(19)
(11)EP 3 243 249 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 16735343.2

(22)Date of filing:  06.01.2016
(51)Int. Cl.: 
H01S 5/026  (2006.01)
H01S 5/0625  (2006.01)
H01S 5/028  (2006.01)
H01S 5/024  (2006.01)
H01S 5/06  (2006.01)
H01S 5/062  (2006.01)
H01S 5/0683  (2006.01)
(86)International application number:
PCT/US2016/012307
(87)International publication number:
WO 2016/112087 (14.07.2016 Gazette  2016/28)

(54)

TWO-SECTION SEMICONDUCTOR LASER WITH MODULATION-INDEPENDENT GRATING SECTION TO REDUCE CHIRP

ZWEITEILIGER HALBLEITERLASER MIT MODULATIONSUNABHÄNGIGEM GITTERQUERSCHNITT ZUR REDUZIERUNG VON CHIRP

LASER À SEMI-CONDUCTEUR À DEUX SECTIONS AYANT UNE SECTION DE RÉSEAU INSENSIBLE À LA MODULATION AFIN DE RÉDUIRE LA COMPRESSION D'IMPULSIONS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 06.01.2015 US 201514590456

(43)Date of publication of application:
15.11.2017 Bulletin 2017/46

(73)Proprietor: Applied Optoelectronics, Inc.
Sugar Land, Texas 77478 (US)

(72)Inventors:
  • ZHENG, Jun
    Missouri City, Texas 77459 (US)
  • MURRY, Stefan J.
    Houston, Texas 77096 (US)
  • ANSELM, Klaus Alexander
    Sugar Land, Texas 77479 (US)
  • ZHANG, Huanlin
    Sugar Land, Texas 77479 (US)
  • MCINTOSH-DORSEY, Dion
    Sugar Land, Texas 77478 (US)

(74)Representative: Ring & Weisbrodt 
Patentanwaltsgesellschaft mbH Hohe Strasse 33
40213 Düsseldorf
40213 Düsseldorf (DE)


(56)References cited: : 
WO-A2-03/079507
US-A- 5 982 804
US-A1- 2009 268 764
US-A1- 2014 241 166
US-B2- 6 822 982
US-A- 5 828 688
US-A1- 2007 258 494
US-A1- 2012 163 405
US-A1- 2014 300 953
  
  • FUMIYOSHI KANO ET AL: "HIGH-SPEED INTENSITY MODULATION OF 1.5 UM DBR LASERS WITH WAVELENGTH TUNING", IEEE JOURNAL OF QUANTUM ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, USA, vol. 26, no. 8, August 1990 (1990-08), pages 1340-1346, XP000171272, ISSN: 0018-9197, DOI: 10.1109/3.59680
  • SOHAIB AFZAL ET AL: "1.3- $\mu$ m Two-Section DBR Lasers Based on Surface Defined Gratings for High-Speed Telecommunication", IEEE PHOTONICS TECHNOLOGY LETTERS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 23, no. 7, 1 April 2011 (2011-04-01), pages 411-413, XP011350450, ISSN: 1041-1135, DOI: 10.1109/LPT.2011.2107507
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to semiconductor lasers and more particularly, to a two-section semiconductor laser including a modulation-independent grating section to reduce chirp.

BACKGROUND INFORMATION



[0002] Semiconductor lasers are used in optical transmitters for transmitting data over optical fibers in various applications. In cable TV (CATV) applications, for example, optical transmitters may be used to transmit video and broadband signals to customers using dense wavelength division multiplexing (DWDM). The Data Over Cable Service Interface Specification (DOCSIS) standard governs the transmission of high-bandwidth data to an existing CATV system to provide internet access over an existing CATV infrastructure. The most recent DOCSIS 3.1 standard allows higher RF frequencies (e.g., 1.2 GHz and above), which increases bandwidth.

[0003] When modulating semiconductor lasers in optical transmitters, higher RF frequencies may present problems and challenges. One problem is caused by chirp in the output of the semiconductor laser, which is a change in frequency as a function of time. In particular, chirp may lead to signal degradation of a modulated optical signal, especially for higher RF frequencies over longer transmission distances. To meet the requirements of the most recent DOCSIS 3.1 specification, the semiconductor lasers used in optical transmitters should be capable of supporting higher RF frequencies (e.g., 1.2 GHz and above) with lower chirp (e.g., less than 60 MHz/mA).

[0004] Chirp may be reduced by using external cavity lasers with an external grating as an exit reflector; however, external cavity lasers present problems with optical coupling and with the packaging. External modulators may also be used to reduce chirp but may not be capable of providing enough power for use in an optical transmitter for CATV applications.

[0005] WO 03/079507 A2 discloses a two-section semiconductor laser with high-speed direct modulation, comprising a gain region without a diffraction grating and a phase region with a diffraction grating having a higher energy band gap than the gain region and thereby substantially transparent to the optical radiation, further comprising means for applying RF modulation to the gain region, and means for applying RF modulation to the phase region to cause a phase modulation which compensates for wavelength variations caused by the direct modulation of the gain region.

[0006] Either of US 2009/268764 A1 or US 2007/258494 A1 discloses a three-section directly modulated laser suitable for operation in the 1.5µm wavelength range.

[0007] FUMIYOSHI KANO ET AL: "HIGH-SPEED INTENSITY MODULATION OF 1.5µm DBR LASERS WITH WAVELENGTH TUNING", IEEE JOURNAL OF QUANTUM ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, USA, vol. 26, no. 8, 1 August 1990, pages 1340-1346, discloses a 1.5µm butt-jointed two-section DBR laser consiting of an active region and a rear passive DBR region.

[0008] SOHAIB AFZAL ET AL: "1.3-µm Two-Section DBR Lasers Based on Surface Defined Gratings for High-Speed Telecommunication", IEEE PHOTONICS TECHNOLOGY LETTERS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 23, no. 7, 1 April 2011, pages 411-413, discloses a 1.3µm InP-based two-section DBR laser employing surface defined lateral gratings.

BRIEF DESCRIPTION OF THE DRAWINGS



[0009] These and other features and advantages will be better understood by reading the following detailed description, taken together with the drawings wherein:

FIG. 1A is a side, schematic view of a two-section semiconductor laser with a modulation-independent grating section, consistent with embodiments of the present application.

FIG. 1B is a top, schematic view of the two-section semiconductor laser shown in FIG. 1A.

FIG. 2 is a schematic view of an optical transmitter including a two-section semiconductor laser, consistent with embodiments of the present disclosure.

FIG. 3 is a schematic view of a CATV system including an optical transmitter with a two-section semiconductor laser, consistent with embodiments of the present disclosure.


DETAILED DESCRIPTION



[0010] The present invention is defined in independent claims 1 and 9. Embodiments of the invention are set out in the dependent claims.

[0011] A two-section semiconductor laser, consistent with embodiments of the present disclosure, includes a gain section and a modulation-independent grating section to reduce chirp. The modulation-independent grating section includes a diffraction grating for reflecting light and forms a laser cavity with the gain section for lasing at a wavelength or range of wavelengths reflected by the diffraction grating. The gain section of the semiconductor laser includes a gain electrode for driving the gain section with at least a modulated RF signal and the grating section includes a grating electrode for driving the grating section with a DC bias current independent of the modulation of the gain section. The semiconductor laser may thus be directly modulated with the modulated RF signal without the modulation significantly affecting the index of refraction in the diffraction grating, thereby reducing chirp.

[0012] The two-section semiconductor laser may be used in optical transmitters, for example, in a CATV headend where video and broadband signals are aggregated onto an optical fiber for transmission to a cable network. The CATV headend may provide high-bandwidth data to an existing cable network in accordance with the Data Over Cable Service Interface Specification (DOCSIS) standard 3.1. In particular, the CATV headend may use quadrature amplitude modulation (QAM) to modulate RF signals with broadband data at RF frequencies up to 1.2 GHz and higher.

[0013] The two-section semiconductor laser, consistent with embodiments of the present disclosure, may be directly modulated by a QAM modulated RF signal and allows chirp to be reduced sufficiently to support the higher RF frequencies (e.g., 1.2 GHz and above) enabled under DOCSIS 3.1. In at least one embodiment, the two-section semiconductor laser allows the chirp to be reduced by as much as a factor of 3. As compared to a conventional DFB laser used for a QAM application, for example, an embodiment of the two-section semiconductor laser may reduce chirp below 30 MHz/mA to as low as 20 MHz/mA. Other levels of chirp may also be possible depending upon the particular application, the RF frequencies, and the transmission distances.

[0014] As used herein, "modulation-independent grating section" refers to a section of a semiconductor laser that is not modulated with an RF signal. As used herein, "channel wavelengths" refer to the wavelengths associated with optical channels and may include a specified wavelength band around a center wavelength. In one example, the channel wavelengths may be defined by an International Telecommunication (ITU) standard such as the ITU-T dense wavelength division multiplexing (DWDM) grid. The term "coupled" as used herein refers to any connection, coupling, link or the like and "optically coupled" refers to coupling such that light from one element is imparted to another element. Such "coupled" devices are not necessarily directly connected to one another and may be separated by intermediate components or devices that may manipulate or modify such signals.

[0015] Referring to FIGS. 1A and 1B, a two-section semiconductor laser 100, consistent with embodiments of the present disclosure, is described in greater detail. The two-section semiconductor laser 100 generally includes a laser cavity 110 formed by a gain section 120 without a diffraction grating and a modulation-independent grating section 130 with a diffraction grating 131. The gain section 120 and the grating section 130 are integrated into the same semiconductor chip or structure 111. The semiconductor structure 111 includes a plurality of semiconductor layers 112, 114 forming or defining at least one active region 116 at the junction between the semiconductor layers 112, 114. The active region 116 extends throughout the laser cavity 110 and is located in both the gain section 120 and the grating section 130.

[0016] The diffraction grating 131 in the grating section 130 reflects a wavelength or range of wavelengths of light generated in the gain section 120 such that the two-section semiconductor laser 100 lases and emits laser light 101 at the reflected wavelength(s). The example embodiment of the semiconductor laser 100 is not tunable and is configured to emit laser light 101 at a fixed wavelength or range of wavelengths. In embodiments described herein, the diffraction grating 131 may be configured such that the two-section semiconductor laser 100 lases and emits the laser light 101 at a fixed channel wavelength λc such as a channel wavelength in the C-band from 1530 to 1570 nm. Different grating structures may be used in the diffraction grating 131, for example, to provide different channel wavelengths. The two-section semiconductor laser 100 may also be configured to produce an optical output power of greater than 15 mW.

[0017] In the illustrated embodiment, the lasing cavity 110 includes a back reflector 121 and the diffraction grating 131 acts as an exit reflector. The back reflector 121 may be sufficiently reflective (e.g., at least 80% reflective) to cause lasing and may include, for example, a highly reflective (HR) coating or a thin film reflector on the back facet of the semiconductor structure 111 adjacent the gain section 120. In one embodiment, the back reflector 121 may have about 80-90% reflectivity to allow a portion of light to pass through the back of the laser 100 for sensing by a monitor photodiode (not shown). The front facet of the semiconductor structure 111 adjacent the grating section 130 includes an anti-reflective (AR) coating 118 (e.g., less than 1% reflective). In other embodiments, the gain section 120 and the grating section 130 may be reversed and the diffraction grating 131 may act as the back reflector.

[0018] A gain electrode 122 is located on the gain section 120 and is electrically coupled to the active region 116 in the gain section 120 for driving the gain section with an RF signal, such as a modulated RF signal from a CATV headend. The gain section 120 is driven with a DC bias current in addition to the RF signal. A grating electrode 132 is located on the modulation-independent grating section 130 and is electrically coupled to the active region 116 in the grating section 130 for driving the grating section 130 with a DC bias current. The gain electrode 122 and the grating electrode 132 are separated and isolated from each other for independently applying drive currents to the gain section 120 and the grating section 130, respectively. In other words, the gain section 120 and the grating section 130 are electrically independent in that the drive currents applied to the gain section 120 have minimal affect on the grating section 130, and vice versa.

[0019] At least one bottom electrode 129 is located on an opposite side of the semiconductor structure 111. The electrodes 122, 132, 129 may be formed as metal pads or contacts using a conductive metal such as gold. Wires 124, 134 may be wirebonded to the gain electrode 122 and the grating electrode 132, respectively, to provide the drive currents for the respective RF signal and DC bias current. One or more wires may also be wirebonded to the bottom electrode 129. Although the illustrated embodiment shows a particular size and shape for the electrodes 122, 132, 129, the electrodes 122, 132, 129 may have other sizes, shapes and configurations.

[0020] Driving the gain section 120 with the RF signal via the gain electrode 122 directly modulates the gain section 120, causing the gain section 120 to generate modulated laser light in response to the RF signal. By using a separate gain electrode 122 and grating electrode 132 and not driving the grating section 130 with the RF signal, the two-section semiconductor laser 100 may be directly modulated by the RF signal without the modulation affecting the index of refraction of the diffraction grating 131, thereby reducing chirp. The grating section 130 is biased with the DC bias current via the grating electrode 132 to prevent or reduce absorption of light in the grating section 130 such that the grating section is sufficiently transparent to allow reflection by the diffraction grating 131. The grating section 130 may be biased with the DC bias current in a range of 0-10 mA. The modulated laser light generated by the gain section 120 is reflected between the back reflector 121 and the diffraction grating 131 until lasing occurs and the modulated laser light 101 is emitted from the semiconductor laser 100.

[0021] The semiconductor laser 100 may include one or more n-type semiconductor layers 112 and one or more p-type semiconductor layers 114. The active region 116 is generally formed at a junction of the n-type semiconductor layer(s) 112 and the p-type semiconductor layer(s) 114 and may include an intrinsic layer between the n-type semiconductor layer(s) 112 and the p-type semiconductor layer(s) 114 forming a PIN junction. The semiconductor structure 111 may form, for example, a quantum well laser or multiple quantum well laser. The semiconductor layers 112, 114 may include any semiconductor material used in semiconductor laser diodes including, without limitation, indium phosphide (InP), gallium arsenide (GaAs), and aluminum (Al).

[0022] The semiconductor laser 100 may be formed using known semiconductor manufacturing techniques. The semiconductor layers 112, 114 may be deposited and the diffraction grating 131 may be formed in one or more of the semiconductor layers 112, 114 adjacent the active region 116 in the grating section 130. Conductive metal may then be deposited on the gain section 120 and the grating section 130, respectively, to form the gain electrode 122 and the grating electrode 132. Conductive metal may also be deposited on the bottom of the outer semiconductor layer 112 to form the bottom electrode 129. The wires 124, 134 may then be wirebonded to the electrodes 122, 132, respectively.

[0023] According to one example method, the semiconductor layers 112, 114 may be epitaxially grown and the diffraction grating 131 may be formed in the epitaxially grown layer(s) adjacent the active region 116 in the grating section 130 using known techniques for use in forming a distributed Bragg reflector (DBR), such as etching or photolithography. According to this method, the two-section semiconductor laser 100 may be manufactured without any further epitaxial re-growth over the diffraction grating 131. Because epitaxial re-growth is a difficult process, this technique for manufacturing the two-section semiconductor laser 100 is advantageous, for example, compared to manufacturing conventional distributed Bragg reflector (DBR) lasers with epitaxial re-growth.

[0024] FIG. 2 shows one embodiment of an optical transmitter 202 including a two-section semiconductor laser 200, consistent with embodiments of the present disclosure. The two-section semiconductor laser 200 includes a modulation-independent grating section to reduce chirp, as described above. The optical transmitter 202 may be used, for example, in CATV applications for direct-modulation QAM transmissions at a fixed channel wavelength, as described in greater detail below. The optical transmitter 200 and the two-section semiconductor laser 100, 200 described herein may also be used in other applications.

[0025] The optical transmitter 202 includes a laser modulation input 242 for receiving a modulated RF signal, a laser DC bias input 244 for receiving a DC bias current for the gain section, and a grating DC bias input 245 for receiving a DC bias current for the grating section. The grating section of the two-section semiconductor laser 200 is electrically connected to the grating DC bias input 245 but is not electrically connected to the laser modulation input 242. The gain section of the two-section semiconductor laser 200 is electrically connected to the laser modulation input 242 and to the laser DC bias input 244. The optical transmitter 202 further includes a laser optical output 246 for providing the modulated optical signal, at a fixed channel wavelength.

[0026] This embodiment of the optical transmitter 202 also includes a temperature control system 250 thermally coupled to the semiconductor laser 200 and a monitor photodiode 254 optically coupled to a backside of the semiconductor laser 200. The temperature control system 250 provides wavelength control and may include a thermoelectric cooler (TEC) for cooling the laser 200 and a thermistor for monitoring a temperature within the optical transmitter 202. The temperature control system 250 may also include a heater (e.g., a resistive heater) for heating the laser 200. The temperature control system 250 may be electrically connected to one or more temperature control inputs and outputs 251, 252. The monitor photodiode 254 may be used to monitor an optical output of the laser 200 and may be electrically connected to a monitor photodiode output 255.

[0027] The optical transmitter 202 may be packaged, for example, in a butterfly package. The butterfly package may include a housing enclosing the two-section semiconductor laser 200, the temperature control system 250, and the monitor photodiode 252. The butterfly package may further includes pins providing the electrical inputs and outputs 242, 244, 251, 252, 255 and an optical fiber or waveguide providing the optical output 246.

[0028] FIG. 3 shows one embodiment of a CATV system 304 in which an optical transmitter 302 with a two-section semiconductor laser 300 may be used, consistent with embodiments of the present disclosure. The CATV system 304 includes a CATV headend 360 that receives, processes, and combines broadcast, narrowcast and other signals to be carried on a cable network 370 to customer premises 380. The cable network 370 includes a combination of one or more fiber optic cables 372 and a coaxial cable distribution network 374, also referred to as hybrid fiber/coax (HFC). One or more fiber nodes 376 provide an optical-to-electrical interface between the fiber optic cable(s) 372 and the coaxial cable distribution network 374. The customer premises 380 includes a cable modem 382 connected to customer premises equipment 384 (e.g., a router).

[0029] The CATV headend 360 includes a cable modem termination system (CMTS) 362 that enables connectivity to a wide-area network 301, such as the Internet, from the cable modem 382 at the customer premises 380. The CATV headend 360 also includes a plurality of optical transmitters 302 and a plurality of optical receivers 366 electrically connected to the CMTS 362 and optically coupled to the fiber optic cable(s) 372. The CATV headend 360 may be compliant with at least the DOCSIS 3.1 standard including any revisions or subsequent versions thereof.

[0030] Each of the optical transmitters 302 in the CATV headend 360 may include a two-section semiconductor laser 300 with a modulation-independent grating section, as described above. The optical transmitters 302 receive modulated RF signals from the CMTS 362 and transmit corresponding modulated optical signals over the fiber optic cable(s) 372. When the CATV headend 360 is compliant with at least the DOCSIS 3.1 standard, the modulated RF signals are modulated using quadrature amplitude modulation (QAM) and have RF frequencies of 1.2 GHz or greater. Each of the optical transmitters 302 transmits the corresponding modulated optical signal at a respective channel wavelength, for example, within the C band from 1530 to 1570 nm. By using the two-section semiconductor laser 300 with a modulation-independent grating section, as described above, the chirp of the modulated optical signal may be reduced to 20 MHz / mA to allow transmission of the modulated optical signals at RF frequencies of 1.2 GHz or greater consistent with DOCSIS 3.1. In other embodiments, the chirp may be reduced to other levels below 30 MHz / mA.

[0031] Accordingly, the two-section semiconductor laser with a modulation-independent grating section, consistent with embodiments disclosed herein, allows optical transmitters to meet the high frequency requirements of DOCSIS 3.1 without using external modulators or external cavity lasers.

[0032] Consistent with one embodiment, a semiconductor laser device includes a laser cavity formed by a plurality of semiconductor layers defining at least one active region extending through the laser cavity. The laser cavity includes a gain section without a diffraction grating and a grating section with a diffraction grating. A gain electrode is located on an outer portion of the semiconductor layers in the gain section and electrically coupled to the active region in the gain section for driving the gain section with a DC bias and with a modulated RF signal to modulate the gain section. A grating electrode is located on an outer portion of the semiconductor layers in the grating section and electrically coupled to the active region in the grating section for driving the grating section with a DC bias independent of modulation of the gain section.

[0033] Consistent with another embodiment, an optical transmitter includes a laser modulation input for receiving a modulated RF signal, at least one laser DC bias input for receiving a DC bias current, a laser optical output for providing a modulated optical signal, and a two-section semiconductor laser device electrically connected to the laser modulation input, the laser DC bias input, and the laser optical output. The semiconductor laser device includes a laser cavity formed by a plurality of semiconductor layers defining at least one active region extending through the laser cavity. The laser cavity includes a gain section without a diffraction grating and a grating section with a diffraction grating and is configured to lase at a fixed channel wavelength. A gain electrode is located on an outer portion of the semiconductor layers in the gain section. The gain electrode is electrically coupled to the laser DC bias input and the laser modulation input and to the active region in the gain section for driving the gain section with the DC bias current and with the modulated RF signal to modulate the gain section. A grating electrode is located on an outer portion of the semiconductor layers in the grating section. The grating electrode is electrically coupled to the laser DC bias input and to the active region in the grating section for driving the grating section with the DC bias current independent of modulation of the gain section.

[0034] Consistent with a further embodiment, a method is provided for generating a modulated optical signal with reduced chirp. The method includes: providing a semiconductor laser including a laser cavity formed by a plurality of semiconductor layers defining at least one active region extending through the laser cavity, the laser cavity including a gain section without a diffraction grating and a grating section with a diffraction grating; driving the grating section with a DC bias current; and driving the gain section with a DC bias current and with a modulated RF signal to modulate the gain section without modulating the grating section to generate a modulated optical signal at a fixed channel wavelength

[0035] While the principles of the invention have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the following claims.


Claims

1. A two-section semiconductor laser device comprising:

a laser cavity formed by a plurality of semiconductor layers defining at least one active region extending throughout the laser cavity, the laser cavity consisting of only a gain section and a grating section, the gain section without a diffraction grating and the grating section with a diffraction grating, wherein the laser cavity is configured to produce chirp less than 30MHz / mA when the gain section is modulated at frequencies of 1.2 GHz or greater, and wherein the laser cavity is configured to lase at a fixed channel wavelength in a range of 1530 to 1570 nm;

a gain electrode located on an outer portion of the semiconductor layers in the gain section and electrically coupled to the active region in the gain section for driving the gain section with a DC bias and with a modulated RF signal to modulate the gain section;

and

a grating electrode located on an outer portion of the semiconductor layers in the grating section and electrically coupled to the active region in the grating section for driving the grating section only with a DC bias independent of modulation of the gain section.


 
2. The semiconductor laser device of claim 1 wherein the semiconductor layers include at least one p-type semiconductor layer and at least one n-type semiconductor layer.
 
3. The semiconductor laser device of claim 2 wherein the semiconductor layers further include an intrinsic layer forming the active region between the at least one p-type semiconductor layer and the at least one n-type semiconductor layer.
 
4. The semiconductor laser device of any one of claims 1 to 3 further including a highly reflective coating on a facet adjacent the gain section and an anti-reflective coating on a facet adjacent the grating section.
 
5. The semiconductor laser device of any one of claims 1 to 4 wherein the laser cavity is configured to produce an optical output power of greater than 15 mW.
 
6. The semiconductor laser device of any one of claims 1 to 5 wherein the diffraction grating is formed in the grating section without re-growth.
 
7. The semiconductor laser device of any one of claims 1 to 6 wherein the semiconductor laser device is comprised by an optical transmitter, the optical transmitter further comprising:

a laser modulation input for receiving a modulated RF signal, wherein the modulated RF signal has an RF frequency of 1.2 GHz or greater;

at least one laser DC bias input for receiving a DC bias current;

and

a laser optical output for providing a modulated optical signal.


 
8. The semiconductor laser device of claim 7, wherein the modulated RF signal complies with the DOCSIS 3.1 standard.
 
9. A method of generating a modulated optical signal with reduced chirp, the method comprising:

providing a two-section semiconductor laser including a laser cavity formed by a plurality of semiconductor layers defining at least one active region extending throughout the laser cavity, the laser cavity consisting of only a gain section without a diffraction grating and a grating section with a diffraction grating;

driving the grating section with only a DC bias current; and

driving the gain section with a DC bias current and with a modulated RF signal to modulate the gain section without modulating the grating section to generate a modulated optical signal at a fixed channel wavelength, wherein the modulated RF signal has a frequency of 1.2 GHz or greater, and wherein the modulation of the gain section produces chirp less than 30 MHz / mA.


 
10. The method of claim 9 wherein the modulation of the gain section produces chirp of about 20 MHz / mA.
 
11. The method of claim 9 or claim 10 wherein the modulated RF signal is compliant with the DOCSIS 3.1 standard.
 
12. The method of any one of claims 9 to 11 wherein the fixed channel wavelength is in a range of 1530 to 1570 nm.
 


Ansprüche

1. Zweiteilige Halbleiterlaservorrichtung mit:

einem Laserhohlraum, der aus einer Vielzahl von Halbleiterschichten gebildet ist, die zumindest einen aktiven Bereich definieren, der sich durch den Laserhohlraum hindurch erstreckt, wobei der Laserhohlraum aus nur einem Verstärkungsbereich und einem Gitterbereich besteht, der Verstärkungsbereich ohne ein Beugungsgitter und der Gitterbereich mit einem Beugungsgitter, wobei der Laserhohlraum dafür ausgebildet ist, ein Chirp von weniger als 30MHz/mA zu erzeugen, wenn der Verstärkungsbereich auf Frequenzen von 1,2 GHz oder größer moduliert wird, und wobei der Laserhohlraum dafür ausgebildet ist, auf einer festen Kanalwellenlänge in einem Bereich von 1530 bis 1570 nm zu lasern;

einer Verstärkungselektrode, die an einem Außenbereich der Halbleiterschichten in dem Verstärkungsbereich angeordnet und elektrisch an den aktiven Bereich in dem Verstärkungsbereich gekoppelt ist, um den Verstärkungsbereich mit einer DC-Vorspannung anzutreiben und mit einem modulierten RF-Signal, um den Verstärkungsbereich zu modulieren;

und

einer Gitterelektrode, die an einem Außenbereich der Halbleiterschichten in dem Gitterbereich angeordnet und elektrisch an den aktiven Bereich in dem Gitterbereich gekoppelt ist, um den Gitterbereich nur mit einer DC-Vorspannung unabhängig von der Modulation des Verstärkungsbereichs anzutreiben.


 
2. Halbleiterlaservorrichtung gemäß Anspruch 1, wobei die Halbleiterschichten zumindest eine p-dotierte Halbleiterschicht und zumindest eine n-dotierte Halbleiterschicht aufweisen.
 
3. Halbleiterlaservorrichtung gemäß Anspruch 2, wobei die Halbleiterschichten ferner eine intrinsische Schicht aufweisen, die den aktiven Bereich zwischen der zumindest einen p-dotierten Halbleiterschicht und der zumindest einen n-dotierten Halbleiterschicht bildet.
 
4. Halbleiterlaservorrichtung gemäß irgendeinem der Ansprüche 1 bis 3, ferner aufweisend eine hoch-reflektierende Beschichtung auf einer Fläche, die an den Verstärkungsbereich angrenzt und eine anti-reflektierende Beschichtung auf einer Fläche, die an den Gitterbereich angrenzt.
 
5. Halbleiterlaservorrichtung gemäß irgendeinem der Ansprüche 1 bis 4, wobei der Laserhohlraum dafür ausgebildet ist, eine optische Ausgangsleistung von mehr als 15 mW zu erzeugen.
 
6. Halbleiterlaservorrichtung gemäß irgendeinem der Ansprüche 1 bis 5, wobei das Beugungsgitter in dem Gitterbereich ohne erneutes Wachstum ausgebildet ist.
 
7. Halbleiterlaservorrichtung gemäß irgendeinem der Ansprüche 1 bis 6, wobei die Halbleiterlaservorrichtung in einem optischen Sender enthalten ist, wobei der optische Sender ferner aufweist:

einen Lasermodulationseingang zum Empfang eines modulierten RF-Signals, wobei das modulierte RF-Signal eine RF-Frequenz von 1,2 GHz oder größer aufweist;

zumindest einen Laser-DC-Vorspannungseingang zum Empfang eines DC-Vorspannungsstroms;

und

einen optischen Laserausgang für die Bereitstellung eines modulierten optischen Signals.


 
8. Halbleiterlaservorrichtung gemäß Anspruch 7, wobei das modulierte RF-Signal den DOCSIS 3.1-Standard erfüllt.
 
9. Verfahren zur Erzeugung eines modulierten optischen Signals mit reduziertem Chirp, wobei das Verfahren aufweist:

Bereitstellung eines zweiteiligen Halbleiterlasers mit einem Laserhohlraum, der aus einer Vielzahl von Halbleiterschichten gebildet ist, die zumindest einen aktiven Bereich definieren, der sich durch den Laserhohlraum hindurch erstreckt, wobei der Laserhohlraum aus nur einem Verstärkungsbereich ohne ein Beugungsgitter und einem Gitterbereich mit einem Beugungsgitter besteht,

Antreiben des Gitterbereichs nur mit einem DC-Vorspannungsstrom;

und

Antreiben des Verstärkungsbereichs mit einem DC-Vorspannungsstrom und mit einem modulierten RF-Signal, um den Verstärkungsbereich zu modulieren, ohne den Gitterbereich zu modulieren, um ein moduliertes optisches Signal auf einer festgelegten Kanalwellenlänge zu erzeugen, wobei das modulierte RF-Signal eine Frequenz von 1,2 GHz oder größer aufweist, und wobei die Modulation des Verstärkungsbereichs ein Chirp von weniger als 30MHz/mA erzeugt.


 
10. Verfahren gemäß Anspruch 9, wobei die Modulation des Verstärkungsbereichs ein Chirp von ungefähr 20MHz/mA erzeugt.
 
11. Verfahren gemäß Anspruch 9 oder Anspruch 10, wobei das modulierte RF-Signal den DOCSIS 3.1-Standrad erfüllt.
 
12. Verfahren gemäß irgendeinem der Ansprüche 9 bis 11, wobei die festgelegte Kanalwellenlänge in einem Bereich von 1530 bis 1570 nm liegt.
 


Revendications

1. Dispositif de laser à semi-conducteur à deux sections comprenant:

une cavité de laser formée par une pluralité de couches de semi-conducteur définissant au moins une zone active, qui s'étend à travers la cavité de laser, la cavité de laser n'étant composée que d'une section de gain et d'une section de grille, la section de gain n'ayant pas de réseau de diffraction et la section de grille ayant un réseau de diffraction, dans lequel la cavité de laser est configurée pour produire un chirp de moins de 30 MHz/mA, si la section de gain est modulée à des fréquences de 1,2 GHz ou plus, et dans lequel la cavité de laser est configurée pour laser à une longueur d'onde de canal fixée dans une gamme comprise entre 1530 et 1570 nm;

une électrode de gain disposée dans une partie extérieure des couches de semi-conducteur dans la section de gain et couplée électriquement à la zone active dans la section de gain pour entraîner la section de gain avec une polarisation en courant continu et avec un signal RF modulé pour moduler la section de gain;

et

une électrode de grille disposée dans une partie extérieure des couches de semi-conducteur dans la section de grille et couplée électriquement à la zone active dans la section de grille pour entraîner la section de grille seulement avec une polarisation en courant continu de manière indépendante de la modulation de la section de gain.


 
2. Dispositif de laser à semi-conducteur selon la revendication 1, dans lequel les couches de semi-conducteur comprennent au moins une couche de semi-conducteur de type p et au moins une couche de semi-conducteur de type n.
 
3. Dispositif de laser à semi-conducteur selon la revendication 2, dans lequel les couches de semi-conducteur comprennent en outre une couche intrinsèque, qui forme la zone active entre l'au moins un couche de semi-conducteur de type p et l'au moins une couche de semi-conducteur de type n.
 
4. Dispositif de laser à semi-conducteur selon l'une quelconque des revendications 1 à 3, comprenant en outre un revêtement hautement réfléchissant sur une face adjacente à la section de gain et un revêtement anti-réfléchissant sur une face adjacente à la section de grille.
 
5. Dispositif de laser à semi-conducteur selon l'une quelconque des revendications 1 à 4, dans lequel la cavité de laser est configurée pour produire une puissance de sortie optique de plus de 15 mW.
 
6. Dispositif de laser à semi-conducteur selon l'une quelconque des revendications 1 à 5, dans lequel le réseau de diffraction est formé dans la section de grille sans recroissance.
 
7. Dispositif de laser à semi-conducteur selon l'une quelconque des revendications 1 à 6, dans lequel le dispositif de laser à semi-conducteur est compris dans un émetteur optique, l'émetteur optique comprenant en outre:

une entrée de modulation de laser pour recevoir un signal RF modulé, dans lequel le signal RF modulé a une fréquence RF de 1,2 GHz ou plus;

au moins une entrée de polarisation en courant continu de laser pour recevoir un courant de polarisation continu;

et

une sortie optique de laser pour fournir un signal optique modulé.


 
8. Dispositif de laser à semi-conducteur selon la revendication 7, dans lequel le signal RF modulé se conforme au standard DOCSIS 3.1.
 
9. Procédé de génération d'un signal optique modulé avec un chirp réduit, le procédé comprenant les étapes de:

fournir un laser à semi-conducteur à deux sections comprenant une cavité de laser formée par une pluralité de couches de semi-conducteur définissant au moins une zone active, qui s'étend à travers la cavité de laser, la cavité de laser n'étant composée que d'une section de gain sans réseau de diffraction et d'une section de grille avec un réseau de diffraction;

entraîner la section de grille avec seulement un courant de polarisation en continu;

et

entraîner la section de gain avec un courant de polarisation en continu et avec un signal RF modulé pour moduler la section de gain sans moduler la section de grille pour générer un signal optique modulé à un longueur d'onde de canal fixé, dans lequel le signal RF modulé a une fréquence de 1,2 GHz ou plus, et dans lequel la modulation de la section de gain produit un chirp de moins de 30 MHz/mA.


 
10. Procédé selon la revendication 9, dans lequel la modulation de la section de gain produit un chirp d'environ 20 MHz/mA.
 
11. Procédé selon la revendication 9 ou la revendication 10, dans lequel le signal RF modulé se conforme au standard DOCSIS 3.1.
 
12. Procédé selon l'une quelconque des revendications 9 à 11, dans lequel la longueur d'onde de canal fixée est dans une gamme comprise entre 1530 et 1570 nm.
 




Drawing









REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description