(19)
(11)EP 3 237 383 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.12.2019 Bulletin 2019/49

(21)Application number: 15782181.0

(22)Date of filing:  05.10.2015
(51)Int. Cl.: 
C07D 213/50  (2006.01)
(86)International application number:
PCT/US2015/053993
(87)International publication number:
WO 2016/105619 (30.06.2016 Gazette  2016/26)

(54)

ONE-STEP PROCESS FOR THE SYNTHESIS OF ALKYLATED METYRAPONE ANALOGS

EINSTUFIGES VERFAHREN ZUR SYNTHESE VON ALKYLIERTEN METYRAPON-ANALOGA

PROCÉDÉ EN UNE ÉTAPE POUR LA SYNTHÈSE D'ANALOGUES DE MÉTYRAPONE ALKYLÉS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.12.2014 US 201462096192 P

(43)Date of publication of application:
01.11.2017 Bulletin 2017/44

(73)Proprietor: Albemarle Corporation
Baton Rouge, LA 70801-1765 (US)

(72)Inventors:
  • WILLIAMS, Eric, L.
    Zachary, LA 70791 (US)
  • SUNDERHAUS, James, D.
    Baton Rouge, LA 70809 (US)
  • SPRINGER, James, J.
    Saugatuck, MI 49453 (US)

(74)Representative: Uexküll & Stolberg 
Partnerschaft von Patent- und Rechtsanwälten mbB Beselerstraße 4
22607 Hamburg
22607 Hamburg (DE)


(56)References cited: : 
  
  • MARK R. BISCOE ET AL: "Selective Monoarylation of Acetate Esters and Aryl Methyl Ketones Using Aryl Chlorides", ORGANIC LETTERS, vol. 11, no. 8, 16 April 2009 (2009-04-16) , pages 1773-1775, XP055231164, US ISSN: 1523-7060, DOI: 10.1021/ol900295u
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The invention disclosed pertains to a process for preparation of poly-heterocyclic compounds having quaternary alpha carbon atoms by a palladium catalyzed arylation of a ketone alpha carbon atom.

BACKGROUND



[0002] Methods known in the art for the synthesis of metyrapone generally include two-steps. The first step involves the preparation of a pinacol substrate generally formed from two equivalents of 3-acetylpyridine substrate, A symmetric compound, 2,3-dipyridine-3-yl-2,3-butanediol, is formed, in a reaction which involves the formation of two adjacent quaternary centers. In general, the formation of quaternary centers is made more difficult by the presence of large substituent groups at the potential quaternary carbon atoms. In the case of the reaction above, each potential quaternary carbon bears a pyridine substituent and a carbonyl oxygen in addition to a methyl group. Such substituents, particularly a group as bulky as pyridine, hinder the formation of the quaternary center. It is thus necessary to use another method in which the first step, which forms two such centers adjacent each other, is generally run at extreme or unusual conditions. An electrochemical step or a chemical step involving mercury or mercury salts is most commonly used.

[0003] The second step involves the rearrangement reaction of 2,3-dipyridine-3-yl-2,3-butanediol. As with the first step, the second step is fraught with problems which reduce the yield. In rearrangement reactions, a substituent shifts carbon centers. In the case of 2,3-dipyridine-3-yl-2,3-butanediol, one of two groups (pyridine, methyl) can undergo the shift. The desired product, metyrapone, is formed with significant amounts of a ketone byproduct, which reduces metyrapone yield and purity. Resolution of the resultant mixture is necessary. One method of resolution is the separation of the metyrapone and ketone byproduct by chromatographic methods. Another method involves derivatization as an oxime, followed by crystallization of the derivative, with a final hydrolysis step to give metyrapone. Both resolution methods contribute to a lowering of the yield of metyrapone.

[0004] The formation of 2,3-dipyridine-3-yl-2,3-butanediol, and the subsequent rearrangement reaction are illustrated below:



[0005] Literature publications in the late 1990's demonstrated that carbon-to-carbon bond connections could be made with palladium-catalyzed reactions using halogenated aromatic compounds. Various methods of preparing similar compounds have been tried. For example, a publication authored by Kawatsura and Hartwig (J. Am Chem. Soc., Vol. 121. No. 7, 1999), discloses the alpha arylation of ketones with aryl bromides with the use of palladium containing catalysts. The reference also discloses the formation of a quaternary carbon centers, albeit without the use of heterocyclic reactants.

[0006] However, the palladium catalyzed arylations of ketone alpha carbon atoms, particularly to form a quaternary center at the alpha carbon, are beset with unpredictability for at least two reasons. First, palladium catalysts are known to participate in the formation of ligand complexes with nitrogen containing heterocyclic aryl groups. Furthermore, some compounds containing multiple ligand-forming heterocycles such as pyridine are known to form particularly stable complexes with palladium-containing catalysts due to the "chelate effect." Metyrapone is part of this group in that metyrapone includes two pyridine groups. Such complexes are expected to interfere with or prevent the formation of necessary intermediate complexes involving the palladium catalyst and the reactant molecules. The chelate effect refers to the enhanced stability of chelate complexes (metal/ligand complexes derived from multidentate ligands), as opposed to complexes derived from one or more monodentate ligands. In its fully bonded state, the chelating ligand at least partially surrounds the central atom. The ligand need not have the same number of ligating groups as the number of bonding metal orbitals. For example, the notably stable dimethylglyoximate complex of nickel is a synthetic macrocycle derived from the anion of dimethylglyoxime. Nickel has four bonding sites and the ligand consists of two dimethylglyoxime molecules having two ligands each. The chelate structure is a central atom at the center of a ring structure. It is generally recognized that the chelate effect greatly stabilizes chelates with respect to mono-ligand containing complexes, and the enhanced stability favors the displacement of a number of monodentate ligands by a smaller number of polydentate ligands. In the case of using the reaction in the reference to form metyrapone, the indicated reaction would be the alpha arylation of 3-isobutyryl pyridine with a 3-halopyridine. One of skill in the art would recognize that the metyrapone product, a molecule having two pyridines, each of which are capable of bonding to one of the six palladium bonding orbitals, could be a suitable chelating ligand, according to common chemical knowledge. In such a case, the reaction would not be expected to proceed because the first molecules of product would form stable complexes with the catalyst, resisting displacement by reactant molecules, which are monodentate.

[0007] Yet a further factor which is expected to help the ability of the product to employ all of its pyridine groups is their relative placement. The length of the linking groups between the pyridine groups can be too short or too bulky to permit efficient coordination of all the pyridine groups.

[0008] The second reason the results of palladium-catalyzed arylations can be difficult to predict is that the use of palladium catalysts is subject to steric constraints that are not well-understood. The degree to which a palladium catalyst effects the arylation, if arylation even occurs at all, can depend critically upon the particular palladium catalyst, auxiliary ligands, the size of the alkanyl substituent to be arylated, as well as the base, and even the solvent. Thus, regardless of the possibility of product/catalyst interaction, the reaction may only produce an insignificant amount of product, if any at all. For example, the experiment of Example Ib essentially reproduces a run from (Biscoe & Buchwald, Organic Letters, 11, 1773 (2009)), except for the use of 3-isobutyrylpyridine as a reactant (in an attempt to form metyrapone) rather than 3-acetylpyridine as used in the reference. No product was observed, despite the fact that the reference reaction did form product. With the substitution, the reaction does not proceed at all, even with the same catalyst and under the same conditions as used in the reference. Furthermore, the lack of product tends to indicate that the lack of reaction was not due to catalyst chelation, but rather the difficulty in forming the quaternary center necessary for the formation of metyrapone. Thus, reaction success can depend upon steric characteristics of the two reactants.

[0009] Metyrapone, a commercial product of high value long before the publication of the coupling methods described above, is presently prepared through the two-step process described above, despite relatively low yields and high amounts of byproduct impurities. A process which can prepare poly-heterocyclic compounds, such as metyrapone, by arylating the alpha carbon atom of a ketone, to form a quaternary center thereat, would be an advance in the art.

BRIEF SUMMARY



[0010] We have discovered that metyrapone, 2-methyl-1,2-di-3-pyridyl-1-propanone, can be prepared in one step by the palladium catalyzed coupling of the enolate of 3-isobutyrylpyridine with 3-bromopyridine. The yield of this step is high, and isomeric byproducts are avoided. The reaction can be summarized as follows:

In general, it has been found that an alpha-carbon arylation coupling reaction can be effected between 3-isobutyrylpyridine and 3-halopyridine compounds in the presence of a palladium catalyst and a phosphine ligand to make metyrapone-type compounds.

[0011] Accordingly, provided is a process for the preparation of a product compound of the following general formula:

said process comprising the steps of:
  1. 1) preparing a reaction mixture from at least:
    1. i) a halopyridine of the following structure:

    2. ii) a substituted pyridine of the following structure:

    3. iii) a palladium containing catalyst selected from the group consisting of palladium(II) acetate, bis(dibenzylideneacetone)palladium(0), tris(dibenzylideneacetone)dipalladium(0), tetrakis-(triphenylphosphine)palladium(0), [1,1'-bis(di-phenylphosphino)ferrocene]dichloropalladium(II), and any mixture of two or more of the foregoing;
    4. iv) a phosphine or carbene ligand;
    5. v) a Bronsted base; and
    6. vi) a solvent;
    and
  2. 2) heating the reaction mixture to one or more temperatures in the range of 30°C to 110°C such that the product compound is formed;
wherein R1, R2, R3, and R4 are each hydrogen, R5 and R6 are each methyl groups, R7, R8, R9 and R10 are each hydrogen, and X is selected from the group consisting of chlorine, bromine, iodine, sulfonate, triflate, nonaflate, and a diazonium salt.

[0012] This and other aspects and features of the invention will become even more apparent from the following detailed description of the invention and the appended aspects.

DETAILED DESCRIPTION



[0013] The halopyridine reactant can be a chloro-, a bromo- or an iodopyridine, with a bromo- or iodopyridine preferred, and a bromopyridine most preferred. In other aspects, X is sulfonate, triflate, nonaflate or a diazonium salt. In some aspects of the invention, the sulfonate ester of 3-hydroxypyridine can be used. R1, R2, R3 and R4 are each, hydrogen. In other aspects, the halopyridine is a chloropyridine.

[0014] The substituted pyridine used in the process comprises a tertiary alpha carbon atom such that, upon arylation, a quaternary center is established at the alpha carbon. R5 and R6 are each methyl. R7, R8, R9 and R10 are, each hydrogen. In a preferred aspect, the halopyridine is a bromopyridine.

[0015] The structures for the halopyridine and the substituted pyridine depict the halogen and the acyl substituent, respectively, in the meta position with respect to the nitrogen. However, it is thought that an ortho or para relationship, particularly concerning the halopyridine, could give a viable reaction.

[0016] The phosphine ligand is selected from among one or more of the following groups:
  1. a) Trialkyl/aryl phosphines comprising substituents independently selected from tert-butyl-, cyclohexyl-, adamantyl-, or other bulky substituents. By trialkyl/aryl, it is meant that the three ligands consist of any combination of alkyl and aryl groups. Also included in the trialkyl/aryl class are Buchwald-type ligands or pre-catalysts such as dialkylbiaryl monophosphenes such as, for example, dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (Xphos™). Other Buchwald-types include 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl (tBuXPhos™); (2-biphenyl)di-tert-butylphosphine (JohnPhos™); (2-biphenyl)dicyclohexylphosphine (CyJohnPhos™); 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (Sphos™); 2-dicyclohexylphosphino-2',6'-diisopropoxybiphenyl (RuPhos)™; 2-dicyclohexylphosphino-2'-(N,N-dimethylamino) biphenyl (DavePhos™); 2-di-tert-butylphosphino-2'-methylbiphenyl (tBuMePhos™); 2-dicyclohexylphosphino-2'-methylbiphenyl (MePhos™); Preferred are tri-tert-butylphosphine and tricyclohexylphosphine;
  2. b) Phosphine ligands selected from selected from the following group: 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos™), 9,9-dimethyl-4,5-bis(di-tert-butylphosphino)xanthene (t-Bu-Xantphos™), 2,2'-bis(diphenylphosphino)-1,1'-binaphthalene (BINAP), and 1,1'-bis(diphenylphosphino)ferrocene (dppf), 1,2,3,4,5-pentaphenyl-1'-(di-tert-butylphosphino)ferrocene (QPhos™);
  3. c) an N-heterocyclic carbene containing ligand or catalyst selected from the group consisting of:, such as, for example, 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolium tetrafluoroborate (SIPr-HBF4); 1,3-bis-(2,6-diisopropylphenyl) imidazolinium chloride; 1,3-dimesitylimidazolidinium chloride, 4,5-dihydro-1,3-bis(2,4,6-trimethylphenyl)-1H-imidazolium chloride; 1,3-bis(tricyclo[3.3.1.13,7]dec-1-yl)-1H-imidazolium tetrafluoroborate; 1,3-bis(2,4,6-trimethylphenyl)imidazolinium chloride; (1,3-bis(2,6-diisopropylphenyl)imidazolidene) (3-chloropyridyl) palladium(II) dichloride; (PEPPSI™-SIPr catalyst); [1,3-bis(2,6-Diisopropylphenyl)imidazol-2-ylidene](3-chloropyridyl)palladium (II) dichloride (PEPPSI™-IPr catalyst).


[0017] It should be noted that some of the N-heterocyclic carbine ligands also contain palladium and are thus catalyst/ligand complexes as added. The foregoing can be the case for the Buchwald ligands as well. In such cases the palladium catalyst is already present, and a separate palladium catalyst, below, is not strictly necessary.

[0018] The palladium catalyst is selected from the group consisting of palladium(II) acetate, bis(dibenzylideneacetone)palladium(0), tris(dibenzylideneacetone)dipalladium(0), tetrakis(triphenylphosphine)palladium(0), and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II). In a preferred aspect, the catalyst is palladium(II) acetate. In other aspects, the catalyst can be a mixture of two or more of the above.

[0019] The base is selected from lithium t-butoxide , sodium t -butoxide, potassium t-butoxide, lithium bis(trimethylsilyl)amide, sodium bis(trimethylsilyl)amide, potassium bis(trimethylsilyl)amide, lithium diisopropylamide, lithium dicyclohexylamide, cesium carbonate, and potassium phosphate. Hydrides, such as sodium hydride and potassium hydride, and carbonates, such as, for example sodium carbonate, can be used as well. In a preferred aspect, the base is sodium t-butoxide. In other aspects, the base can be a mixture of two or more of the above.

[0020] The solvent is selected from tetrahydrofuran; 2-methyltetrahydrofuran; 1,4-dioxane, dimethoxyethane; and toluene. In a preferred aspect, the solvent is tetrahydrofuran. In other aspects, the solvent can be a mixture of two or more of the above.

[0021] The reactants and solvent can be combined in any order to make the reaction mixture. It can be convenient to combine the palladium catalyst, phosphine ligand and base to form a dry mixture in a reaction vessel, adding the halopyridine, the substituted pyridine and the solvent on top of the dry mixture.

[0022] The reaction generally will proceed to substantial completion if heated at appropriate temperatures for sufficient times. Thus, stoichiometric equivalents of the halopyridine and the substituted pyridine can be used. The palladium catalyst and phosphine ligand are preferably used in a molar ratio in the range of from 1 to 5 moles of ligand per mole of palladium catalyst, with a ratio in the range of 1 to 2 moles of ligand per mole of palladium catalyst preferred. In general the ligand and catalyst each comprise from .05 to 10 mol% based upon moles of substrate, with .1 to 5 mol % preferred. The amount of solvent used should be sufficient to solvate the dry ingredients, and other than that concern, the amount used is not deemed to be critical. In general, the payload (i.e., the amount of both reactants combined relative to the amount of solvent) is most conveniently in the range of 1 to 30 wt%.

[0023] The reaction mixture is then heated. It can be convenient to heat to the reflux temperature of the solvent for the duration of the reaction. In general, the reaction mixture is heated to one or more temperatures in the range of 30 to 110 °C, for time in the range of 0.5 to 24 hours. In one aspect of the invention, the reaction mixture is heated to one or more temperatures in the range of 45 to 100 °C. In another aspect of the invention, the heating time is in the range of 1 to 6 hours. In yet another aspect, the heating time is in the range of 2 to 4 hours. In a preferred aspect, the reaction mixture is heated to one or more temperatures in the range of 80 to 110°C for a time in the range of 2 to 4 hours.

[0024] After the reaction has reached completion, it can be quenched, such as with ammonium chloride, water or other reagent which removes or inactivates the base, preferably after cooling the reaction somewhat, such as to room temperature.

[0025] The product can be separated using extraction, such as with ethyl acetate. In general, yield can be in the range of from 70% to 90% based upon the weight of the halopyridine. Purity can be in the range of 90% to greater than 99% GC area % after purification.

[0026] Example lb, below, is a counterexample which reproduces a run from Biscoe & Buchwald, Organic Letters, 11, 1773 (2009), except for the use of 3-isobutyrylpyridine as a reactant, which would be expected to form metyrapone, rather than 3-acetylpyridine as used in the reference. Despite the fact that the reference reaction did form product, no product was observed. With the substitution, the reaction does not proceed at all, even with the same catalyst and under the same conditions as used in the reference. Thus, even in the absence of chelation, the difficulty in forming the quaternary center necessary for the formation of metyrapone can prevent the formation of product.

EXAMPLE Ia


Preparation of Metyrapone With a Pd(OAc)2 Catalyst



[0027] Pd(OAc)2 (15 mg, 0.067 mmol); P(-t-Bu)3 (15 mg, 0.074 mmol); and NaO-t-Bu (199 mg, 2.07 mmol) were weighed into a round bottom flask in a nitrogen purge box. The flask was removed from the purge box and THF (10 mL), 3-bromopyridine (0.17 mL, 279 mg, 1.76 mmol) and 3-isobutyrylpyridine (251 mg, 1.68 mmol) were added. The reaction was heated under reflux for 3.5 h. The reaction was cooled to room temperature and quenched with saturated aqueous NH4Cl (10 mL). The mixture was extracted with EtOAc (2x10 mL). The organic phases were combined and washed with saturated aqueous NaCl (10 mL), dried (MgSO4), filtered, and concentrated under reduced to give the crude metyrapone that was 80% pure by GC-MS.

EXAMPLE Ib



[0028] XPhos precatalyst (32 mg, 0.043 mmol) and KOt-Bu (348 mg, 3.10 mmol) were weighed into a round bottom flask in a nitrogen purge box. The flask was removed from the purge box and 3-chloropyridine (0.17 mL, 202 mg, 1.79 mmol), 3-isobutyrylpyridine (255 mg, 1.71 mmol) and toluene (7 mL), were added. The reaction was heated to 60 °C for 3 h. A 0.15 mL aliquot was removed and the reaction progressed checked by GC-MS. GC-MS showed only unreacted starting material. The reaction was heated to 80 °C and maintained there for 3 hours, and then heated to 90 °C maintained there for 16 hours. The reaction was cooled to room temperature and quenched with saturated aqueous NH4Cl (10 mL). The mixture was extracted with EtOAc (2 x 10 mL). The organic phases were combined and washed with saturated aqueous NaCl (10 mL), dried (MgSO4), filtered, and concentrated. Analysis of the crude reaction mixture (365 mg) by GC-MS showed that no metyrapone was produced during the reaction and that the mixture was predominately recovered starting material.



[0029] Components referred to by chemical name or formula anywhere in the specification or aspects hereof, whether referred to in the singular or plural, are identified as they exist prior to coming into contact with another substance referred to by chemical name or chemical type (e.g., another component, a solvent, or etc.). It matters not what chemical changes, transformations and/or reactions, if any, take place in the resulting mixture or solution as such changes, transformations, and/or reactions are the natural result of bringing the specified components together under the conditions called for pursuant to this disclosure. Thus the components are identified as ingredients to be brought together in connection with performing a desired operation or in forming a desired composition. Also, even though the aspects hereinafter may refer to substances, components and/or ingredients in the present tense ("comprises", "is", etc.), the reference is to the substance, component or ingredient as it existed at the time just before it was first contacted, blended or mixed with one or more other substances, components and/or ingredients in accordance with the present disclosure. The fact that a substance, component or ingredient may have lost its original identity through a chemical reaction or transformation during the course of contacting, blending or mixing operations, if conducted in accordance with this disclosure and with ordinary skill of a chemist, is thus of no practical concern.

[0030] The invention may comprise, consist, or consist essentially of the materials and/or procedures recited herein.

[0031] Except as may be expressly otherwise indicated, the article "a" or "an" if and as used herein is not intended to limit, and should not be construed as limiting, the description or an aspect to a single element to which the article refers. Rather, the article "a" or "an" if and as used herein is intended to cover one or more such elements, unless the text expressly indicates otherwise.


Claims

1. A process for the preparation of a product compound having the following formula:

the process comprising the steps of:

1) preparing a reaction mixture from at least:

i) a halopyridine of the following structure:

ii) a substituted pyridine of the following structure:

iii) a palladium containing catalyst selected from the group consisting of palladium(II)acetate, bis(dibenzylideneacetone)palladium(0), tris(dibenzylideneacetone)dipalladium(0), tetrakis-(triphenylphosphine)palladium(0), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II), and any mixture of two or more of the foregoing;

iv) a phosphine or carbene ligand;

v) a Bronsted base; and

vi) a solvent;

2) heating the reaction mixture to one or more temperatures in the range of 30°C to 110°C such that the product compound is formed;

wherein R1, R2, R3, and R4 are each hydrogen, R5 and R6 are each methyl groups, R7, R8, R9 and R10 are each hydrogen, and X is selected from the group consisting of chlorine, bromine, iodine, sulfonate, triflate, nonaflate, and a diazonium salt.
 
2. The process of claim 1, wherein the phosphine ligand is selected from the group consisting of:

a) a trialkyl/aryl phosphine comprising substituents independently selected from the group consisting of tert-butyl-, cyclohexyl-, and adamantyl-;

b) a trialkyl/aryl phosphine selected from the group consisting of dicyclohexylphosphino-2', 4', 6'-triisopropylbiphenyl (Xphos™), 2-di-tert-butylphosphino-2', 4', 6'-triisopropylbiphenyl (tBuXPhos™) ; (2-biphenyl)di-tert-butylphosphine (JohnPhos™); (2-biphenyl)dicyclohexylphosphine (CyJohnPhos™); 2-dicyclohexylphosphino-2', 6'-dimethoxybiphenyl (Sphos™); 2-dicyclohexylphosphino-2',6'-diisopropoxy-biphenyl (RuPhos™); 2- dicyclohexylphosphino- 2'-(N,N-dimethylamino) biphenyl (DavePhos™); 2-di- tert-butyl-phosphino-2' -methylbiphenyl (tBuMePhos™); 2-dicyclohexylphosphino-2'-methylbiphenyl (MePhos™), tri-tert-butylphosphine and tricyclohexylphosphine; and

c) a phosphine ligand selected from the group consisting of 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos), 9,9-Dimethyl-4,5-bis(di-tert-butyl phosphino)xanthene (t-Bu-Xantphos), 2,2'-bis(diphenylphosphino)-1,1'-binaphthalene (BINAP), and 1,1'-Bis(diphenylphosphino)ferrocene (dppf), 1,2,3,4,5-Pentaphenyl-1'-(di-tert-butylphosphino)-ferrocene (QPhos).


 
3. The process of claim 1 wherein the Bronsted base is selected from the group consisting of lithium t-butoxide, sodium t-butoxide, potassium t-butoxide, lithium bis(trimethylsilyl)amide, sodium bis(trimethylsilyl)amide, potassium bis(trimethylsilyl)amide, lithium diisopropylamide, lithium dicyclohexylamide, cesium carbonate, potassium phosphate, and any mixture thereof.
 
4. The process of claim 1, wherein the solvent is selected from the group consisting of tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, dimethoxyethane, toluene; and any mixture thereof.
 
5. The process of claim 1, wherein the carbene ligand is selected from the group consisting of 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolium tetrafluoroborate (SIPr-HBF4); 1,3-bis-(2,6-diisopropylphenyl)imidazolinium chloride; 1,3-dimesitylimidazolidinium chloride, 4,5-dihydro-1,3-bis(2,4,6-trimethylphenyl)-1H-imidazolium chloride; 1,3-bis(tricyclo[3.3.1.13,7]dec-1-yl)-1H-imidazolium tetrafluoroborate; 1,3-bis(2,4,6-trimethylphenyl)imidazolinium chloride; (1,3-bis(2,6-diisopropylphenyl)imidazolidene)(3-chloropyridyl) palladium(II) dichloride; (PEPPSI™-SIPr catalyst); [1,3-bis(2,6-Diisopropylphenyl)-imidazol-2-ylidene] (3-chloropyridyl)palladium(II) dichloride (PEPPSI™-IPr catalyst).
 
6. The process of claim 1 wherein the substituted pyridine is 3-isobutyrylpyridine, and the halopyridine is selected from the group consisting of a chloropyridine, bromopyridine, and iodopyridine.
 
7. The process of claim 1 wherein the palladium containing catalyst and phosphine ligand have a molar ratio in the range of from 1 to 5 moles of ligand per mole of palladium containing catalyst.
 
8. The process of claim 1 wherein the heating of the reaction mixture in 2) is to one or more temperatures in the range of 80°C to 110°C for a time in the range of 2 hours to 4 hours.
 
9. The process of any of the above claims further comprising quenching the reaction mixture with a reagent that removes or inactivates the Bronsted base.
 


Ansprüche

1. Verfahren zur Herstellung einer Produktverbindung mit der folgenden Formel:

wobei das Verfahren die Schritte:

1) Herstellen einer Reaktionsmischung aus mindestens:

i) einem Halogenpyridin mit der folgenden Struktur:

ii) einem substituiertem Pyridin mit der folgenden Struktur:

iii) einem Palladium enthaltenden Katalysator ausgewählt aus der Gruppe bestehend aus Palladium(II)acetat, Bis(dibenzylidenaceton)palladium(0), Tris(dibenzylidenaceton)dipalladium(0), Tetrakis(triphenylphosphin)palladium(0), [1,1'-Bis(diphenylphosphin)ferrocen]dichlorpalladium-(II), und irgendwelchen Mischungen von zwei oder mehr der zuvor Genannten,

iv) einem Phosphin- oder Carbenliganden,

v) einer Brönsted-Base und

vi) einem Lösungsmittel,

2) Erhitzen der Reaktionsmischung auf eine oder mehrere Temperaturen im Bereich von 30°C bis 110°C, so dass die Produktverbindung gebildet wird,

wobei R1, R2, R3 und R4 jeweils Wasserstoff sind, R5 und R6 jeweils Methylgruppen sind, R7, R8, R9 und R10 jeweils Wasserstoff sind, und X aus der Gruppe bestehend aus Chlor, Brom, Iod, Sulfonat, Triflat, Nonaflat und einem Diazoniumsalz ausgewählt sind.
 
2. Verfahren nach Anspruch 1, bei dem der Phosphinligand ausgewählt ist aus der Gruppe bestehend aus:

a) Trialkyl/arylphosphin, das Substituenten unabhängig ausgewählt aus der Gruppe bestehend aus tert.-Butyl-, Cyclohexyl- und Adamantyl- umfasst;

b) Trialkyl/arylphosphin ausgewählt aus der Gruppe bestehend aus Dicyclohexylphosphin-2',4',6'-triisopropylbiphenyl (Xphos™), 2-Di-tert.-butylphosphin-2',4',6'-triisopropylbiphenyl (tBuXPhos™); (2-Biphenyl)di-tert.-butylphosphin (JohnPhos™); (2-Biphenyl)dicyclohexylphosphin (CyJohnPhos™); 2-Dicyclohexylphosphin-2',6'-dimethoxybiphenyl (Sphos™); 2-Dicyclohexylphosphin-2',6'-diisopropoxybiphenyl (RuPhos™); 2-Dicyclohexylphosphin-2'-(N,N-di-methyl-amino)biphenyl (DavePhos™); 2-Di-tert.-butyl-phosphin-2'-methylbiphenyl (tBuMePhos™) ; 2-Dicyclohexylphosphin-2'-methylbiphenyl (MePhos™), Tri-tert.-butylphosphin und Tricyclohexylphosphin; und

c) einem Phosphinliganden ausgewählt aus der Gruppe bestehend aus 4,5-Bis(diphenylphosphin)-9,9-di-methylxanthen (Xantphos), 9,9-Dimethyl-4,5-bis(di-tert.-butylphosphin)xanthen (t-Bu-Xantphos), 2,2'-Bis(diphenylphosphin)-1,1'-binaphthalin (BINAP) und 1,1'-Bis(diphenylphosphin)ferrocen (dppf), 1,2,3,4,5-Pentaphenyl-1'-(di-tert.-butylphosphino)-ferrocen (QPhos).


 
3. Verfahren nach Anspruch 1, bei dem die Brönsted-Base ausgewählt ist aus der Gruppe bestehend aus Lithium-t-butoxid, Natrium-t-butoxid, Kalium-t-butoxid, Lithium-bis-(trimethylsilyl)amid, Natrium-bis(trimethylsilyl)amid, Kalium-bis(trimethylsilyl)amid, Lithiumdiisopropylamid, Lithiumdicyclohexylamid, Cesiumcarbonat, Kaliumphosphat und irgendwelchen Mischungen derselben.
 
4. Verfahren nach Anspruch 1, bei dem das Lösungsmittel ausgewählt ist aus der Gruppe bestehend aus Tetrahydrofuran, 2-Methyltetrahydrofuran, 1,4-Dioxan, Dimethoxyethan, Toluol und irgendwelchen Mischungen derselben.
 
5. Verfahren nach Anspruch 1, bei dem der Carbenligand ausgewählt ist aus der Gruppe bestehend aus 1,3-Bis(2,6-diisopropylphenyl)-4,5-dihydroimidazoliumtetrafluorborat (SIPr-HBF4); 1,3-Bis-(2,6-diisopropylphenyl)imidazolini-umchlorid; 1,3-Dimesitylimidazolidiniumchlorid, 4,5-Dihydro-1,3-bis(2,4,6-trimethylphenyl)-1H-imidazoliumchlorid; 1,3-Bis(tricyclo[3.3.1.13,7]dec-1-yl)-1H-imidazoli-umtetrafluorborat; 1,3-Bis(2,4,6-trimethylphenyl)imidazo-liniumchlorid; (1,3-Bis(2,6-diisopropylphenyl)imidazoliden)(3-chlorpyridyl)palladium(II)dichlorid; (PEPPSI™-SIPr Katalysator); [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-yliden](3-chlorpyridyl)palladium(II)dichlorid (PEPPSI™-IPr Katalysator).
 
6. Verfahren nach Anspruch 1, bei dem das substituierte Pyridin 3-Isobutyrylpyridin ist und das Halogenpyridin ausgewählt ist aus der Gruppe bestehend aus Chlorpyridin, Brompyridin und Iodpyridin.
 
7. Verfahren nach Anspruch 1, bei dem der Palladium enthaltende Katalysator und der Phosphinligand ein Molverhältnis im Bereich von 1 bis 5 Mole Ligand pro Mol Palladium enthaltender Katalysator aufweisen.
 
8. Verfahren nach Anspruch 1, bei dem das Erhitzen der Reaktionsmischung in 2) auf eine oder mehrere Temperaturen im Bereich von 80°C bis 110°C über einen Zeitraum im Bereich von 2 Stunden bis 4 Stunden erfolgt.
 
9. Verfahren nach einem der obigen Ansprüche, das ferner Abschrecken der Reaktionsmischung mit einem Reagenz umfasst, das die Brönsted-Base entfernt oder deaktiviert.
 


Revendications

1. Procédé de préparation d'un composé ayant la formule suivante :

le procédé comprenant les étapes consistant :

1) à préparer un mélange réactionnel à partir d'au moins :

i) une halogénopyridine ayant la structure suivante :

ii) une pyridine substituée ayant la structure suivante :

iii) un catalyseur contenant du palladium choisi dans le groupe constitué de l'acétate de palladium(II), le bis(dibenzylidèneacétone)palladium(0), le tris(dibenzylidèneacétone)dipalladium(0), le tétrakis(triphénytphosphine)palladium(0), le [1,1'-bis(diphénylphosphino)ferrocène]dichloropalladium(II), et de tout mélange de deux ou plus de ceux-ci ;

iv) un ligand phosphine ou carbène ;

v) une base de Bronsted ; et

vi) un solvant ;

2) à chauffer le mélange réactionnel à une ou plusieurs température(s) comprise(s) dans la plage allant de 30°C à 110°C de sorte que le composé soit formé ;

où R1, R2, R3 et R4 représentent chacun un atome d'hydrogène, R5 et R6 représentent chacun un groupe méthyle, R7, R8, R9 et R10 représentent chacun un atome d'hydrogène, et X est choisi dans le groupe constitué de chlore, de brome, d'iode, de sulfonate, de triflate, de nonaflate, et d'un sel de diazonium,
 
2. Procédé de la revendication 1, dans lequel le ligand phosphine est choisi dans le groupe constitué :

a) d'une trialkyl/aryl phosphine comprenant des substituants indépendamment choisis dans le groupe constitué de tert-butyle-, de cyclohexyle- et d'adamantyle- ;

b) d'une trialkyl/aryl phosphine choisie dans le groupe constitué du dicyclohexylphosphino-2',4',6'-triisopropylbiphényle (Xphos™), du 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphénylphényle (tBuXPhos™) ; du (2-biphényl)di-tert-butylphosphine (JohnPhos™) ; du (2-biphényl)dicyclohexylphosphine (CyJohnPhos™) ; du 2-dicyclohexylphosphino-2',6'-diméthoxybiphényle (Sphos™) ; du 2-dicyclohexylphosphino-2',6'-diisopropoxy-biphényle (RuPhos™) ; du 2-dicyclohexylphosphino-2'-(N,N-diméthylamino)biphényle (DavePhos™) ; du 2-di-tert-butylphosphino-2'-méthylbiphényle (tBuMePhos™) ; du 2-dicyclohexylphosphino-2'-méthylbiphényle (MePhos™), de la tri-tert-butylphosphine et de la tricyclohexylphosphine ; et

c) d'un ligand phosphine choisi dans le groupe constitué du 4,5-bis (diphénylphosphino)-9,9-diméthylxanthène (Xantphos), du 9,9-diméthyl-4,5-bis (di-tert-butylphosphino)xanthène (t-Bu-Xantphos), du 2,2'-bis(diphénylphosphino)-1,1'-binaphtalène (BINAP), et du 1,1'-Bis(diphénylphosphino)ferrocène (dppf), du 1,2,3,4,5-Pentaphényl-1'-(di-tert-butylphosphino)ferrocène (QPhos).


 
3. Procédé de la revendication 1, dans lequel la base de Bronsted est choisie dans le groupe constitué du t-butoxyde de lithium, du t-butoxyde de sodium, du t-butoxyde de potassium, du bis(triméthylsilyl)amidure de lithium, du bis(triméthylsilyl)amidure de sodium, du bis(triméthylsilyl)amidure de potassium, du diisopropylamidure de lithium, du dicyclohexylamidure de lithium, du carbonate de césium, du phosphate de potassium et de tout mélange de ceux-ci.
 
4. Procédé de la revendication 1, dans lequel le solvant est choisi dans le groupe constitué du tétrahydrofurane, du 2-méthyltétrahydrofurane, du 1,4-dioxane, du diméthoxyéthane, du toluène ; et de tout mélange de ceux-ci,
 
5. Procédé de la revendication 1, dans lequel le ligand carbène est choisi dans le groupe constitué du tétrafluoroborate de 1,3-bis(2,6-diisopropylphényl)-4,5-dihydroimidazolium (SIPr-HBF4) ; du chlorure de 1,3-bis-(2,6-diisopropylphényl)imidazolinium ; du chlorure de 1,3-dimésitylimidazolidinium, du chlorure de 4,5-dihydro-1,3-bis(2,4,6-triméthylphényl)-1H-imidazolium ; du tétrafluoroborate de 1,3-bis(tricyclo[3.3.1.13,7]déc-1-yl)-1H-imidazolium ; du chlorure de 1,3-bis(2,4,6-triméthylphényl)imidazolinium ; du dichlorure de (1,3-bis(2,6-diisopropyiphényl)imidazolidène)(3-chloropyridyl)palladium(II) (catalyseur PEPPSI™-SIPr) ; du dichlorure de [1,3-bis(2,6-diisopropylphényl)imidazol-2-ylidène](3-chloropyridyl)palladium(II) (catalyseur PEPPSI™-IPr).
 
6. Procédé de la revendication 1, dans lequel la pyridine substituée est la 3-isobutyrylpyridine et l'halogénopyridine est choisie dans le groupe constitué d'une chloropyridine, d'une bromopyridine et d'une iodopyridine.
 
7. Procédé de la revendication 1, dans lequel le catalyseur contenant du palladium et le ligand phosphine ont un rapport molaire compris dans la plage allant de 1 à 5 mole(s) de ligand par mole de catalyseur contenant du palladium.
 
8. Procédé de la revendication 1, dans lequel le chauffage du mélange réactionnel en 2) s'effectue à une ou plusieurs température(s) comprise(s) dans la plage allant de 80°C à 110°C pendant une durée comprise dans la plage allant de 2 heures à 4 heures.
 
9. Procédé de l'une des revendications précédentes, comprenant en outre la trempe du mélange réactionnel avec un réactif qui élimine ou inactive la base de Bronsted.
 




REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description