(19)
(11)EP 3 246 543 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 15877824.1

(22)Date of filing:  15.01.2015
(51)Int. Cl.: 
F02B 75/04  (2006.01)
F02B 75/32  (2006.01)
(86)International application number:
PCT/JP2015/050873
(87)International publication number:
WO 2016/113872 (21.07.2016 Gazette  2016/29)

(54)

DOUBLE-LINK PISTON CRANK MECHANISM FOR INTERNAL COMBUSTION ENGINE

DOPPELVERKNÜPFUNGS-KOLBENKURBELMECHANISMUS FÜR EINEN VERBRENNUNGSMOTOR

MÉCANISME À PISTON ET MANIVELLE À DOUBLE BIELLETTE POUR MOTEUR À COMBUSTION INTERNE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
22.11.2017 Bulletin 2017/47

(73)Proprietor: Nissan Motor Co., Ltd.
Yokohama-shi, Kanagawa 221-0023 (JP)

(72)Inventors:
  • TANABE, Takashi
    Atsugi-shi Kanagawa 243-0123 (JP)
  • MOTEKI, Katsuya
    Atsugi-shi Kanagawa 243-0123 (JP)

(74)Representative: Osha Liang 
2, rue de la Paix
75002 Paris
75002 Paris (FR)


(56)References cited: : 
EP-A1- 1 505 277
EP-A2- 2 053 217
DE-A1-102011 104 531
JP-A- 2009 092 037
EP-A1- 2 048 335
WO-A1-2011/007622
JP-A- 2004 124 776
JP-A- 2009 108 707
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] This invention relates to a multi-link piston crank mechanism of an internal combustion engine.

    Background Art



    [0002] Conventionally, there is known a multi-link piston crank mechanism in which a piston and a crank pin of a crank shaft are linked through a plurality of links.

    [0003] For example, a patent document 1 discloses a piston crank mechanism for an internal combustion engine which includes an upper link including one end connected through a piston pin to the piston, a lower link connected through an upper pin to the other end of the upper link, and rotatably connected to the crank pin of the crank shaft at the crank pin bearing portion, and a control link including one end swingably supported by the engine main body, and the other end connected through a control pin to the lower link.

    [0004] The lower link in this patent document 1 includes an upper pin boss portion and a control pin boss portion which are located on the both sides of the crank pin bearing portion. The upper pin boss portion has a bifurcated shape. The upper pin boss portion is a connection portion with the upper link. The control pin boss portion has a bifurcated shape. The control pin boss portion is a connection portion with the control link. Accordingly, in the crank pin bearing portion, rigidities of portions on both sides of a central portion in the crank shaft axial direction which is a crotch of the bifurcated shape are relatively higher than the rigidity of the central portion.

    [0005] However, in the thus-constructed crank bearing portion, the shape variation amount (deformation amount) of the inner circumference surface of the central portion in the crank shaft axial direction which has a relatively low rigidity becomes larger than the shape variation amount (deformation amount) of the inner circumference surfaces of the both end portions in the crank shaft axial direction which has a relatively low rigidity, at the lubrication of the elastic fluid.

    [0006] Accordingly, in this lubrication of the elastic fluid, in particular, when the combustion load by which the input load to the lower link becomes maximum is generated, the both end portions of the crank pin bearing portion in the crank shaft axial direction are easy to be contacted on the crank pin at the input position of the input load due to the combustion load. Consequently, the seizure resistance and the abrasion resistance of the crank pin bearing portion may be deteriorated.
    Patent document 2 describes a multi-link engine having a piston that moves inside a cylinder. A piston pin connects the piston to an upper link, which is connected to a lower link. A crank pin of a crankshaft supports the lower link thereon. The lower link is pivotally connected to one end of a control link, which is connected at another end to the engine block body by a control shaft. The control shaft is lower than a crank journal of the crankshaft, and disposed on a first side of a plane that is parallel to a cylinder center axis and that contains a center rotational axis of the crank journal. The cylinder center axis is located on a second (i.e., opposite the first side) plane. The control link has a center axis that is parallel to the cylinder center axis when the piston is near top and bottom dead centers.

    Prior Art Document


    Patent Document



    [0007] 

    Patent Document 1: Japanese Patent Application Publication No. 2009-215970

    Patent Document 2: EP 2 053 217 A2


    Summary of The Invention



    [0008] In the present invention, there are provided: a lower link including a crank pin bearing portion which is rotatably mounted to a crank pin of a crank shaft; an upper link including a first end portion connected to a piston pin of a piston, and a second end portion connected to one end side of the lower link through a first link pin inserted into a first through hole of the second end portion of the upper link; and a control link including a first end portion supported by a cylinder block, and a second end portion connected to the other end side of the lower link through a second link pin inserted into a second through hole of the second end portion of the control link; the lower link including the one end side to which an input load due to a combustion load is acted, the lower link including a bifurcated one end side protruding piece portion and a bifurcated other end side protruding piece portion which are positioned on both sides of the crank pin bearing portion when viewed from an axial direction of the crank shaft, the bifurcated one end side protruding piece portion sandwiching the other end of the upper link, and the bifurcated other end side protruding piece portion sandwiching the other end of the control link, the crank pin bearing portion including a central portion in the axial direction of the crank shaft, the central portion having a thickness along a radial direction of the crank pin, the thickness of the central portion at a portion positioned on the one end side of the lower link being larger than a thickness of a portion positioned on the other end side of the lower link, and a thickness of the control link second end portion along a radial direction of the second through hole being larger than a thickness of the upper link second end portion along a radial direction of the first through hole.

    [0009] In the present invention, the portion on the one end side of the lower link in the crank pin bearing portion has the thickness of the central portion in the crank shaft axial direction, which is larger than a thickness positioned on the other end side of the lower link in the crank pin bearing portion, so as to have the relatively high rigidity. Accordingly, the crank pin bearing portion can suppress the shape variation (the deformation) of the central portion in the crank shaft axial direction, on the one end side of the lower link. That is, the crank pin bearing portion relieves the bearing end portion contacts in which the both end portions are contacted on the crank pin, on the one end side of the lower link. Consequently, it is possible to improve the seizure resistance and the abrasion resistance of the crank pin bearing portion.

    [0010] The bifurcated first end side protruding piece portion of the lower link comprises a pair of walls being held apart to sandwich the first end portion of the upper link and each including a first through hole to insert the first link pin. The bifurcated second end side protruding piece portion of the lower link comprises a pair of walls being held apart to sandwich the second end portion of the control link and each including a second through hole to insert the second link pin. The two parts of the lower link are held together by a plurality of bolts located between the pair of walls.

    Brief Description of Drawings



    [0011] 

    FIG. 1 is an explanatory view schematically showing an internal combustion engine to which the present invention is applied.

    FIG. 2 is an explanatory view schematically showing main parts of a multi-link piston crank mechanism of an internal combustion engine according to the present invention.

    FIG. 3 is an explanatory view schematically showing main parts of a lower link.

    FIG. 4 is an explanatory view schematically showing a lower link in a comparative example.

    FIG. 5 is an explanatory view showing a multi-link piston crank mechanism of the internal combustion engine according to another example of the present invention.

    FIG. 6 is an explanatory view schematically showing main parts of the multi-link piston crank mechanism of the internal combustion engine according to the present invention.

    FIG. 7 is an explanatory view schematically showing an upper link second end portion in the comparative example.

    FIG. 8 is an explanatory view schematically showing main parts of the multi-link piston crank mechanism of the internal combustion engine according to the present invention.

    FIG. 9 is an explanatory view schematically showing an upper link second end portion in the comparative example.

    FIG. 10 is an explanatory view schematically showing main parts of a multi-link piston crank mechanism of the internal combustion engine according to a second embodiment of the present invention.

    FIG. 11 is a sectional view taken along an A-A line of FIG. 10.


    Description of Embodiments



    [0012] Hereinafter, one embodiment according to the present invention is illustrated in detail with reference to the drawings. FIG. 1 is an explanatory view schematically showing an internal combustion engine 1 to which the present invention is applied.

    [0013] An internal combustion engine 1 includes a multi-link piston crank mechanism (double-link piston crank mechanism) 4 by which a piston 2 and a crank shaft 3 are linked with each other by a plurality of links. The multi-link piston crank mechanism 4 in this embodiment is a variable compression ratio mechanism arranged to vary an upper dead center position of the piston 2 reciprocated within a cylinder 5a of a cylinder block 5, and thereby to vary an engine compression ratio.

    [0014] The multi-link piston crank mechanism 4 includes a lower link 7 rotatably mounted to a crank pin 6 of a crank shaft 3; an upper link 8 linking the piston 2 and the lower link 7; and a control link 9 including one end rotatably supported by the cylinder block 5, and the other end rotatably connected to the lower link 7.

    [0015] The crank shaft 3 includes a plurality of journal portions 10 and the crank pin 6. The journal portions 10 are rotatably supported by crank shaft bearing portions (not shown) which are constituted by the cylinder block 5 and a main bearing cap 11. The crank pin 6 is eccentric from the journal portions 10 by a predetermined amount. The lower link 7 is rotatably mounted on the crank pin 6.

    [0016] FIG. 2 is a sectional view at a central (middle) portion of the lower link 7 in the crank shaft axial direction. As shown in FIG. 2, the lower link 7 includes a crank pin bearing portion 12 rotatably mounted on the crank pin 6 of the crank shaft 3; and one end side protruding piece portion 13 and the other end side protruding piece portion 14 which are positioned on the both sides of the crank pin bearing portion 12. The other end side of the upper link 8 is rotatably connected to the one end side protruding piece portion 13. The other end side of the control link 9 is rotatably connected to the other end side protruding piece portion 14. An input load F1 caused due to the combustion load is acted to the one end side of the lower link 7 from the crank pin 6, as shown by an arrow in FIG. 2.

    [0017] In this case, the one end side of the lower link 7 is a side on which the one end side protruding piece portion 13 of the lower link 7 is formed. Moreover, the other end side of the lower link 7 is a side on which the other end side protruding piece portion 14 of the lower link 7 is formed.

    [0018] The crank pin bearing portion 12 is a through hole having a circular section. Besides, the lower link 7 can be divided into two members at a dividing surface at which the crank pin bearing portion 12 is divided into two portions, for assembling the lower link 7 to the crank pin 6. The lower link 7 is integrated by two bolts 15 and 15.

    [0019] The one end side protruding piece portion 13 has a bifurcated shape which sandwiches the other end side of the upper link 8. This one end side protruding piece portion 13 includes a pair of one end side protruding pieces 16 confronting each other. Each of the one end protruding pieces 16 includes a lower link one end side pin hole 18 in which a substantially cylindrical first link pin 17 is fixed by the press fit.

    [0020] The other end side protruding piece portion 14 has a bifurcated shape which sandwiches the other end side of the control link 9. The other end side protruding piece portion 14 includes a pair of the other end side protruding pieces 19 confronting each other. Each of the other end side protruding piece portions 19 includes a lower link other end side pin hole 21 in which a substantially cylindrical second link pin 20 is fixed by the press fit.

    [0021] The upper link 8 includes an upper link first end portion 23 rotatably mounted to the piston 2 by a piston pin 22; an upper link second end portion 24 rotatably connected to the one end side protruding piece portion 13 of the lower link 7 by the first link pin 17; and an upper link rod portion 25 connecting the upper link first end portion 23 and the upper link second end portion 24.

    [0022] The upper link first end portion 23 includes an upper link one end side pin hole (not shown) which is formed at a central portion of the upper link first end portion 23 to penetrate through the upper link first end portion 23, and into which the piston pin 22 is rotatably inserted.

    [0023] The upper link second end portion 24 includes an upper link other end side pin hole 26 that is a first through hole which is formed at a central portion of the upper link second end portion 24 to penetrate through the upper link second end portion 24, and into which the first link pin 17 is rotatably inserted.

    [0024] The control link 9 is arranged to restrict a movement of the lower link 7. The control link 9 includes a control link first end portion 31 rotatably connected to an eccentric shaft portion 42 of a control shaft 41; a control link second end portion 32 rotatably connected to the other end side protruding piece portion 14 of the lower link 7 by the second link pin 20; and a control link rod portion 33 connecting the control link one first portion 31 and the control link second end portion 32.

    [0025] The control link first end portion 31 includes a control link one end side pin hole 34 formed at a central portion of the control link first end portion 31 to penetrate through the control link first end portion 31, and into which the eccentric shaft portion 42 is rotatably inserted.

    [0026] The control link second end portion 32 includes a control link other end side pin hole 35 that is a second through hole which is formed at a central portion of the control link second end portion 32 to penetrate through the control link second end portion 32, and into which the second link pin 20 is rotatably inserted.

    [0027] The control shaft 41 is disposed on a lower side of the crank shaft 3 in parallel with the crank shaft 3. The control shaft 41 is rotatably supported on the control shaft bearing portion (not shown) constituted by the main bearing cap 11 and a control shaft bearing cap 43. That is, the control shaft 41 is rotatably supported by the cylinder block 5 which is a part of the engine main body.

    [0028] The control shaft 41 is driven and rotated by an actuator (not shown), so that a rotation positon of the control shaft 41 is controlled. Besides, the actuator may be, for example, an electric motor, or a hydraulically driven actuator.

    [0029] The multi-link piston crank mechanism 4 according to this embodiment is constituted so that a center C1 of the first link pin 17, a center C2 of the crank pin 6, and a center C3 of the second link pin 20 are aligned in the same line when viewed from the crank shaft axial direction.

    [0030] A crank pin oil passage 51 is formed in the crank pin 6. The crank pin oil passage 51 passes through the center of the crank pin when viewed from the crank shaft axial direction. The crank pin oil passage 51 extends radially within the crank pin 6 in the linear shape. In this embodiment, both ends of the crank pin oil passage 51 are opened, respectively, on an outer circumference surface of the crank pin 6. A lubricant pressurized by an oil pump (not shown) is supplied to this crank pin oil passage 51 through an axial oil passage 52 extending in the crank shaft axial direction.

    [0031] In this lower link 7 of the multi-link piston crank mechanism 4, the one end side protruding piece portion 13 having the bifurcated shape, and the other end side protruding piece portion 14 having the bifurcated shape are integrally provided on the outer circumference side of the crank pin bearing portion 12. That is, as shown in FIG. 3, the one end side protruding pieces 16 of the one end side protruding piece portion 13, or the other end side protruding pieces 19 of the other end side protruding piece portion 14 are connected to an outer circumference side of both end portions 12b of the crank pin bearing portion 12 along the crank shaft axial direction.

    [0032] Accordingly, in the crank pin bearing portion 12, the rigidities of the both side portions 12b of the crank pin bearing portion 12 in the crank shaft axial direction are relatively higher than that of a central portion (middle portion) 12a of the crank pin bearing portion 12 in the crank shaft axial direction, which is a crotch portion (fork portion). Besides, a symbol 55 in FIG. 3 is a lubricant oil to lubricate a portion between the crank pin bearing portion 12 and the crank pin 6.

    [0033] In a lower link 81 of a comparative example in which bifurcated one end side protruding piece portion 83 and bifurcated other end side protruding piece portion 84 are integrally provided on the outer circumference side of a crank pin bearing portion 82, like the lower link 7 in this embodiment, the rigidities of both side portions 82b of the crank pin bearing portion 82 in the crank shaft axial direction is relatively higher than that of a central portion 82a of the crank pin bearing portion 82 in the crank shaft axial direction, as shown in FIG. 4. Besides, a symbol 85 in FIG. 4 is a lubricant oil to lubricate a portion between the crank pin bearing portion 82 and the crank pin 6.

    [0034] Accordingly, a shape variation amount (deformation amount) of an inner circumference surface of the central portion 82a of the crank pin bearing portion 82 in the crank shaft axial direction, which has the relatively lower rigidity becomes larger than those of inner circumference surfaces of the both end portions 82b of the crank pin bearing portion 82 in the crank shaft axial direction, which has the relatively higher rigidity, at the lubrication of the elastic fluid.

    [0035] That is, at the lubrication of the elastic fluid, in particular, when the combustion load by which the input load to the lower link 81 becomes maximum is generated, the both end portions 82b of the crank pin bearing portion 82 in the crank shaft axial direction are easy to be contacted on the crank pin 6, at the input position of the input load caused due to the combustion load. Consequently, the seizure resistance and the abrasion resistance of the crank pin bearing portion 82 may be deteriorated.

    [0036] Accordingly, the lower link 7 according to this embodiment is formed so that a thickness (crank pin radial direction thickness) of the central portion 12a of the crank pin bearing portion 12 in the crank shaft axial direction along the crank pin radial direction becomes relatively larger on the one end side of the lower link 7, as shown in FIG. 2 and FIG. 3. That is, in the thickness of the central portion 12a of the crank pin bearing portion 12 in the crank shaft axial direction along the crank pin radial direction, a portion which is located on the one end side of the lower link 7, and to which the input load F1 due to the combustion load is acted is larger than the portion which is located on the other end side of the lower link 7.

    [0037] Therefore, it is possible to suppress the deformation at the central portion of the crank pin bearing portion 12 in the crank shaft axial direction, on the one end side of the lower link 7 to which the input load F1 due to the combustion load is acted. That is, it is possible to relieve the bearing end portion contacts (abutments) in which the both end portions 12b of the crank pin bearing portion 12 in the crank shaft axial direction are contacted on the crank pin 6, on the one end side of the lower link 7. Consequently, it is possible to improve the seizure resistance and the abrasion resistance of the crank pin bearing portion 12.

    [0038] Besides, in this embodiment, the thicknesses of the central portion 12a of the crank pin bearing portion 12 in the crank shaft axial direction along the crank pin radial direction are constant, respectively, on the one end side and the other end side of the lower link 7, along the circumferential direction of the crank pin bearing portion.

    [0039] The crank pin bearing portion 12 includes an oil hole 61 which is formed in the central portion 12a in the crank shaft axial direction, at the portion that is located on the one end side of the lower link 7, and that has a relatively larger thickness along the crank pin radial direction, and which penetrates through the central portion 12a. The oil hole 61 is arranged to supply the lubricant oil from the crank pin side to the upper link second end portion 24.

    [0040] The oil hole 61 is formed to be out of the input position of the input load F1 which is acted to the lower link 7 due to the combustion load, and to be out of the positon on the line of the action of the input load F1. In this embodiment, the oil hole 61 is formed on the linear line passing through the center C1 of the first link pin 17, the center C2 of the crank pin 6, and the center C3 of the second link pin 20 when viewed from the crank shaft axial direction.

    [0041] In this way, the oil hole 61 is formed at the positon which is on the one side of the lower link 7, and which has the relatively larger thickness along the crank pin radial direction. With this, it is possible to suppress the reduction of the strength of the crank pin bearing portion 12, and to supply the lubricant oil from the crank pin side to the upper link second end portion 24. It is possible to improve the seizure resistance and the abrasion resistance of the lower link one end side pin hole 18 of the upper link second end portion 24 which is the bearing portion of the first link pin 17.

    [0042] Moreover, the oil hole 61 is formed to be out of (off) the input position of the input load F1 which is acted to the lower link 7 due to the combustion load, and to be out of the positon on the line of the action of the input load F1. Accordingly, it is possible to decrease the stress (the tension) generated in the oil hole 61, and to improve the fatigue strength of the portion around the oil hole 61. Moreover, it is possible to suppress the fatigue of the sliding surface of the portion around the upstream opening of the oil hole 61 opened on the inner circumference surface of the crank pin bearing portion 12, in accordance with the improvement of the fatigue strength of the portion around the oil hole 61. It is possible to improve the seizure resistance and the abrasion resistance of the crank pin bearing portion 12.

    [0043] Furthermore, the oil hole 61 is formed on the linear line passing through the center C1 of the first link pin 17, the center C2 of the crank pin 6, and the center C3 of the second link pin 20 when viewed from the crank shaft axial direction. Accordingly, it is possible to effectively supply the lubricant oil to the sliding surface of the upper link second end portion 24.

    [0044] Moreover, the forming position of the oil hole 61 needs not be necessarily formed to be out of the position of the input load F1 which is acted to the lower link 7 due to the combustion load, and to be out of the positon on the line of the action of the input load F1 as long as the forming position corresponds to the portion which is located on the one end side of the lower link 7, which has the relatively larger thickness along the crank pin radial direction, in the central portion 12a of the crank pin bearing portion 12 in the crank shaft axial direction. Furthermore, the forming position of the oil hole 61 needs not be positioned on the linear line passing through the center C1 of the first link pin 17, the center C2 of the crank pin 6, and the center C3 of the second link pin 20 when viewed from the crank shaft axial direction.

    [0045] That is, for example, as shown in FIG. 5, the oil hole 61 may be formed to be out of the input positon of the input load F1 which is acted to the lower link 7 due to the combustion load, and to be out of the line of the action of the input load F1, at the portion which is located on the one end side of the lower link 7, and which has the relatively larger thickness along the crank pin radial direction, in the central portion 12a of the crank pin bearing portion 12 in the crank shaft axial direction.

    [0046] Moreover, the thickness of the control link second end portion 32 along the control link other end side pin hole radial direction (hereinafter, referred to as a second through hole radial direction) is formed to be larger than the thickness of the upper link second end portion 24 along the upper link other end side pin hole radial direction (hereinafter, referred to as a first through hole radial direction).

    [0047] The input load F2 in the compression direction due to the combustion load, and the input load F3 which is in the pulling direction due to the inertia load smaller than the combustion load are acted from the first link pin 17 to the upper link second end portion 24. Accordingly, the input load F2 inputted to the upper link second end portion 24 due to the combustion load is supported by the upper link second end portion 24 and the upper link rod portion 25. Besides, the input load F2 is greater than the input load F3.

    [0048] The input load F4 in the pulling direction due to the combustion load due to the combustion load, and the input load F5 in the compression direction due to the inertial load smaller than the combustion load are acted from the second link pin 20 to the control link second end portion 32. Accordingly, the input load F4 inputted to the control link second end portion 32 due to the combustion load is supported by the control link second end portion 32. Besides, the input load F4 is greater than the input load F5.

    [0049] That is, the upper link second end portion 24 can support the large input load F2 due to the combustion load, with the upper link rod portion 25. Accordingly, even when the thickness of the upper link second end portion 24 along the first through hole radial direction is formed to be smaller than the thickness of the control link second end portion 32 along the second through hole radial direction, it is possible to ensure the necessary rigidity.

    [0050] Accordingly, even when the thickness of the central portion 12a of the crank pin bearing portion 12 in the crank shaft axial direction along the crank pin radial direction is formed to be large on the one end side of the lower link 7 for ensuring the rigidity of the central portion 12a of the crank pin bearing portion 12 in the crank shaft axial direction, it is possible to avoid the interference with the upper link second end portion 24 by decreasing the thickness of the upper link second end portion 24 along the first through hole radial direction by the increasing amount of the thickness of the central portion 12a.

    [0051] Furthermore, the thickness of the central portion 12a of the crank pin bearing portion 12 in the crank shaft axial direction along the crank pin radial direction is not be relatively larger on the other end side of the lower link 7. Accordingly, it is not necessary to decrease the thickness of the control link second end portion 32 along the second through hole radial direction. It is possible to ensure the rigidity of the control link second end portion 32 while avoiding the interference with the lower link 7.

    [0052] In the control link second end portion 32, as shown in FIG. 6, the thicknesses (second through hole radial direction thicknesses) of the both end portions of the control link second end portion 32 in the control link other end side pin hole axial direction (hereinafter, referred to as a second through hole axial direction) along the second through hole radial direction is formed to be smaller than the thickness (the second through hole radial direction thickness) of the central portion in the second through hole axial direction along the second through hole radial direction, on the side on which the input load F4 is acted due to the combustion load.

    [0053] That is, the both end portions of the control link second end portion 32 in the second through hole axial direction are formed so that the thickness along the second through hole radial direction is formed to be smaller toward the both sides in the second through hole axial direction.

    [0054] With this, in the control link second end portion 32, the central portion in the second through hole axial direction has the rigidity higher than those of the both end portions in the second through hole axial direction, on the side on which the input load F4 is acted due to the combustion load.

    [0055] Accordingly, when the input load F4 is acted, in the control link second end portion 32, the shape variation (deformation) of the central portion of the control link second end portion 32 in the second through hole axial direction is relatively suppressed on the side on which the input load F4 is acted due to the combustion load. That is, it is possible to relieve the bearing end portion contacts at which the both end portions in the second through hole axial direction are contacted on the second link pin 20, relative to a case where the thickness along the second through hole radial direction is constant along the second through hole axial direction (cf. FIG. 7) on the side on which the input load F4 is acted in the control link second end portion 32. Consequently, it is possible to improve the seizure resistance and the abrasion resistance of the control link other end side pin hole 35.

    [0056] Besides, in the control link second end portion 32, the thickness along the second through hole radial direction is relatively larger to increase the strength. Accordingly, it is possible to ensure the necessary strength even when the thicknesses of the both end portions in the second through hole axial direction are formed to be smaller.

    [0057] In the upper link second end portion 24, as shown in FIG. 6, the thicknesses (the first through hole radial direction thicknesses) of the both end portions in the upper link other end side pin hole axial direction (hereinafter, referred to as the first through hole axial direction) along the first through hole radial direction are formed to be smaller than the thickness (the first through hole radial direction thickness) of the central portion in the first through hole axial direction along the first through hole radial direction, on the side on which the input load F4 is acted due to the combustion load.

    [0058] That is, the both end portions of the upper link second end portion 24 in the first through hole axial direction are formed so that the thickness along the first through hole radial direction is smaller towards the both sides in the first through hole axial direction.

    [0059] With this, in the upper link second end portion 24, the central portion in the first through hole axial direction has the rigidity higher than those of the both end portions in the first through hole axial direction, on the side on which the input load F2 is acted due to the combustion load,.

    [0060] Accordingly, when the input load F2 is acted, in the upper link second end portion 24, the shape variation (deformation) of the central portion of the upper link second end portion 24 in the first through hole axial direction is relatively suppressed on the side on which the input load F2 is acted due to the combustion load. That is, it is possible to relieve the bearing end portion contacts at which the both end portions in the first through hole axial direction are contacted on the first link pin 17, relative to a case where the thickness along the first through hole radial direction is constant along the first through hole axial direction (cf. FIG. 9) on the side on which the input load F2 is acted in the upper link second end portion 24. Consequently, it is possible to improve the seizure resistance and the abrasion resistance of the upper link other end side pin hole 26.

    [0061] Besides, in the upper link second end portion 24, the thicknesses of the both end portions in the first through hole axial direction are formed to be smaller in a range in which the necessary strength can be ensured.

    [0062] Next, a second embodiment according to the present invention is explained with reference to FIG. 10 and FIG. 11. Besides, constituting elements which are identical to those in the above-described first embodiment have the same symbols. The repetitive explanations are omitted.

    [0063] The multi-link piston crank mechanism 4 in this second embodiment has the configuration substantially identical to that of the multi-link piston crank mechanism 4 in the above-described first embodiment. However, in the central portion 12a of the crank pin bearing portion 12 in the crank shaft axial direction, the thickness (the crank pin radial direction thickness) of the portion which is positioned on the one end side of the lower link 7 along the crank pin radial direction is formed to be relatively larger on the one end side of the lower link 7. This thickness becomes largest at the input position of the input load F1 due to the combustion load. This thickness becomes smaller as it is further apart from the input positon of the input load F1 due to the combustion load along the crank pin bearing portion circumference direction.

    [0064] Moreover, recessed portions 71 are formed on both end surfaces on the one end side of the lower link 7, on the side portion (lateral portion) of the input position of the input load F1 acted to the lower link 7, and on the side portion (lateral portion) of the central portion of the crank pin bearing portion 12 in the crank shaft axial direction.

    [0065] In this second embodiment, it is possible to attain below-described operations and effects, in addition to the operations and the effects in the above-described first embodiment.

    [0066] That is, in this second embodiment, the input load F1 due to the combustion load is supported by the portion having the highest rigidity in the portion positioned on the one end side of the lower link 7 of the central portion of the crank pin bearing portion 12 in the crank shaft axial direction.

    [0067] Accordingly, the crank pin bearing portion 12 can effectively suppress the shape variation (deformation) of the central portion 12a of the crank pin bearing portion 12 in the crank shaft axial direction, at the input position of the input load F1 on the one end side of the lower link 7. That is, the crank pin bearing portion 12 can effectively relieve the bearing end portion contacts by which the both end portions 12b of the crank pin bearing portion 12 in the crank shaft axial direction are contacted on the crank pin 6.

    [0068] Moreover, the recessed portions 71 are formed on the both end surfaces on the one end side of the lower link 7. With this, in the crank pin bearing portion 12 on the one end side of the lower link 7, it is possible to decrease the rigidities of the both end portions 12b in the crank shaft axial direction.

    [0069] Therefore, in the crank pin bearing portion 12, the rigidity variation in the crank shaft axial direction becomes small on the one end side of the lower link 7. It is possible to further relieve the bearing end portion contacts in which the both end portions 12b in the crank shaft axial direction are contacted on the crank pin 6. Consequently, it is possible to further improve the seizure resistance and the abrasion resistance of the crank pin bearing portion 12.

    [0070] Besides, in the above-described embodiments, the multi-link piston crank mechanism 4 is a variable compression ratio mechanism. However, the present invention is applicable to the multi-link piston crank mechanism which is not the variable compression ratio mechanism. In this case, for example, the multi-link piston crank mechanism has the configuration substantially identical to that of the multi-link piston crank mechanism 4 in the above-described embodiments. However, this multi-link piston crank mechanism has a configuration in which the control shaft 41 does not include the eccentric shaft portion 42, and the one end of the control link 9 is rotatably connected to the control shaft 41, in the multi-link piston crank mechanism 4 according to the above-described embodiments.


    Claims

    1. A multi-link piston crank mechanism (4) for an internal combustion engine (1), the multi-link piston crank mechanism (4) comprising:

    a lower link (7) including a crank pin bearing portion (12) which is rotatably mounted to a crank pin (6) of a crank shaft (3);

    an upper link (8) including a first end portion (23) connected to a piston pin (22) of a piston (2), and a second end portion (24) connected to a first end side of the lower link (7) through a first link pin (17) inserted into a first through hole (26) of the second end portion (24) of the upper link (8); and

    a control link (9) including a first end portion (31) supported by a cylinder block (5), and a second end portion (32) connected to the second end side of the lower link (7) through a second link pin (20) inserted into a second through hole (35) of the second end portion (32) of the control link (9);

    the lower link (7) including the first end side to which an input load (F1) due to a combustion load is acted, the lower link (7) including a bifurcated first end side protruding piece portion (13) and a bifurcated second end side protruding piece portion (14) which are positioned on both sides of the crank pin bearing portion (12) when viewed from an axial direction of the crank shaft (3), the bifurcated first end side protruding piece portion (13) sandwiching the second end of the upper link (8), and the bifurcated second end side protruding piece portion (14) sandwiching the second end of the control link (9),

    the crank pin bearing portion (12) including a central portion (12a) in the axial direction of the crank shaft (3), the central portion (12a) having a thickness along a radial direction of the crank pin (6), the thickness of the central portion (12a) at a portion positioned on the first end side of the lower link (7) being larger than a thickness of a portion positioned on the second end side of the lower link (7), and

    a thickness of the control link (9) second end portion along a radial direction of the second through hole (35) being larger than a thickness of the upper link second end portion along a radial direction of the first through hole (26),

    wherein:

    the bifurcated first end side protruding piece portion (13) of the lower link (7) comprises a pair of walls (16) being held apart to sandwich the second end portion (24) of the upper link (8) and each including a first through hole (18) to insert the first link pin (17), and

    the bifurcated second end side protruding piece portion (14) of the lower link (7) comprises a pair of walls (19) being held apart to sandwich the second end portion (32) of the control link (9) and each including a second through hole (21) to insert the second link pin (20), and

    a plurality of bolts (15) holding the two parts of the lower link (7) together are located between the pair of walls (16).


     
    2. The multi-link piston crank mechanism (4) as claimed in claim 1, wherein in the control link second end portion (32), thicknesses of the first and second end portions in an axial direction of the second through hole (35) along the radial direction of the second through hole (35) are smaller than a thickness of the central portion (12a) in the axial direction of the second through hole (35) along the radial direction of the second through hole (35), on a side on which the input load (F1) due to the combustion load is acted.
     
    3. The multi-link piston crank mechanism (4) as claimed in claim 1, wherein in the upper link second end portion (24), thicknesses of the first and second end portions in an axial direction of the first through hole (26) along the radial direction of the first through hole (26) are smaller than a thickness of the central portion (12a) in the axial direction of the first through hole (26) along the radial direction of the first through hole (26), on a side on which the input load (F1) due to the combustion load is acted.
     
    4. The multi-link piston crank mechanism (4) as claimed in one of claims 1 to 3, wherein the crank pin bearing portion (12) includes an oil hole (61) which is formed at a portion that is on the first end side of the lower link (7) in which the thickness along the crank pin radial direction is relatively larger, in the central portion (12a) of the crank pin bearing portion (12) in the crank shaft axial direction, and which is arranged to supply a lubricant oil from the crank pin side to the upper link second end portion (24).
     
    5. The multi-link piston crank mechanism (4) as claimed in claim 4, wherein the oil hole (61) is formed at a position out of an input position of the input load (F1) due to the combustion load acted to the lower link (7).
     
    6. The multi-link piston crank mechanism (4) as claimed in claim 4 or 5, wherein a center (C1) of the first link pin (17), a center (C2) of the crank pin (6), and a center (C3) of the second link pin (20) are aligned on the same linear line when viewed from the axial direction of the crank shaft (3); and the oil hole (61) is formed on a linear line passing through the center (C1) of the first link pin (17), the center (C2) of the crank pin (6), and the center (C3) of the second link pin (20) when viewed from the axial direction of the crank shaft (3).
     
    7. The multi-link piston crank mechanism (4) as claimed in one of claims 1 to 6, wherein in a portion which is located on the first end side of the lower link (7) in the central portion (12a) of the crank pin bearing portion (12) in the axial direction of the crank shaft (3), a thickness along the radial direction of the crank pin (6) becomes largest at the input position of the input load (F1) due to the combustion load; and the thickness along the radial direction of the crank pin (6) becomes smaller as it is apart from the input position of the input load (F1) due to the combustion load along a circumference direction of the crank pin bearing portion (12).
     
    8. The multi-link piston crank mechanism (4) as claimed in claim 7, wherein recessed portions (71) are formed on first and second end surfaces on the first end side of the lower link (7), on side portions of the input position of the input load (F1) due to the combustion load acted to the lower link (7), on side portions of the central portion (12a) of the crank pin bearing portion (12) in the axial direction of the crank shaft (3).
     


    Ansprüche

    1. Mehrgliedriger Kolbenkurbelmechanismus (4) für einen Verbrennungsmotor (1), wobei der mehrgliedrige Kolbenkurbelmechanismus (4) umfasst:

    ein unteres Glied (7) mit einem Kurbelzapfenlagerabschnitt (12), der drehbar an einem Kurbelzapfen (6) einer Kurbelwelle (3) befestigt ist;

    ein oberes Glied (8) mit einem ersten Endabschnitt (23), der mit einem Kolbenzapfen (22) eines Kolbens (2) verbunden ist, und einem zweiten Endabschnitt (24), der mit einer ersten Endseite des unteren Glieds (7) über einen ersten Gliedzapfen (17) verbunden ist, der in ein erstes Durchgangsloch (26) des zweiten Endabschnitts (24) des oberen Glieds (8) eingesetzt ist; und

    ein Steuerungsglied (9) mit einem ersten Endabschnitt (31), der von einem Zylinderblock (5) gehaltert ist, und einem zweiten Endabschnitt (32), der mit der zweiten Endseite des unteren Glieds (7) über einen zweiten Gliedzapfen (20) verbunden ist, der in ein zweites Durchgangsloch (35) des zweiten Endabschnitts (32) des Steuerungsglieds (9) eingesetzt ist;

    wobei das untere Glied (7) die erste Endseite aufweist, auf die eine verbrennungsmotorisch bedingte Eingangslast (F1) wirkt, wobei das untere Glied (7) einen gabelförmigen Vorsprungsabschnitt (13) auf der ersten Endseite und einen gabelförmigen Vorsprungsabschnitt (14) auf der zweiten Endseite aufweist, die zu beiden Seiten des Kurbelzapfenlagerabschnitts (12) von einer Axialrichtung der Kurbelwelle (3) aus gesehen angeordnet sind, wobei der gabelförmige Vorsprungsabschnitt (13) auf der ersten Seite das zweite Ende des oberen Glieds (8) einschließt und der gabelförmige Vorsprungsabschnitt (14) auf der zweiten Seite das zweite Ende des Steuerungsglieds (9) einschließt,

    wobei der Kurbelzapfenlagerabschnitt (12) einen Zentralabschnitt (12a) in Axialrichtung der Kurbelwelle (3) aufweist, wobei der Zentralabschnitt (12a) eine Dicke entlang einer Radialrichtung des Kurbelzapfens (6) aufweist, wobei die Dicke des Zentralabschnitts (12a) in einem Bereich an der ersten Endseite des unteren Glieds (7) größer ist als eine Dicke in einem Bereich an der zweiten Endseite des unteren Glieds (7), und

    eine Dicke an dem zweiten Endabschnitt des Steuerungsglieds (9) entlang einer Radialrichtung des zweiten Durchgangslochs (35) größer ist als eine Dicke an dem zweiten Endabschnitt des oberen Glieds entlang einer Radialrichtung des ersten Durchgangslochs (26),

    wobei

    der gabelförmige Vorsprungsabschnitt (13) auf der ersten Endseite des unteren Glieds (7) ein Paar von Wänden (16) aufweist, die zur Aufnahme des zweiten Endabschnitts (24) des oberen Glieds (8) zwischen den Wänden auseinander gehalten werden und jeweils ein erstes Durchgangsloch (18) zur Aufnahme des ersten Gliedzapfens (17) aufweisen, und

    der gabelförmige Vorsprungsabschnitt (14) auf der zweiten Endseite des unteren Glieds (7) ein Paar von Wänden (19) aufweist, die zur Aufnahme des zweiten Endabschnitts (32) des Steuerungsglieds (9) zwischen den Wänden auseinander gehalten werden und jeweils ein zweites Durchgangloch (21) zur Aufnahme des zweiten Gliedzapfens (20) aufweisen, und eine Mehrzahl von Bolzen (15), die die zwei Teile des unteren Glieds (7) zusammenhalten, zwischen dem Paar von Wänden (16) angeordnet sind.


     
    2. Mehrgliedriger Kolbenkurbelmechanismus (4) gemäß Anspruch 1, wobei bei dem zweiten Endabschnitt (32) des Steuerungsglieds die Dicken des ersten Endabschnitts und des zweiten Endabschnitts in Axialrichtung des zweiten Durchganglochs (35) entlang der Radialrichtung des zweiten Durchgangslochs (35) geringer sind als eine Dicke des Zentralabschnitts (12a) in Axialrichtung des zweiten Durchgangslochs (35) entlang der Radialrichtung des zweiten Durchgangslochs (35) auf einer Seite, auf der die verbrennungsmotorisch bedingte Eingangslast (F1) wirkt.
     
    3. Mehrgliedriger Kolbenkurbelmechanismus (4) gemäß Anspruch 1, wobei bei dem zweiten Endabschnitt (24) des oberen Glieds die Dicken des ersten Endabschnitts und des zweiten Endabschnitts in Axialrichtung des ersten Durchgangslochs (26) entlang der Radialrichtung des ersten Durchgangslochs (26) geringer sind als eine Dicke des Zentralabschnitts (12a) in Axialrichtung des ersten Durchgangslochs (26) entlang der Radialrichtung des ersten Durchgangslochs (26) auf einer Seite, auf der die verbrennungsmotorisch bedingte Eingangslast (F1) wirkt.
     
    4. Mehrgliedriger Kolbenkurbelmechanismus (4) gemäß einem der Ansprüche 1 bis 3, wobei der Kurbelzapfenlagerabschnitt (12) ein Ölloch (61) aufweist, das in einem Bereich auf der ersten Endseite des unteren Glieds (7) ausgebildet ist, an der die Dicke entlang der Radialrichtung des Kurbelzapfens relativ größer ist in dem Zentralabschnitt (12a) des Kurbelzapfenlagerabschnitts (12) in Axialrichtung der Kurbelwelle, und dazu ausgebildet ist, Schmieröl von der Kurbelzapfenseite dem zweiten Endabschnitt (24) des oberen Glieds zuzuführen.
     
    5. Mehrgliedriger Kolbenkurbelmechanismus (4) gemäß Anspruch 4, wobei das Ölloch (61) an einer Position außerhalb der Position angeordnet ist, an der die verbrennungsmotorisch bedingte Eingangslast (F1) auf das untere Glied (7) wirkt.
     
    6. Mehrgliedriger Kolbenkurbelmechanismus (4) gemäß Anspruch 4 oder 5, wobei ein Mittelpunkt (C1) des ersten Gliedzapfens (17), ein Mittelpunkt (C2) des Kurbelzapfens (6) und ein Mittelpunkt (C3) des zweiten Gliedzapfens (20) auf derselben Linearen von der Axialrichtung der Kurbelwelle (3) aus gesehen angeordnet sind; und das Ölloch (61) auf einer Linearen ausgebildet ist, die sich durch den Mittelpunkt (C1) des ersten Gliedzapfens (17), den Mittelpunkt (C2) des Kurbelzapfens (6) und den Mittelpunkt (C3) des zweiten Gliedzapfens (20) von der Axialrichtung der Kurbelwelle aus gesehen erstreckt.
     
    7. Mehrgliedriger Kolbenkurbelmechanismus (4) gemäß einem der Ansprüche 1 bis 6, wobei in einem Bereich, der sich auf der ersten Endseite des unteren Glieds (7) in dem Zentralabschnitt (12a) des Kurbelzapfenlagerabschnitts (12) in Axialrichtung der Kurbelwelle (3) befindet, eine Dicke entlang der Radialrichtung des Kurbelzapfens (6) an der Position am größten ist, an der die verbrennungsmotorisch bedingte Eingangslast (F1) wirkt; und die Dicke entlang der Radialrichtung des Kurbelzapfens (6) sich mit zunehmendem Abstand von der Position, an der die verbrennungsmotorisch bedingte Eingangslast (F1) wirkt, entlang einer Umfangsrichtung des Kurbelzapfenlagerabschnitts (12) verringert.
     
    8. Mehrgliedriger Kolbenkurbelmechanismus (4) gemäß Anspruch 7, wobei Vertiefungen (71) in einer ersten Oberfläche und einer zweiten Oberfläche auf der ersten Endseite des unteren Gliedes (7), in Seitenbereichen an der Position, an der die verbrennungsmotorisch bedingte Eingangslast (F1) auf das untere Glied (7) wirkt, in Seitenbereichen des Zentralabschnitts (12a) des Kurbelzapfenlagerabschnitts (12) in Axialrichtung der Kurbelwelle (3) ausgebildet sind.
     


    Revendications

    1. Mécanisme à manivelle et à piston à biellettes multiples (4) pour un moteur à combustion interne (1), le mécanisme à manivelle et à piston à biellettes multiples (4) comprenant :

    une biellette inférieure (7) comprenant une partie porteuse d'axe de manivelle (12) qui est montée de manière rotative sur un axe de manivelle (6) d'un vilebrequin (3) ;

    une biellette supérieure (8) comprenant une partie de première extrémité (23) reliée à un axe de piston (22) d'un piston (2), et une partie de seconde extrémité (24) reliée à un côté de première extrémité de la biellette inférieure (7) par un premier axe de biellette (17) inséré dans un premier trou traversant (26) de la partie de seconde extrémité (24) de la biellette supérieure (8) ; et

    une biellette de commande (9) comprenant une partie de première extrémité (31) supportée par un bloc-cylindres (5), et une partie de seconde extrémité (32) reliée au côté de seconde extrémité de la biellette inférieure (7) par un second axe de biellette (20) inséré dans un second trou traversant (35) de la partie de seconde extrémité (32) de la biellette de commande (9) ;

    la biellette inférieure (7) comprenant le côté de la première extrémité auquel est appliquée une charge d'entrée (F1) du fait d'une charge de combustion, la biellette inférieure (7) comprenant une partie de pièce (13) en saillie du côté de la première extrémité bifurquée et une partie de pièce (14) en saillie du côté de la seconde extrémité bifurquée qui sont positionnées des deux côtés de la partie porteuse d'axe de manivelle (12) vu dans une direction axiale du vilebrequin (3), la partie (13) de pièce en saillie du côté de la première extrémité bifurquée prenant en sandwich la seconde extrémité de la biellette supérieure (8), et la partie de pièce (14) en saillie du côté de la seconde extrémité bifurquée prenant en sandwich la seconde extrémité de la biellette de commande (9), la partie porteuse d'axe de manivelle (12) comprenant une partie centrale (12a) dans la direction axiale du vilebrequin (3), la partie centrale (12a) ayant une épaisseur suivant une direction radiale de l'axe de manivelle (6), l'épaisseur de la partie centrale (12a) au niveau d'une partie placée du côté de la première extrémité de la biellette inférieure (7) étant supérieure à une épaisseur d'une partie placée du côté de la seconde extrémité de la biellette inférieure (7), et

    une épaisseur de la partie de seconde extrémité de la biellette de commande (9) suivant une direction radiale du second trou traversant (35) étant supérieure à une épaisseur de la partie de seconde extrémité de la biellette supérieure suivant une direction radiale du premier trou traversant (26),

    dans lequel :
    la partie de pièce en saillie (13) du côté de la première extrémité bifurquée de la biellette inférieure (7) comprend une paire de parois (16) qui sont maintenues écartées l'une de l'autre pour prendre en sandwich la partie de seconde extrémité (24) de la biellette supérieure (8) et chacune comprenant un premier trou traversant (18) pour insérer le premier axe de biellette (17), et la partie de pièce en saillie (14) du côté de la seconde extrémité bifurquée de la biellette inférieure (7) comprend une paire de parois (19) qui sont maintenues écartées l'une de l'autre pour prendre en sandwich la partie de seconde extrémité (32) de la biellette de commande (9) et chacune comprenant un second trou traversant (21) pour insérer le second axe de biellette (20), et une pluralité de boulons (15) maintenant les deux parties de la biellette inférieure (7) ensemble sont situés entre les deux parois (16).


     
    2. Mécanisme à manivelle et à piston à biellettes multiples (4) selon la revendication 1, dans lequel, dans la partie de seconde extrémité (32) de la biellette de commande, les épaisseurs des parties de première et de seconde extrémités dans une direction axiale du second trou traversant (35) suivant la direction radiale du second trou traversant (35) sont inférieures à une épaisseur de la partie centrale (12a) dans la direction axiale du second trou traversant (35) suivant la direction radiale du second trou traversant (35), sur un côté sur lequel la charge d'entrée (F1) est appliquée du fait de la charge de combustion.
     
    3. Mécanisme à manivelle et à piston à biellettes multiples (4) selon la revendication 1, dans lequel, dans la partie de seconde extrémité de la biellette supérieure (24), les épaisseurs des parties de première et de seconde extrémité dans une direction axiale du premier trou traversant (26) suivant la direction radiale du premier trou traversant (26) sont inférieures à une épaisseur de la partie centrale (12a) dans la direction axiale du premier trou traversant (26) suivant la direction radiale du premier trou traversant (26), sur un côté sur lequel la force d'entrée (F1) est appliquée du fait de la charge de combustion.
     
    4. Mécanisme à manivelle et à piston à biellettes multiples (4) selon l'une des revendications 1 à 3, dans lequel la partie porteuse d'axe de manivelle (12) comprend un trou d'huile (61) qui est formé au niveau d'une partie qui se trouve du côté de la première extrémité de la biellette inférieure (7), dans lequel l'épaisseur suivant la direction radiale de l'axe de manivelle est relativement plus grande, dans la partie centrale (12a) de la partie porteuse d'axe de manivelle (12) dans la direction axiale du vilebrequin et qui est adaptée pour fournir une huile lubrifiante depuis le côté de l'axe de manivelle jusqu'à la partie (24) de seconde extrémité de la biellette supérieure.
     
    5. Mécanisme à manivelle et à piston à biellettes multiples (4) selon la revendication 4, dans lequel le trou d'huile (61) est formé dans une position hors d'une position d'entrée de la charge d'entrée (F1) du fait de la charge de combustion appliquée sur la biellette inférieure (7).
     
    6. Mécanisme à manivelle et à piston à biellettes multiples (4) selon la revendication 4 ou la revendication 5, dans lequel un centre (C1) du premier axe de biellette (17), un centre (C2) de l'axe de manivelle (6) et un centre (C3) du second axe de biellette (20) sont alignés sur la même ligne linéaire vu dans la direction axiale du vilebrequin (3) ; et le trou d'huile (61) est formé sur une ligne linéaire passant par le centre (C1) du premier axe de biellette (17), le centre (C2) de l'axe de manivelle (6), et le centre (C3) du second axe de biellette (20) vu de la direction axiale du vilebrequin (3).
     
    7. Mécanisme à manivelle et à piston biellettes multiples (4) selon l'une des revendications 1 à 6, dans lequel, dans une partie qui est située du côté de la première extrémité de la biellette inférieure (7) dans la partie centrale (12a) de la partie porteuse d'axe de manivelle (12) dans la direction axiale du vilebrequin (3), une épaisseur suivant la direction radiale de l'axe de manivelle (6) devient la plus grande au niveau de la position de la charge d'entrée (F1) du fait de à la charge de combustion ; et l'épaisseur suivant la direction radiale de l'axe de manivelle (6) devient plus petite au fur et à mesure qu'elle s'écarte de la position d'entrée de la charge d'entrée (F1) du fait de la charge de combustion suivant une direction périphérique de la partie porteuse d'axe de manivelle (12).
     
    8. Mécanisme à manivelle et à piston à biellettes multiples (4) selon la revendication 7, dans lequel des parties évidées (71) sont formées sur des surfaces de première et de seconde extrémité du côté de la première extrémité de la biellette inférieure (7), sur des parties latérales de la position d'entrée de la charge d'entrée (F1) du fait de la charge de combustion appliquée sur la biellette inférieure (7), sur des parties latérales de la partie centrale (12a) de la partie porteuse d'axe de manivelle (12) dans la direction axiale du vilebrequin (3).
     




    Drawing



























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description