(19)
(11)EP 3 242 995 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 16735252.5

(22)Date of filing:  04.01.2016
(51)Int. Cl.: 
F01N 1/10  (2006.01)
F01N 3/22  (2006.01)
F02M 35/12  (2006.01)
F01N 1/08  (2006.01)
F01N 13/00  (2010.01)
F02M 35/10  (2006.01)
(86)International application number:
PCT/US2016/012033
(87)International publication number:
WO 2016/111921 (14.07.2016 Gazette  2016/28)

(54)

NOISE ATTENUATING MEMBER FOR NOISE ATTENUATING UNITS IN ENGINES

SCHALLDÄMPFENDES ELEMENT FÜR SCHALLDÄMPFENDE EINHEITEN IN MOTOREN

ÉLÉMENT D'ATTÉNUATION DU BRUIT DESTINÉ À DES UNITÉS D'ATTÉNUATION DU BRUIT DANS DES MOTEURS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.01.2015 US 201514593361

(43)Date of publication of application:
15.11.2017 Bulletin 2017/46

(73)Proprietor: Dayco IP Holdings, LLC
Troy, MI 48083 (US)

(72)Inventors:
  • FLETCHER, David, E.
    Flint, MI 48507 (US)
  • GRAICHEN, Brian, M.
    Leonard, MI 48367 (US)
  • VASHUK, Denis
    Saint Clair Shores, MI 48080 (US)
  • BRAVO, Rex
    Detroit, MI 48216 (US)

(74)Representative: Studio Torta S.p.A. 
Via Viotti, 9
10121 Torino
10121 Torino (IT)


(56)References cited: : 
DE-A1- 3 531 353
US-A- 5 783 780
US-A1- 2001 015 302
US-A1- 2007 292 816
US-A1- 2014 069 067
US-A- 4 408 679
US-A- 5 801 342
US-A1- 2005 284 692
US-A1- 2011 024 228
US-A1- 2015 159 528
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] This application relates to noise attenuation in engine systems such as internal combustion engines, more particularly to the inclusion of a noise attenuating member in a housing configured for insertion in a fluid flow path of an engine.

    BACKGROUND



    [0002] Engines, for example vehicle engines, often include aspirators and/or check valves. Typically, the aspirators are used to generate a vacuum that is lower than engine manifold vacuum by inducing some of the engine air to travel through a venturi. The aspirators may include check valves therein or the system may include separate check valves. When the check valves are separate they are typically included downstream between the source of vacuum and the device using the vacuum.

    [0003] During most operating conditions of an aspirator or check valve the flow is classified as turbulent. This means that in addition to the bulk motion of the air there are eddies superimposed. These eddies are well known in the field of fluid mechanics. Depending on the operating conditions the number, physical size, and location of these eddies is continuously varying. One result of these eddies being present on a transient basis is that they generate pressure waves in the fluid. These pressure waves are generated over a range of frequencies and magnitudes. When these pressure waves travel through the connecting holes to the devices using this vacuum, different natural frequencies can become excited. These natural frequencies are oscillations of either the air or the surrounding structure. If these natural frequencies are in the audible range and of sufficient magnitude then the turbulence generated noise can become heard, either under the hood, and or in the passenger compartment. Such noise is undesirable and new apparatus are needed to eliminate or reduce the noise resulting from the turbulent air flow.

    [0004] Examples of known apparatuses are disclosed in prior art documents US2007/292816 A1, DE3531353 Z1 or US2005284692 A1.

    SUMMARY



    [0005] The aforementioned aims are reached by a noise attenuating member and a method for making a noise attenuating member according to the appended set of claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] 

    FIG. 1 is a front perspective view of a noise attenuation unit connectable to become part of a fluid flow path.

    FIG. 2 is a longitudinal, cross-sectional view of the noise attenuation unit of FIG. 1.

    FIG. 3 is a front, perspective view of one embodiment of a noise attenuating member for use in the noise attenuation unit of FIGS. 1-2.

    FIG. 4 is a longitudinal, cross-sectional view of the noise attenuating member of FIG. 3.

    FIG. 5 is top plan view of the noise attenuating member of FIG. 3.

    FIG. 6 is a front perspective view of a core of the noise attenuating member of FIG. 3.

    FIG. 7 is a front elevation view of the core of FIG. 6.

    FIG. 8 is top plan view of the core of FIG. 6.

    FIG. 9 is a front perspective view of a strip of porous material used to assemble one embodiment of a noise attenuating member.

    FIG. 10 is a front perspective view of the strip of porous material of FIG. 9 with the first end folder over.

    FIG. 11 is a front perspective view of the strip of porous material of FIG. 9 being wound about a core.


    DETAILED DESCRIPTION



    [0007] The following detailed description will illustrate the general principles of the invention, examples of which are additionally illustrated in the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements.

    [0008] As used herein "fluid" means any liquid, suspension, colloid, gas, plasma, or combinations thereof.

    [0009] As used herein "radial" means in a direction generally outward from the central portion of an object and does not imply any particular shape, i.e., the shape is not limited to circular, cylindrical, or spherical.

    [0010] FIG. 1 is front perspective view of a noise attenuating unit, generally identified by reference number 10, for use in an engine, for example, in a vehicle's engine. The engine may be an internal combustion engine, and the vehicle and or engine may include a device requiring a vacuum. Check valves and or aspirators are often connected to an internal combustion engine before the engine throttle and after the engine throttle. The engine and all its components and/or subsystems are not shown in the figures and it is understood that the engine components and/or subsystems may include any components common to an internal combustion engine. The brake boost system is one example of a subsystem that can be connected to an aspirator and/or check valves. In another embodiment, any one of a fuel vapor purge systems, exhaust gas recirculation system, a crankcase ventilation system and/or a vacuum amplifier may be connected to an aspirator and/or check valve. The fluid flow within the aspirator and/or check valves, in particular when a Venturi portion is included, is generally classified as turbulent. This means that in addition to the bulk motion of the fluid flow, such as air or exhaust gases, there are pressure waves traveling through the assembly and different natural frequencies can become excited thereby resulting in turbulence generated noise. The noise attenuation unit 10 disclosed herein attenuates such turbulence generated noise.

    [0011] Referring to FIGS. 1 and 2, the noise attenuation unit 10 may be disposed in, and thereby becomes part of, any fluid flow path(s) within an engine in need of noise attenuation, and is typically positioned in the flow path downstream of the source of the noise. The noise attenuating unit 10 includes a housing 14 defining an internal cavity 16 enclosing a noise attenuating member 20 therein. The noise attenuating member 20 typically fits securely, at least axially, within the internal cavity 16 sandwiched between a first seat 26 and a second seat 28. As illustrated in FIG. 2, the noise attenuating member 20 has a generally close fit with the interior side wall 17 of the cavity 16, but such a construction is not required. In another embodiment (not shown), there may be a gap defined between the interior side wall 17 of the cavity 16 and an outermost radial surface 78 of the noise attenuating member 20 defined by the porous material 42. The housing defines a first port 22 in fluid communication with the internal cavity 16 and a second port 24 in fluid communication with the internal cavity 16. The exterior surfaces of the housing 14 that define the first and second ports 22, 24 both include fitting features 32, 34 for connecting the noise attenuating unit 10 into a fluid flow path of the engine. For example, in one embodiment both fitting features 32, 34 are insertable into a hose or conduit and the fitting features provide a secure fluid-tight connection thereto.

    [0012] The housing 14, as shown in FIG. 2, may be a multiple piece housing with a plurality of pieces connected together with a fluid-tight seal. The multiple pieces may include a first housing portion 36 that includes the first port 22 and a male end 23 and a second housing portion 38 that includes the second port 24 and a female end 25. The male end 23 is received in the female end 25 with a sealing member 18 therebetween to provide a fluid-tight seal between the portions 36, 38. In other embodiments, the first housing portion 36 and the second housing portion 38 have a container and cap-type construction.

    [0013] In the embodiment of FIG. 2, the first port 22 and the second port 24 are positioned opposite one another to define a generally linear flow path through the noise attenuation unit 10, but is not limited to this configuration. In another embodiment, the first and second ports 22, 24 may be positioned relative to one another at an angle of less than 180 degrees. In one embodiment, the second port 24 may be positioned generally 90 degrees relative to the first port 22 such that the fluid flow passes through the noise attenuating member 20 from an inner cavity of a core of the noise attenuating member 20 radially outward through the porous material disposed about the core of the noise attenuating member 20.

    [0014] Referring again to FIG. 2, the noise attenuating member 20 is dimensioned for a tight fit within the housing thereby the fluid flow through the internal cavity 16 is only available through the noise attenuating member 20 itself and any bores it may include. The noise attenuating member 20 is porous such that fluid flow through the unit 10 is restricted the least amount possible, but sound (turbulence generated noise) is attenuated. Additional examples of noise attenuating units having noise attenuating members can be found in copending U.S. Patent Application No. 14/565,075, filed December 9, 2014. The noise attenuating member of the present disclosure may also be incorporated directly into a check valve assembly or vacuum producing assembly. Examples of check valve and vacuum producing assemblies that can include a noise attenuating member are included in copending U.S. Patent Application 14/509,612, filed October 8, 2014.

    [0015] Referring now to FIGS. 3-5, the noise attenuating member 20 includes a core 40 and a porous material 42 disposed about the core 40. In the embodiment shown in FIGS. 3-5, the core 40 is hollow and includes an inner surface 46 defining an inner hollow cavity 48, and an exterior surface 50 facing outward from the core 40. The core 40 has a plurality of radial openings 52 to allow for fluid to flow radially outward from the inner cavity 48 of the core 40, through the radial openings 52, and into and through the porous material 42 disposed about the exterior surface 50 of the core 40. The porous material 42 includes a plurality of pores (not shown) to allow fluid to pass into and through the porous material 42. The noise attenuating member 20 may have a first end 54 and a second end 56, relative to an axial direction of the noise attenuating member 20. For fluid flow directed parallel to a center axis 58 of the noise attenuating member 20, the fluid flow may be in a direction from the first end 54 to the second end 56 or in a direction from the second end 56 to the first end 54. For radial fluid flow through the noise attenuating member 20, the fluid flow may flow into the inner cavity 48 from either or both of the first end 54 and second end 56 and then flow radially outward through the radial openings 52 and into/through the porous material 42. In one embodiment (not shown), the core 40 may be solid and may have the porous material 42 disposed about the exterior surface 50 of the core 40 such that fluid flow through the noise attenuating member 20 parallel to a center axis 58 of the noise attenuating member 20 is all directed through the porous material.

    [0016] Referring now to FIGS. 6-8, the core 40 of the noise attenuating member 20 is illustrated. The interior surface 46 and the exterior surface 50 of the core 40 have a general cross-sectional shape, relative to the center axis 58 of the noise attenuating member 20, that may be any convenient shape, including, but not limited to, circular, square, rectangular, polygonal, multi-faceted, or other shape. The interior surface 46 and the exterior surface 50 may have similar cross-sectional shapes, or the cross-sectional shapes of the surfaces 46, 50 may be different. In one embodiment shown in FIGS. 6-8, the core 40, notwithstanding the plurality of radial openings 52, may be an annular cylinder, for which the cross-sectional shape of both the interior surface 46 and exterior surface 50 are generally circular. In one embodiment, the cross-sectional shapes (notwithstanding the radial openings 52) of the interior surface 46 and the exterior surface 50 may change along a length L of the core 40. A width W and the length L of the core 40 may be selected based on the configuration and dimensions of the housing 14 of the noise attenuation unit 10 into which the noise attenuating member 20 is to be incorporated.

    [0017] The core 40 may be constructed of any suitable material, including, but not limited to, metal, plastic, ceramic, carbon fiber, glass, fiberglass, wood, rubber, or combinations thereof, and may have one or more surface coatings to prevent deterioration of the core 40. In one embodiment, the core 40 is constructed of a rigid material. In one embodiment, the material of the core 40 is not degraded or deteriorated by operating conditions of the fluid system into which it is installed, specifically the elevated temperatures and vibrations that occur in an engine. In one embodiment, the core material is selected to withstand elevated temperatures. In another embodiment, the core material is selected to resist corrosion from moisture and other corrosive compounds.

    [0018] The radial openings 52 through the core 40 may be any convenient shape, including, but not limited to, circular, square, rectangular, polygonal, multi-faceted, or other shape. The radial openings 52 may all have the same shape and size, or one or more of the radial openings 52 may have a shape and/or size that is different from the other radial openings 52. In the embodiment shown in FIG. 6, the radial openings 52 may have the same general shape, which is generally rectangular with rounded corners. In other embodiments, the radial openings 52 may be generally circular in cross-section. The radial openings 52 may be any convenient size and may be selected to increase exposure of the fluid flow to the porous material 42 as the fluid flows through the inner cavity 48. The radial openings 52 are larger in size than the pores of the porous material 42 disposed about the core 40, but are not so large that the core 40 is deformed into the inner cavity 48 by a weight or force exerted on the core 40 by the porous material 42. In one embodiment, each of the radial openings 52 may have an area in a range of about 0.7 to about 1.5 times a cross-sectional area of the inner cavity 48. In another embodiment, each of the radial openings 52 may be in a range of about 0.9 to about 1.3 times the cross-sectional area of the inner cavity 48. In another embodiment, each of the radial openings 52 may have an area that is in a range of about 1.0 to about 1.2 times the cross-sectional area of the inner cavity 48.

    [0019] The radial openings 52 may be distributed along the entire length L of the core, from the first end 54 to the second end 56 of the noise attenuating member 20, and may be distributed angularly along an outer cross-sectional circumference 60 of the core 40. In the embodiment of FIGS. 6 and 7, the radial openings 52 are distributed evenly throughout the core 40 in both the axial and angular directions. In one embodiment, the radial openings 52 may not be evenly spaced but may be positioned to manipulate the flow dynamics through the noise attenuating member 20. In the embodiment illustrated in FIG. 6, the core 40 has a total of 12 radial openings 52 arranged in three sections of four radial openings 52 that are distributed evenly about the outer circumference of the core 40. The three sections are axial sections with respect to the axial length L of the core 40. The four radial openings 52 in each section are aligned radially about the outer circumference of the core 40, and the radial openings 52 are also aligned with the radial openings 52 of an adjacent section. In one embodiment (not shown), the radial openings 52 may be offset or staggered with respect to either or both of radial openings 52 of the same section or different sections. In other embodiments, the core 40 may have more or less than three sections of radial openings 52 and may have more or less than four radial openings 52 per section.

    [0020] A total void space of the exterior surface 50 of the core 40 may be defined as the sum of the cross-sectional areas of the radial openings 52, and a theoretical outer surface area of the core 40 may be defined as the surface area of the exterior surface 50 of the core 40 without the radial openings 52. In one embodiment, the total void space represented by the radial openings 52 may be in a range of about 50% to about 95% of the theoretical exterior surface area of the core 40. In another embodiment, the total void space represented by the plurality of radial openings 52 may be in a range of about 60% to about 90% of the theoretical exterior surface area of the core 40. In another embodiment, the total void space may be in a range of about 70% to about 80% of the theoretical exterior surface area of the core 40. In the embodiment illustrated in FIG. 6, the total void space is about 75% of the theoretical exterior surface area of the core 40. In one embodiment, the core 40 may be a support structure resembling a hollow cylindrical grid/framework. In another embodiment, the core 40 may be a hollow cylindrical grid made up of wall segments connected or coupled together to define the plurality of radial openings 52. The core 40 may be a cylindrical lattice of integrated wall portions defining the plurality of openings 52. In one embodiment, the core 40 may include a plurality of pieces that are coupled together or engaged to make the core 40.

    [0021] Still referring to FIGS. 6-8, the core 40 may have a plurality of protrusions 62 extending radially outward from the exterior surface 50 of the core 40. Each of the protrusions 62 may include a feature 64 (or retaining feature), as shown in FIG. 8, that retains the porous material 42 against the exterior 50 of the core 40. Examples of the retaining feature 64 include, but are not limited to, barbs, notches, ribs, textured surfaces, other protruding features, or combinations thereof. In one embodiment, the feature 64 includes one or more barbs that catch on the porous material 42 coupling it to the exterior surface 50 of the core 40. The protrusions 62 may be distributed along the entire exterior 50 of the core 40, the distribution being both axial and angular. In one embodiment, the protrusions 62 may be concentrated in a specified region of the exterior surface 50 of the core 40, such as a region where the porous material 42 is first attached prior to being wound around the core 40.

    [0022] As shown in FIGS. 6-8, the core 40 has end surfaces 68 facing generally in opposing axial directions and positioned at the first end 54 and second end 56 of the noise attenuating member 20. One or both of the end surfaces 68 of the core 40 may have one or more engagement features 66 for engagement of the core 40 with a machine during one or more assembly operations. In one embodiment, the engagement features 66 may include one or more shoulders 67 against which a drive surface of a drive mechanism may engage to rotate the core 40 during assembly operations. In another embodiment, the engagement features 66 may be one or more tabs, pins, or other protrusions that are received in a drive mechanism to engage the drive mechanism with the core 40 for rotation therewith during assembly operations. In one embodiment, more than one type of engagement feature 66 may be used for engagement with a drive mechanism.

    [0023] Referring back to FIGS. 3-5, the porous material 42 disposed about the core 40 may have pores (not shown) with a pore size that is less than the radial openings 52 in the core 40, but large enough to not unduly restrict or interfere with fluid flow such as, for example, air flow through the system. The pores may be a network of hollow channels in a porous material 42, such as the channels propagating through a sponge material, or may also be an interconnected matrix of void spaces extending through the porous material 42, such as the void spaces between fibers of a woven fabric or between layers of a wire mesh. The porous material 42 can be made from a variety of materials including, but not limited to, metals, plastics, ceramics, glass, or combinations thereof. The porous material 42 may be a wire, a wool, a matrix of woven particles, a matrix of matted particles, a matrix of sintered particles, a woven fabric, a matted fabric, a mesh, a sponge, or combinations thereof. Porous material 42 made from metals include, but are not limited to, metal wire mesh, metal wire wool, metal wire felt, or combinations thereof. In one embodiment, the porous material 42 is a wire mesh. In another embodiment, the porous material 42 may be a woven plastic or nylon fabric. The porous character of the sound attenuating member 20 causes the noise pressure waves propagating through the fluid to attenuate by interfering with themselves. In one embodiment, the porous material 42 is not harmed (does not deteriorate) by operating temperatures of an engine based on placement of the noise attenuating member 20 in the engine system. Additionally, the porous material 42 is not harmed by the vibrations experienced during operating conditions of the engine.

    [0024] The porous material 42 may be formed as a plurality of layers of porous material 42 wound around the core 40. Referring now to FIGS. 9-11, the porous material 42 may be a continuous strip 70 (strip) of porous material having a first end 72 and a second end 74. The first end 72 may be coupled to the exterior 50 of the core 40, and the strip 70 may be wound around the exterior 50 of the core 40 until the porous material 42 reaches a specified thickness, which may depend upon the geometry of the noise attenuating unit 10 into which the noise attenuating member 20 is to be incorporated. In one embodiment, the first end 72 of the strip 70 may be engaged with the protrusions 62 extending from the exterior 50 of the core 40 such that the protrusions 62 extend through the strip 70 of porous material to hold the strip 70 in engagement with the core 40. In one embodiment, the first end 72 of the strip 70 may be folded over onto itself so that a portion of the strip 70 that engages with the core 40/protrusions 62 has two layers of porous material, which may act to improve or strengthen the engagement of the strip 70 with the core 40. Tension on the strip 70 during the winding process may change the density of the porous material 42 disposed about the core 40. More tension on the strip 70 results in denser layers of porous material 42, and likewise, less tension results in less dense layers of porous material 42. Following winding, the second end 74 of the strip 70 is then secured to an outermost layer 76 of porous material 42, or other structure, to keep the strip 70 from unwinding from the core 40. The second end 74 may be welded, fastened, adhered, taped or otherwise attached to the outermost layer 76 of porous material 42. In one embodiment, the second end 74 is welded to the outermost layer 76 of porous material 42.

    [0025] Still referring to FIGS. 9-11, a method of making a noise attenuating member 20 includes providing a core 40 having an interior surface 46 that defines an inner hollow cavity 48 for fluid flow therethrough, providing a strip 70 of porous material 42 having a first end 72 and a second end 74, and wrapping the strip 70 of porous material 42 about the core 40 beginning from the first end 72 to form one or more layers of porous material 42 disposed about the core 40. The core 40 is provided having a plurality of radial openings 52 extending therethrough. The axial end surfaces 68 of the core 40 can have engagement features 66 to allow for engagement of the core 40 with a machine capable of rotating the core 40 during the assembly operations. In some embodiments, the method of making a noise attenuating member 20 includes the steps of engaging the core 40 with a machine capable of rotating the core 40 about an axis. In some embodiments, the center axis 58 is the center of rotation for the core 40. As shown in FIG. 10, the method may include folding over the first end 72 of the strip 70 so that the first end 72 of the strip 70 has two layers of material. The method also includes engaging the first end 72 of the porous material 42 with the exterior surface 50 of the core 40. In one embodiment, the first end 72 of the strip 70 may be engaged with the protrusions 62, and the retaining features 64 thereon, securing the first end 72 of the strip 70 to the exterior surface 50 of the core 40. In other embodiments, the first end 72 of the strip 70 may be curled over, crimped tight to, or crimp welded to the exterior 50 of the core 40.

    [0026] Referring to FIG. 11, the core 40 may be rotated to wind the strip 70 of porous material 42 about the core 40 to form one or more layers of porous material 42 disposed about the core 40. In some embodiments, the method may further include applying tension to the strip 70 and adjusting the tension to achieve a specified density of the porous material 42 wound around the core 20. Upon winding the strip 70 about the core 40, the second end 74 of the strip 70 may be secured to an outermost layer 76 of porous material 42, such as through welding, sintering, fastening, or adhering, for example. In some embodiments, the core 40 may have multiple pieces such that assembling the core 40 happens prior to engaging the first end 72 of the strip 70 with the exterior surface 50.

    [0027] Referring back to FIG. 2, the assembled noise attenuating member 20 may be installed in a noise attenuation unit 10, which may be incorporated into a fluid flow system requiring sound attenuation. In operation, fluid flows into the noise attenuation unit 10 through the first port 22 and through the noise attenuating member 20. Some of the fluid flows directly into the porous material 42, where the flow through the plurality of pores disrupts the turbulent flow eddies entering the noise attenuation unit 10. In the inner hollow cavity 48 of the core 40, the turbulent nature of the flow also causes fluid to flow radially through the radial openings 52 in the core 40 and into the porous material 42, which further dissipates the turbulent eddies that give rise to sound vibrations. The fluid flow exits from the porous material 42 and out of the noise attenuation unit 10 through the second port 24.

    [0028] The noise attenuating member 20 of the present application may produce repeatable attenuation with minimal interference with fluid flow through the system. The core 40 provides a support for the porous material 42 to keep the porous material 42 in place within the noise attenuating unit 10 into which it is installed. The hollow internal cavity 48 of the core 40 may provide a straight flow path through the noise attenuating member 20, which may reduce the pressure drop across the noise attenuating member 20 compared to existing noise attenuating devices. The core 40 provides support for the porous material 42 to keep the porous material 42 from being drawn into the flow path and interfering with the fluid flow through the noise attenuating unit 10. Providing a means of engagement of the strip 70 of porous material 42 with the core 40 may also reduce the welding that must be performed on a noise attenuating member 20 and thus maintain fluid flow through the noise attenuating member.


    Claims

    1. A noise attenuating member (20) comprising:

    a core (40) that is hollow and includes an inner surface (46) defining an inner hollow cavity (48) for fluid flow therethrough and has an exterior surface (50) facing outward from the core, and axial end surfaces (68), the core (40) being shaped as a hollow cylindrical grid defining a plurality of radial openings (52); and

    a porous material (42) disposed about the exterior surface (50) of the core;

    wherein fluid flow through the hollow cavity (48) and the radial openings (52) passes through the porous material (42);

    characterized by each of the radial openings (52) being larger than a pore size of the porous material (42) and has an area in a range of 0.7 to 1.5 times a cross-sectional area of the hollow cavity (48), and a total void space represented by the radial openings (52) is in a range of 50% to 95% of the theoretical exterior surface area of the core (40);

    wherein an end surface (68) of the core (40) has an engagement feature (66) for engagement of the core with a machine to rotate the core;

    wherein the porous material (42) is a plurality of layers of porous material (42) from a continuous strip (70) wound around the core (40) with an outermost end (74) attached to an outermost layer (76) of the porous material (42).


     
    2. The noise attenuating member of claim 1, wherein the continuous strip (70) of porous material has a first end (72) folded over onto itself for engagement with the exterior surface (50) of the core.
     
    3. The noise attenuating member of claim 1, wherein the core (40) further comprises a plurality of protrusions (62) extending outward from the exterior surface (50) of the core, and each protrusion includes one or more features (64) that retain the porous material (42) against the exterior surface (50) of the core.
     
    4. The noise attenuating member of claim 1, wherein the porous material (42) comprises one or more of metal, carbon fiber, ceramic, plastic, and glass.
     
    5. The noise attenuating member of claim 4, wherein the porous material (42) is a wire, a wool, a matrix of woven particles, a matrix of matted particles, a matrix of sintered particles, a woven fabric, a matted fabric, a mesh, a sponge, or combinations thereof.
     
    6. The noise attenuating member of claim 4, wherein the porous material (42) comprises metal and is one or more of a metal wire mesh, a metal wire wool, and a metal wire felt.
     
    7. A noise attenuating unit (10) for a fluid flow path comprising:

    a housing (14) defining an internal cavity (16) and having a first port (22) and a second port (24), each connectable to a fluid flow path and in fluid communication with one another through the internal cavity; and

    an attenuating member (20) according to claim 1 seated in the internal cavity (16) of the housing within the flow of the fluid communication between the first port (22) and the second port (24) and the fluid communication between the first port and the second port includes fluid flow through the attenuating member.


     
    8. The noise attenuating unit of claim 7, wherein the housing (14) is a two-part housing having a first housing portion (36) and a second housing portion (38).
     
    9. The noise attenuating unit of claim 7, wherein the fluid flow path from the first port (22) to the second port (24) travels axially through the attenuating member (20).
     
    10. The noise attenuating unit of claim 7, wherein the fluid flow path from the first port (22) to the second port (24) travels through the attenuating member (20) from the hollow cavity (48) radially outward through the porous material (42).
     
    11. The noise attenuating unit of claim 7, wherein the housing (14) is integrated with a Venturi apparatus for generating vacuum.
     
    12. A method for making a noise attenuating member (20) comprising:

    providing a core (40) that is hollow and shaped as a hollow cylindrical grid and includes an inner surface (46) defining an inner hollow cavity (48) for fluid flow therethrough and has an exterior surface (50) facing outward from the core (40) and defining a plurality of radial openings (52) and axial end surfaces (68) wherein an end surface (68) has an engagement feature for engagement of the core with a machine to rotate the core, wherein the core (40) has a plurality of protrusions (62) extending outward from the exterior surface (50) thereof, and wherein each of the radial openings (52) has an area in a range of 0.7 to 1.5 times a cross-sectional area of the hollow cavity (48) and a total void space represented by the radial openings (52) is in a range of 50% to 95% of the theoretical exterior surface area of the core;

    providing a strip of porous material (70), the strip having a first end (72) and a second end (74);

    engaging the strip of porous material (70) with the protrusions (62) to retain the porous material against the core; and

    wrapping the strip of porous material (70) about the core (50) beginning from the first end (72) to form a plurality of layers of porous material thereabout.


     
    13. The method of claim 12, further comprising folding the first end (72) of the strip of porous material over onto itself before wrapping the strip of porous material about the core (50).
     
    14. The method of claim 12, further comprising adjusting a tension applied to the strip of porous material (70) during wrapping to change the density of the one or more layers of porous material wrapped about the core (50).
     


    Ansprüche

    1. Schalldämpfendes Element (20), mit:

    einem Kern (40), der hohl ist und eine innere Fläche (46) aufweist, die einen inneren Hohlraum (48) definiert, durch den Fluidstrom gelangen kann und eine äußere Fläche (50) hat, die von dem Kern nach außen weist, sowie axiale Endflächen (68), wobei der Kern (40) als hohlzylindrisches Gitter geformt ist, das mehrere radiale Öffnungen (52) definiert; und

    einem porösen Material (42), das um die äußere Fläche (50) des Kerns angeordnet ist;

    wobei ein Fluidstrom durch den Hohlraum (48) und die radialen Öffnungen (52) durch das poröse Material (42) gelangt;

    dadurch gekennzeichnet, dass jede der radialen Öffnungen (52) größer ist als eine Porengröße des porösen Materials (42) und eine Fläche in einem Bereich von 0,7 bis 1,5 mal einer Querschnittsfläche des Hohlraums (48) hat und dass ein durch die radialen Öffnungen (52) wiedergegebener, totaler leerer Raum in einem Bereich von 50% bis 95% der theoretischen Außenoberfläche des Kerns (40) ist;

    wobei eine Endfläche (68) des Kerns (40) einen Eingriffsteil (66) hat zum Eingriff des Kerns mit einer Maschine zum Zwecke des Drehens des Kerns;

    wobei das poröse Material (42) mehrere Schichten aus porösem Material (42) von einem kontinuierlichen Band (70) ist, das um den Kern (40) gewunden ist, wobei dessen äußerstes Ende (74) an einer äußersten Schicht (66) des porösen Materials (42) angebracht ist.


     
    2. Schalldämpfendes Element nach Anspruch 1, wobei das kontinuierliche Band (70) aus porösem Material ein erstes Ende (72) hat, das über sich selbst gefaltet ist, um in Eingriff mit der äußeren Fläche (50) des Kerns zu gelangen.
     
    3. Schalldämpfendes Element nach Anspruch 1, wobei der Kern (40) ferner mehrere Vorsprünge (62) umfasst, die sich von der äußeren Fläche (50) des Kerns nach außen erstrecken und jeder Vorsprung ein oder mehrere Teile (64) aufweist, der/die das poröse Material (42) gegen die äußere Fläche (50) des Kerns hält/halten.
     
    4. Schalldämpfendes Element nach Anspruch 1, wobei das poröse Material (42) eines oder mehr der Materialien Metall, Kohlefaser, Keramik, Kunststoff und Glas umfasst.
     
    5. Schalldämpfendes Element nach Anspruch 4, wobei das poröse Material (42) ein Draht, eine Wolle, eine Matrix aus Gewebepartikeln, eine Matrix aus mattierten Partikeln, eine Matrix aus gesinterten Partikeln, ein Stoff, ein mattiertes Gewebe, ein Geflecht, ein Schwamm oder Kombinationen deren ist.
     
    6. Schalldämpfendes Element nach Anspruch 4, wobei das poröse Material (42) Metall umfasst und ein oder mehr der Materialien Metalldraht-Gewebe, Metalldraht-Wolle und Metallmaschen-Filz ist.
     
    7. Schalldämpfende Einheit (10) für einen Fluidstromweg, mit:

    einem Gehäuse (14), das einen inneren Hohlraum (16) definiert und einen ersten Anschluss (22) und einen zweiten Anschluss (24) hat, die jeweils verbindbar sind mit einem Fluidstromweg, um miteinander fluidmäßig über den inneren Hohlraum zu kommunizieren; und

    einem dämpfenden Element (20) nach Anspruch 1, das in den inneren Hohlraum (16) des Gehäuses innerhalb den Strom des Fluidflusses zwischen dem ersten Anschluss (22) und dem zweiten Anschluss (24) gesetzt ist und wobei die fluidmäßige Kommunikation zwischen dem ersten Anschluss und dem zweiten Anschluss einen Fluidstrom durch das dämpfende Element beinhaltet.


     
    8. Schalldämpfende Einheit nach Anspruch 7, wobei das Gehäuse (14) ein zweiteiliges Gehäuse ist, das einen ersten Gehäuseabschnitt (36) und einen zweiten Gehäuseabschnitt (38) hat.
     
    9. Schalldämpfende Einheit nach Anspruch 7, wobei die Fluidstrombahn von dem ersten Anschluss (22) zu dem zweiten Anschluss (24) axial durch das dämpfende Element (20) verläuft.
     
    10. Schalldämpfende Einheit nach Anspruch 7, wobei der Fluidstromweg von dem ersten Anschluss (22) zu dem zweiten Anschluss (24) durch das dämpfende Element (20) von dem Hohlraum (48) radial durch das poröse Material (42) nach außen verläuft.
     
    11. Schalldämpfende Einheit nach Anspruch 7, wobei das Gehäuse (14) mit einem Venturi-Gerät integriert ist, um Vakuum zu erzeugen.
     
    12. Verfahren zur Herstellung eines schalldämpfenden Elements (20), das umfasst:

    Vorsehen eines Kerns (40), der hohl und als hohlzylindrisches Gitter ausgebildet ist und eine innere Fläche (46) aufweist, die einen inneren Hohlraum (48) aufweist, durch den Fluidstrom gelangen kann und eine äußere Fläche (50) hat, die von dem Kern (40) nach außen weist und mehrere radiale Öffnungen (52) und axiale Endflächen (68) definiert, wobei eine Endfläche (68) einen Eingriffsteil zum Eingriff des Kerns mit einer Maschine zum Zwecke des Drehens des Kerns hat, wobei der Kern (40) mehrere Vorsprünge (62) hat, welche sich von seiner äußeren Fläche (50) nach außen erstrecken und wobei jede der radialen Öffnungen (52) eine Fläche in einem Bereich von 0,7 bis 1,5 mal einer Querschnittsfläche des Hohlraums (48) hat, und ein durch die radialen Öffnungen (52) wiedergegebener, totaler leerer Raum in einem Bereich von 50% bis 95% der theoretischen Außenoberfläche des Kerns ist,

    Vorsehen eines Bandes aus porösem Material (70), wobei das Band ein erstes Ende (72) und ein zweites Ende (74) hat;

    in Eingriff bringen des Bandes aus porösem Material (70) mit den Vorsprüngen (62), um das poröse Material gegen den Kern zu halten; und

    Wickeln des Bandes aus porösem Material (70) um den Kern (50), ausgehend von dem ersten Ende (72), um mehrere Schichten aus porösem Material dort herum auszubilden.


     
    13. Verfahren nach Anspruch 12, ferner umfassend das Falten des ersten Endes (72) des Bandes aus porösem Material über sich selbst vor dem Wickeln des Bandes aus porösem Material um den Kern (50).
     
    14. Verfahren nach Anspruch 12, ferner umfassend das Einstellen eines während des Wickelns dem Band aus porösem Material (70) auferlegten Zuges, um die Dichte der um den Kern (50) gewickelten einen oder mehreren Schichten aus porösem Material zu ändern.
     


    Revendications

    1. Elément d'atténuation de bruit (20) comprenant :

    un cœur (40) qui est creux et inclut une surface intérieure (46) définissant une cavité creuse intérieure (48) pour un écoulement de fluide à travers celle-ci et a une surface extérieure (50) faisant face vers l'extérieur à partir du cœur, et des surfaces d'extrémité axiales (68), le cœur (40) étant formé comme une grille cylindrique creuse définissant une pluralité d'ouvertures radiales (52) ; et

    un matériau poreux (42) disposé autour de la surface extérieure (50) du cœur ;

    dans lequel un écoulement de fluide à travers la cavité creuse (48) et les ouvertures radiales (52) passe à travers le matériau poreux (42) ;

    caractérisé par le fait que chacune des ouvertures radiales (52) est plus grande qu'une taille de pore du matériau poreux (42) et a une superficie dans une plage de 0,7 à 1,5 fois une superficie transversale de la cavité creuse (48), et un espace vide total représenté par les ouvertures radiales (52) est dans une plage de 50 % à 95 % de la superficie de surface extérieure théorique du cœur (40) ;

    dans lequel une surface d'extrémité (68) du cœur (40) a un accessoire de mise en prise (66) pour une mise en prise du cœur avec une machine pour faire tourner le cœur ;

    dans lequel le matériau poreux (42) est une pluralité de couches de matériau poreux (42) à partir d'une bande continue (70) enroulée autour du cœur (40) avec une extrémité la plus éloignée (74) attachée à une couche la plus éloignée (76) du matériau poreux (42).


     
    2. Elément d'atténuation de bruit selon la revendication 1, dans lequel la bande continue (70) de matériau poreux a une première extrémité (72) rabattue sur elle-même pour une mise en prise avec la surface extérieure (50) du cœur.
     
    3. Elément d'atténuation de bruit selon la revendication 1, dans lequel le cœur (40) comprend en outre une pluralité de saillies (62) s'étendant vers l'extérieur à partir de la surface extérieure (50) du cœur, et chaque saillie inclut un ou plusieurs accessoires (64) qui retiennent le matériau poreux (42) contre la surface extérieure (50) du cœur.
     
    4. Elément d'atténuation de bruit selon la revendication 1, dans lequel le matériau poreux (42) comprend un ou plusieurs parmi du métal, de la fibre de carbone, de la céramique, du plastique, et du verre.
     
    5. Elément d'atténuation de bruit selon la revendication 4, dans lequel le matériau poreux (42) est un fil, une laine, une matrice de particules tissées, une matrice de particules enchevêtrées, une matrice de particules frittées, un tissu tissé, un tissu enchevêtré, une maille, une éponge, ou des combinaisons de ceux-ci.
     
    6. Elément d'atténuation de bruit selon la revendication 4, dans lequel le matériau poreux (42) comprend du métal et est un ou plusieurs parmi une maille de fil de métal, une laine de fil de métal, et un feutre de fil de métal.
     
    7. Unité d'atténuation de bruit (10) pour un chemin d'écoulement de fluide comprenant :

    un boîtier (14) définissant une cavité interne (16) et ayant un premier orifice (22) et un second orifice (24), chacun pouvant être relié à un chemin d'écoulement de fluide et en communication de fluide avec un autre par l'intermédiaire de la cavité interne ; et

    un élément d'atténuation (20) selon la revendication 1 placé dans la cavité interne (16) du boîtier à l'intérieur de l'écoulement de la communication de fluide entre le premier orifice (22) et le second orifice (24) et la communication de fluide entre le premier orifice et le second orifice inclut un écoulement de fluide à travers l'élément d'atténuation.


     
    8. Unité d'atténuation de bruit selon la revendication 7, dans laquelle le boîtier (14) est un boîtier en deux parties ayant une première portion de boîtier (36) et une seconde portion de boîtier (38).
     
    9. Unité d'atténuation de bruit selon la revendication 7, dans laquelle le chemin d'écoulement de fluide à partir du premier orifice (22) jusqu'au second orifice (24) se déploie axialement à travers l'élément d'atténuation (20).
     
    10. Unité d'atténuation de bruit selon la revendication 7, dans laquelle le chemin d'écoulement de fluide à partir du premier orifice (22) jusqu'au second orifice (24) se déploie à travers l'élément d'atténuation (20) à partir de la cavité creuse (48) radialement vers l'extérieur à travers le matériau poreux (42).
     
    11. Unité d'atténuation de bruit selon la revendication 7, dans laquelle le boîtier (14) est intégré à un appareil Venturi permettant de générer du vide.
     
    12. Procédé permettant de fabriquer un élément d'atténuation de bruit (20) comprenant :

    la fourniture d'un cœur (40) qui est creux et formé comme une grille cylindrique creuse et inclut une surface intérieure (46) définissant une cavité creuse intérieure (48) pour un écoulement de fluide à travers celle-ci et a une surface extérieure (50) faisant face vers l'extérieur à partir du cœur (40) et définissant une pluralité d'ouvertures radiales (52) et des surfaces d'extrémité axiales (68) dans lequel une surface d'extrémité (68) a un accessoire de mise en prise pour une mise en prise du cœur avec une machine pour faire tourner le cœur, dans lequel le cœur (40) a une pluralité de saillies (62) s'étendant vers l'extérieur à partir de la surface extérieure (50) de celui-ci, et dans lequel chacune des ouvertures radiales (52) a une superficie dans une plage de 0,7 à 1,5 fois une superficie transversale de la cavité creuse (48) et un espace vide total représenté par les ouvertures radiales (52) est dans une plage de 50 % à 95 % de la superficie de surface extérieure théorique du cœur ;

    la fourniture d'une bande de matériau poreux (70), la bande ayant une première extrémité (72) et une seconde extrémité (74) ;

    la mise en prise de la bande de matériau poreux (70) avec les saillies (62) pour retenir le matériau poreux contre le cœur ; et

    l'enveloppement de la bande de matériau poreux (70) autour du cœur (50) en commençant à partir de la première extrémité (72) pour former une pluralité de couches de matériau poreux autour de celle-ci.


     
    13. Procédé selon la revendication 12, comprenant en outre le fait de rabattre la première extrémité (72) de la bande de matériau poreux sur elle-même avant un enveloppement de la bande de matériau poreux autour du cœur (50).
     
    14. Procédé selon la revendication 12, comprenant en outre un ajustement d'une tension appliquée sur la bande de matériau poreux (70) durant un enveloppement pour changer la densité des une ou plusieurs couches de matériau poreux enveloppées autour du cœur (50).
     




    Drawing



























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description