(19)
(11)EP 3 240 813 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
31.03.2021 Bulletin 2021/13

(21)Application number: 14909279.3

(22)Date of filing:  29.12.2014
(51)International Patent Classification (IPC): 
C08F 2/44(2006.01)
C08K 7/00(2006.01)
B82Y 40/00(2011.01)
C09C 1/44(2006.01)
C08K 3/013(2018.01)
C08K 3/34(2006.01)
B82Y 30/00(2011.01)
C09C 1/42(2006.01)
C08K 9/04(2006.01)
(86)International application number:
PCT/BR2014/050056
(87)International publication number:
WO 2016/106441 (07.07.2016 Gazette  2016/27)

(54)

PROCESS FOR TREATMENT OF NANOPARTICLES OF MINERAL FILLER FOR USE IN POLYMERIZATION IN THE PRESENCE OF NANOPARTICLES

VERFAHREN ZUR BEHANDLUNG VON NANOPARTIKELN VON MINERALISCHEN FÜLLMITTELN ZUR VERWENDUNG IN DER POLYMERISATION IN GEGENWART VON NANOPARTIKELN

PROCÉDÉ DE TRAITEMENT DE NANOPARTICULES DE CHARGE MINÉRALE UTILISÉES DANS LA POLYMÉRISATION EN PRÉSENCE DE NANOPARTICULES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
08.11.2017 Bulletin 2017/45

(60)Divisional application:
19160685.4 / 3530677

(73)Proprietor: Braskem S.A.
42810-000 Camaçari BA (BR)

(72)Inventors:
  • POZZER, Dihogenes Adriano
    05501-050 São Paulo - SP (BR)
  • MARTINS JUNIOR, Olavo
    05501-050 São Paulo - SP (BR)
  • COELHO SILVA LUCAS, Alessandra
    05501-050 São Paulo - SP (BR)
  • SILVEIRA, Fernando
    05501-050 São Paulo - SP (BR)

(74)Representative: Louis Pöhlau Lohrentz 
Patentanwälte Postfach 30 55
90014 Nürnberg
90014 Nürnberg (DE)


(56)References cited: : 
WO-A1-99/47598
US-A1- 2005 014 867
US-A1- 2014 275 347
US-B2- 8 058 371
WO-A1-2009/052595
US-A1- 2005 187 330
US-A1- 2014 275 347
US-B2- 8 080 610
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention refers to a process for treatment of nanoparticles of mineral fillers for use in in situ continuous or batch polymerization process by means of a previously treatment process.

    BACKGROUND OF THE INVENTION



    [0002] Nanocomposites are materials formed by nanoparticles of inorganic material dispersed in an organic polymer matrix.

    [0003] Organic polymer containing exfoliated lamella in nanometric scale exhibits enhanced macroscopic properties relative to virgin organic polymer or to conventional micro composite or macro composite containing other inorganic filler. Among the macroscopic properties that may be cited are mechanical properties, barrier properties, thermal and electrical conductivity and others.

    [0004] Various techniques have been used for the preparation of the composites, particularly in the field of the polyolefins, such as melt mixing, in situ polymerization using clays such montmorillonite and others as catalyst mechanical support and in situ polymerization adding mineral filler during the polymerization reaction.

    [0005] Usually the clays are treated to remove adsorbed water for using in the in situ polymerization for nanocomposite preparation.

    [0006] Water and other compounds containing hydroxyl groups are available in the nanofiller and act as a catalyst poison reducing catalyst activity in the polymerization of olefins. The catalysts used in the polymerization can be Ziegler-Natta, metallocene, chromium and others.

    [0007] Organoaluminum co-catalysts, such as trialkylaluminum or an alkylaluminoxane, are generally used to react with the adsorbed water and with other compounds containing hydroxyl groups available on the surface of the nanofiller used as catalyst support.

    [0008] For example, document U.S. 7,776,943 describes a process for the preparation of polyolefin nanocomposite by in situ polymerization in the presence of a catalyst-filler combination which comprises a nickel complex bearing α-iminocarboxamidato ligant combined with a layered inorganic silicate, in which a trimethylaluminum is used as a scavenger.

    [0009] Document U.S.6,649,713 describes a process for the preparation of polyolefin nanocomposite by in situ polymerization, using a organically modified clay in which silica or titanium dioxide nanometer particles are incorporated into the layers, alkylaluminum or alkoxyaluminum are added and a metallocene catalyst is then loaded on the above mentioned material and the finished catalyst is used for ethylene or propylene polymerization.

    [0010] On the other hand, document U.S. 8,329,811 describes a process for polymerization in the presence of nanoparticles of a mineral filler for obtaining polymer nanocomposites which includes the steps of mixing a mineral filler with a swelling agent; subjecting the swelling agent to an endoenthalpic or isoenthalpic phase change promoting an exfoliation and polymerizing a monomer.

    [0011] The interaction energies between layered mineral filler occur mainly by Van der Walls energy and electrostatic energy. Between macroscopic surfaces in liquids, Van der Walls forces become important at distances below 10 -15 nm and may at these distances start to dominate interactions of different origins as described by Ruths and Israelachvili (Springer Handbook of Nanotechnology, 2nd Ed (2007) 886). According Berjaguin-Landau-Verwey-Overbeek (DLVO) theory, at a small separation the Van der Walls attraction between two planar surfaces wins out over the double-layer repulsion.

    [0012] The usual mineral filler treatment using inert gas, as nitrogen or saturated hydrocarbon, combined or not with an organometallic compound as alkylaluminum or alkoxyaluminum is efficient only to remove the water and other compounds containing hydroxyl groups adsorbed in the surface of hydrophilic and organophilic phylosilicates. The attraction forces between macroscopic surfaces prevent that the inert gas or the organometallic compounds enter into the layers and react with the water and hydroxyl groups confined within the mineral fillers layers.

    [0013] Various techniques have been used for obtaining nanoparticles of phyllosilicate or other spherical and sheet-like filler, such as mixing a surfactant compound, treating with a acid, mixing with a swelling agent in a liquid state or near a critical state or in the supercritical state subjecting the swelling agent to a phase change.

    [0014] Usually for the preparation of nanocomposites, particularly in the presence of nanoparticles in the reaction media, surfactant is added to disrupt the layered structure. Document U.S. 5,883,173, for example, describes a process for preparation of nanocomposite material comprising a layered material intercalated with a latex by in situ polymerization in a mixture of surfactant, layered material, monomer, and a liquid is used in cases where the polymerization can occur in the presence of a polar liquid.

    [0015] The use of surfactants in this case is undesirable since it limits the nanofiller application. Surfactans, for example, are catalyst poisons in olefins polymerization. Thus, nanofillers treated with surfactants are not adequate for the preparation of polyolefins.

    [0016] Other technique to disrupt the layered structure is mixing the mineral filler with a swelling agent and subjecting the swelling agent to a phase change. For example, in document U.S. 8,329,811 there is described a process for the polymerization in the presence of nanoparticles of a mineral filler which includes steps of mixing a mineral fillers with a swelling agent in a liquid state or near a critical state or in the supercritical state, subjecting the swelling agent to an endoentalphic or isoenthalphic phase change by altering the conditions of temperature and/or pressure and polymerizing a monomer in the presence of mixture of swelling agent and mineral filler.

    [0017] When the layered structure is disrupted water and other compounds containing hydroxyl groups confined in the mineral filler layers are exposed. Therefore, when the exfoliation of mineral and these nanofiller contact a catalyst in the reaction media the catalyst poison, theretofore confined within mineral filler, induce the catalyst deactivation.Then the more efficient is the exfoliation process, more catalyst poisons are exposed and lower is the catalyst yield.

    [0018] As observed in the work described by Reddy and Kumar Das (Journal of Macromolecular Science. Part A. Pure Applied Chemistry. 43 (2006) 1369) fillers were heated and modified with MAO (methylaluminoxane) to minimize the deactivation effects of the surfaces on metallocene catalyst activity.

    [0019] US 2014/0275347A1 discloses modified nano-clay materials and nanocomposites made therefrom. WO 2009/052595 A1 discloses a process for polymerization in the presence of nanoparticles of a mineral filler for the attainment of polymer nanocomposites, and a polymer nanocomposite. US 2005/0187330 A1 discloses a method of delaminating aggregated particles with a coating agent in a substantially supercritical fluid. US 2005/0014867 A1 discloses a method of delaminating a graphite structure with a coating agent in a supercritical fluid.

    [0020] The process of the present invention overcomes the disadvantages of the processes known in the state of the art by disrupting the layered structure of a mineral filler in the presence of a scavenging agent. These treatment minimizes the deactivation effect caused by water and compounds containing hydroxyl groups in the Ziegler-Natta, metallocene, chromium and others catalyst activity.

    [0021] The nanofillers obtained by the process of the present invention are suitable to be used in a wide range of polymerization processes, including the production of polyolefins.

    Summary of the Invention



    [0022] The present invention relates to a process for treatment of mineral filler for obtaining treated nanoparticles for use in polymer nanocomposites process by in situ polymerization wherein a mineral filler is dried with an inert gas, to remove water and other compounds with hydroxyl groups on the surface of mineral filler according to claim 1. The dried mineral filler is contacted with swelling agent in liquid state or near the critical state or in the supercritical state. Subsequently, the mixture swelling agent-mineral fillers is subjected to isoenthalphic phase change (supercritical state) or endoenthalpic phase change (equilibrium state or supercritical state) of the swelling agent, by altering the conditions of the temperature and/or pressure for disrupt layered structure and expose catalyst poisons that may be confined within mineral filler layers. The mixture is then subjected to contact with a scavenging agent that react with catalyst poisons present in the mineral filler. The mixture obtained can then be subjected to a drying step with an inert gas to remove the sub-products from reaction of scavenger agent and catalyst poisons.

    [0023] The nanoparticles obtained by the process of the present inventions can be used in the production of nanocomposites in in situ polymerization.

    Brief Description of the Drawings



    [0024] 

    FIGURE 1 shows the flowcharts depicting one method of treatment of mineral filler.

    FIGURE 2 depicts a schematic illustration of a process for processing mineral filler in accordance with one aspect of the present inventions.

    FIGURE 3 is an illustration by means of electronic transmission microscopy, showing the layers of the organophilic phyllosicate before treatment process,

    FIGURE 4 is an illustration provided by means of electronic transmission microscopy, showing the layers of the organophilic phylloslicate after submitted to the treatment process as described in the present invention.


    Detailed Description of the Invention



    [0025] The process of the present invention for treatment of nanoparticles of mineral filler comprises the steps of:
    1. (a) Drying a mineral filler with an inert gas, wherein the inert gas is a saturated hydrocarbon;
    2. (b) Mixing the dried mineral filler obtained in step (a) with a swelling agent in a liquid state, or near a critical state or in supercritical state;
    3. (c) Subjecting the swelling agent of the mixture obtained in step (b) to an endoenthalpic or isoenthalpic phase change, by altering the conditions of temperature and/or pressure;
    4. (d) Subjecting the mixture obtained in step (c) to contact with a scavenging agent that reacts with water and other compounds containing hydroxyl groups.


    [0026] Optionally, it may occur a step (e) wherein the mixture obtained in step (d) is dried with an inert gas to remove sub-products from scavenging agent and catalyst poisons to obtain the treated nanoparticles. Preferably, step (e) occurs in the same conditions and uses the same inert gas of step (a).

    [0027] Step (c) occurs preferably by transferring the mixture containing the mineral filler and the swelling agent from a first reactor to a second. The second reactor may be, optionally, a polymerization reactor.

    [0028] Optionally, scavenging agent may also be present in at least one of steps (a), (b) or (c). Preferably, the scavenging agent is present in step (c).

    [0029] The treated nanoparticles obtained by the process of the present invention are suitable to be used in the preparation of polymer nanocomposites by in situ polymerization. Also, the nanoparticles obtained by the process of the present invention are suitable to be used in the preparation of polyolefin nanocomposites by in situ polymerization. The preparation of said nanocomposites can occur in continuous or batch polymerization process.

    [0030] Figure 1 depicts one embodiment of the process of the present invention for treatment of nanoparticles of mineral filler for obtaining processed nanoparticles for the preparation of polymer nanocomposites by in situ polymerization.

    [0031] Specifically, in this embodiment the spherical or layered mineral filler 100 is dried in a rotary dryers, or in a rolling bed dryer or in a fluidized bed dryer, with an inert gas 102 in box 110, step (a), at ambient or high temperature and positive or vacuum pressure for remove the catalyst poisons, as water and other compounds containing hydroxyl groups, available in the mineral filler surface. The drying step may occur, optionally, in presence of the scavenging agent.

    [0032] The said dried mineral filler is mixed with a swelling agent 104 in liquid state or near the critical state or in the supercritical state, as shown in box 112, step (b), in a stirred reactor with continuous flow or in batches. The swelling agent being subsequently subjected to endoenthalpic or isoenthalpic phase change in box 114, step (c), to provide a nanometric filler. The endoenthalpic or isoenthalpic phase change occurs altering the conditions of temperature and/or pressure.

    [0033] Then, as shown in box 116, step (d), the mineral filler in nanometric scale is subsequently subjected to contact with a scavenging agent 106 that reacts with the water and other compounds containing hydroxyl groups confined within layers and exposed after mineral filler exfoliation by subjecting the swollen inorganic filler for endoenthalpic or isoenthalpic phase change.

    [0034] Preferably, the endoenthalpic or isoenthalpic phase change occurs in the presence of the scavenging agent.

    [0035] Then, as shown in box 118, step (e), the mineral filler from scavenging step is newly dried with an inert gas 102 for remove sub-products 108 from scavenging agent and catalyst poisons. Preferably the drying step in box 118 occurs at same conditions and same equipment then the step described in box 110.

    [0036] Figure 2 depicts a schematic illustration of a mineral filler (in natural state or organically modified) subjected to the treatment process of the present invention.

    [0037] Firstly, the mineral filler is dried at ambient or high temperature and positive or vacuum pressure, using an inert gas in a dynamic drying system.

    [0038] Then, the dried mineral filler is swelling in a continuous or batch stirred reactor, by a swelling agent being the said swelling agent confined within mineral filler layers.

    [0039] Subsequently the swelling agent confined within mineral filler is subjected to endoenthapic or isoenthalpic phase change to disrupt the layered structure (exfoliation process).

    [0040] In the exfoliation, the catalyst poison, as water and other compounds containing hydroxyl groups are exposed in the presence of a scavenging agent.

    [0041] The scavenging agent reacts with water and other compounds containing hydroxyl groups, firstly confined within mineral filler layers, exposed by the mineral filler layers exfoliation acting as a chemical treatment.

    [0042] Then, the attraction forces re-approximate the layers reducing the distance between mineral filler surfaces.

    [0043] The mineral filler after the chemical treatment with a scavenging agent is dried using an inert gas at ambient or high temperature and positive or vacuum pressure in a dynamic drying system to remove the sub-products from reaction between scavenging agent and the catalyst poisons obtaining the processed (treated) mineral fillers.

    [0044] In a more preferred embodiment, the process for treatment nanoparticles of mineral filler for obtaining processed nanoparticles for use in polymerization process in according to the present invention comprises the steps of:
    1. (a) Subjecting a mineral filler to a thermal treatment at a temperature range of 20 to 160 deg. C, preferably between 100 and 120 deg. C, at a pressure range of from 0 to 16.000 mmHga, preferably between 0 and 740 mmHga, for a period of time varying between 2 and 24 hours, preferably from 4 to 8 hours, in the presence of an inert gas, using a dynamic drying system as a fluidized bed dryer, rotary dryer, rolling bed dryer or similar system able to provide an efficient drying of the filler.
    2. (b) Feeding a first reactor selected from continuous or batch stirred flow reactor, preferably a reactor of CSTR type (Continuous Stirred Tank Reactor) with the dry mineral filler and a swelling agent at a ratio of 50 to 1000% by weight, preferably, 100 to 200% by weight of swelling agent in relation to the mineral filler. Subjecting the first reactor to temperature and pressure conditions whereby the swelling agent is in liquid state or near the critical point or in supercritical state, such conditions being dependent on the selected swelling agent. The time of contact of the mineral filler with the swelling agent within the reactor varies from 1 to 10 hours, preferably, between 2 and 6 hours.
    3. (c) The mixture is transferred to a second reactor selected from continuous or batch stirred flow reactor or a fluidized bed reactor. During the transfer of swollen filler from the first reactor to the second reactor occurs a depressurization of the mixture with sudden vaporization of the swelling agent and obtainment of nanometric structures of the inorganic filler.
    4. (d) During step (c), a scavenger is added in the reactor with the exfoliated mineral filler. The time of contact of the exfoliated mineral filler with the scavenging agent within the reactor varies from 0.1 to 600 minutes, preferably between 30 to 120 minutes. The said scavenging agent was added in an amount of 1 to 50% by weight based on the weight of the mineral filler, preferably in an amount of 1 to 20% by weight based on the weight of the mineral filler. Alternatively, the scavenging agent may be added with the swelling agent on the first reactor.
    5. (e) The mineral filler obtained in step (d) is subjected to a thermal treatment at a temperature range of from 20 to 160 deg.C, preferably, between 20 and 80 deg.C, at a pressure range of from 0 to 1600 mmHga, preferably, between 0 and 760 mmHga, for a period of time varying between 0,5 and 12 hours, preferably, from 0,5 to 2 hours, in the presence of inert gas, using a dynamic drying system as a fluidized bed dryer, or rotary dryer, or rolling bed dryer or similar system able to provide an efficient drying of the filler. Alternatively, after the scavenging step, the mineral filler may be used in a polymerization reaction to obtain nanocomposites by in situ polymerization. According with the present invention, the mineral filler subjected to treatment may be in natural state or organically modified, and may be spherical-like or sheet-like (layered) fillers. In case of the spherical fillers the same may be selected from metal oxides, such as ZnO, CdO, Ca2O, TiO2, Al2O3, SiO2, Fe3O4; CaCO3 silver particles, among others. The sheet-like fillers may be hydrophilic or organophilic natural or synthetic phyllosilicates, kaolinites, graphite, among others. The mineral filler may be also selected from graphene and carbon nanotube. The mineral filler grain size does not necessarily have to be in nanometric scale, due to the fact that the process according to the present invention is capable of exfoliating the layers at the nanometric level.


    [0045] In case of the phyllosilicates, the same may be modified or not with intercalated cations (organics surfactant), for example, any quaternary onium ion (cations) such as ammonium, phosphonium, sulphonium or the mixture with an onium ion exhibiting one or more alkyl chains (C12 to C18), there will be observed an excellent chemical affinity with the hydrocarbons saturated or unsaturated, and furthermore, the phyllosilicate will evidence greater basal spacing compared with the natural phyllosilicates, thereby facilitating an enhanced dispersion of the hydrocarbons saturated or unsaturated in those spaces, leading to an efficient swelling of the sheet-like mineral filler.

    [0046] However, the time of contact required between the swelling agent and the mineral filler depends on the type of the filler and grain size characteristics of the mineral.

    [0047] The scavenging agent of the present invention is selected from the group that comprises organometallic compound or a metallic hydride, preferably an alykylaluminium or an alkylaluminoxane, more preferably, an alkylaluminium or methylaluminoxane.

    [0048] In other embodiment of the invention, the scavenging agent is the same cocatalyst used in the polymerization reaction.

    [0049] The scavenging agent may also have the general formula I, II, III. IV, V or VI.









            (V)     R-M2-R

            (VI)     R-M2-X



    [0050] Wherein:

    M1 is Al or B;

    M2 is Zn or Mg;

    R is hydrocarbyl group between 1 to 8 carbons or hydrogen;

    X is CI, I or O.



    [0051] The inert gas for dry the mineral filler in the present invention is selected from saturated hydrocarbon, including C1-4 (methane, ethane, propane and butane). Preferably, there is employed methane.
    The swelling agent of the present invention is selected from saturated or unsaturated hydrocarbons. Preferably, there are employed ethane, propane, butane, pentane, hexane, heptanes, octane, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, among others. The said swelling agent is preferably the same monomer used in the polymerization reaction media or an inert compound comprised in the reactor media.

    EXAMPLES


    Non-inventive Example 1 - The effect of nanofillers on catalyst yield in polymerization process



    [0052] Organophilic montmorillonite (Nanocor I.44P) was dried in a rotary dryer with nitrogen at 90 deg.C for 6 hours. The dried montmorrilonite was transferred to a stirred reactor. Propylene was added and stirred at 20deg.C and 42kgf/cm2. for 4 hours. The ratio of swelling agent: inorganic filler was 50/50 by weight. After being stirred for 4 hours, the mixture was transferred at a flow rate of 500 g/h to a continuous stirred reactor. During the transfer the mixture of montmorrillonite/propylene occurred a despressurization. The pressure drop between the stirred reactors was 27kgf/cm2, and the temperature increased to 130deg.C. During the despressurization propylene was added in the second stirred reactor. The ratio of swelling agent: inorganic filler was 92/8 by weight. The residence time of the mixture was kept in 210 minutes. Concomitantly, the mixture was transferred to a continuous fluidized bed gas phase reactor for polymerization. The polymerization occurred using Ziegler-Natta catalyst, triethylaluminium, diisopropyldimethoxysilane and hydrogen at 80deg.C and 12kgf/cm2.

    [0053] Table 1 shows the results obtained in the polymerization according the method of Example 1 and the polymerization, at same condition, without montmorillonite (comparative Example 1)
    Table 1
     Example 1Comparative Example 1
    wt % Montmorrillonite 3.32 0.00
    Catalyst yield (kgPP/gcat) 1.45 8.50


    [0054] As shown in Table 1 the catalyst yield reduced, at same polymerization condition, in 83% when the polymerization occurs in the presence of nanoparticles subjected to the conventional treatment.

    Non-inventive Example 2 - The effect of the nanofillers of the present invention on catalyst yield in polymerization process



    [0055] Organophilic montmorillonite (Nanocor I.44P) was dried in a rotary dryer with nitrogen at 90 deg.C for 6 hours. The dried montmorrilonite was transferred to a stirred reactor. Propylene was added and stirred at 20deg.C and 42kgf/cm2. for 4 hours. The ratio of swelling agent: inorganic filler was 50/50 by weight. After being stirred for 4 hours, the mixture was transferred at a flow rate of 500 g/h to a continuous stirred reactor. During the transfer the of the mixture of montmorrillonite/propylene occurred a despressurization. The pressure drop between the stirred reactors corresponded to 27kgf/cm2, and the temperature increased to 130deg.C. During the despressurization propylene was added in the second stirred reactor. The ratio of swelling agent: inorganic filler was 92/8 by weight. The scavenging agent used was triethylaluminium. The ratio of scavenging agent: inorganic filler was 15/85 by weight. The residence time of the mixture was kept in 210 minutes. Concomitantly, the mixture was transferred to a continuous fluidized bed gas phase reactor for polymerization. The polymerization occurred using Ziegler-Natta catalyst, triethylaluminium, diisopropyldimethoxysilane and hydrogen at 80deg.C and 12kgf/cm2.

    [0056] Table 2 shows the results obtained in the polymerization according the method of Example 2 and the polymerization, at same condition, without montmorillonite (comparative Example 2)
    Table 2
     Example 2Comparative Example 2
    wt % Montmorrillonite 4.12 0.00
    Catalyst yield (kgPP/gcat) 5.56 10.30


    [0057] As shown in Table 2 the catalyst yield reduced, at same polymerization condition, in 46% when the polymerization occurs in the presence of nanoparticles subjected to the process of treatment of the present invention.

    Non-inventive Example 3 - Nanofillers treatment with scavenging agent



    [0058] 5.8g of organophilic montmorrilonite (Nanocor I.44P) was dried in a fluidized dryer with nitrogen and triethylaluminum. The ratio of mineral filler:triethylaluminium was 5:1 by weight. The dried montmorrillonite was transferred to a stirred reactor for polymerization. 650g of propylene was added with a Ziegler-Natta, triethylaluminium, diisopropyldimethoxysilane and hydrogen. The polymerization occurred at 70deg.C and 30kgf/cm2 for 1 hour. The reaction yielded 116 g with a clay content 2.44 wt%.

    Non-inventive Example 4 - Nanofillers treatment with swelling agent



    [0059] 1.72g Organophilic montmorrilonite (Nanocor I.44P) was dried in the same condition at the Example 3. The dried montmorrillonite was transferred to a stirred reactor. 300g of propylene was added and stirred at 110deg.C and 66kgf/cm2 for 5 hours. The mixture of montmorrillonite/propylene was transferred to a second stirred reactor for polymerization. During the transfer the swollen mixture occurred a despressurization. The pressure drop between stirred reactors was 65kgf/cm2. Polymerization occurred at same condition as in the Example 3. The reaction yielded 75 g with a clay content 2.24 wt%.

    Non-inventive Example 5 - Nanofillers treatment with the process provided in the present invention



    [0060] 5.0g Organophilic montmorrilonite (Nanocor I.44P) was dried in the same condition at the Example 3. The dried montmorrillonite was transferred to a stirred reactor. 500g of propylene was added and stirred at 124deg.C and 92kgf/cm2 for 1 hour. The mixture of montmorrillonite/propylene was transferred to a second stirred reactor for scavenging and subsequently polymerization. During the transfer the swollen mixture occurred a despressurization. The pressure drop between stirred reactors was 90kgf/cm2. Subsequently was added and stirred triethylaluminium and 650g of propylene at ambient temperature for 40 minutes. The ratio of mineral filler: scavenging agent was 50:1 by weight. Polymerization occurred at same condition as in the Example 3. The reaction yielded 150 g with a clay content 2.23 wt%.

    [0061] Shows in Table 3 the results obtained in the polymerization according the method of Example 3, 4 and 5 and the polymerization condition, without montmorrillonite (comparative Example 3).
    Table 3
     Example 3Example 4Example 5Comparative Example 3
    wt % Montmorrillonite 2.44 2.24 2.23 0.00
    Catalyst yield (kgPP/gcat) 25.0 7.5 16.0 35.0
    Exfoliation No Yes Yes -


    [0062] As shown in the Table 3 the scavenging step subsequently to the exfoliation occurred by phase change in Example 5 reduced the catalyst deactivation comparing to Example 4. At same time, the results show that the exfoliation in Example 4 increased the catalyst deactivation comparing to Example 3. Figure 3 shows transmition electron microscopy images of the organophilic montmorrillonite subjected a conventional treatment in dynamic dryer using nitrogen as inert gas at high temperature.
    Figure 4 shows transmition electron microscopy images of the organophilic montmorrillonite subjected a treatment described in the present invention.


    Claims

    1. A process for treatment of nanoparticles of a mineral filler, which comprises the steps of:

    a. Drying a mineral filler with an inert gas, wherein the inert gas is a saturated hydrocarbon;

    b. Mixing the dried mineral filler obtained in step (a) with a swelling agent in a liquid state, or near a critical state or in supercritical state;

    c. Subjecting the swelling agent of the mixture obtained in step (b) to an endoenthalpic or isoenthalpic phase change, by altering the conditions of temperature and/or pressure;

    d. Subjecting the mixture obtained in step (c) to contact with a scavenging agent that reacts with water and other compounds containing hydroxyl groups.


     
    2. The process as claimed in claim 1 wherein step (a) occurs in a temperature range of 20 to 160 deg. C, preferably between 100 and 120 deg. C, at a pressure range of from 0 to 21.33 bar, preferably between 0 and 0.986 bar, for a period of time varying between 2 and 24 hours, preferably from 4 to 8 hours.
     
    3. The process as claimed in claim 1 wherein step (a) occurs using a dynamic drying system selected from fluidized bed dryer, rotary dryer or rolling bed dryer.
     
    4. The process as claimed in claim 1, wherein the step (b) occurs in continuous or batch process.
     
    5. The process as claimed in claim 1, wherein step (b) was conducted in a stirred reactor.
     
    6. The process as claimed in claim 1, wherein the step (b) duration varies between 1 and 10 hours, preferably between 2 and 6 hours.
     
    7. The process as claimed in claim 1, wherein in step (c) the endoenthalpic or isoenthalpic phase change occurs by transferring the mixture containing the mineral filler and the swelling agent to a second reactor.
     
    8. The process as claimed in claim 7, wherein the second reactor is selected from a CSTR type reactor, continuous or batch stirred flow reactor or a fluidized bed reactor.
     
    9. The process as claimed in claim 1, wherein step (d) occurs in a polymerization reactor.
     
    10. The process as claim in claim 1, wherein in step (d) the time of contact of the mineral filler with the scavenging agent varies from 0.1 to 600 minutes, preferably between 30 to 120 minutes.
     
    11. The process as claimed in claim 1 wherein the mineral filler obtained in step (d) is, optionally, dried with an inert gas in a step (e).
     
    12. Process as claimed in claim 11, wherein step (e) is carried using the same inert gas and same conditions used in step (a).
     
    13. The process as claimed in claim 1, wherein the mineral filler is a sheet-like mineral filler or spherical-like mineral filler.
     
    14. The process as claimed in claim 13, wherein the spherical-like mineral filler is selected from the group consisting of ZnO, CdO, Ca2O, TiO2, Al2O3, SiO2,Fe3O4, CaCO3 and silver particles.
     
    15. The process as claimed in claim 13, wherein the sheet-like mineral filler is selected from the group consisting of hydrophilic or organophilic natural or synthetic phyllosilicates, micas, kaolinites and graphite.
     
    16. The process as claimed in claim 1, wherein the mineral filler is graphene.
     
    17. The process as claimed in claim 1, wherein the mineral filler is a carbon nanotube.
     
    18. The process as claimed in claim 1, wherein the saturated hydrocarbon is methane, ethane, propane or butane.
     
    19. The process as claimed in claim 1, wherein the swelling agent is a saturated or unsaturated hydrocarbon.
     
    20. The process as claimed in claim 19, wherein the swelling agent is selected from the group consisting of ethane, propane, butane, pentane, hexane, heptanes, octane, propylene, 1-butene, 1-pentene, 1-hexene and 1-octene.
     
    21. The process as claimed in claim 1, wherein the swelling agent is added in an amount of 50 to 1000% by weight based on the weight of the mineral filler, preferably 50 to 200% by weight based on the weight of the mineral filler.
     
    22. The process as claimed in claim 1, wherein the scavenging agent is a metallic hydride or an organometallic compound.
     
    23. The process as claimed in claim 22, wherein the scavenging agent is a alkylaluminium or an alkylaluminoxane.
     
    24. The process as claimed in claim 22, wherein the said scavenging agent has the general formula I, II, III, IV, V or VI:









            (V)     R-M2-R

            (VI)     R-M2-X

    Wherein:

    M1 is Al or B;

    M2 is Zn or Mg;

    R is hydrocarbyl group between 1 to 8 carbons or hydrogen;

    X is Cl, l or O.


     
    25. The process as claimed in claim 1, wherein the said scavenging agent is added in an amount of 1 to 50% by weight based on the weight of the mineral filler, preferably in an amount of 1 to 20% by weight based on the weight of the mineral filler.
     
    26. Nanoparticles treated by the process as claimed in claims 1 to 25.
     
    27. Use of nanoparticles according to claim 26 to produce nanocomposites.
     
    28. Use of nanoparticles according to claim 27 to produce polyolefin nanocomposites.
     


    Ansprüche

    1. Verfahren zur Behandlung von Nanopartikeln eines mineralischen Füllstoffs, das die Stufen umfasst:

    a. Trocknen eines mineralischen Füllstoffs mit einem Inertgas, wobei das Inertgas ein gesättigter Kohlenwasserstoff ist;

    b. Mischen des in Stufe (a) erhaltenen getrockneten mineralischen Füllstoffs mit einem Quellmittel in einem flüssigen Zustand oder in der Nähe eines kritischen Zustands oder in superkritischem Zustand;

    c. Unterwerfen des Quellmittels der Mischung, die in Stufe (b) erhalten wird, einer endoenthalpischen oder isoenthalpischen Phasenänderung, indem die Temperatur- und/oder Druckbedingungen geändert werden;

    d. Unterwerfen der in Stufe (c) erhaltenen Mischung einem Kontakt mit einem Abfangmittel, das mit Wasser oder anderen hydroxylgruppenhaltigen Verbindungen reagiert.


     
    2. Verfahren nach Anspruch 1, wobei Stufe (a) in einem Temperaturbereich von 20 bis 160 °C, vorzugsweise von 100 bis 120 °C, bei einem Druck von 0 bis 21,33 bar, vorzugsweise von 0 bis 0,986 bar, für eine Zeitspanne von 2 bis 24 Stunden, vorzugsweise von 4 bis 8 Stunden, abläuft.
     
    3. Verfahren nach Anspruch 1, wobei Stufe (a) unter Anwendung eines dynamischen Tocknungssystems, das aus Wirbelschichttrockner, Rotationstrockner oder Rollbetttrockner ausgewählt wird, abläuft.
     
    4. Verfahren nach Anspruch 1, wobei die Stufe (b) in einem kontinuierlichen oder absatzweisen Verfahren abläuft.
     
    5. Verfahren nach Anspruch 1, wobei Stufe (b) in einem Rührreaktor durchgeführt wird.
     
    6. Verfahren nach Anspruch 1, wobei die Dauer von Stufe (b) 1 bis 10 Stunden, vorzugsweise 2 bis 6 Stunden, beträgt.
     
    7. Verfahren nach Anspruch 1, wobei in Stufe (c) die endoenthalpische oder isoenthalpische Phasenänderung erfolgt, indem man die den mineralischen Füllstoff und das Quellmittel enthaltende Mischung in einen zweiten Reaktor überführt.
     
    8. Verfahren nach Anspruch 7, wobei der zweite Reaktor aus einem Reaktor vom CSTR-Typ, kontinuierlichen oder absatzweisen Rührströmungsreaktor oder Wirbelschichtreaktor ausgewählt wird.
     
    9. Verfahren nach Anspruch 1, wobei Stufe (d) in einem Polymerisationsreaktor abläuft.
     
    10. Verfahren nach Anspruch 1, wobei in Stufe (d) die Kontaktzeit des mineralischen Füllstoffs mit dem Abfangmittel 0,1 bis 600 Minuten, vorzugsweise 30 bis 120 Minuten, beträgt.
     
    11. Verfahren nach Anspruch 1, wobei der in Stufe (d) erhaltene mineralische Füllstoff optional in einer Stufe (e) mit einem Inertgas getrocknet wird.
     
    12. Verfahren nach Anspruch 11, wobei in Stufe (e) das gleiche Inertgas und die gleichen Bedingungen wie in Stufe (a) eingesetzt werden.
     
    13. Verfahren nach Anspruch 1, wobei der mineralische Füllstoff ein blättriger mineralischer Füllstoff oder sphärischer mineralischer Füllstoff ist.
     
    14. Verfahren nach Anspruch 13, wobei der sphärische mineralische Füllstoff aus der aus ZnO, CdO, Ca2O, TiO2, Al2O3, SiO2,Fe3O4, CaCO3 und Silberpartikeln bestehenden Gruppe ausgewählt wird.
     
    15. Verfahren nach Anspruch 13, wobei der blättrige mineralische Füllstoff aus der aus hydrophilen oder organophilen, natürlichen oder synthetischen Phyllosilicaten, Glimmer, Kaoliniten und Graphit bestehenden Gruppe ausgewählt wird.
     
    16. Verfahren nach Anspruch 1, wobei der mineralische Füllstoff Graphen ist.
     
    17. Verfahren nach Anspruch 1, wobei der mineralische Füllstoff eine Kohlenstoffnanoröhre ist.
     
    18. Verfahren nach Anspruch 1, wobei der gesättigte Kohlenwasserstoff Methan, Ethan, Propan oder Butan ist.
     
    19. Verfahren nach Anspruch 1, wobei das Quellmittel ein gesättigter oder ungesättigter Kohlenwasserstoff ist.
     
    20. Verfahren nach Anspruch 19, wobei das Quellmittel aus der aus Ethan, Propan, Butan, Pentan, Hexan, Heptanen, Octan, Propylen, 1-Buten, 1-Penten, 1-Hexen und 1-Octen bestehenden Gruppe ausgewählt wird.
     
    21. Verfahren nach Anspruch 1, wobei das Quellmittel in einer Menge von 50 bis 1000 Gew.-%, bezogen auf das Gewicht des mineralischen Füllstoffs, vorzugsweise von 50 bis 200 Gew.-%, bezogen auf das Gewicht des mineralischen Füllstoffs, zugegeben wird.
     
    22. Verfahren nach Anspruch 1, wobei das Abfangmittel ein Metallhydrid oder eine Organometallverbindung ist.
     
    23. Verfahren nach Anspruch 22, wobei das Abfangmittel ein Alkylaluminium oder ein Alkylaluminoxan ist.
     
    24. Verfahren nach Anspruch 22, wobei das Abfangmittel die allgemeine Formel I, II, III, IV, V oder VI aufweist









            (V)     R-M2 - R

            (VI)     R-M2-X

    wobei

    M1 Al oder B ist;

    M2 Zn oder Mg ist;

    R Hydrocarbylgruppe mit 1 bis 8 Kohlenstoffatomen oder Wasserstoff ist;

    X Cl, I oder O ist;


     
    25. Verfahren nach Anspruch 1, wobei das Abfangmittel in einer Menge von 1 bis 50 Gew.-%, bezogen auf das Gewicht des mineralischen Füllstoffs, vorzugsweise in einer Menge von 1 bis 20 Gew.-%, bezogen auf das Gewicht des mineralischen Füllstoffs, zugegeben wird.
     
    26. Nanopartikel, behandelt durch das Verfahren wie in Ansprüchen 1 bis 25 beansprucht.
     
    27. Verwendung von Nanopartikeln nach Anspruch 26 zur Herstellung von Nanokompositen.
     
    28. Verwendung nach Anspruch 27 zur Herstellung von Polyolefin-Nanokompositen.
     


    Revendications

    1. Un procédé de traitement de nanoparticules d'une charge minérale, qui comprend les étapes de :

    a. séchage d'une charge minérale avec un gaz inerte, dans lequel le gaz inerte est un hydrocarbure saturé ;

    b. mélange de la charge minérale séchée obtenue à l'étape (a) avec un agent de gonflement dans un état liquide, ou proche d'un état critique ou dans un état supercritique ;

    c. soumission de l'agent de gonflement du mélange obtenu à l'étape (b) à un changement de phase endoenthalpique ou isoenthalpique, par modification des conditions de température et/ou de pression ;

    d. soumission du mélange obtenu à l'étape (c) pour une mise en contact avec un agent de piégeage qui réagit avec de l'eau et d'autres composés contenant des groupes hydroxyle.


     
    2. Le procédé selon la revendication 1, dans lequel l'étape (a) se produit dans une plage de température de 20 à 160 °C, de préférence entre 100 et 120 °C, à une plage de pression de 0 à 21,33 bars, de préférence entre 0 et 0,986 bar, pendant une période de temps variant entre 2 et 24 heures, de préférence de 4 à 8 heures.
     
    3. Le procédé selon la revendication 1, dans lequel l'étape (a) se produit en utilisant un système de séchage dynamique choisi parmi un sécheur à lit fluidisé, un sécheur rotatif ou un sécheur à lit roulant.
     
    4. Le procédé selon la revendication 1, dans lequel l'étape (b) se produit dans un procédé continu ou discontinu.
     
    5. Le procédé selon la revendication 1, dans lequel l'étape (b) a été effectuée dans un réacteur agité.
     
    6. Le procédé selon la revendication 1, dans lequel la durée de l'étape (b) varie entre 1 et 10 heures, de préférence entre 2 et 6 heures.
     
    7. Le procédé selon la revendication 1, dans lequel dans l'étape (c) le changement de phase endoenthalpique ou isoenthalpique se produit en transférant le mélange contenant la charge minérale et l'agent de gonflement dans un second réacteur.
     
    8. Le procédé selon la revendication 7, dans lequel le second réacteur est choisi parmi un réacteur de type CSTR, un réacteur à écoulement agité continu ou discontinu ou un réacteur à lit fluidisé.
     
    9. Le procédé selon la revendication 1, dans lequel l'étape (d) se produit dans un réacteur de polymérisation.
     
    10. Le procédé selon la revendication 1, dans lequel, dans l'étape (d), le temps de contact de la charge minérale avec l'agent de piégeage varie de 0,1 à 600 minutes, de préférence entre 30 et 120 minutes.
     
    11. Le procédé selon la revendication 1, dans lequel la charge minérale obtenue à l'étape (d) est, facultativement, séchée avec un gaz inerte dans une étape (e).
     
    12. Le procédé selon la revendication 11, dans lequel l'étape (e) est réalisée en utilisant le même gaz inerte et les mêmes conditions que ceux utilisés à l'étape (a).
     
    13. Le procédé selon la revendication 1, dans lequel la charge minérale est une charge de type feuille ou une charge de type sphérique.
     
    14. Le procédé selon la revendication 13, dans lequel la charge minérale de type sphérique est choisie dans le groupe constitué par ZnO, CdO, Ca2O, TiO2, Al2O3, SiO2, Fe3O4, CaCO3 et les particules d'argent.
     
    15. Le procédé selon la revendication 13, dans lequel la charge minérale de type feuille est choisie dans le groupe constitué par les phyllosilicates, les micas, les kaolinites et graphite naturels ou synthétiques, hydrophiles ou organophiles.
     
    16. Le procédé selon la revendication 1, dans lequel la charge minérale est le graphène.
     
    17. Le procédé selon la revendication 1, dans lequel la charge minérale est un nanotube de carbone.
     
    18. Le procédé selon la revendication 1, dans lequel l'hydrocarbure saturé est le méthane, l'éthane, le propane ou le butane.
     
    19. Le procédé selon la revendication 1, dans lequel l'agent de gonflement est un hydrocarbure saturé ou insaturé.
     
    20. Le procédé selon la revendication 19, dans lequel l'agent de gonflement est choisi dans le groupe constitué par l'éthane, le propane, le butane, le pentane, l'hexane, les heptanes, l'octane, le propylène, le 1-butène, le 1-pentène, le 1-hexène et le 1-octène.
     
    21. Le procédé selon la revendication 1, dans lequel l'agent de gonflement est ajouté en une quantité de 50 à 1 000 % en poids sur la base du poids de la charge minérale, de préférence de 50 à 200 % en poids sur la base du poids de la charge minérale.
     
    22. Le procédé selon la revendication 1, dans lequel l'agent de piégeage est un hydrure métallique ou un composé organométallique.
     
    23. Le procédé selon la revendication 22, dans lequel l'agent de piégeage est un alykylaluminium ou un alkylaluminoxane.
     
    24. Le procédé selon la revendication 22, dans lequel ledit agent de piégeage a la formule générale I, II, III, IV, V ou VI :









            (V)     R-M2-R

            (VI)     R-M2-X

    dans laquelle :

    M1 représente Al ou B ;

    M2 représente Zn ou Mg ;

    R représente un groupe hydrocarbyle de 1 à 8 atomes de carbone ou un atome d'hydrogène ;

    X représente Cl, I ou O.


     
    25. Le procédé selon la revendication 1, dans lequel ledit agent de piégeage est ajouté en une quantité de 1 à 50 % en poids sur la base du poids de la charge minérale, de préférence en une quantité de 1 à 20 % en poids sur la base du poids de la charge minérale.
     
    26. Nanoparticules traitées par le procédé selon les revendications 1 à 25.
     
    27. Utilisation de nanoparticules selon la revendication 26 pour produire des nanocomposites.
     
    28. Utilisation de nanoparticules selon la revendication 27 pour produire des nanocomposites de polyoléfine.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description