(19)
(11)EP 3 238 326 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.03.2020 Bulletin 2020/13

(21)Application number: 15874086.0

(22)Date of filing:  04.12.2015
(51)International Patent Classification (IPC): 
H02J 7/34(2006.01)
(86)International application number:
PCT/US2015/063864
(87)International publication number:
WO 2016/105905 (30.06.2016 Gazette  2016/26)

(54)

MULTISOURCE POWER DELIVERY SYSTEM

STROMVERSORGUNGSSYSTEM MIT MEHREREN QUELLEN

SYSTÈME DE DISTRIBUTION D'ÉNERGIE MULTISOURCE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.12.2014 US 201414582969

(43)Date of publication of application:
01.11.2017 Bulletin 2017/44

(73)Proprietor: Intel Corporation
Santa Clara, CA 95054 (US)

(72)Inventor:
  • KUMAR, Pavan
    Portland, Oregon 97229 (US)

(74)Representative: HGF Limited 
Fountain Precinct Balm Green
Sheffield S1 2JA
Sheffield S1 2JA (GB)


(56)References cited: : 
US-A1- 2004 130 214
US-A1- 2010 208 501
US-A1- 2010 308 660
US-A1- 2011 278 931
US-A1- 2010 026 100
US-A1- 2010 289 338
US-A1- 2011 215 760
US-A1- 2013 015 805
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The present disclosure relates to power delivery, in particular to, a multisource power delivery system.

    BACKGROUND



    [0002] Computing devices typically receive energy from a single power source, for example, a battery or a power supply. The battery may also receive energy from a battery charger. The battery charger or power supply may receive AC (alternating current) input and provide a DC (direct current) output to the battery or to the computing device, respectively. Energy received from the single power source may then be converted to one or more voltages by power conversion logic within the computing device. The power conversion logic may be configured to supply energy, at one or more operating voltage(s), to selected elements of the computing device.

    [0003] Document US 2010/308660 "POWER HARVESTING CIRCUIT AND METHOD FOR SERIALLY COUPLED DC POWER SOURCES" refers to circuitry according to the preamble of claim 1 for maximizing power from multiple DC power sources mutually coupled in series and providing unequal DC currents.

    [0004] Document US 2010/289338 "METHODS AND APPARATUSES FOR PHOTOVOLTAIC POWER MANAGEMENT" refers to methods and apparatuses for equalizing voltages across a plurality of photovoltaic units connected in series.

    [0005] Document US 2004/130214 "DUAL VOLTAGE ARCHITECTURE FOR AUTOMOTIVE ELECTRICAL SYSTEMS" refers to a dual voltage automotive electrical system that includes a generator for generating a first nominal voltage on a first voltage bus and a bi-directional DC/DC converter for converting the first nominal voltage to a second nominal voltage on a second voltage bus.

    SUMMARY OF THE INVENTION



    [0006] The invention is set out in the appended set of claims.

    BRIEF DESCRIPTION OF DRAWINGS



    [0007] Features and advantages of the claimed subject matter will be apparent from the following detailed description, which should be considered with reference to the accompanying drawings, wherein:

    FIG. 1 illustrates a functional block diagram of a multisource power delivery system and load device of the present disclosure;

    FIG. 2 illustrates an example multisource power delivery system including a three-level balancer of the present disclosure;

    FIG. 3 illustrates another example multisource power delivery system including a two-level balancer of the present disclosure; and

    FIG. 4 is a flowchart of power delivery operations according to the present disclosure.


    DETAILED DESCRIPTION



    [0008] Generally, this disclosure relates to multisource power delivery systems (and methods). A multisource power delivery system may include a plurality of power sources ("sources"), conventional and/or unconventional, and a power device that includes a balancer and a plurality of storage elements. The power device is configured to receive energy from the plurality of sources and to store energy from each source in a respective storage element. The plurality of storage elements are configured to be coupled to each other in series and each storage element is configured to be coupled to the balancer. The balancer includes one or more voltage regulators and/or DC-to-DC converters configured to balance energy drawn from each of one or more of the storage elements. The power device is configured to provide energy at a plurality of balanced voltages ("output voltages") to a plurality of taps. A number of output voltages (and number of taps) may be less than or equal to a number of sources. One or more of the taps may then be coupled to a load device.

    [0009] Conventional sources include, but are not limited to battery chargers, AC (alternating current)/DC (direct current) converters, USB (Universal Serial Bus) ports, etc. Conventional sources may generally be configured to provide energy at voltages on the order of ones or tens of volts, for example, 5, 12 and/or 20 volts. Unconventional sources include solar cells, photovoltaic cells, wireless power sources configured to capture and convert energy from antennas, piezoelectric sources configured to convert vibration into electrical energy, thermoelectric sources configured to convert heat flow across a temperature gradient into electrical energy, etc. Unconventional sources may provide energy at voltages on the orders of ones and/or tenths of a volt. Storage element(s) coupled to respective unconventional source(s) may each be configured to receive and store energy at voltage(s) on the order of ones and/or tenths of a volt.

    [0010] Operating voltage(s) of at least some elements (e.g., loads) of the load device may be in the range of 0.5 volt to 5 volts. For example, operating voltages of elements of a computing device may include 5, 3.3, 1.8, 1.5, 1.3 and/or 0.8 volts. Power device output voltages greater than the output voltages of individual unconventional sources may be provided by coupling to a plurality of storage elements that are coupled in series. Power device output voltage(s) may then be provided to, for example, a computing device, with little, if any, conversion. Converting a first voltage to a second voltage when the first and second voltage are relatively close in value is generally more efficient than converting the first voltage to the second voltage when the first voltage is relatively much larger or relatively much smaller than the second voltage. Thus, relatively closely matching output voltages from unconventional sources to operating voltage(s) of loads included in a load device with relatively minimal conversion may be more efficient than converting output voltages of the conventional power sources due to large relative voltage differences.

    [0011] FIG. 1 illustrates a system block diagram of a multisource power delivery system 100 and load device 106 of the present disclosure. Load devices, e.g., load device 106, may include, but are not limited to, computing devices (e.g., a server, a workstation computer, a desktop computer, a laptop computer, a tablet computer (e.g., iPad®, GalaxyTab® and the like), an ultraportable computer, an ultramobile computer, a netbook computer and/or a subnotebook computer); a mobile telephone including, but not limited to a smart phone, (e.g., iPhone®, Android®-based phone, Blackberry®, Symbian®-based phone, Palm®-based phone, etc.) and/or a feature phone; a wearable device and/or system; and/or sensor(s) and/or a sensor network (wired and/or wireless), etc.

    [0012] Load device 106 may include a plurality of loads 130a, 130b,..., 130p. The loads 130a, 130b,..., 130p may include, but are not limited to, circuitry (analog and digital), logic, voltage regulator(s), DC-to-DC converter(s) and/or power rail(s), etc. One or more of load(s) 130a, 130b,..., and/or 130p are configured to receive energy from multisource power delivery system 100 at one or more input voltage(s). Load(s) 130a, 130b,..., and/or 130p may be configured to utilize the supplied energy without converting a received input voltage. Load(s) 130a, 130b,..., and/or 130p may correspond to voltage regulator(s). For example, the voltage regulators may correspond to linear and/or low drop out voltage regulators when the input voltage(s) are relatively near operating voltage(s) of load device elements that are coupled to the voltage regulators.

    [0013] Load device 106 may further include a performance monitoring unit (PMU) 132. PMU 132 may be configured to monitor operation of load device 106 and to provide an indication, e.g., a signal, to system 100, related to changes in, and/or anticipated energy consumption of, load device 106 and/or loads 130a, 130b,..., 130p, as described herein.

    [0014] System 100 includes a power device 102 and a plurality of sources 104a, 104b, 104c,..., 104m. Sources 104a, 104b, 104c,..., 104m may include conventional and/or unconventional power sources, as described herein. System 100 may include a conventional power source 105. Conventional source 105 may correspond to an AC/DC converter (i.e., battery charger) that may be coupled to an AC supply with supply voltage, Vin. Conventional source 105 may be coupled to power device 102. Conventional source 105 is configured to provide energy to power device 102 in addition to, and/or as an alternative to, sources 104a, 104b, 104c,..., 104m, for example, when sources 104a, 104b, 104c,..., 104m correspond to unconventional sources.

    [0015] Power device 102 includes control logic 110, a plurality of storage elements 112a, 112b, 112c,..., 112m and a balancer 114. Power device 102 may further include a plurality of output stages 116a, 116b,..., 116n. Power device 102 is configured to receive electrical energy from one or more of source(s) 104a, 104b, 104c,..., and/or 104m and/or conventional source 105. Conventional source 105 is configured to couple to balancer 114 and the plurality of storage elements 112a, 112b, 112c,..., 112m at nodes 115a and 115b. For example, conventional source 105 may be configured to provide energy to balancer 114 and the plurality of storage elements 112a, 112b, 112c,..., 112m when one or more of sources 104a, 104b, 104c,..., and/or 104m is not available.

    [0016] The energy received from one or more of sources 104a, 104b, 104c,..., 104m may be provided to respective storage elements 112a, 112b, 112c,..., 112m and may be at respective input voltages VS1, VS2, VS3,..., VSm. Power device 102 is configured to provide energy out at respective power device tap(s) 118a, 118b,..., 118n. Output voltage(s) Vout1, Vout2,..., Voutn, measured between an associated tap and ground, are related to one or more of the input voltage(s) VS1, VS2, VS3,..., and/or VSm. For example, Vout1 may correspond to VS1. In another example, Vout2 may correspond to a sum of VS1, VS2 and VS3. In another example, Voutn may correspond to a sum of VS1, VS2, VS3,..., and VSm. A number of taps and, therefore the number of output voltages Vout1, Vout2,..., Voutn, is less than or equal to a number of input voltages VS1, VS2, VS3,..., VSm. The number of input voltages corresponds to the number of storage elements 112a, 112b, 112c,..., 112m and may also correspond to the number of sources 104a, 104b, 104c,..., 104m.

    [0017] Control logic 110 is configured to manage operations of power device 102. For example, control logic 110 may be configured to receive the indication (e.g., signal) from PMU 132 related to operation of load device 106. Control logic 110 is configured to manage one or more of balancer 114 and/or output stages 116a, 116b, ..., 116n in response to the indication, as described herein.

    [0018] The storage elements 112a, 112b, 112c,..., 112m may include rechargeable batteries, capacitors and/or supercapacitors. Rechargeable batteries may include one or more rechargeable battery types. Rechargeable battery types may include, but are not limited to, Li-ion (Lithium Ion), NiMH (Nickel-Metal Hydride), NiZn (Nickel-Zinc), NiCd (NickelCadmium), etc. Supercapacitors may include double-layer capacitors (e.g., electrostatic charge storage), pseudocapacitors (e.g., electrochemical charge storage) and hybrid capacitors (e.g., both electrostatic and electrochemical charge storage).

    [0019] Supercapacitor operational characteristics may be between corresponding operational characteristics of conventional capacitors and rechargeable batteries. For example, supercapacitors may have a higher energy density and a lower power density compared to conventional capacitors. In other words, supercapacitors may store more energy per unit volume and may charge and discharge more slowly than conventional capacitors. Supercapacitors have lower energy density and a higher power density relative to rechargeable batteries. In other words, supercapacitors may store less energy than rechargeable batteries but may discharge faster, i.e., may have a relatively smaller time constant, than rechargeable batteries. Thus, when combined with rechargeable batteries, supercapacitors may complement the rechargeable batteries by providing additional energy over a relatively short time period (i.e., relatively fast discharge).

    [0020] Each storage element 112a, 112b, 112c,..., 112m may thus include one or more rechargeable batter(ies), capacitor(s) and/or supercapacitor(s) that may be coupled in series and/or in parallel. The specific arrangement may be configured to provide a target (i.e., specified) energy capacity at an input voltage VS1, VS2, VS3,..., VSm. Each input voltage VS1, VS2, VS3,..., VSm is related to and may correspond to an output voltage of a respective associated source 104a, 104b, 104c,..., 104m coupled to the storage element 112a, 112b, 112c,..., 112m.

    [0021] The storage elements 112a, 112b, 112c,..., 112m may be coupled in series. For example, a first port (e.g., negative terminal) of storage element 112a may be coupled to ground, a second port (e.g., positive terminal) of storage element 112a may be coupled to a first port of storage element 112b at node 113a, a second port of storage element 112b may be coupled to a first port of storage element 112c at node 113b, and so on until a second port of storage element 112m that may be coupled to node 113m. For example, each storage element 112a, 112b, 112c,..., 112m may correspond to a stack when voltages VS1, VS2, VS3,..., VSm equal (e.g., to a voltage VS). Continuing with this example, a respective output voltage Vout1, Vout2,..., Voutn may then correspond to VS multiplied by a respective whole number factor, e.g., sVS, where s is a whole number between 1 and m, inclusive. Since there may be fewer output voltages than stacks, s may or may not take every value between 1 and m.

    [0022] Each source 104a, 104b, 104c,..., 104m may be coupled in parallel to a respective storage element 112a, 112b, 112c,..., 112m. For example, source 104a may be coupled in parallel with storage element 112a, source 104b may be coupled in parallel with storage element 112b and so on through source 104m and storage element 112m. Thus, a number of sources 104a, 104b, 104c,..., 104m may equal a number of storage elements 112a, 112b, 112c,..., 112m. The sources 104a, 104b, 104c,..., 104m may then be effectively coupled in series. The storage elements 112a, 112b, 112c,..., 112m (and sources 104a, 104b, 104c,..., 104m) may be further coupled to the balancer 114. For example, the first port of storage element 112a may be coupled to balancer port 115a that is also coupled to ground. Each node 113a, 113b, 113c,... 113m (and thus each storage element second port) may be coupled to respective balancer input ports 117a, 117b, 117c,..., 117m. Respective input voltages VS1, VS2, VS3,..., VSm may then be provided across adjacent balancer input ports. Thus, balancer 114 is coupled to the sources 104a, 104b, 104c,..., 104m and storage elements 112a, 112b, 112c,..., 112m at balancer input ports 117a, 117b, 117c,..., 117m via nodes 113a, 113b, 113c,..., 113m.

    [0023] Balancer 114 is configured to receive energy from the sources 104a, 104b, 104c,..., 104m and/or storage elements 112a, 112b, 112c,..., 112m. Balancer 114 may further receive energy from unconventional source 105. Balancer 114 is further configured to provide energy to balancer output ports 119a, 119b,..., 119n. One or more of balancer output ports 119a, 119b,..., 119n may be coupled to respective output stages 116a, 116b,..., 116n. Output voltages at ports 119a, 119b,..., 119n may generally be referenced to ground, e.g., port 115a. Thus, the output voltages at ports 119a, 119b,..., 119n may correspond to a composite (i.e., sum) of voltages across one or more storage element(s) 112a, 112b, 112c,..., 112m. For example, the output voltage associated with port 119a may correspond to the voltage associated with storage element 112a and/or source 104a, e.g., VS1. In another example, the output voltage associated with port 119b may correspond to a sum of, for example, the voltages across storage elements 112a, 112b and 112c, e.g., VS1+VS2+VS3.

    [0024] Balancer 114 is configured to balance energy drawn from the storage elements 112a, 112b,..., and/or 112m and/or sources 104a, 104b, 104c,..., and/or 104m when current is drawn from one or more of ports 119a, 119b,..., 119n. A number of balancer output ports 119a, 119b, ..., 119n may be less than or equal to a number of storage elements 112a, 112b, 112c, ..., 112m. Balancer 114 is configured to control a relative amount of energy drawn from each storage element 112a, 112b, 112c, ..., and/or 112m and/or source 104a, 104b, 104c,..., and/or 104m that are coupled to balancer 114. For example, balancer 114 may include one or more voltage regulator(s) and/or DC-to-DC converter(s). Unless otherwise noted, as used herein the term "voltage regulator" corresponds to both voltage regulators and DC-to-DC converters and thus "voltage regulator" is understood to mean voltage regulator and/or DC-to-DC converter. Voltage regulator(s) (and/or DC-to-DC converters) may include, but are not limited to, switched capacitor voltage regulators, buck voltage regulators, buck-boost voltage regulators, etc. The voltage regulator(s) may be configured to provide an output voltage greater than, less than or equal to a corresponding input voltage. The voltage regulator(s) may be configured to operate open loop (i.e., without direct output voltage feedback) and/or in a closed loop (i.e., with direct output voltage feedback) so that an amount of energy drawn from each storage element 112a, 112b, 112c, ..., and/or 112m is balanced.

    [0025] For example, balancer 114 may be configured to receive a pulse width modulated (PWM) signal input from control logic 110 and PWM 120. The PWM signal may have a frequency on the order of one hundred kilohertz, ten Megahertz (MHz) or one hundred MHz. The PWM duty cycle may be selected based, at least in part, on relative values of respective output voltages of sources 104a, 104b, 104c,..., 104m, e.g., VS1, VS2, VS3,..., VSm. The associated balancer 114 output voltage(s) may decrease as energy is drawn from the storage elements 112a, 112b, 112c, ..., 112m and not replenished by, e.g., respective sources 104a, 104b, 104c,..., 104m and/or conventional source 105. The decrease(s) are configured to be proportional, i.e., balanced, across a plurality of storage elements 112a, 112b, 112c, ..., and/or 112m.

    [0026] Thus, balancer 114 is configured to balance energy drawn from storage elements 112a, 112b, 112c, ..., 112m and/or sources 104a, 104b, 104c,..., 104m as current is drawn from one or more of the balancer output ports (s) 119a, 119b,..., 119n. When sources 104a, 104b, 104c,..., 104m correspond to unconventional power sources, balancer 114 may generally incur a relatively smaller conversion loss compared to a voltage regulator (and/or DC-to-DC-converter) configured to convert a single conventional input voltage (e.g., 12 volts) to a plurality of relatively low output voltages. Thus, balancer 114 may be relatively small in size and may be relatively efficient.

    [0027] Balancer 114 output ports 119a, 119b,..., 119n may each be coupled to a respective output stage 116a, 116b,..., 116n. A number output stages 116a, 116b,..., 116n corresponds to a number of taps 118a, 118b,..., 118n of power device 102. Each output stage 116a, 116b,..., 116n may include and/or may correspond to a pass gate. A pass gate, e.g., a switch, is configured to controllably couple and/or decouple an input and an output. For example, a pass gate may include, but is not limited to, a transistor (e.g., field effect transistor (FET), bipolar junction transistor (BJT), insulated gate bipolar transistor (IGBT), etc.), a relay, etc. Thus, each pass gate 116a, 116b,..., 116n may controllably couple or decouple a respective balancer output 119a, 119b,..., or 119n and an associated power device output tap 118a, 118b,..., or 118n.

    [0028] Each pass gate may be controlled by control logic 110. For example, control logic 110 may be configured to control a selected pass gate to decouple a selected balancer output port 119a, 119b,..., or 119n from an associated power device tap 118a, 118b,..., or 118n in response to a signal from PMU 132. The signal may be configured to indicate that a load 130a, 130b,..., or 130p is no longer operational, i.e., should not be drawing power. In another example, control logic 110 may be configured to sense an output (e.g., voltage and/or current) of a selected output stage 116a, 116b,..., or 116n and to control an associated pass gate to decouple the associated balancer output port 119a, 119b,..., or 119n from the associated power device tap 118a, 118b,..., or 118n if the output voltage and/or current is below a first threshold or above a second threshold. For example, the first threshold may correspond to a low power state and the second threshold may correspond to a fault state.

    [0029] One or more of the output stage(s) 116a, 116b,..., and/or 116n, e.g., output stage 116b, may include a voltage regulator configured to provide a target output voltage to an associated tap, e.g., output voltage Vout2 to power device tap 118b. The target output voltage may correspond to an operating voltage of a specific load, e.g. load 130b. The voltage regulator may include, but is not limited to, a linear voltage regulator, a low drop out (LDO) voltage regulator, a switched capacitor voltage regulator, a buck voltage regulator, etc. LDO voltage regulators are configured to operate with a relatively small difference between an input voltage and associated output voltage. Linear voltage regulators generally include a transistor operating in a linear region and may be used when there is a relatively small difference between an input voltage and associated output voltage. Operating characteristics of LDO regulators include a relatively low minimum operating voltage, a relatively higher efficiency and a relatively low heat dissipation compared to other types of voltage regulators. For example, linear regulator(s) and/or LDO voltage regulator(s) may be used in one or more of output stage(s) 116a, 116b,..., and/or 116n when associated source(s) are relatively low voltage, i.e., correspond to unconventional source(s).

    [0030] Thus, a multisource power delivery system, consistent with the present disclosure may include a plurality of power sources, conventional and/or unconventional, and a power device that includes a balancer and a plurality of storage elements. The power device is configured to receive energy from the plurality of sources and to store energy from each source in a respective storage element. The plurality of storage elements may be coupled to each other in series and each storage element may be coupled to the balancer. The balancer is configured to balance energy drawn from each of one or more of the storage elements. The power device is configured to provide a plurality of balanced output voltages to a plurality of taps. One or more of the output voltage(s) may correspond to a sum of a plurality of source voltages. One or more of the taps may then be coupled to one or more loads included in a load device. A number of taps may be less than or equal to a number of storage devices. The output voltages at the taps may be in or near an operating voltage range of one or more of the load(s).

    [0031] FIG. 2 illustrates an example multisource power delivery system 200 of the present disclosure. Example 200 includes a power device 202, three sources 204a, 204b, 204c and three loads 230a, 230b, 230c. Power device 202 is one example of power device 102 of FIG. 1.

    [0032] Power device 202 is coupled to the three sources 204a, 204b, 204c. Power device 202 may be coupled to one or more load(s) 230a, 230b and/or 230c at taps 218a, 218b, 218c. Power device 202 includes three storage elements 206a, 206b, 206c, control logic 210, a balancer 214 and three output stages 216a, 216b, 216c. Storage elements 206a, 206b, 206c are examples of storage elements 112a, 112b, 112c,..., 112m, control logic 210 is an example of control logic 110, balancer 214 is an example of balancer 114 and output stages 216a, 216b, 216c are examples of output stages 116a, 116b,..., 116n, all of FIG. 1. Each storage element 206a, 206b, 206c is configured to receive energy from a respective source 204a, 204b, 204c (e.g., input voltages VS1, VS2, VS3). Power device 202 is further configured to provide energy (e.g., output voltages Vout1, Vout2, Vout3) to one or more load(s) 230a, 230b, 230c via taps 218a, 218b, 218c. In this example 200, a number of taps 218a, 218b, 218c is equal to a number of sources 204a, 204b, 204c. In another example related to this example 200, the number of taps may be less than the number of sources. For example, taps 218a and 218c may be included and tap 218b may be omitted.

    [0033] Balancer 214 is configured to receive energy from sources 204a, 204b, 204c and/or storage elements 206a, 206b, 206c at nodes 213a, 213b, 213c. Each node 213a, 213b, 213c may be further coupled to an input of a respective output stage 216a, 216b, 216c and an output of each output stage 216a, 216b, 216c may be coupled to a respective tap 218a, 218b, 218c. Balancer 214 is further configured to balance the energy drawn from each storage element 206a, 206b, 206c and/or associated source 204a, 204b, 204c by one or more load(s) 230a, 230b, 230c, as described herein. In another example related to this example 200, if the number of taps is less than the number of sources, balancer 214 may include fewer elements. For example, if taps 218b and 218c are included and tap 218a is omitted, balancer 214 may be configured to balance only the voltage associated with taps 218b and 218c.

    [0034] Balancer 214 is an example of a switched capacitor voltage regulator balancer and includes six switches SW1, SW2,..., SW6 and two flying (i.e., floating) capacitors CF1, CF2. Switches SW1, SW2,..., SW6 may include, but are not limited to, transistors (e.g., FETs, BJTs), relays, etc. A first terminal of switch SW6 is coupled to ground, a second terminal of switch SW6 is coupled to a first terminal of adjacent switch SW5, a second terminal of switch SW5 is coupled to a first terminal of adjacent switch SW4 at node 213a, a second terminal of switch SW4 is coupled to a first terminal of adjacent switch SW3, a second terminal of switch SW3 is coupled to a first terminal of adjacent switch SW2 at node 213b, a second terminal of switch SW2 is coupled to a first terminal of adjacent switch SW1 and a second terminal of switch SW1 is coupled to node 213c. A first terminal of flying capacitor CF2 is coupled to the second terminal of SW6 and the first terminal of SW5, a second terminal of flying capacitor CF2 is coupled to the second terminal of SW4, the first terminal of SW3 and a first terminal of flying capacitor CF1. A second terminal of flying capacitor CF1 is coupled to the second terminal of SW2 and the first terminal of SW1.

    [0035] Switches SW1, SW2,..., SW6 are configured to receive inputs (e.g., PWM signal) from control logic 210 at respective third switch terminals. For example, if storage elements 206a, 206b, 206c and associated sources 204a, 204b, 204c are configured as stacks (i.e., VS1 = VS2 = VS3), then control logic 210 may be configured to provide a PWM signal with 33% duty cycle to switches SW1, SW2,..., SW6. In other words, for a system that includes m sources and VS1 = VS2 = ... = VSm (i.e., an m-stack), a PWM signal duty cycle may be 1/m.

    [0036] Continuing with this example, switches SW1, SW3 and SW5 may be ON and switches SW2, SW4 and SW6 may be OFF for one-half of a period of the PWM signal and switches SW1, SW3 and SW5 may be OFF and switches SW2, SW4 and SW6 ON for the other half of the period of the PWM signal. In another example, if the sources 204a, 204b, 204c are not configured as stacks, the duty cycle may not be 50%. Balancer 214 may thus be configured to balance the energy drawn from each storage element 206a, 206b, 206c and may thus maintain relative values of voltages provided to output stages 216a, 216b, 216c, as described herein. For output stages 216a, 216b, 216c that are pass gates, the voltages provided to the output stages may correspond to Vout1, Vout2, Vout3, respectively.

    [0037] FIG. 3 illustrates an example multisource power delivery system 300 of the present disclosure. Example 300 is simplified for ease of description, for example, output stage(s) are not shown in this example 300. Example 300 includes a power device 302, two sources 304a, 304b and two loads 330a, 330b. Power device 302 is one example of power device 102 of FIG. 1.

    [0038] Power device 302 is coupled to the two sources 304a, 304b. Power device 302 may be coupled to one or more load(s) 330a and/or 330b at taps 318a, 318b. Power device 302 includes two storage elements 306a, 306b, control logic 310 and a balancer 314. Storage elements 306a, 306b are examples of storage elements 112a, 112b, 112c,..., 112m, control logic 310 is an example of control logic 110 and balancer 314 is an example of balancer 114, all of FIG. 1. Each storage element 306a, 306b is configured to receive energy from a respective source 304a, 304b. Power device 302 is further configured to provide energy (e.g., output voltages Vout1, Vout2) to one or more load(s) 330a, 330b via taps 318a, 318b. In this example 300, a number of taps 318a, 318b is equal to a number of sources 304a, 304b.

    [0039] Balancer 314 is configured to receive energy from sources 304a, 304b and/or storage elements 306a, 306b at nodes 313a, 313b. Balancer 314 is further configured to balance the energy drawn from each storage element 306a, 306b and/or associated source 304a, 304b by one or more load(s) 330a, 330b, as described herein.

    [0040] Balancer 314 is an example of a buck voltage regulator balancer and includes two switches SW1, SW2 and an inductor L. Switches SW1, SW2 may include, but are not limited to, transistors (e.g., FETs, BJTs), relays, etc. A first terminal of switch SW1 is coupled to ground, a second terminal of switch SW1 is coupled to a first terminal of switch SW2 and a first terminal of inductor L. A second terminal of inductor L is coupled to node 313a and a second terminal of switch SW2 is coupled to node 313b. Each node 313a, 313b is further coupled to a respective tap 318a, 318b.

    [0041] Switches SW1 and SW2 are configured to receive inputs (e.g., PWM signal) from control logic 310 at respective third switch terminals. For example, if storage elements 306a, 306b and associated sources 304a, 304b are configured as stacks (i.e., VS1 = VS2), then control logic 310 may be configured to provide a PWM signal with 50% duty cycle to switches SW1 and SW2. Continuing with this example, switch SW1 may be ON and switch SW2 may be OFF for one-half of a period of the PWM signal and switch SW1 may be OFF and switch SW2 ON for the other half of the period of the PWM signal. In another example, if the sources 304a, 304b are not configured as stacks, the duty cycle may not be 50%. Balancer 314 may thus be configured to balance the energy drawn from each storage element 306a, 306b and may thus maintain relative values of Vout1 and Vout2, as described herein.

    [0042] Thus, a multisource power delivery system consistent with the present disclosure may include a plurality of sources and associated storage elements and a balancer configured to balance energy drawn from each storage element. A balancer may include a voltage regulator, as described herein. A number of output taps on a power device may be less than or equal to a number of storage elements.

    [0043] FIG. 4 is a flowchart 400 of power delivery operations according to the present disclosure. In particular, the flowchart 400 illustrates capturing energy received from a plurality of sources and providing balanced output voltage(s) to a plurality of loads. The operations may be performed, for example, by power device 102 and/or sources 104a, 104b, 104c,..., 104m of FIG. 1.

    [0044] Operations may begin with start 402. Operation 404 may include providing energy by a plurality of sources. For example, the sources may include unconventional and/or conventional power sources, as described herein. Operation 406 includes capturing, by a plurality of storage elements coupled in series, energy received from the plurality of sources. The storage elements may include one or more of batteries and/or capacitors. Operation 408 includes storing, by each storage element, the energy received from a respective source. Operation 410 includes balancing, by a balancer coupled to the plurality of storage elements, energy drawn from each storage element by a respective load. For example, the balancer may include one or more voltage regulators. Operation 412 may include regulating, by an output stage, an output voltage. For example, the output voltage may be related to a balancer output and/or source input voltage. Operations may then end 414.

    [0045] Thus, power may be received from a plurality of power sources, conventional and/or unconventional. Energy from each source may be stored in a respective storage element and a balancer may balance energy drawn from each storage element by a respective load.

    [0046] It is to be understood that not all of the operations depicted in FIG. 4 are necessary. In addition, it is fully contemplated herein that the operations depicted in FIG. 4, and/or other operations described herein may be combined in a manner not specifically shown in any of the drawings, and less or more operations than are illustrated in FIG. 4 may be included.

    [0047] As used herein, the term "logic" may refer to an app, software, firmware and/or circuitry configured to perform any of the aforementioned operations. Software may be in the form of a software package, code, instructions, instruction sets and/or data recorded on non-transitory computer readable storage medium. Firmware may be in the form of code, instructions or instruction sets and/or data that are hard-coded (e.g., nonvolatile) in memory devices.

    [0048] "Circuitry", as used herein, may comprise, for example, singly or in any combination, hardwired circuitry, programmable circuitry such as computer processors comprising one or more individual instruction processing cores, state machine circuitry, and/or firmware that stores instructions executed by programmable circuitry. The logic may, collectively or individually, be be in the form of circuitry that forms part of a larger system, for example, an integrated circuit (IC), an application-specific integrated circuit (ASIC), a system on-chip (SoC), desktop computers, laptop computers, tablet computers, servers, smart phones, etc.

    [0049] USB (Universal serial bus) may comply or be compatible with Universal Serial Bus Specification, Revision 2.0, published by the Universal Serial Bus organization, April 27, 2000, and/or later versions of this specification, for example, Universal Serial Bus Specification, Revision 3.1, published July 26, 2013 .

    [0050] A hardware description language (HDL) may be used to specify circuit and/or logic implementation(s) for the various logic and/or circuitry described herein. For example, the hardware description language may comply or be compatible with a very high speed integrated circuits (VHSIC) hardware description language (VHDL) that may enable semiconductor fabrication of one or more circuits and/or logic described herein. The VHDL may comply or be compatible with IEEE Standard 1076-1987, IEEE Standard 1076.2, IEEE1076.1, IEEE Draft 3.0 of VHDL-2006, IEEE Draft 4.0 of VHDL-2008 and/or other versions of the IEEE VHDL standards and/or other hardware description standards.

    [0051] Thus, consistent with the teachings of the present disclosure, a system and method are configured to receive energy from a plurality of sources, conventional and/or unconventional, to store energy from each source in a respective storage element and to provide a plurality of output voltages to a plurality of taps. One or more of the taps may then be coupled to a load device. The system and method are further configured to balance energy drawn from each storage element by a respective load.


    Claims

    1. An apparatus comprising:

    a plurality of storage elements (112a-112m) coupled in series and configured to capture and store energy received from a plurality of sources (104a-104m);

    a balancer (114) coupled to the plurality of storage elements, comprising a plurality of balancer output ports (119a-119n) and configured to balance energy drawn from each storage element; characterized in that the apparatus further comprises:

    a plurality of taps (118a-118n) for coupling to a plurality of loads (130a-130p) within a load device (106);

    a plurality of output stages (116a-116n), each output stage including a pass gate connected to a respective balancer output port and to a respective tap among the plurality of balancer outputs and the plurality of taps; and

    a control logic (110) coupled to the balancer and the plurality of output stages configured to receive a signal indicating at least anticipated energy consumption for the load device and configured to control operation of the balancer and the pass gates in the plurality of output stages based on the anticipated energy consumption.


     
    2. The apparatus of claim 1, wherein each storage element (112a-112m) comprises at least one of a battery and/or a capacitor.
     
    3. The apparatus of claim 1 or 2, wherein the balancer (114) comprises at least one of a switched capacitor voltage regulator, a buck voltage regulator and/or a buck-boost voltage regulator.
     
    4. The apparatus of claim 1 or 2, wherein the balancer (114) comprises at least one voltage regulator to operate open loop.
     
    5. A method comprising:

    capturing, by a plurality of storage elements (112a-112m) coupled in series, energy received from a plurality of sources (104a-104m);

    storing, by each storage element, the energy received from a respective source;

    balancing, by a balancer (114) coupled to the plurality of storage elements, energy drawn from each storage element;

    providing energy from the balancer to a plurality of balancer output ports (119a-119n);

    controllably providing energy from each of the plurality of balancer output ports to a respective one of a plurality of taps (118a-118n) through the operation on a respective one of a plurality of pass gates, wherein each of the plurality of taps is configured to be coupled to a respective one of a plurality of loads (130a-130p) of a load device (106);

    receiving, by a control logic (110), a signal indicating at least anticipated energy consumption for the load device; and

    controlling, by the control logic, operation of the balancer and the plurality of pass gates based on the anticipated energy consumption of the load device.


     
    6. The method of claim 5, wherein each storage element comprises at least one of a battery and a capacitor.
     
    7. The method of claim 5 or 6, wherein the balancer comprises at least one of a switched capacitor voltage regulator, a buck voltage regulator and/or a buck-boost voltage regulator.
     
    8. A system comprising an apparatus according to any one of claims 1, 2, 3, and 4 and further comprising a plurality of sources coupled to the apparatus, wherein the plurality of sources (104a-104m) comprises at least one unconventional power source comprising at least one of solar cells, photovoltaic cells, wireless power sources configured to capture and convert energy from antennas, piezoelectric sources configured to convert vibration into electrical energy, thermoelectric sources configured to convert heat flow across a temperature gradient into electrical energy.
     


    Ansprüche

    1. Einrichtung, die Folgendes umfasst:

    eine Vielzahl von Speicherelementen (112a-112m), die in Reihe gekoppelt und dazu ausgelegt sind, Energie, die von einer Vielzahl von Quellen (104a-104m) empfangen wird, zu erfassen und zu speichern;

    einen Ausgleicher (114), der an die Vielzahl von Speicherelementen gekoppelt ist, eine Vielzahl von Ausgleicherausgangsanschlüssen (119a-119n) umfasst und dazu ausgelegt ist, Energie, die jedem Speicherelement entnommen wird, auszugleichen; dadurch gekennzeichnet, dass die Einrichtung ferner Folgendes umfasst:

    eine Vielzahl von Abgriffen (118a-118n) zum Koppeln an eine Vielzahl von Lasten (130a-130p) in einer Lastvorrichtung (106);

    eine Vielzahl von Ausgangsstufen (116a-116n), wobei jede Ausgangsstufe ein Durchgangsgate beinhaltet, das mit einem jeweiligen Ausgleicherausgangsanschluss und einem jeweiligen Abgriff unter der Vielzahl von Ausgleicherausgängen und der Vielzahl von Abgriffen verbunden ist; und

    eine Steuerlogik (110), die an den Ausgleicher und die Vielzahl von Ausgangsstufen gekoppelt ist, dazu ausgelegt, ein Signal zu empfangen, das mindestens einen vorhergesehenen Energieverbrauch für die Lastvorrichtung anzeigt, und dazu ausgelegt, den Betrieb des Ausgleichers und der Durchgangsgates in der Vielzahl von Ausgangsstufen auf Basis des vorhergesehenen Energieverbrauchs zu steuern.


     
    2. Einrichtung nach Anspruch 1, wobei jedes Speicherelement (112a-112m) mindestens eines von einer Batterie und/oder einem Kondensator umfasst.
     
    3. Einrichtung nach Anspruch 1 oder 2, wobei der Ausgleicher (114) mindestens eines von einem geschalteten Kondensatorspannungsregler, einem Abwärtsspannungsregler und/oder einem Abwärts-/Aufwärtsspannungsregler umfasst.
     
    4. Einrichtung nach Anspruch 1 oder 2, wobei der Ausgleicher (114) mindestens einen Spannungsregler zum Betreiben in einer offenen Schleife umfasst.
     
    5. Verfahren, das Folgendes umfasst:

    Erfassen von Energie, die von einer Vielzahl von Quellen (104a-104m) empfangen wird, durch eine Vielzahl von Speicherelementen (112a-112m), die in Reihe gekoppelt sind;

    Speichern der von einer jeweiligen Quelle empfangenen Energie durch jedes Speicherelement;

    Ausgleichen von Energie, die jedem Speicherelement entnommen wird, durch einen Ausgleicher (114), der an die Vielzahl von Speicherelementen gekoppelt ist;

    Bereitstellen von Energie durch den Ausgleicher für eine Vielzahl von Ausgleicherausgangsanschlüssen (119a-119n) ;

    steuerbares Bereitstellen von Energie durch jeden der Vielzahl von Ausgleicherausgangsanschlüssen für einen jeweiligen der Vielzahl von Abgriffen (118a-118n) durch den Betrieb an einem jeweiligen einer Vielzahl von Durchgangsgates, wobei jeder der Vielzahl von Abgriffen dazu ausgelegt ist, an eine jeweilige einer Vielzahl von Lasten (130a-130p) einer Lastvorrichtung (106) gekoppelt zu werden;

    Empfangen eines Signals, das mindestens einen vorhergesehenen Energieverbrauch für die Lastvorrichtung anzeigt, durch eine Steuerlogik (110) und

    Steuern des Betriebs des Ausgleichers und der Vielzahl von Durchgangsgates durch die Steuerlogik auf Basis des vorhergesehenen Energieverbrauchs der Lastvorrichtung.


     
    6. Verfahren nach Anspruch 5, wobei jedes Speicherelement mindestens eines von einer Batterie und einem Kondensator umfasst.
     
    7. Verfahren nach Anspruch 5 oder 6, wobei der Ausgleicher mindestens eines von einem geschalteten Kondensatorspannungsregler, einem Abwärtsspannungsregler und/oder einem Abwärts-/Aufwärtsspannungsregler umfasst.
     
    8. System, das eine Einrichtung gemäß einem der Ansprüche 1, 2, 3 und 4 umfasst und ferner eine Vielzahl von Quellen umfasst, die an die Einrichtung gekoppelt sind, wobei die Vielzahl von Quellen (104a-104m) mindestens eine unkonventionelle Stromquelle umfasst, die mindestens eines von Solarzellen, photovoltaischen Zellen, drahtlosen Stromquellen, die dazu ausgelegt sind, Energie von Antennen zu erfassen und umzuwandeln, piezoelektrischen Quellen, die dazu ausgelegt sind, Vibrationen in elektrische Energie umzuwandeln, thermoelektrischen Quellen, die dazu ausgelegt sind, einen Wärmestrom über einen Temperaturgradienten in elektrische Energie umzuwandeln, umfasst.
     


    Revendications

    1. Appareil comprenant :

    une pluralité d'éléments de stockage (112a-112m) couplés en série et conçus pour capturer et stocker de l'énergie reçue à partir d'une pluralité de sources (104a-104m) ;

    un dispositif d'équilibrage (114) couplé à la pluralité d'éléments de stockage, comprenant une pluralité de ports de sortie de dispositif d'équilibrage (119a-119n) et conçu pour équilibrer de l'énergie extraite de chaque élément de stockage ; caractérisé en ce que l'appareil comprend en outre :

    une pluralité de prises (118a-118n) permettant de se coupler à une pluralité de charges (130a-130p) dans un dispositif de charge (106) ;

    une pluralité d'étages de sortie (116a-116n), chaque étage de sortie comprenant une grille de passage connectée à un port de sortie du dispositif d'équilibrage respectif et à une prise respective parmi la pluralité de sorties du dispositif d'équilibrage et la pluralité de prises ; et

    une logique de commande (110) couplée au dispositif d'équilibrage et la pluralité d'étages de sortie conçue pour recevoir un signal indiquant au moins une consommation d'énergie anticipée pour le dispositif de charge et conçue pour commander une opération du dispositif d'équilibrage et des grilles de passage dans la pluralité d'étages de sortie sur la base de la consommation d'énergie anticipée.


     
    2. Appareil selon la revendication 1, dans lequel chaque élément de stockage (112a-112m) comprend au moins un élément parmi une batterie et/ou un condensateur.
     
    3. Appareil selon la revendication 1 ou 2, dans lequel le dispositif d'équilibrage (114) comprend au moins un élément parmi un régulateur de tension de condensateur commuté, un régulateur de tension abaisseur de tension et/ou un régulateur de tension abaisseur-élévateur de tension.
     
    4. Appareil selon la revendication 1 ou 2, dans lequel le dispositif d'équilibrage (114) comprend au moins un régulateur de tension pour fonctionner en boucle ouverte.
     
    5. Procédé comprenant :

    la capture, par une pluralité d'éléments de stockage (112a-112m) couplés en série, de l'énergie reçue à partir d'une pluralité de sources (104a-104m) ;

    le stockage, par chaque élément de stockage, de l'énergie reçue d'une source respective ;

    l'équilibrage, par un dispositif d'équilibrage (114) couplé à la pluralité d'éléments de stockage, de l'énergie extraite de chaque élément de stockage ;

    la fourniture de l'énergie du dispositif d'équilibrage à une pluralité de ports de sortie du dispositif d'équilibrage (119a-119n) ;

    la fourniture de manière contrôlable de l'énergie à partir de chaque port de la pluralité de ports de sortie du dispositif d'équilibrage à une prise respective parmi une pluralité de prises (118a-118n) par le biais de l'opération sur une grille de passage respective parmi une pluralité de grilles de passage, chaque prise de la pluralité de prises étant conçue pour être couplée à une charge respective parmi une pluralité de charges (130a-130p) d'un dispositif de charge (106) ;

    la réception, par une logique de commande (110), d'un signal indiquant au moins une consommation d'énergie anticipée pour le dispositif de charge ; et

    la commande, par la logique de commande, d'une opération du dispositif d'équilibrage et de la pluralité de grilles de passage sur la base de la consommation d'énergie anticipée du dispositif de charge.


     
    6. Procédé selon la revendication 5, dans lequel chaque élément de stockage comprend au moins un élément parmi une batterie et un condensateur.
     
    7. Procédé selon la revendication 5 ou 6, dans lequel le dispositif d'équilibrage comprend au moins un élément parmi un régulateur de tension de condensateur commuté, un régulateur de tension abaisseur de tension et/ou un régulateur de tension abaisseur-élévateur de tension.
     
    8. Système comprenant un appareil selon l'une quelconque des revendications 1, 2, 3 et 4, et comprenant en outre une pluralité de sources couplées à l'appareil, la pluralité de sources (104a-104m) comprenant au moins une source de puissance non conventionnelle comprenant au moins un élément parmi des cellules solaires, des cellules photovoltaïques, des sources de puissance sans fil conçues pour capturer et convertir l'énergie provenant d'antennes, des sources piézoélectriques conçues pour convertir la vibration en énergie électrique, des sources thermoélectriques conçues pour convertir un flux de chaleur à travers un gradient de température en énergie électrique.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description