(19)
(11)EP 3 240 178 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 14909098.7

(22)Date of filing:  26.12.2014
(51)Int. Cl.: 
H02M 7/00  (2006.01)
H02M 1/44  (2007.01)
(86)International application number:
PCT/JP2014/084657
(87)International publication number:
WO 2016/103496 (30.06.2016 Gazette  2016/26)

(54)

POWER CONVERSION DEVICE

STROMWANDLUNGSVORRICHTUNG

DISPOSITIF DE CONVERSION DE PUISSANCE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
01.11.2017 Bulletin 2017/44

(73)Proprietor: Nissan Motor Co., Ltd.
Yokohama-shi, Kanagawa 221-0023 (JP)

(72)Inventors:
  • SHIN, Kentaro
    Atsugi-shi Kanagawa 243-0123 (JP)
  • THRONGNUMCHAI, Kraisorn
    Atsugi-shi Kanagawa 243-0123 (JP)
  • HAYASHI, Tetsuya
    Atsugi-shi Kanagawa 243-0123 (JP)
  • OKUBO, Akinori
    Atsugi-shi Kanagawa 243-0123 (JP)

(74)Representative: Hoefer & Partner Patentanwälte mbB 
Pilgersheimer Straße 20
81543 München
81543 München (DE)


(56)References cited: : 
EP-A1- 1 835 609
WO-A1-2014/073159
JP-A- 2001 068 284
JP-A- 2014 087 107
US-A1- 2014 321 171
EP-A1- 2 131 481
JP-A- H0 898 539
JP-A- 2011 135 705
US-A1- 2011 292 686
US-B1- 6 208 537
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [Technical Field]



    [0001] The present invention relates to a power converter.

    [Background Art]



    [0002] There is known a noise reducer for a power converter device including a converter connected to an AC power source, an inverter connected to a direct-current (DC) output side of the converter, and a DC smoothing capacitor connected to a DC intermediate circuit. The noise reducer reduces noise current flowing through the power converter by switching ON and OFF of a semiconductor switching element included in the inverter. The noise reducer includes a noise-current detector for detecting noise current and a noise compensation current supplier that generates noise compensation current for reducing detected noise current and supplies the noise compensation current to the power converter. The noise compensation current supplier includes a series circuit consisting of a transistor, which is an element where output current of the element is controlled by a signal detected by a noise-current detector and with lower withstand voltage than the voltage of a DC intermediate circuit, and a Zener diode (Patent Document 1).

    [Prior Art Document]


    [Patent Document]



    [0003] [Patent Document 1] JP 2002-252985 A

    [0004] Prior art document US 2011/292686 A1 discloses a capacitor circuit which includes a first capacitor line including a film capacitor and a second capacitor line including a ceramic capacitor that are connected in parallel with each other. The second capacitor line includes an inductance element that is connected in series with the ceramic capacitor. The inductance element is set to a value such that a series resonant frequency of the first capacitor line and a series resonant frequency of the second capacitor line are matched.

    [0005] Prior art document US 2015/292511 A1 suggests a high voltage electric device attached to a cooling unit which includes heating components, an electric circuit board, a case, and an insulating member. The heating components are used at high voltage and are different in size. The heating components are fixed via lead wires respectively to the electric circuit board. The case accommodates the heating components and the electric circuit board. The insulating member seals the heating components and the electric circuit board in the case. An outermost peripheral surface of the insulating member on the cooling unit-side cooled by refrigerant is referred to as a reference surface. Respective shortest distances from the reference surface to the heating components are the same as each other. An electric compressor is proposed which includes the high voltage electric device, an electric motor that is operated by electric power supplied by the high voltage electric device, and a compression mechanism that is driven by the electric motor and applied to a refrigeration cycle. The cooling unit is cooled by the cooling medium provided into the compression mechanism.

    [0006] Prior art document EP 2 131 481 A1 refers to an integrated electric compressor having a circuit configuration capable of decreasing the size thereof while restraining current ripples. In an inverter of the electric compressor, by providing a capacitor and a reactor between a power source and an inverter board, the ripples of a driving voltage is restrained, and a motor can be driven with high efficiency and the size of a housing can be decreased. Further, by connecting the capacitor and the reactor to a power board by using a bus bar, the voltage ripple restraining effect is further increased, and the capacitor and the reactor are unitized integrally by the bus bar to improve the assembling workability of the power board.

    [0007] Prior art document EP 1 835 609 A1 proposes a multiphase current supplying circuit according to which includes a converter, an intervening circuit, an inverter, a control circuit and a lightning arrester. A power supply system is connected to the converter with the lightning arrester interposed therebetween, and the ac voltage is rectified. The intervening circuit includes a capacitor and a bypass connected in parallel thereto. In the bypass, a diode, a resistor and a capacitor are connected in series, and the direction from an anode to a cathode of the diode corresponds to the direction from a high potential side to a low potential side of the smoothing capacitor.

    [0008] Prior art document US 2014/321171 A1 defines a power conversion device including a power conversion portion that switches direct current voltage supplied by a positive line and negative line of a direct current power supply with a semiconductor switching element, and outputs converted voltage, is such that a plurality of interline capacitors are connected in parallel between the positive line and negative line, the capacitance of the plurality of interline capacitors is of a value that becomes smaller the nearer to the power conversion portion the position in which the interline capacitor is connected, and the capacitance of the interline capacitor with the smallest value of capacitance is set to a value greater than that of the capacitance between main electrodes when a direct current voltage is applied to the switching element used in the power conversion portion.

    [0009] Prior art document US 6 208 537 B1 discloses an apparatus to be used with a PWM VSI which is linked by voltage supply cables to either a passive or a dynamic load, the VSI providing voltages on the cables which have at least one primary harmonic component, the apparatus linked to the output terminals of the VSI and including a line inductor between each output terminal and the load and, for each cable, at least one resonant filter branch including an inductor and a capacitor linked to each of the supply lines and to a common node wherein the line inductors are chosen so as to limit filter current and the branch elements are chosen such that a resonant frequency thereof is essentially equal to the frequency of the primary harmonic component.

    [Summary of Invention]


    [Problem to be solved by Invention]



    [0010] However, there is a problem that with respect to a high-frequency switching noise, noise cannot be suppressed because the transistor and Zener diode cannot operate at high speed.

    [Means for solving problems]



    [0011] The object underlying the present invention is achieved by a power converter according to independent claim 1. Preferred embodiments are defined in the respective dependent claims.

    [0012] The present invention solves the problems by including a first power feeding bus connected to an inverter and positive side of a power supply, a second power feeding bus connected to the inverter and negative side of the power supply, and a plurality of connection circuits including a resistant member and capacitive member which is connected connecting a resistant member and capacitive member in series, connected between the first power feeding bus and the second power feeding bus, and having at least two or more different impedances.

    [Effect of Invention]



    [0013] According to the present invention, oscillation generated at the power feeding bus due to switching of the inverter is suppressed by the plurality of connection circuits, and as a result, noise can be suppressed.

    [Brief Description of Drawings]



    [0014] 

    [Fig. 1] FIG. 1 is a block diagram of a drive system according to an embodiment of the present invention.

    [Fig. 2] FIG. 2(a) is a perspective view of power feeding buses and connection circuits. FIG. 2(b) is a graph illustrating a standing wave generated at the power feeding buses. FIG. 2(c) is a graph showing impedances of the connection circuits with respect to the positions of the connection points of the connection circuits.

    [Fig. 3] FIG. 3 is a graph illustrating noise characteristics of a power converter according to the present embodiment and noise characteristics of a power converter according to a comparative example.

    [Fig. 4] FIG. 4(a) is a graph illustrating a standing wave generated at the power feeding buses, and FIG. 4(b) is a graph illustrating impedance characteristics with respective to positions of the connection points of the connection circuits.

    [Fig. 5] FIG. 5 is a sectional view of the power feeding buses.

    [Fig. 6] FIG. 6 is a perspective view of the power feeding buses.

    [Fig. 7] FIG. 7 is a graph illustrating a characteristic of a noise level with respect to impedance of the connection circuits.

    [Fig. 8] FIG. 8(a) is a graph illustrating a standing wave generated at the power feeding buses, and FIG. 8(b) is a graph illustrating impedance characteristics with respect to positions of the connection points of the connection circuits.

    [Fig. 9] FIG. 9 is a graph illustrating noise level characteristics with respect to a ratio of impedances (Z2/Z1).

    [Fig. 10] FIG. 10(a) illustrates a perspective view of the power feeding buses and connection circuits. FIG. 10(b) is a graph illustrating a standing wave generated at the power feeding buses. FIG. 10(c) is a graph illustrating impedance characteristics with respect to positions of the connection points of the connection circuits.

    [Fig. 11] FIG. 11 is a graph illustrating noise level characteristics with respect to a capacitive member included in the connection circuits.

    [Fig. 12] FIG. 12 is a schematic diagram of a drive system according to another embodiment of the invention.

    [Fig. 13] FIG. 13 is a perspective view of the power feeding buses and connection circuits of the power converter according to another embodiment of the invention.


    [Modes for Carrying out the Invention]



    [0015] In the following, embodiments of the present invention will be described with reference to the drawings.

    <First embodiment>



    [0016] FIG. 1 is a schematic diagram of a drive system of an electric vehicle including a power converter according to a present embodiment. A power module 5 and the like are housed in a case 10 such that they cannot be actually seen from the outside, however, they are indicated in FIG. 1 for explanation. Similarly, A power module 5 and the like are also shown in other drawings. The electric vehicle of the present embodiment is a vehicle that drives using an electric motor 300 such as a three-phase alternating-current (AC) power motor as a drive source, and the electric motor 300 is connected to an axle of the electric vehicle. In the following, the present embodiment will be explained using the electric vehicle as an example. However, the present invention is also applicable to hybrid vehicles (HEV) and also to a power converter mounted to an apparatus other than vehicles.

    [0017] The drive system including the power converter according to the present embodiment includes a power converter 100, a DC power supply 200, an electric motor 300, and shielded wires 7 and 8. The DC power supply 200 includes a plurality of batteries and is connected to the power converter 100 by the shielded wires 7. The DC power supply 200 becomes a power source of the vehicle and supplies DC power to the power converter 100. The power converter 100 is connected between the DC power supply 200 and the electric motor 300 and converts DC power supplied from the DC power supply 200 to AC power and supplies the AC power to the electric motor 300. The shielded wires 7 and 8 are wires formed by coating metal wires with resin. The shielded wires 7 is configured from a pair of shielded wires, and one of the shielded wires 7 connects a positive electrode terminal of the DC power supply 200 with a power feeding bus 11, and the other of the shielded wires 7 connects a negative electrode terminal of the DC power supply 200 with a power feeding bus 12. The shielded wires 8 are configured from three shielded wires. The three shielded wires 8 correspond to U-phase, V-phase, and W-phase of the electric motor 300 respectively and connect bus bars 6 with the electric motor 300.

    [0018] The power converter 100 includes a case 10, the power feeding buses 11 and 12, a passive element part, a smoothing capacitor 4, a power module 5, and bus bars 6. The case 10 is a case made with metal to house the power feeding buses 11 and 12, the passive element part 30, the smoothing capacitor 4, the power module 5, and the bus bars 6. The power feeding bus 11 is formed by a plate-type (flat plate) conductor and is a power supply line to feed electric power output from the positive electrode side of the DC power supply 200 to the power module 5. The power feeding bus 11 corresponds to the power supply line on the P side among the inverter circuits included in the power converter 100. The power feeding bus 12 is formed by a plate-type (flat plate) conductor and is a power supply line to feed electric power output from the negative electrode side of the DC power supply 200 to the power module 5. The power feeding bus 12 corresponds to the power supply line on the N side among the inverter circuits included in the power converter 100. Between both of the main surfaces of the power feeding bus 11, one surface faces the inner-side surface of the case 10 with a space interposed therebetween. Also, between both of the main surfaces of the power feeding bus 12, one surface faces the inner-side surface of the case 10 with a space interposed therebetween. The other main surface of the power feeding bus 11 and the other surface of the power feeding bus 12 are faced each other with a space interposed therebetween. A part of the power feeding buses 11 and 12 or tips of the power feeding buses 11 and 12 become terminals (tabs) of the power converter 100 and are connected to tips of the shielded wires 7. By forming the power feeding buses 11 and 12 to a plate type, a resistance component and inductance component of the power feeding buses 11 and 12 can be reduced.

    [0019] The power feeding buses 11 and 12 are connected to the positive electrode terminal and negative electrode terminal of the smoothing capacitor 4 respectively and to the positive electrode terminal and negative electrode terminal of the power module 5 respectively in order to branch their current flows. The power feeding buses 11 and 12 and the smoothing capacitor 4, and the power feeding buses 11 and 12 and the power module 5 are connected with wires. By connecting the smoothing capacitor 4 between the power feeding bus 11 and power feeding bus 12, the smoothing capacitor 4 is connected between the DC power supply 200 and the power module 5. The smoothing capacitor 4 is a condenser to rectify power input and output from the DC power supply 200.

    [0020] The power module 5 is connected between the DC power supply 200 and the bus bars 6 via the power feeding buses 11 and 12. The power module 5 includes a plurality of semiconductor switching elements such as modularized IGBT or MOSFET and the like on a substrate. Then, by switching ON and OFF of the semiconductor switching element based on control signals from a controller not shown in the drawing, the power module 5 converts power from the DC power supply and outputs power to the electric motor 300 via the bus bars 6. The controller not shown in the drawing generates a switching signal for the semiconductor switching element from a torque command value that corresponds to an accelerator opening of the vehicle and outputs the switching signal to the power module 5. Subsequently, ON and OFF of the semiconductor switching element switches and AC power for obtaining desired output torque by the electric motor 300 is output from the power module 5. The power module 5 is electrically connected to the three-phase electric motor 300 with U-phase, V-phase, and W-phase output wires by corresponding them to the phases of the electric motor 300.

    [0021] The bus bars 6 are formed from three plate-type conductive plates made of conductive material and connect the power module 5 and the shielded wires 8. The tips of the bus bars 6 become the terminals (tabs) of the power converter 100 and are connected to the tips of the shielded wires 8.

    [0022] The plurality of connection circuits 21 and 22 are the circuits to suppress electrical oscillation (noise) generated in the power feeding bus 11 and the power feeding bus 12, and include a resistant member and a capacitive member. Further, the connection circuits 21 and 22 include a series circuit connecting the resistant member and the capacitive member in series. The resistant member is a passive element such as a resistor. The capacitive member is a circuit element such as a condenser. When a noise generated in the power feeding buses 11 and 12 flows through into the connection circuits, the noise is consumed at the resistor part and a DC component is cut by the capacitive member. The connection circuits 21 and 22 are connected between the power feeding bus 11 and the power feeding bus 12. Also, the connection circuit 21 and connection circuit 22 are disposed inside the case 10 in a state the connection circuits 21 and 22 are aligned in the longitudinal direction of the power feeding buses 11 and 12 with a space interposed therebetween.

    [0023] A value of the impedance of the connection circuit 21 is different from a value of the impedance of the connection circuit 22. In the example shown in FIG. 1, the connection circuits 21 and 22 are connected to the power feeding buses 11 and 12, however, the number of connection circuits 21 and 22 is not limited to two, and it may be three or more. Also, when three or more connection circuits are connected, connection circuits may be designed so that impedances of all connection circuits different or the plurality of connection circuits to have at least two different impedances.

    [0024] Now, a switching noise suppressed in the connection circuits 21 and 22 will be explained. The switching noise is generated between the power feeding bus 11 and power feeding bus 12 by switching operation of the power module 5. Then, as the switching noise transmits from the power feeding buses 11 and 12 to the case 10, the noise radiates from the case 10.

    [0025] The frequency of noise that transmits from the power feeding buses 11 and 12 to the case 10 is decided such as by the shape of the power feeding buses 11 and 12. When the width of the plate-type power feeding buses 11 and 12 is "a" and the length is "b" (the short side of a main surface of the power feeding buses 11 and 12 is "a" and the long side is "b"), and permittivity between the power feeding buses 11 and 12 is "εr", the frequency (fmn) of the switching noise can be expressed by the following formula (1). In the formula, "m" and "n" are integers and represent mode numbers.
    [Formula 1]



    [0026] For example, when a=0.9m, b=0.03m, and εr =4 are substituted into formula (1), the frequency (f10) becomes 83.3 MHz when (m, n)=(1, 0). Since this frequency (f10) is within an FM frequency band (76 MHz to 90 MHz, 87.5 MHz to 108 MHz), when the switching noise having the frequency (f10) radiates out from the case 10, the switching noise may interfere with an onboard radio. Further, the switching noise may also adversely affect other electronic devices mounted on the vehicle.

    [0027] In the power converter according to the present embodiment, the connection circuit 21 and connection circuit 22 are connected between the power feeding bus 11 and power feeding bus 12. In this way, when a switching noise is generated in the power feeding buses 11 and 12 by switching operation of the power module 5, transmission of the switching noise from the power feeding buses 11 and 12 to the case 10 is suppressed by the connection circuits 21 and 22. As a result, in the present embodiment, the noise due to switching of the power module 5 can be suppressed. Also, the number of parts does not increase largely since only installation of the connection circuits 21 and 22 is required, and what is more, reduction of high-frequency noises is possible with small and low-cost elements.

    [0028] More, in the present embodiment, the connection circuit 21 and connection circuit 22 are disposed inside the case 10 in a state the connection circuit 21 and connection circuit 22 are aligned in the longitudinal direction of the power feeding buses 11 and 12 with a space interposed therebetween. In this way, as shown in FIG. 1, when the smoothing capacitor 4 or the like is connected to the power feeding buses 11 and 12 so as to branch each current flow of the power feeding buses 11 and 12, the connection circuit 21 can be connected to the power feeding buses 11 and 12 while avoiding the branch point of the current.

    [0029] Further, in the present embodiment, the resistant member included in the connection circuits 21 and 22 is made with a passive member. In this way, the connection circuits 21 and 22 can be easily made.

    [0030] Next, the relationship between impedance of the connection circuit 21 and impedance of the connection circuit 22 will be explained using FIG. 2. FIG. 2(a) is a perspective view of the power feeding buses 11 and 12 and connection circuits 21 and 22, and FIG. 2(b) is a graph illustrating a standing wave generated at the power feeding buses 11 and 12. FIG. 2(c) is a graph showing impedances of the connection circuits 21 and 22 with respect to the positions of the connection points of the connection circuits 21 and 22. The horizontal axis in FIG. 2(b) and FIG. 2(c) represents the position on the power feeding buses 11 and 12 in the longitudinal direction from an end of the power feeding buses 11 and 12. The vertical axis in FIG. 2(b) represents voltage (V) and the vertical axis in FIG. 2(c) represents the magnitude (Ω) of impedance. In FIG. 2(c), "Z1" represents the impedance of the connection circuit 21 and " Z2" represents the impedance of the connection circuit 22.

    [0031] When oscillation is generated between the power feeding bus 11 and power feeding bus 12 by switching operation by the power module 5, an oscillatory wave transmits through the power feeding buses 11 and 12. The oscillatory wave, which is the wave with various modes, reflects at the ends of the power feeding buses 11 and 12. As a result, the oscillatory waves that transmit through the power feeding buses 11 and 12 overlap and a standing wave as shown in FIG. 2(b) is generated in the power feeding buses 11 and 12.

    [0032] The standing wave includes a part with large amplitude and a part with small amplitude and an antinode of the standing wave is located to the ends in the longitudinal direction of the power feeding buses 11 and 12.

    [0033]  The positions of a connection point of the connection circuit 21 with the power feeding bus 11, and a connection point of the connection circuit 21 with the power feeding bus 12 become the same on the coordinate axis of the longitudinal direction of the power feeding buses 11 and 12. More, the positions of the connection point of the connection circuit 22 with the power feeding bus 11 and the connection point of the connection circuit 22 with the power feeding bus 12 become the same on the coordinate axis of the longitudinal direction of the power feeding buses 11 and 12. In the following, the connection point of the connection circuit 21 with the power feeding bus 11 and the connection point of the connection circuit 21 with the power feeding bus 12 are collectively called as "the first connection point". Also, the connection point of the connection circuit 22 with the power feeding bus 11 and the connection point of the connection circuit 22 with the power feeding bus 12 are collectively called as "the second connection point".

    [0034] The first connection point is located between an antinode at an end of the power feeding buses 11 and 12 and a node. The second connection point is located between an antinode at the midpoint of the power feeding buses 11 and 12 and a node. The midpoint of the power feeding buses 11 and 12 is the middle point between one end of the power feeding buses 11 and 12 and the other end. Also, the distance (d1 shown in FIG. 2) from the position of an antinode of the standing wave to the first connection point is shorter than the distance (d2 shown in FIG. 2) from the position of an antinode of the standing wave to the second connection point. However, the distance from the position of an antinode of the standing wave to the first connection point is the distance from an antinode closest to the first connection point, and the distance from the position of an antinode of the standing wave to the second connection point is the distance from an antinode closest to the second connection point.

    [0035] Impedances of the connection circuits 21 and 22 are correlated with an absolute value of an amplitude of the standing wave and are determined in accordance with the distances from an antinode to the first and second connection points. As shown in FIG. 2(b), as the distance from an antinode of the standing wave to the first or the second connection point becomes longer, an absolute value of the amplitude of the standing wave becomes smaller. On the other hand, as the distance from the antinode of the standing wave to the first or the second connection point becomes longer, impedances of the connection circuits 21 and 22 become larger.

    [0036] The impedances (Z) of the connection circuits 21 and 22 can be expressed by the following formula (2).
    [Formula 2]

    "R" represents a resistance value of the resistant member in the connection circuits 21 and 22, and "C" represents a capacity value of the capacitive member in the connection circuits 21 and 22.

    [0037] In the preset embodiment, the distance from the antinode of the standing wave to the first connection point is shorter than the distance from the antinode of the standing wave to the second connection point. Also, the impedance of the connection circuit 21 is larger than the impedance of the connection circuit 22. In this way, electrical oscillation generated between the power feeding bus 11 and power feeding bus 12 can be suppressed by the connection circuits 21 and 22.

    [0038] A noise suppression effect of the present invention will be explained using FIG. 3. FIG. 3 is a graph illustrating noise characteristics according to the present embodiment and a comparative example. The horizontal axis indicates frequency and the vertical axis indicates the noise level. In FIG. 3, graph a represents noise characteristics of the present embodiment and graph b represents noise characteristics of the comparative example.

    [0039] In the comparative example, the noise level becomes quickly high at a specific frequency "fa". On the other hand, in the present embodiment, the noise level is suppressed at the specific frequency "fa" so that the noise can be suppressed at wider frequency band including the frequency "fa". Thus, in the present embodiment, by allowing different impedances for the connection circuits 21 and 22, and by connecting the connection circuits 21 and 22 between the power feeding bus 11 and power feeding bus 22, the noise can be suppressed.

    [0040] Further, when the standing wave is divided by 1/4 period into segments, the first connection point and the second connection point are positioned to different segments in the present embodiment, however, the first connection point and the second connection point may be positioned within the same segment.

    [0041] The power module 5 above corresponds to "an inverter" according to the present invention, the power feeding bus 11 corresponds to "a first power feeding bus" according to the present invention, the power feeding bus 12 corresponds to "a second power feeding bus" according to the present invention, the connection circuit 21 corresponds to "a first connection circuit" according to the present invention, and the connection circuit 22 correspond to "a second connection circuit" according to the present invention.

    <Second embodiment>



    [0042] A power converter according to another embodiment of the present invention will be described. In the present embodiment, the position of the first connection point and the position of the second connection point are different compared to the first embodiment described above. Other configurations are the same as those described in the first embodiment and their descriptions are accordingly referenced.

    [0043] FIG. 4(a) is a graph illustrating a standing wave generated at the power feeding buses 11 and 12. FIG. 4(b) is a graph representing impedance of the connection circuits 21 and 22 with respect to the positions of the connection points of the connection circuits 21 and 22. Additionally, the vertical axis and horizontal axis shown in FIG. 4(a) and FIG. 4(b) are the same as those in FIG. 2(b) and FIG. 2(c). Further, unlike FIG. 2(b) and FIG. 2(c), a characteristic that corresponds to 1/4 period of the standing wave is shown in FIG. 4(a) and FIG. 4(b).

    [0044] The first connection point is positioned to an antinode of the standing wave. The second connection point is located between the antinode and a node of the standing wave.

    [0045] Now, a characteristic impedance (Z12) between the power feeding bus 11 and power feeding bus 12 will be explained using a formula. FIG. 5 is a sectional view of the power feeding buses 11 and 12. FIG. 6 is a perspective view of the power feeding buses 11 and 12.

    [0046] In FIG. 5, the distance between the power feeding bus 11 and the second power feeding bus is "d" and the area of the surfaces of the power feeding bus 11 and power feeding bus 12 that face each other is "S". Additionally, permittivity in a vacuum is "ε0" and relative permittivity is "εr".

    [0047] The capacity (C12) between the power feeding bus 11 and power feeding bus 12 can be represented by the following formula (3).
    [Formula 3]



    [0048] In FIG. 6, "L" is the length of the power feeding buses 11 and 12, "W" is the width, and "H" is the height. The following formulas (4) to (6) represents the self-inductance (L) of the power feeding buses 11 and 12, mutual inductance (M) of the power feeding buses 11 and 12, and inductance (L12) between the power feeding bus 11 and power feeding bus 12.
    [Formula 4]

    [Formula 5]

    [Formula 6]



    [0049] Furthermore, the following formula (7) represents the characteristic impedance (Z12) between the power feeding bus 11 and power feeding bus 12.
    [Formula 7]



    [0050] Next, the relationship between the impedance of the connection circuit 21 and the noise generated at the power feeding buses 11 and 12 will be explained using FIG. 7. FIG. 7 is a graph illustrating a characteristic of the noise level with respect to impedance of the connection circuit 21. The noise level is the magnitude of oscillation (noise) generated between the power feeding bus 11 and the power feeding bus 12.

    [0051] As shown in FIG. 7, when impedance of the connection circuit 21 is set to the impedance (Z12) between the power feeding bus 11 and power feeding bus 12, impedance matching may be made between the power feeding buses 11 and 12 and connection circuit 21. Subsequently, it becomes easy for the noise generated at the power feeding buses 11 and 12 to flow into the connection circuit 21 and thus noise can be suppressed.

    [0052] Also, in the present embodiment, when the impedance (Z1) of the connection circuit 21 is set within a range represented by the following formula (8) as shown in FIG. 7, a reduction effect to the noise level can be sufficiently obtained.
    [Formula 8]



    [0053] As above, in the present embodiment, the connection circuit 21 is connected to the power feeding buses 11 and 12 at the part that corresponds to the antinode of the standing wave. In this way, as shown in FIG. 1, when a smoothing capacitor 4 or the like is connected to the power feeding buses 11 and 12 so as to branch each current flow of the power feeding buses 11 and 12, the connection circuit 21 can be connected to the power feeding buses 11 and 12 while avoiding the branch point of the current. More, depending on the connection position of the connection circuit 21, by setting impedance of the connection circuit 21 so as to make impedance matching with the impedance (Z12) between the power feeding bus 11 and power feeding bus 12, the noise due to switching of the power module 5 can be suppressed.

    <Third embodiment>



    [0054] Now, the power converter according to another embodiment of the present invention will be explained. In the present embodiment, the position of the first connection point and the position of the second connection point varies compared to the first embodiment described above. Other configurations are the same as those described in the first embodiment and their descriptions are accordingly referenced.

    [0055] FIG. 8(a) is a graph illustrating a standing wave generated in the power feeding buses 11 and 12, and FIG. 8(b) is a graph illustrating impedance of the connection circuits 21 and 22 with respect to the positions of the connection points on the connection circuits 21 and 22. More, the vertical axis and horizontal axis in FIG. 8(a) and FIG. 8(b) are the same as those in FIG. 2(b) and FIG. 2(c). Further, unlike FIG. 2(b) and FIG. 2(c), a characteristic that corresponds to 1/4 period of a standing wave is shown in FIG. 8(a) and FIG. 8(b).

    [0056]  Next, the first connection point is positioned between an antinode and node of the standing wave. The second connection point is positioned at the node of the standing wave. The impedance of the connection circuit 22 is smaller than the impedance of the connection circuit 21.

    [0057] Next, the relationship between the ratio of the impedance of the connection circuit 21 and impedance of the connection circuit 22 and the noise generated in the power feeding buses 11 and 12 will be explained using FIG. 9. FIG. 9 is a graph illustrating a characteristic of the noise level with respect to a ratio of impedance (Z2/Z1) and shows the characteristic obtained from an experiment. The noise level is the magnitude of oscillation (noise) generated between the power feeding bus 11 and power feeding bus 12. In FIG. 9, a dotted line P is an asymptote.

    [0058] As shown in FIG. 9, when the ratio of impedances is set to 2 or greater, the noise generated between the power feeding bus 11 and power feeding bus 12 can be suppressed.

    <Fourth embodiment>



    [0059] A power converter according to another embodiment of the present invention will be explained. In the present embodiment, the position of the first connection point and the position of the second connection point are different compared to the first embodiment described above. Other configurations are the same as those described in the first embodiment and their descriptions are accordingly referenced.

    [0060] FIG. 10(a) illustrates a perspective view of the power feeding buses 11 and 12 and connection circuits 21 and 22. FIG. 10(b) is a graph illustrating a standing wave generated at the power feeding buses 11 and 12. FIG. 10(c) is a graph illustrating impedance of the connection circuits 21 and 22 with respect to the positions of the connection points of the connection circuits 21 and 22. Here, the horizontal axis in FIG. 10(b) and FIG. 10(c) represents the position from an end of the power feeding buses 11 and 12 in the longitudinal direction. More, the position represented by the horizontal axis in FIG. 10(c) is displayed in radian. One end of the power feeding buses 11 and 12 is "0" and the other end is "2π". Further, the center part from both ends is "π".

    [0061] The impedances (Z1, Z2) of the connection circuits 21 and 22 are correlated with an absolute value of the amplitude of the standing wave and have the relationship as shown in the following formula (9).
    [Formula 9]



    [0062] When the position of an antinode of the standing wave shown in FIG. 10(b) is "0" and the position that corresponds to one period of the standing wave from the antinode is "2π", "θ" represents each distance of the distance from the antinode to the first connection point and distance from the antinode to the second connection point in angles.

    [0063] As shown in FIG. 10(c), the impedance (Z1, Z2) of the connection circuits 21 and 22 has a characteristic where it becomes the minimum at the position of the antinode of the standing wave and the maximum at the position of the node of the standing wave. The impedance (Z1, Z2) at the position of the antinode of the standing wave is Z12.

    [0064] Further, by setting the impedance (Z1, Z2) of the connection circuits 21 and 22 so as to satisfy the formula (9), impedance matching is made between the connection circuits 21 and 22 and power feeding buses 11 and 12, and it becomes easy for the noise generated at the power feeding buses 11 and 12 to be transmitted to the connection circuits 21 and 22.

    [0065] As above, in the present embodiment, the impedance (Z1, Z2) of the connection circuits 21 and 22 is set to satisfy the above formula (9). In this way, electrical oscillation generated between the power feeding bus 11 and power feeding bus 12 can be suppressed in the connection circuits 21 and 22.

    <Fifth embodiment>



    [0066] A power converter according to another embodiment of the present invention will be explained. The present embodiment is different from the first embodiment in the point that the relationship between the capacity of the capacitive member included in the connection circuits 21 and 22 and the capacity (C12) between the power feeding bus 11 and power feeding bus 12 is specified. Other configurations are the same as those described in the first embodiment and their descriptions are accordingly referenced.

    [0067] The level of the noise generated in the power feeding buses 11 and 12 varies depending on the relationship between the capacity of the capacitive member included in the connection circuits 21 and 22 and the capacity (C12) between the power feeding bus 11 and 12.

    [0068] FIG. 11 is a graph illustrating a characteristic of the noise level with respect to the capacity of the capacitive member included in the connection circuits 21 and 22. The capacity (C12) is represented by the above formula (3). In FIG. 11, a dotted line q is an asymptote.

    [0069] As shown in FIG. 11, when the capacity of the capacitive member included in the connection circuits 21 and 22 is larger than the capacity (C12), the noise generated between the power feeding bus 11 and power feeding bus 12 can be suppressed.

    <Sixth embodiment>



    [0070] FIG. 12 is a schematic diagram of a drive system including the power converter according to another embodiment of the invention. In the present embodiment, configuration of the power feeding buses 11 and 12 differs compared to the first embodiment described above. More, instead of the shielded wires 7, the power feeding buses 11 and 12 are directly connected to the power supply 200. Other configurations are the same as those in the first embodiment described above and descriptions in the first to fifth embodiments are accordingly referenced.

    [0071] As shown in FIG. 12, the power feeding bus 11 includes a power feeding bus 11a and power feeding bus 11b. Each of the power feeding bus 11a and power feeding bus 11b is made with a plate-type conductor. Further, an end located in the longitudinal direction of the power feeding bus 11a is connected to an end located in the longitudinal direction of the power feeding bus 11b. More, the power feeding buses 11a and 11b are connected so that the main surface of the power feeding bus 11a and the main surface of the power feeding bus 11b become perpendicular to each other. In other words, the power feeding bus 11 is formed by a bent conductor.

    [0072] The power feeding bus 12 includes a power feeding bus 12a and power feeding bus 12b. Configurations of the power feeding bus 12a and power feeding bus 12b are the same as the configurations of the power feeding bus 11a and power feeding bus 11b. The main surface of the power feeding bus 11a and the main surface of the power feeding bus 12a are faced each other with a certain space interposed therebetween. Similarly, the main surface of the power feeding bus 11b and the main surface of the power feeding bus 12b are faced each other with a certain space interposed therebetween.

    [0073] The connection circuits 21 and 22 have different impedances from each other like in the first embodiment. The connection circuit 21 is connected between the power feeding bus 11a and power feeding bus 12a. The connection circuit 22 is connected between the power feeding bus 11b and power feeding bus 12b. When there are parts where the connection circuits 21 and 22 can be easily connected and the connection circuits 21 and 22 cannot be easily connected due to bending of the power feeding buses 11 and 12, connect the connection circuits 21 and 22 at the part where the connection circuits 21 and 22 can be easily connected to the power feeding buses 11 and 12. In such a case, the impedance of the connection circuits 21 and 22 is set in accordance with the connection position so that impedance matching can be made between the power feeding buses 11 and 12.

    [0074] As above, in the present embodiment, by arranging a bent part in the power feeding buses 11 and 12, the position of the power supply 200 can be changed. In this way, while providing flexibility in the layout such as the position of the power supply 200, oscillation generated between the power feeding bus 11 and power feeding bus 12 can be suppressed.

    <Seventh embodiment>



    [0075] FIG. 13 is a perspective view of the power feeding buses 11 and 12 in accordance with the configuration of the power converter according to another embodiment of the invention. In the present embodiment, the configuration of the connection circuit 21 varies from the first embodiment described above. Other configurations are the same as those in the first embodiment described above, and descriptions in the first to sixth embodiments are accordingly referenced. Additionally, although illustration is omitted from FIG. 12, the connection circuit 22 is connected between the power feeding bus 11 and power feeding bus 12.

    [0076] The connection circuit 21 includes a plurality of series circuit 21a and 21b. The series circuit 21a is a series circuit including a resistant member and capacitive member. The series circuit 21b is a series circuit including a resistant member and capacitive member. The plurality of series circuits 21a and 21b are disposed with a space interposed between the series circuit 21a and the series circuit 21b and the series circuit 21a and the series circuit 21b are aligned in the short-length direction of the power feeding buses 11 and 12. As shown in FIG. 13, the power feeding buses 11 and 12 are formed with a plate-type member that extends in the longitudinal direction, which is the x-direction. Their short-length direction (the y-direction shown in FIG. 13) is the direction along the main surface of the power feeding buses 11 and 12 and is the direction perpendicular to the longitudinal direction.

    [0077] "R1a" is the resistance of the resistant member of the series circuit 21a, "C1a" is the capacity of the capacitive member of the series circuit 21a, "R1b" is the resistance of the resistant member of the series circuit 21b, and "C1b" is the capacity of the capacitive member of the series circuit 21b. Since the series circuit 21a and series circuit 21b included in the connection circuit 21 are connected in parallel, the capacity (C1) of the connection circuit 21 is "C1a+C1b" and the following formula (10) represents the resistance of the connection circuit 21.
    [Formula 10]



    [0078] In this way, the connection circuit 21 can be connected by dividing it into the series circuit 21a and series circuit 21b. Also, in order to make impedance matching between the power feeding buses 11 and 12 and connection circuit 21, the capacity of the connection circuit 21 can be divided into the series circuit 21a and series circuit 21b even when the capacity of the connection circuit 21 is a large value. Accordingly, the capacity of an element used as the capacitive member of the connection circuit 21 can be reduced.

    [0079] The number of series circuit included in the connection circuit 21 is not limited to two as in the present embodiment but may be three or more. Also, the connection circuit 22 may include a plurality of series circuits like the connection circuit 21.

    [0080] The series circuit 21a above corresponds to "the first series circuit" according to the present invention and the series circuit 21b above corresponds to "the second series circuit" according to the present invention.

    [Description of Reference Numerals]



    [0081] 
    4...
    smoothing capacitor
    5...
    power module
    6...
    bus bar
    7, 8...
    shielded wire
    10...
    case
    11, 12...
    power feeding bus
    21, 22...
    connection circuit
    100...
    power converter
    200...
    DC power supply
    300...
    electric motor



    Claims

    1. A power converter (100),
    comprising:

    - an inverter (5) for converting electric power output from a power supply (200);

    - a first power feeding bus (11) connected to the inverter (5) and positive side of the power supply (200);

    - a second power feeding bus (12) connected to the inverter (5) and negative side of the power supply (200);

    - a smoothing capacitor (4) connected between the first power feeding bus (11) and the second power feeding bus (12); and

    - a plurality of connection circuits (21, 22) each including a resistant member and a capacitive member which are connected in series,

    wherein:

    - the plurality of connection circuits (21, 22) are connected between the first power feeding bus (11) and the second power feeding bus (12), have at least two or more different impedances (Z1, Z2), and are connected to different positions in the longitudinal direction of the first power feeding bus (11) and the second power feeding bus (12),
    and characterized in that

    - the plurality of connection circuits (21, 22) includes a first connection circuit (21) and a second connection circuit (22),

    - the first connection circuit (21) is connected to the first power feeding bus (11) and the second power feeding bus (12), wherein each of a connection point to the first power feeding bus (11) and a connection point to the second power feeding bus (12) is considered as a first connection point,

    - the second connection circuit (22) is connected to the first power feeding bus (11) and the second power feeding bus (12), wherein each of a connection point to the first power feeding bus (11) and a connection point to the second power feeding bus (12) is considered as a second connection point,

    - the first connection point is positioned between a first antinode and a first node of a standing wave,

    - the second connection point is positioned between a second antinode and a second node of the standing wave,

    - the standing wave is an oscillatory voltage wave that transmits through the first power feeding bus (11) and the second power feeding bus (12), and is generated by switching operation by the inverter (5) and an antinode of the standing wave is located to the ends in the longitudinal direction of the power feeding buses (11, 12),

    - a distance (d1) from the first antinode of the standing wave to the first connection point is shorter than a distance (d2) from the second antinode of the standing wave to the second connection point, and

    - the impedance (Z1) of the first connection circuit (21) is smaller than the impedance (Z2) of the second connection circuit (22).


     
    2. The power converter (100) according to claim 1, wherein the first connection point is positioned to the antinode.
     
    3. The power converter (100) according to claim 2,
    wherein the impedance (Z1) of the first connection circuit (21) satisfies the following formula (1)

    wherein in the above formula (1), Z1 represents the impedance of the first connection circuit (21) and Z12 represents a characteristic impedance between a first power feeding bus (11) and the second power feeding bus (12).
     
    4. The power converter (100) according to claim 1 or 2, wherein
    the second connection point is positioned to the node and
    the following formula (2) is satisfied

    wherein in the above formula (2), Z1 represents the impedance of the first connection circuit (21) and Z2 represents the impedance of the second connection circuit (22).
     
    5. The power converter (100) according to any one of claims 1 to 4, wherein
    the plurality of connection circuits (21, 22) includes a first connection circuit (21) and a second connection circuit (22),
    the first connection circuit (21), using each of a connection point to the first power feeding bus (11) and a connection point to the second power feeding bus (12) as a first connection point, is connected to the first power feeding bus (11) and the second power feeding bus (12),
    the second connection circuit (22), using each of a connection point to the first power feeding bus (11) and a connection point to the second feeding bus (12) as a second connection point, is connected to the first power feeding bus (11) and the second power feeding bus (12),
    an impedance (Z1) of the first connection circuit (21) satisfies the following formula (3), and
    an impedance (Z2) of the second connection circuit (22) satisfies the following formula (4)



    wherein

    - in the above formulas (3) and (4),

    - Z1 represents the impedance of the first connection circuit (21),

    - Z12 represents a characteristic impedance between the first power feeding bus (11) and the second power feeding bus (12),

    - Z2 represents the impedance of the second connection circuit (22),

    - when a position of an antinode of a standing wave is "0" and a position that corresponds to one period of the standing wave from the antinode is "2π", "θ" represents each distance of a distance from the antinode to the first connection point and a distance from the antinode to the second connection point in angles,

    - the standing wave is an oscillatory wave that transmits through the first power feeding bus (11), and

    - the standing wave is an oscillatory wave that transmits through the second power feeding bus (12).


     
    6. The power converter (100) according to any one of claims 1 to 5, wherein a capacity of the capacitive member is greater than a capacity between the first power feeding bus (11) and the second power feeding bus (12).
     
    7. The power converter (100) according to any one of claims 1 to 6, wherein

    - the plurality of connection circuits (21, 22) includes a first connection circuit (21) and a second connection circuit (22),

    - the first power feeding bus (11) and the second power feeding bus (12) are formed to a plate shape extending along a longitudinal direction, and

    - the first connection circuit (21) and the second connection circuit (22) are disposed with a space interposed between the first connection circuit (21) and the second connection circuit (22) and are aligned in the longitudinal direction.


     
    8. The power converter (100) according to any one of claims 1 to 6, wherein the first power feeding bus (11) and the second power feeding bus (12) are formed to a bent shape.
     
    9. The power converter (100) according to any one of claims 1 to 6, wherein

    - the plurality of connection circuits (21, 22) includes a first connection circuit (21) and a second connection circuit (22),

    - the first power feeding bus (11) and the second power feeding bus (12) are formed to a plate shape extending along a longitudinal direction,

    - the first connection circuit (21) includes a first series circuit (21a) connecting a resistant member and a capacitive member in series, and a second series circuit (21b) connecting a resistant member and a capacitive member in series, and

    - the first series circuit and the second series circuit are disposed with a space interposed between the first series circuit and the second series circuit and are aligned in a short-length direction perpendicular to the longitudinal direction.


     
    10. The power converter (100) according to any one of claims 1 to 9, wherein the resistant member is a passive element.
     


    Ansprüche

    1. Stromrichter (100), umfassend:

    - einen Wechselrichter (5) zum Umwandeln von Strom aus einer Stromversorgung (200);

    - einen ersten Stromversorgungsbus (11), der mit dem Wechselrichter (5) und der positiven Seite der Stromversorgung (200) verbunden ist;

    - einen zweiten Stromversorgungsbus (12), der mit dem Wechselrichter (5) und der negativen Seite der Stromversorgung (200) verbunden ist;

    - einen Glättungskondensator (4), der zwischen dem ersten Stromversorgungsbus (11) und dem zweiten Stromversorgungsbus (12) angeordnet ist; und

    - eine Vielzahl von Verbindungsschaltungen (21, 22), die jeweils ein Widerstandselement und ein kapazitives Element umfassen, die in Reihe geschaltet sind;

    wobei:

    - die Vielzahl von Verbindungsschaltungen (21, 22) zwischen dem ersten Stromversorgungsbus (11) und dem zweiten Stromversorgungsbus (12) angeordnet sind, zumindest zwei oder mehr unterschiedliche Impedanzen (Z1, Z2) aufweisen und in der Längsrichtung des ersten Stromversorgungsbusses (11) und des zweiten Stromversorgungsbusses (12) an unterschiedlichen Positionen angeordnet sind,
    und dadurch gekennzeichnet, dass

    - die Vielzahl von Verbindungsschaltungen (21, 22) eine erste Verbindungsschaltung (21) und eine zweite Verbindungsschaltung (22) umfasst,

    - die erste Verbindungsschaltung (21) mit dem ersten Stromversorgungsbus (11) und dem zweiten Stromversorgungsbus (12) verbunden ist, wobei sowohl ein Verbindungspunkt zum ersten Stromversorgungsbus (11) als auch ein Verbindungspunkt zum zweiten Stromversorgungsbus (12) als erster Verbindungspunkt betrachtet wird,

    - die zweite Verbindungsschaltung (22) mit dem ersten Stromversorgungsbus (11) und dem zweiten Stromversorgungsbus (12) verbunden ist, wobei sowohl ein Verbindungspunkt zum ersten Stromversorgungsbus (11) als auch zum zweiten Stromversorgungsbus (12) als zweiter Verbindungspunkt betrachtet wird,

    - der erste Verbindungspunkt zwischen einem ersten Gegenknoten und einem ersten Knoten einer stehenden Welle positioniert ist,

    - der zweite Verbindungspunkt zwischen einem zweiten Gegenknoten und einem zweiten Knoten der stehenden Welle positioniert ist,

    - die stehende Welle eine Schwingungswelle ist, die über den ersten Stromversorgungsbus (11) und den zweiten Stromversorgungsbus (12) übertragen wird und durch einen Schaltvorgang vom Wechselrichter (5) erzeugt wird, und ein Gegenknoten der stehenden Welle an den Enden in der Längsrichtung der Stromversorgungsbusse (11, 12) angeordnet ist,

    - ein Abstand (d1) vom ersten Gegenknoten der stehenden Welle zum ersten Verbindungspunkt kürzer als ein Abstand (d2) vom zweiten Gegenknoten der stehenden Welle zum zweiten Verbindungspunkt ist, und

    - die Impedanz (Z1) der ersten Verbindungsschaltung (21) kleiner als die Impedanz (Z2) der zweiten Verbindungsschaltung (22) ist.


     
    2. Stromrichter (100) nach Anspruch 1, wobei der erste Verbindungspunkt am Gegenknoten positioniert ist.
     
    3. Stromrichter (100) nach Anspruch 2,
    wobei die Impedanz (Z1) der ersten Verbindungsschaltung (21) die folgende Formel (1) erfüllt:

    wobei in der obigen Formel (1) Z1 die Impedanz der ersten Verbindungsschaltung (21) repräsentiert und Z12 eine charakteristische Impedanz zwischen einem ersten Stromversorgungsbus (11) und dem zweiten Stromversorgungsbus (12) repräsentiert.
     
    4. Stromrichter (100) nach Anspruch 1 oder 2, wobei
    der zweite Verbindungspunkt am Knoten positioniert ist, und die folgende Formel (2) erfüllt ist:

    wobei in der obigen Formel (2) Z1 die Impedanz der ersten Verbindungsschaltung (21) repräsentiert und Z2 die Impedanz der zweiten Verbindungsschaltung (22) repräsentiert.
     
    5. Stromrichter (100) nach einem der Ansprüche 1 bis 4, wobei
    die Vielzahl von Verbindungsschaltungen (21, 22) eine erste Verbindungsschaltung (21) und eine zweite Verbindungsschaltung (22) umfasst,
    die erste Verbindungsschaltung (21), die sowohl einen Verbindungspunkt zum ersten Stromversorgungsbus (11) als auch einen Verbindungspunkt zum zweiten Stromversorgungsbus (12) als ersten Verbindungspunkt verwendet, mit dem ersten Stromversorgungsbus (11) und dem zweiten Stromversorgungsbus (12) verbunden ist,
    die zweite Verbindungsschaltung (22), die sowohl einen Verbindungspunkt zum ersten Stromversorgungsbus (11) als auch einen Verbindungspunkt zum zweiten Stromversorgungsbus (12) als zweiten Verbindungspunkt verwendet, mit dem ersten Stromversorgungsbus (11) und dem zweiten Stromversorgungsbus (12) verbunden ist,
    eine Impedanz (Z1) der ersten Verbindungsschaltung (21) die folgende Formel (3) erfüllt, und
    eine Impedanz (Z2) der zweiten Verbindungsschaltung (22) die folgende Formel (4) erfüllt:



    wobei

    - in den obigen Formeln (3) und (4),

    - Z1 die Impedanz der ersten Verbindungsschaltung (21) repräsentiert,

    - Z12 eine charakteristische Impedanz zwischen dem ersten Stromversorgungsbus (11) und dem zweiten Stromversorgungsbus (12) repräsentiert;

    - Z2 die Impedanz der zweiten Verbindungsschaltung (22) repräsentiert,

    - wenn eine Position eines Gegenknotens einer stehenden Welle "0" ist und eine Position, die einer Periode der stehenden Welle vom Gegenknoten entspricht, "2π" ist, "θ" sowohl einen Abstand eines Abstands vom Gegenknoten zum ersten Verbindungspunkt als auch einen Abstand vom Gegenknoten zum zweiten Verbindungspunkt in Winkeln repräsentiert,

    - die stehende Welle eine Schwingungswelle ist, die über den ersten Stromversorgungsbus (11) übertragen wird, und

    - die stehende Welle eine Schwingungswelle ist, die über den zweiten Stromversorgungsbus (12) übertragen wird.


     
    6. Stromrichter (100) nach einem der Ansprüche 1 bis 5, wobei eine Kapazität des kapazitiven Elements größer als eine Kapazität zwischen dem ersten Stromversorgungsbus (11) und dem zweiten Stromversorgungsbus (12) ist.
     
    7. Stromrichter (100) nach einem der Ansprüche 1 bis 6, wobei

    - die Vielzahl von Verbindungsschaltungen (21, 22) eine erste Verbindungsschaltung (21) und eine zweite Verbindungsschaltung (22) umfasst,

    - der erste Stromversorgungsbus (11) und der zweite Stromversorgungsbus (12) in Plattenform ausgebildet sind, die sich entlang einer Längsrichtung erstreckt, und

    - die erste Verbindungsschaltung (21) und die zweite Verbindungsschaltung (22) mit einem Zwischenraum zwischen der ersten Verbindungsschaltung (21) und der zweiten Verbindungsschaltung (22) angeordnet sind und in der Längsrichtung ausgerichtet sind.


     
    8. Stromrichter (100) nach einem der Ansprüche 1 bis 6, wobei der erste Stromversorgungsbus (11) und der zweite Stromversorgungsbus (12) in gebogener Form ausgebildet sind.
     
    9. Stromrichter (100) nach einem der Ansprüche 1 bis 6, wobei

    - die Vielzahl von Verbindungsschaltungen (21, 22) eine erste Verbindungsschaltung (21) und eine zweite Verbindungsschaltung (22) umfasst,

    - der erste Stromversorgungsbus (11) und der zweite Stromversorgungsbus (12) in Plattenform ausgebildet sind, die sich entlang einer Längsrichtung erstreckt,

    - die erste Verbindungsschaltung (21) eine erste Reihenschaltung (21a), die ein Widerstandselement und ein kapazitives Element in Reihe verbindet, und eine zweite Reihenschaltung (21b) umfasst, die ein Widerstandselement und ein kapazitives Element in Reihe verbindet, und

    - die erste Reihenschaltung und die zweite Reihenschaltung mit einem Zwischenraum zwischen der ersten Reihenschaltung und der zweiten Reihenschaltung angeordnet sind und in Richtung deren kurzer Länge senkrecht zur Längsrichtung ausgerichtet sind.


     
    10. Stromrichter (100) nach einem der Ansprüche 1 bis 9, wobei das Widerstandselement ein passives Element ist.
     


    Revendications

    1. Convertisseur de puissance (100), comprenant :

    - un onduleur (5) pour convertir la puissance électrique délivrée en sortie par un bloc d'alimentation (200) ;

    - un premier bus d'alimentation en puissance (11) relié à l'onduleur (5) et à un côté positif du bloc d'alimentation (200) ;

    - un deuxième bus d'alimentation en puissance (12) relié à l'onduleur (5) et à un côté négatif du bloc d'alimentation (200) ;

    - un condensateur de lissage (4) relié entre le premier bus d'alimentation en puissance (11) et le deuxième bus d'alimentation en puissance (12) ; et

    - une pluralité de circuits de liaison (21, 22) comportant chacun un élément résistif et un élément capacitif qui sont reliés en série,

    où :

    - la pluralité de circuits de liaison (21, 22) sont reliés entre le premier bus d'alimentation en puissance (11) et le deuxième bus d'alimentation en puissance (12), ont au moins deux impédances différentes ou plus (Z1, Z2) et sont reliés à différentes positions dans la direction longitudinale du premier bus d'alimentation en puissance (11) et du deuxième bus d'alimentation en puissance (12),
    et caractérisé en ce que

    - la pluralité de circuits de liaison (21, 22) comporte un premier circuit de liaison (21) et un deuxième circuit de liaison (22),

    - le premier circuit de liaison (21) est relié au premier bus d'alimentation en puissance (11) et au deuxième bus d'alimentation en puissance (12), où chacun d'un point de liaison au premier bus d'alimentation en puissance (11) et d'un point de liaison au deuxième bus d'alimentation en puissance (12) est considéré en tant que premier point de liaison,

    - le deuxième circuit de liaison (22) est relié au premier bus d'alimentation en puissance (11) et au deuxième bus d'alimentation en puissance (12), où chacun d'un point de liaison au premier bus d'alimentation en puissance (11) et d'un point de liaison au deuxième bus d'alimentation en puissance (12) est considéré en tant que deuxième point de liaison,

    - le premier point de liaison est positionné entre un premier anti-nœud et un premier nœud d'une onde stationnaire,

    - le deuxième point de liaison est positionné entre un deuxième anti-nœud et un deuxième nœud de l'onde stationnaire,

    - l'onde stationnaire est une onde de tension oscillatoire qui transmet à travers le premier bus d'alimentation en puissance (11) et le deuxième bus d'alimentation en puissance (12), et est générée par une opération de commutation au moyen de l'onduleur (5) et un anti-nœud de l'onde stationnaire est situé aux extrémités dans la direction longitudinale des bus d'alimentation en puissance (11, 12),

    - une distance (d1) entre le premier anti-nœud de l'onde stationnaire et le premier point de liaison est inférieure à une distance (d2) entre le deuxième anti-nœud de l'onde stationnaire et le deuxième point de liaison, et

    - l'impédance (Z1) du premier circuit de liaison (21) est inférieure à l'impédance (Z2) du deuxième circuit de liaison (22).


     
    2. Convertisseur de puissance (100) selon la revendication 1, dans lequel le premier point de liaison est positionné sur l'anti-nœud.
     
    3. Convertisseur de puissance (100) selon la revendication 2, dans lequel l'impédance (Z1) du premier circuit de liaison (21) satisfait la formule (1) suivante :

    dans lequel dans la formule (1) ci-dessus, Z1 représente l'impédance du premier circuit de liaison (21) et Z12 représente une impédance caractéristique entre un premier bus d'alimentation en puissance (11) et le deuxième bus d'alimentation en puissance (12).
     
    4. Convertisseur de puissance (100) selon la revendication 1 ou 2, dans lequel
    le deuxième point de liaison est positionné sur le nœud et la formule (2) suivante est satisfaite

    dans lequel dans la formule (2) ci-dessus, Z1 représente l'impédance du premier circuit de liaison (21) et Z2 représente l'impédance du deuxième circuit de liaison (22).
     
    5. Convertisseur de puissance (100) selon l'une quelconque des revendications 1 à 4, dans lequel
    la pluralité de circuits de liaison (21, 22) comporte un premier circuit de liaison (21) et un deuxième circuit de liaison (22),
    le premier circuit de liaison (21), utilisant chacun d'un point de liaison au premier bus d'alimentation en puissance (11) et d'un point de liaison au deuxième bus d'alimentation en puissance (12) en tant que premier point de liaison, est relié au premier bus d'alimentation en puissance (11) et au deuxième bus d'alimentation en puissance (12),
    le deuxième circuit de liaison (22), utilisant chacun d'un point de liaison au premier bus d'alimentation en puissance (11) et d'un point de liaison au deuxième bus d'alimentation en puissance (12) en tant que deuxième point de liaison, est relié au premier bus d'alimentation en puissance (11) et au deuxième bus d'alimentation en puissance (12),
    une impédance (Z1) du premier circuit de liaison (21) satisfait la formule (3) suivante, et
    une impédance (Z2) du deuxième circuit de liaison (22) satisfait la formule (4) suivante,



    - dans les formules (3) et (4) ci-dessus,

    - Z1 représente l'impédance du premier circuit de liaison (21),

    - Z12 représente une impédance caractéristique entre le premier bus d'alimentation en puissance (11) et le deuxième bus d'alimentation en puissance (12),

    - Z2 représente l'impédance du deuxième circuit de liaison (22),

    - lorsqu'une position d'un anti-nœud d'une onde stationnaire est égale à "0" et une position qui correspond à une période de l'onde stationnaire de l'anti-nœud est égale à "2π", "θ" représente chaque distance d'une distance entre l'anti-nœud et le premier point de liaison et d'une distance entre l'anti-nœud et le deuxième point de liaison selon des angles,

    - l'onde stationnaire est une onde oscillatoire qui transmet à travers le premier bus d'alimentation en puissance (11), et

    - l'onde stationnaire est une onde oscillatoire qui transmet à travers le deuxième bus d'alimentation en puissance (12).


     
    6. Convertisseur de puissance (100) selon l'une quelconque des revendications 1 à 5, dans lequel une capacité de l'élément capacitif est supérieure à une capacité entre le premier bus d'alimentation en puissance (11) et le deuxième bus d'alimentation en puissance (12).
     
    7. Convertisseur de puissance (100) selon l'une quelconque des revendications 1 à 6, dans lequel

    - la pluralité de circuits de liaison (21, 22) comporte un premier circuit de liaison (21) et un deuxième circuit de liaison (22),

    - le premier bus d'alimentation en puissance (11) et le deuxième bus d'alimentation en puissance (12) représentent une forme de plaque s'étendant le long d'une direction longitudinale, et

    - le premier circuit de liaison (21) et le deuxième circuit de liaison (22) sont disposés avec un espace interposé entre le premier circuit de liaison (21) et le deuxième circuit de liaison (22) et sont alignés dans la direction longitudinale.


     
    8. Convertisseur de puissance (100) selon l'une quelconque des revendications 1 à 6, dans lequel le premier bus d'alimentation en puissance (11) et le deuxième bus d'alimentation en puissance (12) présentent une forme incurvée.
     
    9. Convertisseur de puissance (100) selon l'une quelconque des revendications 1 à 6, dans lequel

    - la pluralité de circuits de liaison (21, 22) comporte un premier circuit de liaison (21) et un deuxième circuit de liaison (22),

    - le premier bus d'alimentation en puissance (11) et le deuxième bus d'alimentation en puissance (12) présentent une forme de plaque s'étendant le long d'une direction longitudinale,

    - le premier circuit de liaison (21) comporte un premier circuit série (21a) reliant en série un élément résistif et un élément capacitif, et un deuxième circuit série (21b) reliant en série un élément résistif et un élément capacitif, et

    - le premier circuit série et le deuxième circuit série sont disposés avec un espace interposé entre le premier circuit série et le deuxième circuit série et sont alignés dans une direction de longueur courte perpendiculaire à la direction longitudinale.


     
    10. Convertisseur de puissance (100) selon l'une quelconque des revendications 1 à 9, dans lequel l'élément résistif est un élément passif.
     




    Drawing










































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description