(19)
(11)EP 3 244 226 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.10.2019 Bulletin 2019/41

(21)Application number: 16734904.2

(22)Date of filing:  05.01.2016
(51)Int. Cl.: 
G01R 33/09  (2006.01)
G01R 33/02  (2006.01)
G01R 33/00  (2006.01)
(86)International application number:
PCT/CN2016/070137
(87)International publication number:
WO 2016/110244 (14.07.2016 Gazette  2016/28)

(54)

SINGLE CHIP Z-AXIS LINEAR MAGNETORESISTIVE SENSOR ASSEMBLY WITH CALIBRATION AND INITIALIZATION COILS

EINZELCHIP Z-ACHSE LINEARER MAGNETORESISTIVES SENSOR-SET MIT KALIBRIERUNGS- UND INITIALISIERUNGSSPULE

ENSEMBLE DE CAPTEURS MAGNÉTORÉSISTIVES LINÉAIRES DANS L'AXE Z EN PUCE UNIQUE COMPRENANT UNE BOBINE D'ÉTALONNAGE ET DE INITIALISATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.01.2015 CN 201510005952

(43)Date of publication of application:
15.11.2017 Bulletin 2017/46

(73)Proprietor: Multidimension Technology Co., Ltd.
Zhangjiagang, Jiangsu 215634 (CN)

(72)Inventors:
  • DEAK, James Geza
    Zhangjiagang Jiangsu 215634 (CN)
  • ZHOU, Zhimin
    Zhangjiagang Jiangsu 215634 (CN)

(74)Representative: HGF Limited 
4th Floor Merchant Exchange 17-19 Whitworth Street West
Manchester M1 5WG
Manchester M1 5WG (GB)


(56)References cited: : 
EP-A1- 2 696 209
CN-A- 103 091 647
CN-A- 103 901 363
CN-A- 103 954 920
CN-U- 202 421 483
CN-U- 204 347 226
EP-A1- 2 790 030
CN-A- 103 901 363
CN-A- 103 913 709
CN-A- 104 569 870
CN-U- 203 838 321
US-A1- 2013 169 271
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The invention relates to the field of magnetic sensors, and in particular, to a single chip Z-axis linear magnetoresistive sensor with a calibration/initialization coil.

    BACKGROUND TECHNOLOGY



    [0002] A Magnetic Tunnel Junction (MTJ) sensor is advantageous in terms of high sensitivity, small size, low cost, low power consumption, and the like. The MTJ sensor has high magnetoresistance, and it is compatible with standard semiconductor manufacturing processes; however, the method for preparing a high-performance MTJ linear magnetic field sensor has not yet been fully developed. In particular, it is difficult to effectively control the temperature dependence and hysteresis.

    [0003] A magnetic field sensor is comprised of individual magnetoresistive elements. During actual application, the magnetoresistive elements are generally connected to form a bridge to eliminate offset, increase the sensitivity, and compensate temperature dependence. The bridge structure can compensate the temperature dependence to some extent; however, the dependence of the intrinsic magnetic performance of the magneto-resistor of the sensor on the temperature will not be completely suppressed. For high-precision measurement, it is necessary to calibrate the sensitivity under actual performance conditions, and this objective can be achieved by using a chip-level calibration coil to generate a magnetic field along the sensing direction of the sensor.

    [0004] In addition, the magnetoresistive sensor is comprised of ferromagnetic sensing elements, and therefore, an output curve is non-linear. The generation of hysteresis is caused by the movement of domain walls within the sensing elements and other parts (e.g., a magnetic shielding layer or a flux concentrator layer). To overcome the above problems, a high-performance magnetoresistive sensor generally needs another coil to provide a periodic saturation field for the sensing elements in order to eliminate magnetic domains, and this coil is referred to as an initialization coil.

    [0005] Chinese Patent No. 201310409446.5 publicized a single chip Z-axis linear magnetoresistive sensor, as shown in FIG. 1, for measuring an external magnetic field in a Z direction, i.e., a direction perpendicular to a substrate. The single chip Z-axis linear magnetoresistive sensor includes a substrate 1, a plurality of elongated soft ferromagnetic flux concentrators 2 located on the substrate 1 and having a length direction being a Y-axis direction and a width direction being an X-axis direction, and magnetoresistive sensing unit arrays 4 and 5 located on upper surfaces or lower surfaces of the soft ferromagnetic flux concentrators 2. The magnetoresistive sensing unit arrays are arranged into a push magnetoresistive unit string 4 and a pull magnetoresistive unit string 5 along the Y-axis direction, which are respectively located on two sides of a Y-axis center line 3 of the soft ferromagnetic flux concentrator 2, and have a same distance from the Y-axis center line. The push magnetoresistive unit string 4 and the pull magnetoresistive unit string 5 are electrically connected to form a push-pull bridge. A pinned layer direction and a magnetic field sensing direction of the magnetoresistive sensing unit are along the X-axis direction. When an external magnetic field is applied in the Z-axis direction, the soft ferromagnetic flux concentrators 2 distort the Z-direction magnetic field into two magnetic field components that have X-axis and -X-axis magnetic field components, that is oppositely oriented directions with identical amplitudes. The two sensing direction magnetic fields are applied to the push magnetoresistive string 4 and the pull magnetoresistive string 5, thereby forming a push-pull magnetoresistive sensor.

    [0006] FIG. 2 is a cross-sectional diagram of the single chip Z-axis linear magnetoresistive sensor. It can be seen that, the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5 are located on the substrate 1. The soft ferromagnetic flux concentrators 2 are located above the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5. Moreover, the single chip Z-axis linear magnetoresistive sensor further includes an electrode 6; insulation layers 7 and 8 located between layers and configured to isolate the electrodes of the magnetoresistive sensing units and from the magnetoresistive sensing units 4, 5 and the soft ferromagnetic flux concentrators 2; and a passivation layer 9 configured to protect the whole device.

    [0007] The magnetoresistive sensing unit strings 4 and 5 in the single chip Z-axis linear magnetoresistive sensor shown in FIG. 1 and FIG. 2 are TMR magnetoresistive sensing units, each including a free layer, a pinned layer, and a central barrier layer. An initial magnetization direction of the free layer is the Y-axis direction, and the magnetization direction of the pinned layer, that is, the magnetic field sensing direction, is the X-axis direction. The single chip Z-axis magnetoresistive sensor described above can effectively measure a Z-axis magnetic field component, but it has the following problems:
    1. 1) In a wafer test stage, a complex Z-direction external magnetic field generation system needs to be designed, including an electromagnetic coil and an electromagnetic coil power supply. Moreover, the electromagnetic coil system needs to move along with a probe platform, thereby increasing costs for measurement, and affecting the efficiency of measurement.
    2. 2) Application and positioning of a magnetic field of the electromagnetic coil system are imprecise, affecting the precision of measurement.
    3. 3) Magnetic domains exists in the soft ferromagnetic thin film of the free layer, and when an external magnetic field is applied, movement of the magnetic domains is irreversible. As a result, after the external magnetic field is removed, the ferromagnetic thin film of the free layer cannot return to the its initial state. As a result, hysteresis is produced, making it hard to guarantee the repeatability of the sensor.


    [0008] EP3133412A1 discloses a monolithic three-axis linear magnetic sensor and manufacturing method thereof. EP2696209A1 discloses a single-chip push-pull bridge-type magnetic field sensor. EP2790030A1 discloses a magnetic field sensing device. EP3124989A1 discloses a monolithic three-axis magnetic field sensor and manufacturing method therefor. CN202421483U discloses a single-chip push-pull bridge-type magnetic field sensor.

    SUMMARY OF THE INVENTION



    [0009] To solve the above problems, this invention provides a single chip Z-axis linear magnetoresistive sensor assembly with a calibration/initialization coil. On the basis of the above single chip Z-axis linear magnetoresistive sensor structure, a calibration coil/initialization coil is fabricated on the chip, through which a sufficient current can pass. At positions where a push magnetoresistive sensing unit string and a pull magnetoresistive sensing unit string are located, current-induced magnetic fields having identical magnitudes are generated along an X direction and a -X direction respectively. The magnitude of the magnetic field may be precisely adjusted by adjusting the current. The calibration coil is located on the Z-axis sensor chip; therefore, during measurement, it is feasible to implement measurement by applying a current using a probe, thereby improving the efficiency and the precision of the measurement.

    [0010] Likewise, when the Z-axis magnetoresistive sensor has an irreversible magnetization state change under the effect of an external magnetic field, a current may be provided through the initialization coil, and an external magnetic field along the initial magnetization direction of the free layer is generated at all magnetoresistive sensing units, thereby restoring the magnetization state of the free layer, and eliminating the influence on the magnetization state of the soft magnetic thin film due to the magnetic field exposure history.

    [0011] According to the present disclosure, there is provided a single chip Z-axis linear magnetoresistive sensor assembly as set forth in the appended claims.

    [0012] A single chip Z-axis linear magnetoresistive sensor with a calibration/initialization coil according to the invention includes a single chip Z-axis linear magnetoresistive sensor, and a calibration coil or/and an initialization coil. The single chip Z-axis linear magnetoresistive sensor includes a soft ferromagnetic flux concentrator for distorting a Z-direction magnetic field into two sensing direction magnetic fields that have opposite directions and identical amplitudes and have magnetic field components in X-axis and -X-axis directions, and an array including a plurality of magnetoresistive units. The plurality of magnetoresistive units forms a push magnetoresistive sensing unit string and a pull magnetoresistive sensing unit string.

    [0013] The calibration coil/initialization coil respectively includes straight wires that are parallel to a magnetization direction of a pinned layer/free layer of a magnetoresistive sensing unit of the single chip Z-axis linear magnetoresistive sensor.

    [0014] The calibration coil generates an equivalent calibration magnetic field parallel/anti-parallel to the direction of the pinned layer at the push/pull magnetoresistive sensing unit string of the single chip Z-axis linear magnetoresistive sensor. The initialization coil generates a uniform initializing magnetic field in the magnetization direction of the free layer at all magnetoresistive sensing units of the single chip Z-axis linear magnetoresistive sensor.

    [0015] The calibration coil is a planar coil. The straight wires of the planar calibration coil are one-to-one corresponding to the push magnetoresistive sensing unit strings and the pull magnetoresistive sensing unit strings, and are located on the same side of a Y-axis center line of the soft ferromagnetic flux concentrator as the push magnetoresistive sensing unit strings and the pull magnetoresistive sensing unit strings respectively. The straight wires corresponding to the push magnetoresistive sensing unit strings and the straight wires corresponding to the pull magnetoresistive sensing unit strings have currents in opposite directions.

    [0016] A distance between the straight wire of the planar calibration coil and the Y-axis center line of the soft ferromagnetic flux concentrator is 0 to (1/2Lx+1/2Lgap), wherein Lx is the width of the flux concentrator, and Lgap is the width of a gap between the flux concentrators.

    [0017] When the distance between the straight wire of the planar calibration coil and the Y-axis center line is 0 to 1/2Lx, the planar coil is located above a substrate of the single chip Z-axis linear magnetoresistive sensor and below a magnetoresistive sensing unit, between a magnetoresistive sensing unit and a soft ferromagnetic flux concentrator, or above a soft ferromagnetic flux concentrator.

    [0018] When the distance between the straight wire of the planar calibration coil and the Y-axis center line is 1/2Lx to (1/2Lx+1/2Lgap), the planar coil is located above a substrate of the single chip Z-axis linear magnetoresistive sensor and below a magnetoresistive sensing unit, between a magnetoresistive sensing unit and a soft ferromagnetic flux concentrator, or in a gap between the soft ferromagnetic flux concentrators.

    [0019] The calibration coil is a three-dimensional calibration coil that is wound around the soft ferromagnetic flux concentrator and the magnetoresistive sensing unit.

    [0020] The three-dimensional calibration coil includes a plurality of three-dimensional calibration sub-coils connected in series. Each of the soft ferromagnetic flux concentrator, the push magnetoresistive sensing unit string, and the pull magnetoresistive sensing unit string corresponds to one of the three-dimensional calibration sub-coils.

    [0021] The three-dimensional calibration sub-coils include a first group of straight wires and a second group of straight wires that are parallel to the Y-axis center line of the soft ferromagnetic flux concentrator. The first group of straight wires and the second group of straight wires are symmetrically distributed on two sides of the Y-axis center line of the soft ferromagnetic flux concentrator. The first group/second group of straight wires includes two straight wires. The two straight wires of the first group/second group of straight wires are respectively located on the surfaces of the soft ferromagnetic flux concentrator or the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string. One straight wire in the first group of straight wires and one straight wire in the second group of straight wires are symmetric to the Y-axis center line and are distributed in an area between the push and pull magnetoresistive sensing unit strings. The other straight wire in the first group of straight wires and the other straight wire in the second group of straight wires are symmetric to the Y-axis center line and are distributed in an area external to the push and pull magnetoresistive sensing unit strings. The first group of straight wires and the second group of straight wires on the two sides of the Y-axis center line each form a three-dimensional solenoid coil.

    [0022] The two three-dimensional solenoid coils have opposite winding directions, and are connected in series to each other. One of the three-dimensional solenoid coils generates a magnetic field parallel to the X-direction, and the other one generates a magnetic field in a -X direction.

    [0023] The initialization coil is a planar initialization coil. The planar initialization coil includes a plurality of serially connected straight wires perpendicular to the Y-axis center line of the soft ferromagnetic flux concentrator. The straight wires are located right above or right below a magnetoresistive unit row of the Z-axis linear sensor along the X-axis direction, and have identical current directions.

    [0024] The initialization coil is a three-dimensional initialization coil. The three-dimensional initialization coil includes a plurality of first groups of straight wires and second groups of straight wires that are parallel to a magnetoresistive unit row of the magnetoresistive sensing unit array along the X-axis direction. The first group of straight wires and the second group of straight wires are respectively located on the surfaces of the soft ferromagnetic flux concentrators and the magnetoresistive units. The first group of straight wires and the second group of straight wires have opposite current directions, and are connected to form a solenoid coil.

    [0025] The initialization coil and the calibration coil are made of high-conductivity materials, such as Cu, Au, and Ag.

    [0026] The initialization coil/calibration coil and the single chip Z-axis magnetoresistive sensor are isolated by using electrical insulation materials. The insulation materials are SiO2, Al2O3, Si3N4, polyimide, or photoresist.

    [0027] The calibration coil includes a positive port and a negative port. When a current passes through the two ports, the amplitude of a calibration magnetic field generated thereby is within a linear working area of the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string.

    [0028] The current of the calibration coil may be set to a single current value, or a plurality of current values.

    [0029] The initialization coil includes two ports, and the magnitude of the initializing magnetic field is higher than a saturated magnetic field value of the free layer.

    [0030] The current in the initialization coil is a pulse current or a DC current.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0031] 

    FIG. 1 is a structural diagram of a single chip Z-axis linear magnetoresistive sensor;

    FIG. 2 is a cross-sectional diagram of a single chip Z-axis linear magnetoresistive sensor;

    FIG. 3 shows a first pattern of a planar calibration coil;

    FIG. 4 shows a second pattern of a planar calibration coil;

    FIG. 5 shows a first position of a planar calibration coil;

    FIG. 6 shows a second position of a planar calibration coil;

    FIG. 7 shows a third position of a planar calibration coil;

    FIG. 8 shows a fourth position of a planar calibration coil;

    FIG. 9 is a first distribution diagram of magnetic field lines of a planar calibration coil on a single chip Z-axis magnetoresistive sensor;

    FIG. 10 is a first distribution diagram of an X-direction magnetic field of a planar calibration coil at the position of a magnetoresistive sensing unit;

    FIG. 11 is a second distribution diagram of magnetic field lines of a planar calibration coil on a single chip Z-axis magnetoresistive sensor;

    FIG. 12 is a second distribution diagram of an X-direction magnetic field of a planar calibration coil at the position of a magnetoresistive sensing unit;

    FIG. 13 is a third distribution diagram of magnetic field lines of a planar calibration coil on a single chip Z-axis magnetoresistive sensor;

    FIG. 14 is a third distribution diagram of an X-direction magnetic field of a planar calibration coil at the position of a magnetoresistive sensing unit;

    FIG. 15 is a structural diagram of a three-dimensional calibration coil;

    FIG. 16 is a cross-sectional diagram of a three-dimensional calibration coil;

    FIG. 17 is a distribution diagram of magnetic field lines of a three-dimensional calibration coil on a single chip Z-axis magnetoresistive sensor;

    FIG. 18 is a distribution diagram of an X-direction magnetic field of a three-dimensional calibration coil at the position of a magnetoresistive sensing unit;

    FIG. 19 is a structural diagram of a planar initialization coil;

    FIG. 20 is a first diagram showing a sectional position of a planar initialization coil;

    FIG. 21 is a second diagram showing a sectional position of a planar initialization coil;

    FIG. 22 is a third diagram showing a sectional position of a planar initialization coil;

    FIG. 23 is a distribution diagram of magnetic field lines of a planar initialization coil on a single chip Z-axis magnetoresistive sensor;

    FIG. 24 is a distribution diagram of a Y-direction magnetic field of a planar initialization coil at the position of a magnetoresistive sensing unit;

    FIG. 25 is a structural diagram of a three-dimensional initialization coil;

    FIG. 26 is a diagram showing a sectional position of a three-dimensional initialization coil;

    FIG. 27 is a distribution diagram of magnetic field lines of a three-dimensional initialization coil on a single chip Z-axis magnetoresistive sensor;

    FIG. 28 is a distribution diagram of a Y-direction magnetic field of a three-dimensional initialization coil at the position of a magnetoresistive sensing unit;

    FIG. 29 is a first cross-sectional diagram of an initialization coil and a calibration coil on a single chip Z-axis magnetoresistive sensor;

    FIG. 30 is a second cross-sectional diagram of an initialization coil and a calibration coil on a single chip Z-axis magnetoresistive sensor; and

    FIG. 31 is a third cross-sectional diagram of an initialization coil and a calibration coil on a single chip Z-axis magnetoresistive sensor.


    DETAILED DESCRIPTION



    [0032] The invention will be described in detail with reference to the accompanying drawings and in combination with the following examples.

    Example 1



    [0033] FIG. 3 and FIG. 4 are respectively two structural distribution diagrams of planar calibration coils 101 and 102 on the single chip Z-axis magnetoresistive sensor. The planar calibration coils 101 and 102 include a plurality of straight wires 10, 11, 12 and 13 parallel to a Y-axis center line 3 of the soft ferromagnetic flux concentrator. The straight wires 10, 11, 12, and 13 are located on the two sides of the Y-axis center line 3 of the soft ferromagnetic flux concentrator. The straight wires 10 and 12 are located on the same side as the push magnetoresistive sensing unit string 4 and are one-to-one corresponding to the push magnetoresistive sensing unit string 4. The straight wires 11 and 13 are located on the same side as the pull magnetoresistive sensing unit string 5 and are one-to-one corresponding to the pull magnetoresistive sensing unit string 5. Moreover, in FIG. 3, the straight wire 10 corresponding to the push magnetoresistive sensing unit string 4 and the straight wire 11 corresponding to the pull magnetoresistive sensing unit string 5 have the same distance with respect to the Y-axis center line 3. In FIG. 4, the straight wire 12 corresponding to the push magnetoresistive sensing unit string 4 and the straight wire 13 corresponding to the pull magnetoresistive sensing unit string 5 also have the same distance with respect to the Y-axis center line 3.

    [0034] All the straight wires located on one of the two sides of the Y-axis center line of the soft ferromagnetic flux concentrator have the same current direction, and all of the straight wires located on opposite sides have opposite current directions. The straight wire 10 and the straight wire 11 in FIG. 3, as well as the straight wire 12 and the straight wire 13 in FIG. 4 have opposite current directions.

    [0035] The distances between all the straight wires and the Y-axis center line are 0 to (1/2Lx+1/2Lgap). Further, all the straight wires may be located in an area where the soft ferromagnetic flux concentrator is located, that is, the distances between all the straight wires and the Y-axis center line are 0 to 1/2Lx, that is, all the straight wires are located in areas between 3 and 31 and between 3 and 33.

    [0036] In the planar calibration coil structure corresponding to FIG. 3, the straight wires 10 and 11 are directly located right above or right below the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5.

    [0037] In the planar calibration coil corresponding to FIG. 4, the straight wire is located in a gap between the soft ferromagnetic flux concentrators, that is, the distance between the straight wire and the Y-axis center line is 1/2Lx to (1/2Lx+1/2Lgap). As shown in FIG. 4, the straight wires 12 and 13 are located in gaps on two sides of the flux concentrator, that is, located in areas between 31 and 32 and between 33 and 34.

    [0038] FIG. 5 to FIG. 8 are cross-sectional diagrams of possible positions of the planar calibration coils 101 and 102 on the single chip Z-axis magnetoresistive sensor. By using the distance between the straight wire of the planar calibration coil 101 and the Y-axis center line being 0 to 1/2Lx shown in FIG. 3 as an example, the planar calibration coil 101 may be located above the substrate 1 and between the push and pull magnetoresistive sensing unit strings 4 and 5 as shown in FIG. 5, between the soft ferromagnetic flux concentrator 2 and the push and pull magnetoresistive sensing unit strings 4 and 5 as shown in FIG. 6, and above the soft ferromagnetic flux concentrator 2 as shown in FIG. 7. Correspondingly, insulation layers 81, 82 and 83 are introduced respectively to electrically isolate the planar calibration coil 101 from peripheral layers.

    [0039] By using the distance between the straight wire of the planar calibration coil 102 and the Y-axis center line being 1/2Lx to (1/2Lx+1/2Lgap) shown in FIG. 4 as an example, in addition to being located above the substrate 1 and between the push and pull magnetoresistive sensing unit strings 4 and 5 as shown in FIG. 5, and being located between the soft ferromagnetic flux concentrator 2 and the push and pull magnetoresistive sensing unit strings 4 and 5 as shown in FIG. 6, the planar calibration coil 102 may further be located above the push and pull magnetoresistive sensing unit strings and in a gap between the soft ferromagnetic flux concentrators 2 and 2' as shown in FIG. 8.

    [0040] FIG. 9 and FIG. 10 respectively show the distribution of magnetic field lines of a magnetic field generated by the planar calibration coil 102 shown in FIG. 4 on the single chip Z-axis magnetoresistive sensor, and the distribution of magnetic field components of the magnetic field along the X direction at the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string. The straight wires are located in a gap between two adjacent soft ferromagnetic flux concentrators 2. The straight wires located at the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5 respectively generate two circumferential distributions of magnetic field lines in opposite directions. The circumferential magnetic field lines pass through the soft ferromagnetic flux concentrators 2 and reach the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5, wherein n1-n5 respectively correspond to central positions of the soft ferromagnetic flux concentrators 2, and m1-m10 respectively correspond to positions of the push magnetoresistive sensing unit strings and the pull magnetoresistive sensing unit strings. It can be seen from FIG. 10 that, X-direction magnetic field components at central positions of the flux concentrators 2, that is, positions n1-n5, are 0; while the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5 located at the surface of the flux concentrator 2 have opposite X-direction magnetic field components. That is, m1 and m2 have identical magnitudes and opposite directions, m3 and m4 have identical magnitudes and opposite directions, m5 and m6 have identical magnitudes and opposite directions, m7 and m8 have identical magnitudes and opposite directions, and m9 and m10 have identical magnitudes and opposite directions.

    [0041] FIG. 11 and FIG. 12 as well as FIG. 13 and FIG. 14 respectively show distribution of magnetic field lines and distribution of X-direction magnetic field components at the position of the sensor when the planar calibration coil 101 shown in FIG. 3 is located below the surfaces of the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5 and located above the surface of the soft ferromagnetic flux concentrator 2.

    [0042] It can be seen that, in FIG. 11, the planar calibration coil 101 is located at a position right below the push magnetoresistive sensing unit string 2 and the pull magnetoresistive sensing unit string 4, n11-n15 are respectively central positions of the soft ferromagnetic flux concentrators 2, and m11-m20 are respectively push magnetoresistive sensing unit strings and pull magnetoresistive sensing unit strings. In FIG. 12, at the position of the magnetoresistive sensing unit and parallel to the X direction, X-direction magnetic field components of n11-n15 are 0; while the push magnetoresistive sensing unit m11 and the pull magnetoresistive sensing unit m12, as well as m13 and m14, m15 and m16, m17 and m18, and m19 and m20 have X-direction magnetic field components of identical magnitudes and opposite directions.

    [0043] In FIG. 13, the planar calibration coil 101 is located above the surface position of the soft ferromagnetic flux concentrator 2 and corresponds to the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5 respectively, n21-25 are respectively central positions of the soft ferromagnetic flux concentrators 2, m21-25 are respectively push magnetoresistive sensing unit strings and pull magnetoresistive sensing unit strings. In FIG. 14, at the position of the magnetoresistive sensing unit string, X-direction magnetic field components at n21- n25 are 0; while the push magnetoresistive unit 4 and the pull magnetoresistive unit 5, that is, m21 and m22, m23 and m24, m25 and m26, m27 and m28, and m29 and m30 have X-direction magnetic field components of identical magnitudes and opposite directions. In the two cases, the magnetic field lines form two annular rings with the straight wires as centers. Definitely, when the straight wire is located below the soft ferromagnetic flux concentrator as shown in FIG. 11, the X-direction magnetic field component generated at the position of the sensor is obviously greater than the X-direction magnetic field component when the straight wire is located above the soft ferromagnetic flux concentrator as shown in FIG. 13.

    [0044] Therefore, the planar calibration coil may implement magnetic fields of the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string having opposite directions and identical magnitudes by adjusting the current, thereby replacing a Z-direction external magnetic field, and implementing calibration on the single chip Z-axis magnetoresistive sensor.

    Example 2



    [0045] FIG. 15 is a structural diagram of a three-dimensional calibration coil 103. It can be seen that there is a three-dimensional calibration sub-coil corresponding to each of a push magnetoresistive sensing unit string 5, a pull magnetoresistive sensing unit string 4, and a soft ferromagnetic flux concentrator 2 located on the surface thereof, and the three-dimensional calibration sub-coils are connected in series to each other.

    [0046] Each of the three-dimensional coils includes a first group of straight wires and a second group of straight wires parallel to a Y-axis center line 3 of the soft ferromagnetic flux concentrator. The first group of straight wires and the second group of straight wires are symmetrically distributed on two sides of the Y-axis center line 3 of the corresponding soft ferromagnetic flux concentrator. Straight wires 14 and 16 form the first group of straight wires, and straight wires 15 and 17 form the second group of straight wires. The straight wires 14 and 15 are located on the surfaces of the soft ferromagnetic flux concentrator/push and pull magnetoresistive sensing unit strings and located in an area between the push magnetoresistive sensing unit string 5 and the pull magnetoresistive sensing unit string 4, and are symmetric with respect to the Y-axis center line 3.

    [0047] The straight wires 16 and 17 are located on the surfaces of the push and pull magnetoresistive sensing unit strings/soft ferromagnetic flux concentrators and located at outer sides of the push magnetoresistive sensing unit string 5 and the pull magnetoresistive sensing unit string 4, and are symmetric with respect to the Y-axis center line 3. The two groups of straight wires located at two sides of the Y-axis center line 3 each form a solenoid coil, and the solenoid coils are connected in series and have opposite winding directions. In this way, the three-dimensional calibration sub-coil generates magnetic fields having identical magnitudes in an X direction and a -X direction at the push magnetoresistive sensing unit string 5 and the pull magnetoresistive sensing unit string 4 respectively. Moreover, due to the soft ferromagnetic flux concentrator, the current needed in the coil is greatly reduced, thus reducing the power consumption.

    [0048] FIG. 16 is a diagram showing a position of the three-dimensional calibration coil 103 on a cross-sectional diagram of the single chip Z-axis magnetoresistive sensor. In the two groups of straight wires, corresponding straight wires 14 and 15 in the two groups of straight wires are located on the surface of the soft ferromagnetic flux concentrator 2, and the other corresponding straight wires 16 and 17 are located on the surfaces of the push magnetoresistive sensing unit string 5 and the pull magnetoresistive sensing unit string 4. 14 and 15 are symmetrically distributed with respect to the Y-axis center line, and 16 and 17 are symmetrically distributed with respect to the Y-axis center line. 14 and 15 are distributed in an area between the push magnetoresistive sensing unit string 5 and the pull magnetoresistive sensing unit string 4, and 16 and 17 are distributed in areas outside the push magnetoresistive sensing unit string 5 and the pull magnetoresistive sensing unit string 4. 14 and 16 form a solenoid coil, 15 and 17 form a solenoid coil, and the two solenoid coils are connected in series and have opposite winding directions. Identical to Embodiment 1, insulation layers 84 and 85 for isolating the three-dimensional coil from other components are also included. In 31 shown in FIG. 16, the straight wires 14 and 15 are located on the surface of the soft ferromagnetic flux concentrator, and 16 and 17 are located on the surfaces of the push magnetoresistive sensing unit string 5 and the pull magnetoresistive sensing unit string 4; in fact, it is also applicable to the three-dimensional calibration coil if positions of the two are exchanged.

    [0049] FIG. 17 and FIG. 18 respectively show distributions of magnetic field lines of the three-dimensional calibration coil 103 on a single chip Z-axis magnetoresistive sensor chip and a distribution diagram of X-axis magnetic fields on the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5. It can be seen that, the three-dimensional calibration sub-coil 103 forms loops of magnetic field lines at the flux concentrator 2, the push magnetoresistive sensing unit string 4, and the pull magnetoresistive sensing unit string 5, and passes through the soft ferromagnetic flux concentrator, the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string sequentially. In FIG. 17, m31-m34 are respectively center lines of the soft ferromagnetic flux concentrators 2, and n41-n48 are respectively positions of the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5. In FIG. 18, at the center lines m31-m34 of the soft ferromagnetic flux concentrators, X-direction magnetic field components are 0, and as for the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5, that is, n41 and n42, n43 and n44, n45 and n46, and n47 and n48 have x-direction magnetic field components of identical magnitudes and opposite directions, meeting the requirement of a calibration magnetic field.

    Example 3



    [0050] FIG. 19 is a structural diagram of a planar initialization coil 104, including a plurality of straight wires 18 parallel to an X-axis. The straight wires 18 are perpendicular to the Y-axis center line 3, cross magnetoresistive sensing units along the X direction among the magnetoresistive sensing units on the push magnetoresistive sensing unit string 5 and the pull magnetoresistive sensing unit string 4, and are located at positions right above or right below the magnetoresistive sensing units. The current directions of the straight wires are the same, such that magnetic components generated thereby along a Y direction at the position of the magnetoresistive unit have identical magnitudes and identical directions.

    [0051] FIG. 20 to FIG. 22 respectively show cross-sectional diagrams of positions of the planar initialization coil 104 on the single chip Z-axis magnetoresistive sensor. In FIG. 20, the planar initialization coil 104 is located above the substrate 1 and below the push and pull magnetoresistive sensing unit strings 4 and 5, but they can also be located above the push and pull magnetoresistive sensing unit strings 4 and 5. In FIG. 21, the planar initialization coil 104 is located between the soft ferromagnetic flux concentrator 2 and the push and pull magnetoresistive sensing unit strings 4 and 5. In FIG. 22, the planar initialization coil 104 is located above the soft ferromagnetic flux concentrator 2. Like the embodiment of the calibration coil, insulation layers 86, 87 and 88 are used to respectively implement electrical insulation of wire coils, thus isolating the planar initialization coil 104 from peripheral components.

    [0052] FIG. 23 is a distribution diagram of magnetic field lines of the planar initialization coil 104 on the Y direction section. It can be seen that each straight wire generates a loop of magnetic field lines on the surface of the soft ferromagnetic flux concentrator 2, wherein n51-n55 are respectively push magnetoresistive sensing unit strings or pull magnetoresistive sensing unit strings located on the soft ferromagnetic flux concentrators 2, and magnetic field components in the Y direction generated thereby at the push and pull magnetoresistive sensing unit strings n51-n55 are shown in FIG. 24. It can be seen that, all magnetoresistive sensing units are located in a uniform Y-direction magnetic field, and they have identical magnetic field amplitudes and identical directions.

    Example 4



    [0053] FIG. 25 is a structural diagram of a three-dimensional initialization coil 105, including upper and lower groups of straight wires, 19 and 20, parallel to the X-axis. The straight wires 19 and 20 are wound to form solenoid structures by using the soft ferromagnetic flux concentrator 2, the push magnetoresistive sensing unit string 5 and the pull magnetoresistive sensing unit string 4 as magnetic cores, and 19 and 20 have opposite current directions.

    [0054] FIG. 26 is a distribution diagram of the three-dimensional initialization coil 105 on the section of the single chip Z-axis magnetoresistive sensor, where upper and lower groups of straight wires 19 and 20 thereof are respectively located on the surfaces of the soft ferromagnetic flux concentrator 2, the push magnetoresistive sensing unit string 4 and the pull magnetoresistive sensing unit string 5, and are connected by using binding posts on both sides to form a loop. Two insulation layers 89 and 90 are added to be isolated from peripheral components, so as to ensure electrical isolation of the three-dimensional initialization coil 105.

    [0055] FIG. 27 and FIG. 28 show distributions of magnetic field lines generated by solenoid coils formed by the upper and lower straight wires of the three-dimensional initialization coil 105 at the soft ferromagnetic flux concentrator, the push magnetoresistive sensing unit string 4, and the pull magnetoresistive sensing unit string 5 when a current passes through the solenoid coils, wherein n61-n65 are respectively magnetoresistive sensing unit strings. It can be seen from FIG. 28 that, the Y-direction magnetic field is periodically distributed at the magnetoresistive sensing units, wherein Y-direction magnetic field components at positions n61-n65 have identical magnitudes and identical directions. Therefore, as long as upper and lower layers of straight wires are arranged at uniform intervals, obtained magnetic field lines and Y-direction magnetic field distribution generated at the push and pull magnetoresistive sensing unit strings 4 and 5 are periodically distributed, and identical Y-direction magnetic fields are generated at magnetoresistive sensing units of the push magnetoresistive sensing units and pull magnetoresistive sensing units. Therefore, the upper and lower DC wires can be located right above or right below the push and pull magnetoresistive sensing unit strings, and may also be located in other areas. As long as the DC wires are distributed uniformly, magnetic fields generated at the magnetoresistive sensing unit strings have identical magnitudes and identical directions.

    Example 5



    [0056] The structures of the single planar calibration coil, the three-dimensional calibration coil, the planar initialization coil, and the three-dimensional initialization coils are described above; moreover, position structures thereof on the single chip Z-axis magnetoresistive sensor are further illustrated.

    [0057] The Z-axis magnetoresistive sensor may be designed to include, in addition to the single chip Z-axis magnetoresistive sensor, a calibration coil, an initialization coil, or both.

    [0058] It should be noted that, when both the calibration coil and the initialization coil are included, the planar calibration coil and the planar initialization coil may be located at the same position, for example, located above the substrate and below the push and pull magnetoresistive sensing units, or located between the soft ferromagnetic flux concentrator and the push and pull magnetoresistive sensing units, or located above the soft ferromagnetic flux concentrator, and may also be located at a free combination of any two positions in the above three positions. For the three-dimensional calibration coil and three-dimensional initialization coil, a fixed winding method is provided, that is, winding by using the soft ferromagnetic flux concentrator and the push and pull magnetoresistive sensing units as centers. As for the combination of the three-dimensional coil and the planar coil, the three-dimensional coil is located at a fixed position, and the planar coil is located at any position in the above three positions. In the case where both coils are three-dimensional coils, there is only one combination.

    [0059] For ease of illustration, only three typical combination structures of the planar calibration coil and the planar initialization coil are provided, as shown in FIG. 29 to FIG. 31. As shown in FIG. 29, the planar calibration coil 106 and the planar initialization coil 107 are both located above the substrate 1 and between the push and pull magnetoresistive sensing unit strings 4 and 5. In FIG. 30, the planar calibration coil 106 is located between the soft ferromagnetic flux concentrator 2 and the push and pull magnetoresistive sensing unit strings 4 and 5, and the planar initialization coil 107 is located above the substrate 1 and between the push and pull magnetoresistive sensing unit strings 4 and 5. In FIG. 31, the planar calibration coil 106 is located above the soft ferromagnetic flux concentrator 2, and the planar initialization coil 107 is located above the substrate 1 and between the push and pull magnetoresistive sensing unit strings 4 and 5.

    [0060] Moreover, during actual use, a DC current is charged into the calibration coil to generate a DC magnetic field to replace an external magnetic field. The calibration manner may be predetermining a DC current value, and observing a difference between a standard value and an output value of the single chip Z-axis magnetoresistive sensor at the current value, or predetermining a scan value of a DC current value, and observing a difference between an output curve of the single chip Z-axis magnetoresistive sensor and a standard curve, to determine whether the chip is qualified.

    [0061] As for the initialization coil, the charged circuit amplitude needs to generate a saturation value higher than the free layer, such that the magnetization state is restored to the original state, and the initialization current may be a pulse or DC circuit.

    [0062] The above embodiments are merely used for illustrating technical concepts and characteristics of the invention, and are intended to enable those skilled in the technology to understand the content of the invention and implement accordingly, rather than limiting the protection scope of the invention. Equivalent changes or modifications made within the scope of the appended claims should be incorporated into the protection scope of the invention.


    Claims

    1. A single chip Z-axis linear magnetoresistive sensor assembly comprising a single chip Z-axis linear magnetoresistive sensor, and a first coil,
    wherein the single chip Z-axis linear magnetoresistive sensor comprises a soft ferromagnetic flux concentrator (2) and a magnetoresistive sensing unit array that are located on a substrate (1),
    the soft ferromagnetic flux concentrator is elongated, and has a long axis along a Y direction and a short axis along an X direction,
    all the magnetoresistive sensing units are TMR sensing units, magnetization directions of pinned layers are all along the X direction, magnetization directions of free layers thereof are all along the Y direction; the magnetoresistive sensing units are electrically connected to form a push magnetoresistive sensing unit string (4) and a pull magnetoresistive sensing unit string (5) along the Y direction, which are respectively located on two sides of a Y-axis center line (3) above or below the surface of a corresponding soft ferromagnetic flux concentrator, and have a same distance from the Y-axis center line; and the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string are electrically connected to form a push-pull magnetoresistive sensor,
    when a Z-direction external magnetic field is measured, the soft ferromagnetic flux concentrator distorts the Z-direction external magnetic field into two magnetic field components that are parallel and anti-parallel to the magnetization direction of the pinned layer, have identical amplitudes, and are applied to the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string respectively;
    characterized by further comprising a second coil,
    wherein one of the first and second coils is a calibration coil (101, 102) that comprises straight wires (10, 11, 12, 13) parallel to the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string, and is configured to generate calibration magnetic fields at the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string respectively, the calibration magnetic field having magnetic field components that have identical intensity but are respectively parallel and anti-parallel to the magnetization direction of the pinned layer; and
    wherein the other of the first and second coils is an initialization coil (104, 105) that comprises straight wires (18, 19, 20) parallel to the magnetization direction of the pinned layer of the magnetoresistive sensing unit, and is configured to generate a uniform initializing magnetic field having magnetic field components parallel to the magnetization direction of the free layer at all the magnetoresistive sensing units, wherein either:

    (i) the initialization coil is a planar initialization coil, the planar initialization coil (104) comprises a plurality of straight wires (18) perpendicular to the Y-axis center line (3) of the soft ferromagnetic flux concentrator and electrically connected in series, wherein the straight wires are located right above or right below a magnetoresistive sensing unit row of the Z-axis linear sensor along the X-axis direction, and have identical current directions; or

    (ii) the initialization coil is a three-dimensional initialization coil, the three-dimensional initialization coil (105) comprises an upper, first group having a plurality of straight wires (19) and a lower, second group having a plurality of straight wires (20) that are parallel to a magnetoresistive sensing unit row of the magnetoresistive sensing unit array along the X-axis direction, the first group of straight wires and the second group of straight wires are respectively located on the surfaces of the soft ferromagnetic flux concentrators and the magnetoresistive sensing units, and the first group of straight wires and the second group of straight wires have opposite current directions, and are connected to form a solenoid coil.


     
    2. The single chip Z-axis linear magnetoresistive sensor assembly according to claim 1, wherein the calibration coil is a planar calibration coil, the straight wires of the planar calibration coil are one-to-one corresponding to the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string, and are located on the same side of the Y-axis center line of the soft ferromagnetic flux concentrator as the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string respectively; and the straight wire corresponding to the push magnetoresistive sensing unit string and the straight wire corresponding to the pull magnetoresistive sensing unit string have currents in opposite directions.
     
    3. The single chip Z-axis linear magnetoresistive sensor assembly according to claim 2, wherein a distance between the straight wire of the planar calibration coil and the Y-axis center line of the soft ferromagnetic flux concentrator is 0 to (½Lx+ ½Lgap), wherein Lx is the width of the flux concentrator, and Lgap is the width of a gap between adjacent flux concentrators.
     
    4. The single chip Z-axis linear magnetoresistive sensor assembly according to claim 3, wherein when the distance between the straight wire of the planar calibration coil and the Y-axis center line of the corresponding soft ferromagnetic flux concentrator is 0 to ½Lx, the planar coil is located above the substrate of the single chip Z-axis linear magnetoresistive sensor and below a magnetoresistive sensing unit, between a magnetoresistive sensing unit and a soft ferromagnetic flux concentrator, or above a soft ferromagnetic flux concentrator.
     
    5. The single chip Z-axis linear magnetoresistive sensor assembly according to claim 3, wherein when the distance between the straight wire of the planar calibration coil and the Y-axis center line of the corresponding soft ferromagnetic flux concentrator is ½Lx to (½Lx + ½Lgap), the planar calibration coil is located above the substrate of the single chip Z-axis linear magnetoresistive sensor and below a magnetoresistive sensing unit, between a magnetoresistive sensing unit and a soft ferromagnetic flux concentrator, or in a gap between soft ferromagnetic flux concentrators.
     
    6. The single chip Z-axis linear magnetoresistive sensor assembly according to claim 1, wherein the calibration coil is a three-dimensional calibration coil wound around the soft ferromagnetic flux concentrator and the magnetoresistive sensing unit,
    the three-dimensional calibration coil comprises a plurality of three-dimensional calibration sub-coils electrically connected in series to each other, and each of the soft ferromagnetic flux concentrator, the push magnetoresistive sensing unit string, and the pull magnetoresistive sensing unit string corresponds to one of the three-dimensional calibration sub-coils,
    the three-dimensional calibration sub-coil comprises a first group of straight wires and a second group of straight wires which are parallel to the Y-axis center line of the soft ferromagnetic flux concentrator, and the first group of straight wires and the second group of straight wires are symmetrically distributed on two sides of the Y-axis center line of the soft ferromagnetic flux concentrator,
    the first group/second group of straight wires comprises two straight wires, and the two straight wires of the first group/second group of straight wires are located respectively on the surfaces of the soft ferromagnetic flux concentrator or the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string,
    one straight wire in the first group of straight wires and one straight wire in the second group of straight wires are symmetric to the Y-axis center line and distributed in an area between the push and pull magnetoresistive sensing unit strings, the other straight wire in the first group of straight wires and the other straight wire in the second group of straight wires are symmetric to the Y-axis center line and distributed in areas outside the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string, and
    the first group of straight wires form a first three-dimensional solenoid coil, the second group of straight wires form a second three-dimensional solenoid coil, and the first and second three-dimensional solenoid coils have opposite winding directions and are electrically connected in series to each other, wherein one of the three-dimensional solenoid coils is configured to generate a magnetic field parallel to the X direction, and the other is configured to generate a magnetic field in a -X direction.
     
    7. The single chip Z-axis linear magnetoresistive sensor assembly according to claim 1, wherein the initialization coil is a planar initialization coil, the planar initialization coil comprises a plurality of straight wires perpendicular to the Y-axis center line of the soft ferromagnetic flux concentrator and electrically connected in series, wherein the straight wires are located right above or right below a magnetoresistive sensing unit row of the Z-axis linear sensor along the X-axis direction, and have identical current directions.
     
    8. The single chip Z-axis linear magnetoresistive sensor assembly according to claim 1, wherein the initialization coil is a three-dimensional initialization coil, the three-dimensional initialization coil comprises an upper, first group having a plurality of straight wires and a lower, second group having a plurality of straight wires that are parallel to a magnetoresistive sensing unit row of the magnetoresistive sensing unit array along the X-axis direction,
    the first group of straight wires and the second group of straight wires are respectively located on the surfaces of the soft ferromagnetic flux concentrators and the magnetoresistive sensing units, and the first group of straight wires and the second group of straight wires have opposite current directions, and are connected to form a solenoid coil.
     
    9. The single chip Z-axis linear magnetoresistive sensor assembly according to any of claims 1 to 8, wherein the initialization coil and the calibration coil are made of high-conductivity materials, and the high-conductivity materials are Cu, Au, or Ag.
     
    10. The single chip Z-axis linear magnetoresistive sensor assembly according to claim 9, wherein the initialization coil, the calibration coil and the single chip Z-axis magnetoresistive sensor are isolated by using electric insulation materials, and the insulation materials are Si02, Al2O3, Si3N4, polyimide, or photoresist.
     
    11. The single chip Z-axis linear magnetoresistive sensor assembly according to any of claims 1 to 6, wherein the calibration coil comprises a positive port and a negative port, and when a current passes through the positive port and the negative port, the amplitude of a calibration magnetic field generated thereby is within a linear working area of the push magnetoresistive sensing unit string and the pull magnetoresistive sensing unit string.
     
    12. The single chip Z-axis linear magnetoresistive sensor assembly according to claim 11, wherein the current in the calibration coil is a set current value or a plurality of set current values.
     
    13. The single chip Z-axis linear magnetoresistive sensor assembly according to claim 1, 7, or 8, wherein the initialization coil comprises two ports, and the magnitude of the initializing magnetic field is higher than a saturated magnetic field value of the free layer.
     
    14. The single chip Z-axis linear magnetoresistive sensor assembly according to claim 13, wherein the current in the initialization coil is a pulse current or a DC current.
     


    Ansprüche

    1. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung, umfassend einen linearen, magnetoresistiven Einzelchip-Z-Achsen-Sensor und eine erste Spule, wobei der lineare, magnetoresistive Einzelchip-Z-Achsen-Sensor einen weichen ferromagnetischen Flusskonzentrator (2) und eine magnetoresistive Erfassungseinheitsreihung umfasst, die sich an einem Substrat (1) befinden, wobei der weiche ferromagnetische Flusskonzentrator langgestreckt ist und eine lange Achse entlang einer Y-Richtung und eine kurze Achse entlang einer X-Richtung aufweist, wobei alle magnetoresistiven Erfassungseinheiten TMR-Erfassungseinheiten sind, wobei Magnetisierungsrichtungen von gepinnten Schichten alle entlang der X-Richtung sind, wobei Magnetisierungsrichtungen von freien Schichten davon alle entlang der Y-Richtung sind; wobei die magnetoresistiven Erfassungseinheiten elektrisch verbunden sind, um einen magnetoresistiven Druckerfassungseinheitsstrang (4) und einen magnetoresistiven Zugerfassungseinheitsstrang (5) entlang der Y-Richtung zu bilden, die sich jeweils auf zwei Seiten einer Y-Achsen-Mittellinie (3) über oder unter der Oberfläche eines entsprechenden weichen ferromagnetischen Flusskonzentrators befinden und einen gleichen Abstand zu der Y-Achsen-Mittellinie aufweisen; und wobei der magnetoresistive Druckerfassungseinheitsstrang und der magnetoresistive Zugerfassungseinheitsstrang elektrisch verbunden sind, um einen magnetoresistiven Druck-Zug-Sensor zu bilden, wenn ein externes Magnetfeld in Z-Richtung gemessen wird, wobei der weiche ferromagnetische Flusskonzentrator das externe Magnetfeld in Z-Richtung zu zwei Magnetfeldkomponenten verzerrt, die parallel und antiparallel zu der Magnetisierungsrichtung der gepinnten Schicht sind, identische Amplituden aufweisen und jeweils auf den magnetoresistiven Druckerfassungseinheitsstrang und den magnetoresistiven Zugerfassungseinheitsstrang angewandt werden;
    dadurch gekennzeichnet, dass sie ferner eine zweite Spule umfasst, wobei eine von der ersten und zweiten Spule eine Kalibrierspule (101, 102) ist, die gerade Drähte (10, 11, 12, 13) parallel zu dem magnetoresistiven Druckerfassungseinheitsstrang und dem magnetoresistiven Zugerfassungseinheitsstrang umfasst und konfiguriert ist, um jeweils an dem magnetoresistiven Druckerfassungseinheitsstrang und dem magnetoresistiven Zugerfassungseinheitsstrang Kalibriermagnetfelder zu erzeugen, wobei das Kalibriermagnetfeld Magnetfeldkomponenten aufweist, die eine identische Intensität aufweisen, aber jeweils parallel und antiparallel zu der Magnetisierungsrichtung der gepinnten Schicht sind;
    und wobei die andere von der ersten und zweiten Spule eine Initialisierungsspule (104, 105) ist, die gerade Drähte (18, 19, 20) parallel zu der Magnetisierungsrichtung der gepinnten Schicht der magnetoresistiven Erfassungseinheit umfasst und konfiguriert ist, um ein einheitliches Initialisierungsmagnetfeld zu erzeugen, das Magnetfeldkomponenten parallel zu der Magnetisierungsrichtung der freien Schicht an allen magnetoresistiven Erfassungseinheiten aufweist, wobei entweder:

    (i) die Initialisierungsspule eine planare Initialisierungsspule ist, die planare Initialisierungsspule (104) eine Vielzahl von geraden Drähten (18) senkrecht zu der Y-Achsen-Mittellinie (3) des weichen ferromagnetischen Flusskonzentrators und elektrisch in Serie verbunden umfasst, wobei sich die geraden Drähte direkt über oder direkt unter einer magnetoresistiven Erfassungseinheitsreihe des linearen Z-Achsen-Sensors entlang der X-Achsen-Richtung befinden und identische Stromrichtungen aufweisen; oder

    (ii) die Initialisierungsspule eine dreidimensionale Initialisierungsspule ist, die dreidimensionale Initialisierungsspule (105) eine obere, erste Gruppe, die eine Vielzahl von geraden Drähten (19) aufweist, und eine untere, zweite Gruppe umfasst, die eine Vielzahl von geraden Drähten (20) aufweist, die parallel zu einer magnetoresistiven Erfassungseinheitsreihe der magnetoresistiven Erfassungseinheitsreihung entlang der X-Achsen-Richtung ist, wobei sich die erste Gruppe an geraden Drähten und die zweite Gruppe an geraden Drähten jeweils auf den Oberflächen der weichen ferromagnetischen Flusskonzentratoren und der magnetoresistiven Erfassungseinheiten befinden und die erste Gruppe an geraden Drähten und die zweite Gruppe an geraden Drähten entgegengesetzte Stromrichtungen aufweisen und verbunden sind, um eine Solenoidspule zu bilden.


     
    2. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach Anspruch 1, wobei die Kalibrierspule eine planare Kalibrierspule ist, die geraden Drähte der planaren Kalibrierspule eins zu eins dem magnetoresistiven Druckerfassungseinheitsstrang und dem magnetoresistiven Zugerfassungseinheitsstrang entsprechen und sich jeweils auf derselben Seite der Y-Achsen-Mittellinie des weichen ferromagnetischen Flusskonzentrators wie der magnetoresistive Druckerfassungseinheitsstrang und der magnetoresistive Zugerfassungseinheitsstrang befinden; und der gerade Draht, der dem magnetoresistiven Druckerfassungseinheitsstrang entspricht, und der gerade Draht, der dem magnetoresistiven Zugerfassungseinheitsstrang entspricht, Ströme in entgegengesetzte Richtungen aufweisen.
     
    3. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach Anspruch 2, wobei ein Abstand zwischen dem geraden Draht der planaren Kalibrierspule und der Y-Achsen-Mittellinie des weichen ferromagnetischen Flusskonzentrators 0 bis (½Lx+ ½Lgap) beträgt, wobei Lx die Breite des Flusskonzentrators ist und Lgap die Breite einer Lücke zwischen benachbarten Flusskonzentratoren ist.
     
    4. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach Anspruch 3, wobei, wenn der Abstand zwischen dem geraden Draht der planaren Kalibrierspule und der Y-Achsen-Mittellinie des entsprechenden weichen ferromagnetischen Flusskonzentrators 0 bis ½Lx beträgt, sich die planare Spule über dem Substrat des linearen, magnetoresistiven Einzelchip-Z-Achsen-Sensors und unter einer magnetoresistiven Erfassungseinheit, zwischen einer magnetoresistiven Erfassungseinheit und einem weichen ferromagnetischen Flusskonzentrator oder über einem weichen ferromagnetischen Flusskonzentrator befindet.
     
    5. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach Anspruch 3, wobei, wenn der Abstand zwischen dem geraden Draht der planaren Kalibrierspule und der Y-Achsen-Mittellinie des entsprechenden weichen ferromagnetischen Flusskonzentrators ½Lx bis (½Lx + ½Lgap) beträgt, sich die planare Kalibrierspule über dem Substrat des linearen, magnetoresistiven Einzelchip-Z-Achsen-Sensors und unter einer magnetoresistiven Erfassungseinheit, zwischen einer magnetoresistiven Erfassungseinheit und einem weichen ferromagnetischen Flusskonzentrator oder in einer Lücke zwischen weichen ferromagnetischen Flusskonzentratoren befindet.
     
    6. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach Anspruch 1, wobei die Kalibrierspule eine dreidimensionale Kalibrierspule ist, die um den weichen ferromagnetischen Flusskonzentrator und die magnetoresistive Erfassungseinheit gewunden ist, wobei die dreidimensionale Kalibrierspule eine Vielzahl von dreidimensionalen Kalibrierteilspulen umfasst, die elektrisch in Serie miteinander verbunden ist, und jeder von dem weichen ferromagnetischen Flusskonzentrator, dem magnetoresistiven Druckerfassungseinheitsstrang und dem magnetoresistiven Zugerfassungseinheitsstrang einer der dreidimensionalen Kalibrierteilspulen entspricht, wobei die dreidimensionale Kalibrierteilspule eine erste Gruppe an geraden Drähten und eine zweite Gruppe an geraden Drähten umfasst, die parallel zu der Y-Achsen-Mittellinie des weichen ferromagnetischen Flusskonzentrators sind, und die erste Gruppe an geraden Drähten und die zweite Gruppe an geraden Drähten symmetrisch auf zwei Seiten der Y-Achsen-Mittellinie des weichen ferromagnetischen Flusskonzentrators verteilt sind, wobei die erste Gruppe/zweite Gruppe an geraden Drähten zwei gerade Drähte umfasst und sich die zwei geraden Drähte der ersten Gruppe/zweiten Gruppe an geraden Drähten jeweils auf den Oberflächen des weichen ferromagnetischen Flusskonzentrators oder des magnetoresistiven Druckerfassungseinheitsstrangs und des magnetoresistiven Zugerfassungseinheitsstrangs befinden, wobei ein gerader Draht in der ersten Gruppe an geraden Drähten und ein gerader Draht in der zweiten Gruppe an geraden Drähten symmetrisch zu der Y-Achsen-Mittellinie und in einem Bereich zwischen dem magnetoresistiven Druck- und Zugerfassungseinheitsstrang verteilt sind, wobei der andere gerade Draht in der ersten Gruppe an geraden Drähten und der andere gerade Draht in der zweiten Gruppe an geraden Drähten symmetrisch zu der Y-Achsen-Mittellinie und in Bereichen außerhalb des magnetoresistiven Druckerfassungseinheitsstrangs und des magnetoresistiven Zugerfassungseinheitsstrangs verteilt sind, und die erste Gruppe an geraden Drähten eine erste dreidimensionale Solenoidspule bildet, die zweite Gruppe an geraden Drähten eine zweite dreidimensionale Solenoidspule bildet und die erste und zweite dreidimensionale Solenoidspule entgegengesetzte Wicklungsrichtungen aufweisen und elektrisch in Serie miteinander verbunden sind, wobei eine der dreidimensionalen Solenoidspulen konfiguriert ist, um ein Magnetfeld parallel zu der X-Richtung zu erzeugen und die andere konfiguriert ist, um ein Magnetfeld in einer -X-Richtung zu erzeugen.
     
    7. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach Anspruch 1, wobei die Initialisierungsspule eine planare Initialisierungsspule ist, die planare Initialisierungsspule eine Vielzahl von geraden Drähten senkrecht zu der Y-Achsen-Mittellinie des weichen ferromagnetischen Flusskonzentrators und elektrisch in Serie verbunden umfasst, wobei sich die geraden Drähte direkt über oder direkt unter einer magnetoresistiven Erfassungseinheitsreihe des linearen Z-Achsen-Sensors entlang der X-Achsen-Richtung befinden und identische Stromrichtungen aufweisen.
     
    8. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach Anspruch 1, wobei die Initialisierungsspule eine dreidimensionale Initialisierungsspule ist, die dreidimensionale Initialisierungsspule eine obere, erste Gruppe, die eine Vielzahl von geraden Drähten aufweist, und eine untere, zweite Gruppe umfasst, die eine Vielzahl von geraden Drähten aufweist, die parallel zu einer magnetoresistiven Erfassungseinheitsreihe der magnetoresistiven Erfassungseinheitsreihung entlang der X-Achsen-Richtung ist, wobei sich die erste Gruppe an geraden Drähten und die zweite Gruppe an geraden Drähten jeweils auf den Oberflächen der weichen ferromagnetischen Flusskonzentratoren und der magnetoresistiven Erfassungseinheiten befinden und die erste Gruppe an geraden Drähten und die zweite Gruppe an geraden Drähten entgegengesetzte Stromrichtungen aufweisen und verbunden sind, um eine Solenoidspule zu bilden.
     
    9. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach einem der Ansprüche 1 bis 8, wobei die Initialisierungsspule und die Kalibrierspule aus Materialien mit hoher Leitfähigkeit gefertigt sind und die Materialien mit hoher Leitfähigkeit Cu, Au oder Ag sind.
     
    10. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach Anspruch 9, wobei die Initialisierungsspule, die Kalibrierspule und der magnetoresistive Einzelchip-Z-Achsen-Sensor isoliert werden, indem elektrische Isoliermaterialien verwendet werden und die Isoliermaterialien SiO2, Al2O3, Si3N4, Polyimid oder Photoresist sind.
     
    11. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach einem der Ansprüche 1 bis 6, wobei die Kalibrierspule einen positiven Anschluss und einen negativen Anschluss umfasst, und wenn ein Strom den positiven Anschluss und den negativen Anschluss durchläuft, die Amplitude eines dadurch erzeugten Kalibriermagnetfeldes innerhalb eines linearen Arbeitsbereichs des magnetoresistiven Druckerfassungseinheitsstrangs und des magnetoresistiven Zugerfassungseinheitsstrangs liegt.
     
    12. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach Anspruch 11, wobei der Strom in der Initialisierungsspule ein fester Stromwert oder eine Vielzahl von festen Stromwerten ist.
     
    13. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach Anspruch 1, 7 oder 8, wobei die Initialisierungsspule zwei Anschlüsse umfasst und die Größe des Initialisierungsmagnetfeldes höher als ein gesättigter Magnetfeldwert der freien Schicht ist.
     
    14. Lineare, magnetoresistive Einzelchip-Z-Achsen-Sensoranordnung nach Anspruch 13, wobei der Strom in der Initialisierungsspule ein Impulsstrom oder ein DC-Strom ist.
     


    Revendications

    1. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique comprenant un capteur magnétorésistif linéaire dans l'axe Z à puce unique, et une première bobine,
    ledit capteur magnétorésistif linéaire dans l'axe Z à puce unique comprenant un concentrateur de flux ferromagnétique doux (2) et un réseau d'unités de détection magnétorésistives qui sont situés sur un substrat (1),
    ledit concentrateur de flux ferromagnétique doux étant de forme allongée et présentant un axe long le long d'une direction Y et un axe court le long d'une direction X,
    toutes lesdites unités de détection magnétorésistives étant des unités de détection magnétorésistives à effet tunnel (TMR), les directions d'aimantation des couches fixes sont toutes le long de la direction X, les directions d'aimantation des couches libres de celles-ci sont toutes le long de la direction Y ; les unités de détection magnétorésistives sont connectées électriquement pour former une chaîne d'unités de détection magnétorésistives de type push (4) et une chaîne d'unités de détection magnétorésistives de type pull (5) le long de la direction Y, qui sont respectivement situées sur les deux côtés d'une ligne centrale d'axe Y (3) au-dessus ou au-dessous de la surface d'un concentrateur de flux ferromagnétique doux correspondant, et étant à la même distance de la ligne centrale d'axe Y ; et la chaîne d'unités de détection magnétorésistives de type push et la chaîne d'unités de détection magnétorésistives de type pull sont connectées électriquement pour former un capteur magnétorésistif de type push-pull,
    lorsqu'un champ magnétique externe selon la direction Z est mesuré, le concentrateur de flux ferromagnétique doux déforme le champ magnétique externe selon la direction Z en deux composantes de champ magnétique qui sont parallèles et anti-parallèles à la direction d'aimantation de la couche fixe, qui possèdent des amplitudes identiques et qui sont appliquées à la chaîne d'unités de détection magnétorésistives de type pull et à la chaîne d'unités de détection magnétorésistives de type pull, respectivement ;
    caractérisé en ce qu'il comprend en outre une seconde bobine,
    l'une des première et seconde bobines étant une bobine d'étalonnage (101, 102) qui comprend des fils métalliques rectilignes (10, 11, 12, 13) parallèles à la chaîne d'unités de détection magnétorésistives de type push et à la chaîne d'unités de détection magnétorésistives de type pull, et étant conçue pour générer des champs magnétiques d'étalonnage au niveau de la chaîne d'unités de détection magnétorésistives de type push et de la chaîne d'unités de détection magnétorésistives de type pull respectivement, ledit champ magnétique d'étalonnage possédant des composantes de champ magnétique qui sont d'intensité identique, mais qui sont respectivement parallèles et anti-parallèles à la direction d'aimantation de la couche fixe ; et
    l'autre des première et seconde bobines étant une bobine d'initialisation (104, 105) qui comprend des fils métalliques rectilignes (18, 19, 20) parallèles à la direction d'aimantation de la couche fixe de l'unité de détection magnétorésistive, et étant conçue pour générer un champ magnétique d'initialisation uniforme possédant des composantes de champ magnétique parallèles à la direction d'aimantation de la couche libre au niveau de toutes les unités de détection magnétorésistives, soit :

    (i) ladite bobine d'initialisation étant une bobine d'initialisation plane, ladite bobine d'initialisation plane (104) comprenant une pluralité de fils métalliques rectilignes (18) perpendiculaires à la ligne centrale d'axe Y (3) du concentrateur de flux ferromagnétique doux et connectés électriquement en série, lesdits fils métalliques rectilignes étant situés juste au-dessus ou juste au-dessous d'une rangée d'unités de détection magnétorésistives du capteur linéaire dans l'axe Z le long de la direction d'axe X et possédant des sens de courant identiques ; soit

    (ii) ladite bobine d'initialisation étant une bobine d'initialisation tridimensionnelle, ladite bobine d'initialisation tridimensionnelle (105) comprenant un premier groupe supérieur comportant une pluralité de fils métalliques rectilignes (19) et un second groupe inférieur comportant une pluralité de fils métalliques rectilignes (20) qui sont parallèles à une rangée d'unités de détection magnétorésistives du réseau d'unités de détection magnétorésistives le long de la direction d'axe X, ledit premier groupe de fils métalliques rectilignes et ledit second groupe de fils métalliques rectilignes étant situés respectivement sur les surfaces des concentrateurs de flux ferromagnétiques doux et les unités de détection magnétorésistives, et ledit premier groupe de fils métalliques rectilignes et ledit second groupe de fils métalliques rectilignes possédant des directions de courant opposées et étant connectés pour former une bobine de solénoïde.


     
    2. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique selon la revendication 1, ladite bobine d'étalonnage étant une bobine d'étalonnage plane, lesdits fils métalliques rectilignes de la bobine d'étalonnage plane correspondant un à un à la chaîne d'unités de détection magnétorésistives de type push et à la chaîne d'unités de détection magnétorésistives de type pull, et étant situés du même côté de l'axe central d'axe Y du concentrateur de flux ferromagnétique doux que la chaîne d'unités de détection magnétorésistives de type push et la chaîne d'unités de détection magnétorésistives de type pull respectivement ; et ledit fil métallique rectiligne correspondant à la chaîne d'unités de détection magnétorésistives de type pull et ledit fil métallique rectiligne correspondant à la chaîne d'unités de détection magnétorésistives de type pull possédant des sens de courants opposés.
     
    3. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique selon la revendication 2, une distance entre le fil métallique rectiligne de la bobine d'étalonnage plane et la ligne centrale d'axe Y du concentrateur de flux ferromagnétique doux étant comprise entre 0 et (½Lx+½Lgap), où Lx est la largeur du concentrateur de flux et Lgap est la largeur d'un écart entre des concentrateurs de flux adjacents.
     
    4. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique selon la revendication 3, lorsque la distance entre le fil métallique rectiligne de la bobine d'étalonnage plane et la ligne centrale d'axe Y du concentrateur de flux ferromagnétique doux correspondant est comprise entre 0 et 1/2Lx, ladite bobine plane étant située au-dessus du substrat du capteur magnétorésistif linéaire dans l'axe Z à puce unique et au-dessous d'une unité de détection magnétorésistive, entre une unité de détection magnétorésistive et un concentrateur de flux ferromagnétique doux, ou au-dessus d'un concentrateur de flux ferromagnétique doux.
     
    5. Ensemble capteur magnétique magnétorésistif linéaire dans l'axe Z à puce unique selon la revendication 3, lorsque la distance entre le fil métallique rectiligne de la bobine d'étalonnage plane et la ligne centrale d'axe Y du concentrateur de flux ferromagnétique doux correspondant est comprise entre ½Lx et (½Lx+½Lgap), ladite bobine d'étalonnage plane étant située au-dessus du substrat du capteur magnétorésistif linéaire dans l'axe Z à puce unique et au-dessous d'une unité de détection magnétorésistive, entre une unité de détection magnétorésistive et un concentrateur de flux ferromagnétique doux, ou dans un espace entre les concentrateurs de flux ferromagnétiques doux.
     
    6. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique selon la revendication 1, ladite bobine d'étalonnage étant une bobine d'étalonnage tridimensionnelle enroulée autour du concentrateur de flux ferromagnétique doux et de l'unité de détection magnétorésistive,
    ladite bobine d'étalonnage tridimensionnelle comprenant une pluralité de sous-bobines d'étalonnage tridimensionnelles connectées électriquement en série les unes aux autres, et chacun du concentrateur de flux ferromagnétique doux, de la chaîne d'unités de détection magnétorésistives de type push et de la chaîne d'unités de détection magnétorésistives de type pull correspondant à l'une des sous-bobines d'étalonnage tridimensionnelles,
    ladite sous-bobine d'étalonnage tridimensionnelle comprenant un premier groupe de fils métalliques rectilignes et un second groupe de fils métalliques rectilignes qui sont parallèles à la ligne centrale d'axe Y du concentrateur de flux ferromagnétique doux, et ledit premier groupe de fils métalliques rectilignes et ledit second groupe des fils métalliques rectilignes étant répartis symétriquement sur les deux côtés de la ligne centrale d'axe Y du concentrateur de flux ferromagnétique doux,
    ledit premier groupe/second groupe de fils métalliques rectilignes comprenant deux fils métalliques rectilignes, et les deux fils métalliques rectilignes du premier groupe/second groupe de fils métalliques rectilignes étant situés respectivement sur les surfaces du concentrateur de flux ferromagnétique doux ou de la chaîne d'unités de détection magnétorésistives de type push et la chaîne d'unités de détection magnétorésistives de type pull,
    un fil métallique rectiligne dans le premier groupe de fils métalliques rectilignes et un fil métallique rectiligne dans le second groupe de fils métalliques rectilignes étant symétriques par rapport à la ligne centrale d'axe Y et étant répartis dans une zone située entre les chaînes d'unités de détection magnétorésistives de type push et de type pull, l'autre fil métallique rectiligne dans le premier groupe de fils métalliques rectilignes et l'autre fil métallique rectiligne dans le second groupe de fils métalliques rectilignes étant symétriques par rapport à l'axe de la ligne centrale d'axe Y et étant répartis dans des zones situées à l'extérieur de la chaîne d'unités de détection magnétorésistives de type pull et de la chaîne d'unités de détection magnétorésistives de type pull, et
    ledit premier groupe de fils métalliques rectilignes formant une première bobine de solénoïde tridimensionnelle, ledit second groupe de fils métalliques rectilignes formant une seconde bobine de solénoïde tridimensionnelle et lesdites première et seconde bobines de solénoïde tridimensionnelles présentant des sens d'enroulement opposés et étant connectées électriquement en série l'une à l'autre, l'une des bobines de solénoïde tridimensionnelles étant conçue pour générer un champ magnétique parallèle à la direction X, et l'autre étant conçue pour générer un champ magnétique selon une direction X.
     
    7. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique selon la revendication 1, ladite bobine d'initialisation étant une bobine d'initialisation plane, ladite bobine d'initialisation plane comprenant une pluralité de fils métalliques rectilignes perpendiculaires à la ligne centrale d'axe Y du concentrateur de flux ferromagnétique doux et connectés électriquement en série, lesdits fils métalliques rectilignes étant situés juste au-dessus ou au-dessous d'une rangée d'unités de détection magnétorésistives du capteur linéaire dans l'axe Z le long de la direction d'axe X et possédant des sens de courant identiques.
     
    8. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique selon la revendication 1, ladite bobine d'initialisation étant une bobine d'initialisation tridimensionnelle, ladite bobine d'initialisation tridimensionnelle comprenant un premier groupe supérieur comportant une pluralité de fils métalliques rectilignes et un second groupe inférieur comportant une pluralité de fils métalliques rectilignes qui sont parallèles à une rangée d'unités de détection magnétorésistives du réseau d'unités de détection magnétorésistives le long de la direction d'axe X,
    ledit premier groupe de fils métalliques rectilignes et ledit second groupe de fils métalliques rectilignes étant respectivement situés sur les surfaces des concentrateurs de flux ferromagnétiques doux et les unités de détection magnétorésistives, et ledit premier groupe de fils métalliques rectilignes et ledit second groupe de fils métalliques rectilignes possédant des sens de courant opposées, et étant connectés pour former une bobine de solénoïde.
     
    9. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique selon l'une quelconque des revendications 1 à 8, ladite bobine d'initialisation et ladite bobine d'étalonnage étant constituées de matériaux à conductivité élevée et lesdits matériaux à conductivité élevée étant du Cu, de l'Au ou de l'Ag.
     
    10. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique selon la revendication 9, ladite bobine d'initialisation, ladite bobine d'étalonnage et ledit capteur magnétorésistif dans l'axe Z à puce unique étant isolés à l'aide de matériaux d'isolation électrique, et lesdits matériaux d'isolation étant du SiO2, Al2O3, du Si3N4, un polyimide ou une résine photosensible.
     
    11. Ensemble capteur magnétique magnétorésistif linéaire dans l'axe Z à puce unique selon l'une quelconque des revendications 1 à 6, ladite bobine d'étalonnage comprenant un pôle positif et un pôle négatif et lorsqu'un courant passe à travers le pôle positif et le pôle négatif, ladite amplitude d'un champ magnétique d'étalonnage ainsi généré étant dans les limites d'une zone de travail linéaire de la chaîne d'unités de détection magnétorésistives de type push et de la chaîne d'unités de détection magnétorésistives de type pull.
     
    12. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique selon la revendication 11, ledit courant dans la bobine d'étalonnage étant une valeur de courant définie ou une pluralité de valeurs de courant définies.
     
    13. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique selon la revendication 1, 7 ou 8, ladite bobine d'initialisation comprenant deux pôles, et ladite amplitude du champ magnétique d'initialisation étant supérieure à une valeur de champ magnétique saturé de la couche libre.
     
    14. Ensemble capteur magnétorésistif linéaire dans l'axe Z à puce unique selon la revendication 13, ledit courant dans la bobine d'initialisation étant un courant pulsé ou un courant continu.
     




    Drawing













































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description