR 2014 0056836 A discloses a battery module including battery cells and bus bars for electrical connection between electrode terminals of the battery cells and between the electrode terminal of the battery cell and an external I/O terminal, wherein at least one of the bus bars is composed of a lead-free alloy including tin and copper as main components.

    [0012] US 2013/130071 A1 discloses a battery pack having battery cells and bus bars, each of the battery cells being covered with an exterior case and all the battery cells being electrically connected in series through the bus bars. The battery cells are divided into a first and a second stacked groups arranged adjacent to each other in a lateral direction of the battery pack, the battery cells in each stacked group being stacked in a thickness direction of the battery pack. The stacked groups have a different number of battery cells in order to make a stair structure, an electrode terminal of one end terminal of the battery cells connected in series being arranged adjacent to the stair structure. A control board is arranged on a lower step part of the stair structure, and devices formed on the control board detect a state of each battery cell.

    DISCLOSURE


    Technical Problem



    [0013] The present disclosure is designed to solve the problems of the related art, and therefore the present disclosure is directed to providing a method for welding electrode leads of a secondary battery module with an improved structure, in which a bus bar made of copper, a copper lead made of the same material as the bus bar, and an aluminum lead are arranged in order at a portion where corresponding electrode leads of adjacent cells of the secondary battery module and then integrally welded, or in which an aluminum lead a copper lead are arranged in parallel and then welded at two welding point from the bus bar. The present disclosure is also directed to providing a compact secondary battery module using the method.

    Technical Solution



    [0014] In one aspect of the present disclosure, there is provided a compact secondary battery module according to the claims, comprising: a cartridge assembly having a plurality of cartridges stacked while accommodating cells, respectively, so that a plurality of lead welding portions where a first lead and a second lead of adjacent cells overlap with each other are located at a cartridge sidewall with a predetermined pattern; and a sensing housing having a plurality of bus bars located and welded corresponding to the lead welding portions, respectively, the sensing housing being capable of being arranged at a side of the cartridge assembly, wherein when the sensing housing is coupled to the cartridge assembly, the first lead, the second lead and the bus bar are located in order from the sidewall of the cartridge in an outer direction and welded from the bus bar.

    [0015] In another aspect of the present disclosure, there is also provided a compact secondary battery module according to the claims, comprising: a cartridge assembly having a plurality of cartridges stacked while accommodating cells, respectively, so that a plurality of lead welding portions where leads of adjacent cells are located on substantially the same line are formed at a cartridge sidewall with a predetermined pattern; and a sensing housing having a plurality of bus bars located and welded corresponding to the lead welding portions, respectively, the sensing housing being capable of being arranged at a side of the cartridge assembly, wherein when the sensing housing is coupled to the cartridge assembly, the bus bars are welded to a first lead and a second lead having a polarity opposite to the first lead of corresponding cells at different welding points.

    [0016] Preferably, the secondary battery module may further comprise a barrier provided at a side of each cartridge to protect the cell during a welding work.

    [0017] Preferably, the lead of each cell may be bent at a right angle at about 1 mm from a lead insulation portion in a state of being accommodated in the corresponding cartridge.

    [0018] Preferably, the welding may be laser welding.

    [0019] Preferably, in the laser welding, laser may be irradiated substantially perpendicular to the sensing housing.

    [0020] Preferably, the bus bar and the second lead may be made of copper, and the first lead may be made of aluminum.

    [0021] The sensing housing further includes a battery management system (BMS) circuit board configured to manage voltage and/or temperature data of each cell detected by each bus bar.

    [0022] Preferably, the sensing housing may be coupled to the cartridge assembly by means of snap-fitting or hooking.

    [0023] Preferably, the secondary battery module may further comprise a sensing cover coupled to the sensing housing.

    [0024] Preferably, the sensing cover may be coupled to the sensing housing by means of snap-fitting or hooking.

    [0025] Preferably, two neighboring cartridges of the cartridge assembly may be coupled to each other by means of hooking.

    [0026] Preferably, the cartridge assembly may further include an upper cover and a lower cover coupled to cartridges at both ends thereof by means of hooking.
    In another aspect of the present disclosure, there is also provided a method for welding electrode leads of a compact secondary battery module according to the claims, comprising: (a) preparing a plurality of cells having a first lead and a second lead which have opposite polarities and are bent in opposite directions; (b) forming a cartridge assembly by stacking a plurality of cartridges accommodating cells, respectively, so that lead welding portions are formed at a cartridge sidewall with a predetermined pattern, the lead welding portions allowing the first lead of any one of adjacent cells to face the cartridge sidewall and allowing the second lead of the other cell to face the first lead; (c) assembling a sensing housing having a plurality of bus bars respectively facing the second lead to a side of the cartridge assembly; and (d) welding each bus bar as well as the second lead and the first lead corresponding thereto.

    [0027] In another aspect of the present disclosure, there is also provided a method for welding electrode leads of a compact secondary battery module according to the claims, comprising: (a) preparing a plurality of cells having a first lead and a second lead which have opposite polarities and are bent in opposite directions; (b) forming a cartridge assembly by stacking a plurality of cartridges accommodating cells, respectively, so that lead welding portions are formed at a cartridge sidewall, the lead welding portions allowing the first lead of any one of adjacent cells and the second lead of the other cell to be located on the same line at the cartridge sidewall; (c) assembling a sensing housing having a plurality of bus bars capable of facing the first and second corresponding leads at the same time to a side of the cartridge assembly; and (d) welding the bus bars at different welding points corresponding to the first lead and the second lead.

    [0028] Preferably, in the step (b), a barrier may be formed at a side of each cartridge.

    [0029] Preferably, in the step (a), each lead may be bent at a right angle at about 1 mm from a lead insulation portion of the cell in a state of being accommodated in the corresponding cartridge.

    [0030] Preferably, the step (d) may use a laser welder.

    [0031] Preferably, a laser irradiation direction of the laser welder may be substantially perpendicular to the sensing housing.

    [0032] Preferably, the bus bar and the second lead may be made of copper, and the first lead may be made of aluminum.

    [0033] In another aspect of the present disclosure, there is also provided a compact secondary battery module, manufactured by the above method.

    [0034] In another aspect of the present disclosure, there is also provided a secondary battery packing, comprising the compact secondary battery module manufactured by the above method.

    Advantageous Effects



    [0035] The method for welding electrode terminals of a compact secondary battery module and the compact secondary battery module using the same according to embodiments of the present disclosure give the following effects.

    [0036] First, a bending length of the lead of the cell is minimized, and while assembling a structure to which the bus bar is attached is assembled to a side of the cartridge assembly, the order of base materials may be changed (for example, welding is individually performed at two welding points between the bus bar and the aluminum lead and between the bus bar and the copper lead, or the bus bar, the copper lead and the aluminum lead are welded at the same time), especially in laser welding. In other words, it is possible to improve the welding quality of the sensing structure and to construct a compact module by welding different kinds of materials.

    [0037] Second, an unnecessary space is minimized in the module configuration, so that the module may be compactly constructed to improve the energy efficiency.

    [0038] Third, it is possible to prevent the damage of the lead by irradiating laser to the bus bar first in a welding irradiation direction, in the order of the welding base material between the cell leads and the bus bar.

    DESCRIPTION OF DRAWINGS



    [0039] The accompanying drawings illustrate a preferred embodiment of the present disclosure and together with the foregoing disclosure, serve to provide further understanding of the technical features of the present disclosure, and thus, the present disclosure is not construed as being limited to the drawing.

    FIG. 1 is a perspective view showing a secondary battery module according to an embodiment of the present disclosure.

    FIG. 2 is an exploded perspective view showing the secondary battery module according to an embodiment of the present disclosure.

    FIG. 3 is a partial perspective view showing a cartridge assembly depicted in FIGS. 1 and 2.

    FIG. 4 is an enlarged perspective view of FIG. 3.

    FIG. 5 is a partial perspective view showing a sensing housing of FIG. 2.

    FIG. 6 is a cross-sectioned view showing a curved portion of a lead of a cell of the secondary battery module according to an embodiment of the present disclosure.

    FIG. 7 is a partial cross-sectioned view showing a lead welding portion of the secondary battery module according to an embodiment of the present disclosure.

    FIG. 8 is a diagram for illustrating a method for welding electrode leads of a compact secondary battery according to an embodiment of the present disclosure.

    FIG. 9 is a diagram for illustrating a method for welding electrode leads of a compact secondary battery according to another embodiment of the present disclosure.


    BEST MODE



    [0040] Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.

    [0041] FIG. 1 is a perspective view showing a secondary battery module according to an embodiment of the present disclosure, and FIG. 2 is an exploded perspective view showing the secondary battery module according to an embodiment of the present disclosure.

    [0042] Referring to FIGS. 1 and 2, a compact secondary battery module 100 according to an embodiment of the present disclosure includes a cartridge assembly 20 in which a plurality of cartridges 10 accommodating cells 2, respectively, are stacked, a sensing housing 30 coupled to a side of the cartridge assembly 20 by means of, for example, one-touch, snap-fitting, hooking or the like, and a sensing cover 40 for protecting a plurality of bus bars 32 and a battery management system (BMS) circuit board 34 installed at the sensing housing 30. In FIG. 2, a reference sign 36 represents a pair of data communication ports for exchanging data between BMS circuit boards 34 when a plurality of modules 100 are coupled, and a reference sign 38 represents a temperature data port for receiving a signal of a temperature sensor (not shown) which measures an inner temperature of the secondary battery module 100. A reference sign 31 represents a positive electrode terminal and a negative electrode terminal of a complete secondary battery module 100, respectively.

    [0043] The cartridge assembly 20 is prepared by stacking a plurality of cartridges 10 which are made by injection-molding plastic and respectively have an accommodation portion capable of accommodating the cell 2. The cartridges 10 may be coupled to each other by means of snap-fitting or hooking. In the cartridge assembly 20, a plurality of lead welding portions where leads 12, 14 having opposite polarities of neighboring cells 2, for example a first lead 12 made of aluminum and having a first polarity and a second lead 14 made of copper and having a second polarity opposite to the first polarity, overlap each other are located at the sidewall of each cartridge 10 with a predetermined pattern.

    [0044] The cartridge assembly 20 has an upper cover 11 and a lower cover 13, coupled to the cartridges 10 at both ends by means of, for example, hooking. The upper cover 11 and the lower cover 13 are injection-molded to have substantially the same shape as the individual cartridge 10 of the cartridge assembly 20, respectively. It will be understood by those skilled in the art that the upper cover 11 and the lower cover 13 have a function of protecting the cell 2 accommodated in the cartridges 10 at both ends and have a function and structure to finish and surround the appearance of the secondary battery module 100.

    [0045] FIG. 3 is a partial perspective view showing a cartridge assembly depicted in FIGS. 1 and 2, FIG. 4 is an enlarged perspective view of FIG. 3, and FIG. 5 is a partial perspective view showing a sensing housing of FIG. 2.

    [0046] Referring to FIGS. 1 to 5, the sensing housing 30 is provided with a plurality of bus bars 32 corresponding to the lead welding portions, respectively. Each bus bar 32 may be made of, for example, copper. In addition, the sensing housing 30 may be injection-molded in an approximately rectangular shape by, for example, insulating plastic, and a plurality of accommodation holes 35 capable of respectively accommodating the bus bars 32 are formed therethrough in a predetermined pattern. At an approximate center of the sensing housing 30, a BMS circuit board 34 functioning to collect voltage and/or temperature data of each cell 2 sensed by the corresponding bus bar 32, balancing the corresponding cell 2 by means of the collected data, and transferring the data to another controller (not shown) of the module is installed. The BMS circuit board 34 is electrically connected to one end of each bus bar 32.

    [0047] The first lead 12 and the second lead 14 extend and bend from a side of each cell 2 by a predetermined length and have a predetermined width, respectively. The first lead 12 of each cell 2 is bent by 90 degrees downwards on the drawing, and the second lead 14 is bent 90 degrees upwards on the drawing.

    [0048] As described above, in order to construct each lead welding portion, the first lead 12 of one of neighboring cells 2 extends from the bent portion by about a half of the thickness of the cartridge 10, and the second lead 14 of the other cell 2 extends by about another half of the thickness of the cartridge 10 so that the first lead 12 and the second lead 14 are positioned on the same plane in the lead welding portion and the ends thereof are substantially in contact with each other or spaced from each other by a predetermined distance. In this state, if the sensing housing 30 is coupled to the cartridge assembly 20, the bus bars 32 corresponding to each other face the first lead 12 and the second lead 14 at the same time. Also, for example, welding may be performed at two welding points using a laser welder. In this welding process, the bus bars 32 of the sensing housing 30 corresponding to the first leads 12 may be welded first, and then the welding points of the bus bars 32 corresponding to the second leads 14 may be welded. Also, two welding points may be welded simultaneously by using a welder with two welding points. According to a modified embodiment, it would be understood by those skilled in the art that the first lead 12, the second lead 14, and the bus bars 32 corresponding thereto may also be coupled together by ultrasonic welding.

    [0049] FIG. 6 is a cross-sectioned view showing a curved portion of a secondary battery module according to the present disclosure. Referring to FIG. 6, in order to maximize the energy efficiency by compactly configuring the secondary battery module 100 according to the present invention, the leads 12 14 of each cell 2 is bent at a point of about 0.8 to 1.2 mm from the lead insulation portion 15 in a state of being accommodated in the corresponding cartridge.

    [0050] FIG. 7 is a partial cross-sectional view of a secondary battery module according to an embodiment of the present disclosure. Referring to FIG. 7, the sensing housing 30 is coupled to a side of the cartridge assembly 20 in a state where the first lead 12 and the second lead 14 of the cells 2 adjacent to the respective lead welding portions are disposed to face each other in parallel, thereby configuring the secondary battery module 100. In this case, the bus bar 32, the first lead 12 and the second lead 14 are positioned to face in a direction from the outside of the module 100, namely from a side where laser welding is performed, toward the cartridge assembly. In this arrangement, when welding is performed between the bus bar 32 and the first leads 12 and between the bus bar 32 and the second leads 14 in this deployed state, particularly when laser is irradiated in a direction substantially perpendicular to the sensing housing 30, each cartridge 10 has a barrier 18 on a side thereof in order to protect the cells 2 accommodated in each cartridge 10. It will be fully understood by those skilled in the art that the barrier 18 serves as a blocking wall to prevent a laser (not shown) emitting from a laser device (not shown) from being directly irradiated onto the cell 2.

    [0051] Referring to FIGS. 1 and 2 again, in the secondary battery module 100 according to an embodiment of the present disclosure, in a state where the sensing housing 30 is coupled to the cartridge assembly 20, a sensing cover 40 is coupled to the sensing housing 30 to protect the BMS circuit board 34 and bus bar 32. The sensing cover 40 may be coupled to the sensing housing 30 by means of snap-fitting or hooking, and may also be injection-molded with an insulating plastic material.

    [0052] A method of welding an electrode lead of a secondary battery module according to another embodiment of the present disclosure will be described.

    [0053] First, a plurality of cells 2 in which the first lead 12 and the second lead 14 having opposite polarities are bent in opposite directions are prepared. The lengths of the first lead 12 and the second lead 14 may be about a half of the width of cartridge 10 when the cell 2 is received in cartridge 10. In addition, in a state where the cell 2 is accommodated in the corresponding cartridge 10, the leads 12, 14 of the cell is bent at a point of 0.8 to 1.2 mm, preferably 1 mm, from the lead insulation portion 15 at a right angle, thereby maximizing the energy efficiency.

    [0054] Subsequently, a plurality of cartridges 10 in which the cells 2 are respectively accommodated so that the lead welding portions are positioned in a predetermined pattern on the sidewall of the cartridges 10 to allow the leads 12, 14 of the neighboring cells 2 with opposite polarities to face each other are stacked to form the cartridge assembly 20. Here, if the cartridges 10 accommodating the cells 2 are stacked to form the cartridge assembly 20, ends of the first lead 12 and the second lead 14 of the neighboring two cells 2 with opposite polarities may contact each other or be spaced from each other by a predetermined distance. However, at the lead welding portion, the first lead 12 and the second lead 14 are placed on the same plane. Each cartridge 10 of the cartridge assembly 20 may include an accommodation portion capable of accommodating the cell 2, and may also have a hook or a slot so that a pair of adjacent cartridges 10 may be coupled to each other by means of snap-fitting or hooking, as being easily understood by those skilled in the art. In addition, at both sides of the cartridge assembly 20, the upper cover 11 and the lower cover 13 which may accommodate and protect the cell 2 are coupled to each other by means of, for example, snap-fitting or hooking. In addition, the cartridge 10 at which the first lead 12 and the second lead 14 are placed may employ a cartridge having a barrier 18 at a side thereof so that the cell 2 may be protected against the laser during the laser welding operation described below.

    [0055] Next, the sensing housing 30 having a plurality of bus bars 32 respectively corresponding to respective lead welding portions is coupled to a side of the cartridge assembly 20 by means of snap-fitting or hooking so that the corresponding bus bar 32 may face the first lead 12 and the second lead 14. Here, the first lead 12 is made of aluminum, and the second lead 14 and the bus bar 32 are made of copper.

    [0056] Finally, laser welding is performed at two welding points of the first lead 12, the second lead 14 and each bus bar 32 of each lead welding portion. In this step, a welding system with two welding points may be used for each bus bar 32, or a separate laser welder with a welding point corresponding to any one lead may be used to perform point welding several times. In addition, the laser welder may irradiate a laser in a direction substantially perpendicular to the sensing housing 30.

    [0057] The secondary battery modules 100 according to the above embodiments may electrically connected to each other in series or in parallel and are accommodated in a predetermined case to provide a compact secondary battery pack for a power storage device for a home photovoltaic (PV) solar energy panel.

    [0058] FIG. 9 is a diagram for illustrating a method for welding electrode leads of a compact secondary battery according to another embodiment of the present disclosure.

    [0059] Referring to FIG. 9, in the secondary battery method for welding electrode leads of a secondary battery according to the present embodiment and the compact secondary battery module using the same, the first lead 12 and the second lead 14 of neighboring cells with opposite polarities are stacked to form a lead welding portion. In this process, the second lead 14 faces the sidewall of the cartridge 10, and the second lead 14 is positioned between the bus bar 32 and the first lead 12. In other words, by constructing the lead welding portion in this way, for example, when the lead welding portion is welded using a laser welder, the bus bar 32, the first lead 12 and the second lead 14 may be positioned in order and welded at one point. In the welding method according to this embodiment, since three base materials should be welded at the same time, it is preferable to use a welder having a stronger output than the former embodiments using in which only two base materials are welded.

    INDUSTRIAL APPLICABILITY



    [0060] The present disclosure relates to a method for welding electrode leads of a secondary battery module and a compact secondary battery module using the same, and is particularly applicable to industries related to welding of electrode leads of a secondary battery module.


    Claims

    1. A compact secondary battery module (100), comprising:

    a cartridge assembly (20) having a plurality of cartridges (10) stacked while accommodating cells (2), respectively, so that a plurality of lead welding portions where a first lead (12) and a second lead (14) of adjacent cells overlap with each other are located at a cartridge sidewall with a predetermined pattern, the first lead and the second lead having opposite polarities and being bent in opposite directions, the first lead and the second lead each extending and being bent from a side of each cell; and

    a sensing housing (30) having a plurality of bus bars (32) located and welded corresponding to the lead welding portions, respectively, the sensing housing including a battery management system (BMS) circuit board (34) configured to manage voltage and/or temperature data of each cell detected by each bus bar, the sensing housing being arranged at the sidewall of the cartridge assembly,

    wherein the sensing housing is coupled to the cartridge assembly, and the second lead (14) is located between the first lead (12) and the bus bar (32), the first lead facing the sidewall of the cartridge and the second lead facing the first lead, the bus bar being positioned outside from the second lead and being welded at one point to the first lead and to the second lead,

    wherein each of the first lead (12) and second lead (14) of each cell (2) is bent at a right angle at 0.8 to 1.2 mm from a lead insulation portion (15) of each of the first lead and second lead, the lead insulation portion being accommodated in the corresponding cartridge (10).


     
    2. A compact secondary battery module (100), comprising:

    a cartridge assembly (20) having a plurality of cartridges (10) stacked while accommodating cells (2), respectively, so that a plurality of lead welding portions, where a first lead (12) and a second lead (14) of adjacent cells facing a cartridge sidewall are located on the same plane at each lead welding portion, are formed at the cartridge sidewall with a predetermined pattern, the first lead and the second lead being bent in opposite directions, the first lead and the second lead each extending and being bent from a side of each cell, the ends of the first lead and of the second lead being in contact with each other or spaced from each other by a predetermined distance; and

    a sensing housing (30) having a plurality of bus bars (32) each facing the first lead and the second lead at said same plane, respectively, the sensing housing including a battery management system (BMS) circuit board (34) configured to manage voltage and/or temperature data of each cell detected by each bus bar, the sensing housing being arranged at the sidewall of the cartridge assembly,

    wherein the sensing housing is coupled to the cartridge assembly, and the bus bars (32) are each welded to the first lead (12) and to the second lead (14) having a polarity opposite to the first lead of corresponding cells at two different welding points, respectively,

    wherein each of the first lead (12) and second lead (14) of each cell (2) is bent at a right angle at 0.8 to 1.2 mm from a lead insulation portion (15) of each of the first lead and second lead, the lead insulation portion being accommodated in the corresponding cartridge (10).


     
    3. The compact secondary battery module (100) according to claim 1 or 2, further comprising a barrier (18) provided at a side of each cartridge (10) to protect the cell (2) accomodated in each cartridge during a welding work, the barrier being able to serve as a blocking wall to prevent a laser used for welding the bus bars (32) to the first lead (12) and to the second lead (14) and being irradiated perpendicular from the sensing housing (30), from being directly irradiated onto the cell.
     
    4. The compact secondary battery module (100) according to claim 1 or 2,
    wherein the bus bar (32) and the second lead (14) are made of copper, and the first lead (12) is made of aluminum.
     
    5. The compact secondary battery module (100) according to claim 1 or 2,
    wherein the sensing housing (30) is coupled to the cartridge assembly (20) by means of snap-fitting or hooking.
     
    6. The compact secondary battery module (100) according to claim 1 or 2, further comprising:
    a sensing cover (40) coupled to the sensing housing (30).
     
    7. The compact secondary battery module (100) according to claim 6,
    wherein the sensing cover (40) is coupled to the sensing housing (30) by means of snap-fitting or hooking.
     
    8. The compact secondary battery module (100) according to claim 1 or 2,
    wherein two neighboring cartridges (10) of the cartridge assembly (20) are coupled to each other by means of hooking.
     
    9. A method for welding electrode leads (12 and 14) of a compact secondary battery module (100), comprising:

    (a) preparing a plurality of cells (2) having a first lead (12) and a second lead (14) which have opposite polarities and are bent in opposite directions;

    (b) forming a cartridge assembly (20) by stacking a plurality of cartridges (10) accommodating cells, respectively, so that lead welding portions are formed at a cartridge sidewall with a predetermined pattern, the first lead facing the cartridge sidewall and the second lead facing and overlapping the first lead;

    (c) assembling a sensing housing (30) having a plurality of bus bars (32) respectively facing the second lead to a side of the cartridge assembly, the sensing housing including a battery management system (BMS) circuit board (34) configured to manage voltage and/or temperature data of each cell detected by each bus bar, the second lead (14) being located between the first lead (12) and each bus bar (32), and each bus bar being positioned outside from the second lead (14); and

    (d) welding each bus bar at one point and at the same time to the first lead (12) and to the second lead (14),

    wherein in the step (a), each lead is bent at a right angle at 0.8 to 1.2 mm from a lead insulation portion of the cell in a state of being accommodated in the corresponding cartridge.
     
    10. A method for welding electrode leads (12 and 14) of a compact secondary battery module (100), comprising:

    (a) preparing a plurality of cells (2) having a first lead (12) and a second lead (14) which have opposite polarities and are bent in opposite directions;

    (b) forming a cartridge assembly (20) by stacking a plurality of cartridges (10) accommodating cells, respectively, so that lead welding portions are formed at a cartridge sidewall with a predetermined pattern, where a first lead (12) and a second lead (14) of adjacent cells facing the cartridge sidewall are located on the same plane at each lead welding portion, the ends of the first lead and of the second lead being in contact with each other or spaced from each other by a predetermined distance;

    (c) assembling a sensing housing (30) having a plurality of bus bars (32) each facing the first lead (12) and the second lead (14) at said same plane to a side of the cartridge assembly, the sensing housing including a battery management system (BMS) circuit board (34) configured to manage voltage and/or temperature data of each cell detected by each bus bar; and

    (d) welding each of the bus bars (32) at two different welding points respectively corresponding to the first lead (12) and the second lead (14),

    wherein in the step (a), each lead is bent at a right angle at 0.8 to 1.2 mm from a lead insulation portion of the cell in a state of being accommodated in the corresponding cartridge.
     
    11. The method for welding electrode leads (12 and 14) of a compact secondary battery module (100) according to claim 9 or 10,
    wherein in the step (b), a barrier (18) is formed at a side of each cartridge (10).
     
    12. A secondary battery pack, comprising the compact secondary battery module (100) defined in claim 3.
     


    Ansprüche

    1. Kompaktes Sekundärbatteriemodul (100), umfassend:

    eine Einsatzanordnung (20), welche eine Mehrzahl von Einsätzen (10) aufweist, welche gestapelt sind, während sie jeweils Zellen (2) aufzunehmen, so dass eine Mehrzahl von Leitung-Schweißabschnitten, wo eine erste Leitung (12) und eine zweite Leitung (14) von benachbarten Zellen miteinander überlappen, an einer Einsatz-Seitenwand mit einem vorbestimmten Muster angeordnet sind, wobei die erste Leitung und die zweite Leitung entgegengesetzte Polaritäten aufweisen und in entgegengesetzten Richtungen gebogen sind, wobei sich die erste Leitung und die zweite Leitung jeweils von einer Seite jeder Zelle erstrecken und gebogen sind; und

    ein Abtast-Gehäuse (30), welches eine Mehrzahl von Sammelschienen (32) aufweist, welche entsprechend den Leitung-Schweißabschnitten angeordnet bzw. geschweißt sind, wobei das Abtast-Gehäuse eine Batteriemanagementsystem (BMS) Schaltungsplatine (34) umfasst, welche dazu eingerichtet ist, Spannungs- und/oder Temperaturdaten jeder Zelle zu verwalten, welche durch jede Sammelschiene detektiert werden, wobei das Abtast-Gehäuse an der Seitenwand der Einsatzanordnung angeordnet ist,

    wobei das Abtast-Gehäuse mit der Einsatzanordnung gekoppelt ist und die zweite Leitung (14) zwischen der ersten Leitung (12) und der Sammelschiene (32) angeordnet ist, wobei die erste Leitung zu der Seitenwand des Einsatzes weist und die zweite Leitung zu der ersten Leitung weist, wobei die Sammelschiene außerhalb der zweiten Leitung positioniert ist und mit einem Punkt der ersten Leitung und der zweiten Leitung verschweißt ist,

    wobei jede aus der ersten Leitung (12) und der zweiten Leitung (14) jeder Zelle (2) in einem rechten Winkel bei 0,8 bis 1,2 mm von einem Leitung-Isolationsabschnitt (15) von jeder aus der ersten Leitung und der zweiten Leitung gebogen ist, wobei der Leitung-Isolationsabschnitt in dem entsprechenden Einsatz (10) aufgenommen ist.


     
    2. Kompaktes Sekundärbatteriemodul (100), umfassend:

    eine Einsatzanordnung (20), welche eine Mehrzahl von Einsätzen (10) aufweist, welche gestapelt sind, während sie jeweils Zellen (2) aufzunehmen, so dass eine Mehrzahl von Leitung-Schweißabschnitten, wo eine erste Leitung (12) und eine zweite Leitung (14) von benachbarten Zellen zu einer Einsatz-Seitenwand weisen, an einer gleichen Ebene an jedem Leitung-Schweißabschnitt angeordnet sind, an der Einsatz-Seitenwand mit einem vorbestimmten Muster gebildet sind, wobei die erste Leitung und die zweite Leitung in entgegengesetzten Richtungen gebogen sind, wobei sich die erste Leitung und die zweite Leitung jeweils von einer Seite jeder Zelle erstrecken und gebogen sind, wobei die Enden der ersten Leitung und der zweiten Leitung in Kontakt miteinander sind oder voneinander um eine vorbestimmte Distanz beabstandet sind; und

    ein Abtast-Gehäuse (30), welches eine Mehrzahl von Sammelschienen (32) aufweist, welche jeweils zu der ersten Leitung bzw. der zweiten Leitung an der gleichen Ebene weisen, wobei das Abtast-Gehäuse eine Batteriemanagementsystem (BMS) Schaltungsplatine (34) umfasst, welche dazu eingerichtet ist, Spannungs- und/oder Temperaturdaten jeder Zelle zu verwalten, welche durch jede Sammelschiene detektiert werden, wobei das Abtast-Gehäuse an der Seitenwand der Einsatzanordnung angeordnet ist,

    wobei das Abtast-Gehäuse mit der Einsatzanordnung gekoppelt ist und die Sammelschienen (32) jeweils mit der ersten Leitung (12) und der zweiten Leitung (14), welche eine Polarität entgegengesetzt zu der ersten Leitung von entsprechenden Zellen aufweist, an zwei verschiedenen Schweißpunkten entsprechend verschweißt sind, wobei jede aus der ersten Leitung (12) und der zweiten Leitung (14) jeder Zelle (2) in einem rechten Winkel bei 0,8 bis 1,2 mm von einem Leitung-Isolationsabschnitt (15) von jeder aus der ersten Leitung und der zweiten Leitung gebogen ist, wobei der Leitung-Isolationsabschnitt in dem entsprechenden Einsatz (10) aufgenommen ist.


     
    3. Kompaktes Sekundärbatteriemodul (100) nach Anspruch 1 oder 2, ferner umfassend eine Barriere (18), welche an einer Seite jedes Einsatzes (10) bereitgestellt ist, um die Zelle (2), welche in jedem Einsatz aufgenommen ist, während einer Schweißarbeit zu schützen, wobei die Barriere in der Lage ist, als eine Blockierungswand zu dienen, um einen Laser, welcher zum Schweißen der Sammelschienen (32) an die erste Leitung (12) und die zweite Leitung (14) verwendet wird und rechtwinklig von dem Abtast-Gehäuse (30) abgestrahlt wird, davon abzuhalten, direkt auf die Zelle eingestrahlt zu werden.
     
    4. Kompaktes Sekundärbatteriemodul (100) nach Anspruch 1 oder 2, wobei die Sammelschiene (32) und die zweite Leitung (14) aus Kupfer hergestellt sind und die erste Leitung (12) aus Aluminium hergestellt ist.
     
    5. Kompaktes Sekundärbatteriemodul (100) nach Anspruch 1 oder 2, wobei das Abtast-Gehäuse (30) mit der Einsatzanordnung (20) mittels einer Schnappeinpassung oder einer Verhakung gekoppelt ist.
     
    6. Kompaktes Sekundärbatteriemodul (100) nach Anspruch 1 oder 2, ferner umfassend:
    eine Abtast-Abdeckung (40), welche mit dem Abtast-Gehäuse (30) gekoppelt ist.
     
    7. Kompaktes Sekundärbatteriemodul (100) nach Anspruch 6,
    wobei die Abtast-Abdeckung (40) mit dem Abtast-Gehäuse (30) mittels einer Schnappeinpassung oder einer Verhakung gekoppelt ist.
     
    8. Kompaktes Sekundärbatteriemodul (100) nach Anspruch 1 oder 2, wobei zwei benachbarte Einsätze (10) der Einsatzanordnung (20) miteinander mittels einer Verhakung gekoppelt sind.
     
    9. Verfahren zum Schweißen von Elektrodenleitungen (12 und 14) eines kompakten Sekundärbatteriemoduls (100), umfassend:

    (a) Vorbereiten einer Mehrzahl von Zellen (2), welche eine erste Leitung (12) und eine zweite Leitung (14) aufweisen, welche entgegengesetzte Polaritäten aufweisen und in entgegengesetzten Richtungen gebogen sind;

    (b) Bilden einer Einsatzanordnung (20) durch Stapeln einer Mehrzahl von Einsätzen (10), welche jeweils Zellen aufnehmen, so dass Leitung-Schweißabschnitte an einer Einsatz-Seitenwand mit einem vorbestimmten Muster gebildet werden, wobei die erste Leitung zu der Einsatz-Seitenwand weist und die zweite Leitung zu der ersten Leitung weist und mit dieser überlappt;

    (c) Anordnen eines Abtast-Gehäuses (30), welches eine Mehrzahl von Sammelschienen (32) aufweist, welche entsprechend zu der zweiten Leitung weisen, an einer Seite der Einsatzanordnung, wobei das Abtast-Gehäuse eine Batteriemanagementsystem (BMS) Schaltungsplatine (34) umfasst, welche dazu eingerichtet ist, Spannungs- und/oder Temperaturdaten jeder Zelle zu verwalten, welche durch jede Sammelschiene detektiert werden, wobei die zweite Leitung (14) zwischen der ersten Leitung (12) und jeder Sammelschiene (32) angeordnet ist, und wobei jede Sammelschiene außerhalb der zweiten Leitung (14) positioniert ist; und

    (d) Schweißen jeder Sammelschiene an einem Punkt und zu der gleichen Zeit an die erste Leitung (12) und die zweite Leitung (14), wobei in dem Schritt (a) jede Leitung in einem rechten Winkel bei 0,8 bis 1,2 mm von einem Leitung-Isolationsabschnitt der Zelle in einem Zustand gebogen wird, in welchem sie in dem entsprechenden Einsatz aufgenommen ist.


     
    10. Verfahren zum Schweißen von Elektrodenleitungen (12 und 14) eines kompakten Sekundärbatteriemoduls (100), umfassend:

    (a) Vorbereiten einer Mehrzahl von Zellen (2), welche eine erste Leitung (12) und eine zweite Leitung (14) aufweisen, welche entgegengesetzte Polaritäten aufweisen und in entgegengesetzten Richtungen gebogen sind;

    (b) Bilden einer Einsatzanordnung (20) durch Stapeln einer Mehrzahl von Einsätzen (10), welche jeweils Zellen aufnehmen, so dass Leitung-Schweißabschnitte an einer Einsatz-Seitenwand mit einem vorbestimmten Muster gebildet werden, wo eine erste Leitung (12) und eine zweite Leitung (14) von benachbarten Zellen, welche zu der Einsatz-Seitenwand weisen, an der gleichen Ebene an jedem Leitung-Schweißabschnitt angeordnet sind, wobei die Enden der ersten Leitung und der zweiten Leitung in Kontakt miteinander sind oder voneinander um eine vorbestimmte Distanz beabstandet sind;

    (c) Anordnen eines Abtast-Gehäuses (30), welches eine Mehrzahl von Sammelschienen (32) aufweist, welche jeweils zu der ersten Leitung (12) und der zweiten Leitung (14) an der gleichen Ebene zu einer Seite der Einsatzanordnung weisen, wobei das Abtast-Gehäuse eine Batteriemanagementsystem (BMS) Schaltungsplatine (34) umfasst, welche dazu eingerichtet ist, Spannungs- und/oder Temperaturdaten jeder Zelle zu verwalten, welche durch jede Sammelschiene detektiert werden; und

    (d) Schweißen jeder der Sammelschienen (32) an zwei verschiedenen Schweißpunkten jeweils entsprechend der ersten Leitung (12) und der zweiten Leitung (14),

    wobei in dem Schritt (a) jede Leitung in einem rechten Winkel bei 0,8 bis 1,2 mm von einem Leitung-Isolationsabschnitt der Zelle in einem Zustand gebogen wird, in welchem sie in dem entsprechenden Einsatz aufgenommen ist.
     
    11. Verfahren zum Schweißen von Elektrodenleitungen (12 und 14) eines kompakten Sekundärbatteriemoduls (100) nach Anspruch 9 oder 10, wobei in dem Schritt (b) eine Barriere (18) an einer Seite jedes Einsatzes (10) gebildet wird.
     
    12. Sekundärbatteriepack, umfassend das kompakte Sekundärbatteriemodul (100), welches in Anspruch 3 definiert ist.
     


    Revendications

    1. Module compact de batterie secondaire (100), comprenant :

    un ensemble de cartouche (20) ayant une pluralité de cartouches (10) empilées tout en recevant des cellules (2), respectivement, de sorte qu'une pluralité de parties de soudage de fils conducteurs, où se chevauchent un premier fil conducteur (12) et un second fil conducteur (14) de cellules adjacentes, soient placées sur une paroi latérale de cartouche avec un motif prédéterminé, le premier fil conducteur et le second fil conducteur ayant des polarités opposées et étant pliés dans des directions opposées, le premier fil conducteur et le second fil conducteur s'étendant et étant pliés chacun à partir d'un côté de chaque cellule ; et

    un boîtier de détection (30) ayant une pluralité de barres omnibus (32) placées et soudées de manière à correspondre aux parties de soudage de fils conducteurs, respectivement, le boîtier de détection comportant une carte de circuit (34) de système de gestion de batterie (BMS) configurée pour gérer des données de tension et/ou de température de chaque cellule détectée par chaque barre omnibus, le boîtier de détection étant agencé sur la paroi latérale de l'ensemble de cartouche,

    dans lequel le boîtier de détection est couplé à l'ensemble de cartouche, et le second fil conducteur (14) est placé entre le premier fil conducteur (12) et la barre omnibus (32), le premier fil conducteur faisant face à la paroi latérale de la cartouche et le second fil conducteur faisant face au premier fil conducteur, la barre omnibus étant positionnée à l'extérieur du second fil conducteur et étant soudée en un point au premier fil conducteur et au second fil conducteur,

    dans lequel chacun parmi le premier fil conducteur (12) et le second fil conducteur (14) de chaque cellule (2) est plié à angle droit, à une distance de 0,8 à 1,2 mm d'une partie d'isolation de fil conducteur (15) de chacun parmi le premier fil conducteur et le second fil conducteur, la partie d'isolation de fil conducteur étant reçue dans la cartouche (10) correspondante.


     
    2. Module compact de batterie secondaire (100), comprenant :

    un ensemble de cartouche (20) ayant une pluralité de cartouches (10) empilées tout en recevant des cellules (2), respectivement, de sorte qu'une pluralité de parties de soudage de fils conducteurs, où un premier fil conducteur (12) et un second fil conducteur (14) de cellules adjacentes faisant face à une paroi latérale de cartouche sont placés sur le même plan au niveau de chaque partie de soudage de fil conducteur, soient formées sur la paroi latérale de cartouche avec un motif prédéterminé, le premier fil conducteur et le second fil conducteur étant pliés dans des directions opposées, le premier fil conducteur et le second fil conducteur s'étendant et étant pliés chacun à partir d'un côté de chaque cellule, les extrémités du premier fil conducteur et du second fil conducteur étant en contact l'une avec l'autre ou espacées l'une de l'autre d'une distance prédéterminée ; et

    un boîtier de détection (30) ayant une pluralité de barres omnibus (32), faisant face chacune au premier fil conducteur et au second fil conducteur au niveau dudit même plan, respectivement, le boîtier de détection comportant une carte de circuit (34) de système de gestion de batterie (BMS) configurée pour gérer des données de tension et/ou de température de chaque cellule détectée par chaque barre omnibus, le boîtier de détection étant agencé sur la paroi latérale de l'ensemble de cartouche,

    dans lequel le boîtier de détection est couplé à l'ensemble de cartouche, et les barres omnibus (32) sont chacune soudées au premier fil conducteur (12) et au second fil conducteur (14), ayant une polarité opposée au premier fil conducteur, de cellules correspondantes en deux points de soudage différents, respectivement,

    dans lequel chacun parmi le premier fil conducteur (12) et le second fil conducteur (14) de chaque cellule (2) est plié à angle droit, à une distance de 0,8 à 1,2 mm d'une partie d'isolation de fil conducteur (15) de chacun parmi le premier fil conducteur et le second fil conducteur, la partie d'isolation de fil conducteur étant reçue dans la cartouche (10) correspondante.


     
    3. Module compact de batterie secondaire (100) selon la revendication 1 ou 2, comprenant en outre une barrière (18) prévue sur un côté de chaque cartouche (10) pour protéger la cellule (2) reçue dans chaque cartouche pendant un travail de soudage, la barrière pouvant servir de paroi de blocage pour empêcher qu'un laser utilisé pour souder les barres omnibus (32) au premier fil conducteur (12) et au second fil conducteur (14) et rayonné perpendiculairement à partir du boîtier de détection (30) ne soit directement rayonné dans la cellule.
     
    4. Module compact de batterie secondaire (100) selon la revendication 1 ou 2,
    dans lequel la barre omnibus (32) et le second fil conducteur (14) sont réalisés en cuivre, et le premier fil conducteur (12) est réalisé en aluminium.
     
    5. Module compact de batterie secondaire (100) selon la revendication 1 ou 2,
    dans lequel le boîtier de détection (30) est couplé à l'ensemble de cartouche (20) au moyen d'un encliquetage ou d'un crochet.
     
    6. Module compact de batterie secondaire (100) selon la revendication 1 ou 2, comprenant en outre :
    un cache de détection (40) couplé au boîtier de détection (30).
     
    7. Module compact de batterie secondaire (100) selon la revendication 6,
    dans lequel le cache de détection (40) est couplé au boîtier de détection (30) au moyen d'un encliquetage ou d'un crochet.
     
    8. Module compact de batterie secondaire (100) selon la revendication 1 ou 2,
    dans lequel deux cartouches voisines (10) de l'ensemble de cartouche (20) sont couplées l'une à l'autre au moyen d'un crochet.
     
    9. Procédé de soudage de fils conducteurs (12 et 14) d'électrode d'un module compact de batterie secondaire (100), comprenant :

    (a) la préparation d'une pluralité de cellules (2) ayant un premier fil conducteur (12) et un second fil conducteur (14) qui ont des polarités opposées et qui sont pliés dans des directions opposées ;

    (b) la formation d'un ensemble de cartouche (20) en empilant une pluralité de cartouches (10) recevant des cellules, respectivement, de sorte que des parties de soudage de fils conducteurs soient formées sur une paroi latérale de cartouche avec un motif prédéterminé, le premier fil conducteur faisant face à la paroi latérale de cartouche et le second fil conducteur faisant face au premier fil conducteur et le chevauchant ;

    (c) l'assemblage d'un boîtier de détection (30) ayant une pluralité de barres omnibus (32) faisant face respectivement au second fil conducteur vers un côté de l'ensemble de cartouche, le boîtier de détection comportant une carte de circuit (34) de système de gestion de batterie (BMS) configurée pour gérer des données de tension et/ou de température de chaque cellule détectée par chaque barre omnibus, le second fil conducteur (14) étant placé entre le premier fil conducteur (12) et chaque barre omnibus (32), et chaque barre omnibus étant positionnée à l'extérieur du second fil conducteur (14) ; et

    (d) le soudage de chaque barre omnibus en un point et en même temps au premier fil conducteur (12) et au second fil conducteur (14),

    dans lequel dans l'étape (a), chaque fil conducteur est plié à angle droit, à une distance de 0,8 à 1,2 mm d'une partie d'isolation de fil conducteur de la cellule dans un état où elle est reçue dans la cartouche correspondante.
     
    10. Procédé de soudage de fils conducteurs (12 et 14) d'électrode d'un module compact de batterie secondaire (100), comprenant :

    (a) la préparation d'une pluralité de cellules (2) ayant un premier fil conducteur (12) et un second fil conducteur (14) qui ont des polarités opposées et qui sont pliés dans des directions opposées ;

    (b) la formation d'un ensemble de cartouche (20) en empilant une pluralité de cartouches (10) recevant des cellules, respectivement, de sorte que des parties de soudage de fils conducteurs soient formées sur une paroi latérale de cartouche avec un motif prédéterminé, où un premier fil conducteur (12) et un second fil conducteur (14) de cellules adjacentes faisant face à la paroi latérale de cartouche sont placés sur le même plan au niveau de chaque partie de soudage de fil conducteur, les extrémités du premier fil conducteur et du second fil conducteur étant en contact l'une avec l'autre ou espacées l'une de l'autre d'une distance prédéterminée ;

    (c) l'assemblage d'un boîtier de détection (30) ayant une pluralité de barres omnibus (32), faisant face chacune au premier fil conducteur (12) et au second fil conducteur (14) au niveau dudit même plan vers un côté de l'ensemble de cartouche, le boîtier de détection comportant une carte de circuit (34) de système de gestion de batterie (BMS) configurée pour gérer des données de tension et/ou de température de chaque cellule détectée par chaque barre omnibus ; et

    (d) le soudage de chacune des barres omnibus (32) en deux points de soudage différents, correspondant respectivement au premier fil conducteur (12) et au second fil conducteur (14),

    dans lequel dans l'étape (a), chaque fil conducteur est plié à angle droit, à une distance de 0,8 à 1,2 mm d'une partie d'isolation de fil conducteur de la cellule dans un état où elle est reçue dans la cartouche correspondante.
     
    11. Procédé de soudage de fils conducteurs (12 et 14) d'électrode d'un module compact de batterie secondaire (100) selon la revendication 9 ou 10,
    dans lequel dans l'étape (b), une barrière (18) est formée sur un côté de chaque cartouche (10).
     
    12. Bloc-batterie secondaire, comprenant le module compact de batterie secondaire (100) défini dans la revendication 3.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description