(19)
(11)EP 3 248 077 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.09.2020 Bulletin 2020/36

(21)Application number: 16702451.2

(22)Date of filing:  22.01.2016
(51)International Patent Classification (IPC): 
G05B 13/04(2006.01)
(86)International application number:
PCT/IB2016/050322
(87)International publication number:
WO 2016/116896 (28.07.2016 Gazette  2016/30)

(54)

A METHOD AND SYSTEM FOR CONTROLLING A PROCESS PLANT USING TRANSITION DATA

VERFAHREN UND SYSTEM ZUR STEUERUNG EINER PROZESSANLAGE MIT ÜBERGANGSDATEN

PROCÉDÉ ET SYSTÈME DE COMMANDE D'UNE INSTALLATION DE TRAITEMENT METTANT EN OEUVRE DES DONNÉES DE TRANSITION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.01.2015 IN 6549CH2014

(43)Date of publication of application:
29.11.2017 Bulletin 2017/48

(73)Proprietor: ABB Schweiz AG
5400 Baden (CH)

(72)Inventors:
  • GUGALIYA, Jinendra
    Bilekahalli Bangalore 560076 (IN)
  • BHUTANI, Naveen
    Whitefield Bangalore 560048 (IN)
  • KUBAL, Nandkishor
    Whitefield Bangalore 560048 (IN)
  • GHOSH, Kaushik
    Whitefield Bangalore 560048 (IN)
  • CHIOUA, Moncef
    69115 Heidelberg (DE)

(74)Representative: Zimmermann & Partner Patentanwälte mbB 
Josephspitalstr. 15
80331 München
80331 München (DE)


(56)References cited: : 
WO-A1-02/41091
WO-A1-2012/042363
US-A1- 2002 128 731
US-A1- 2014 336 984
WO-A1-2008/014341
DE-A1-102007 036 247
US-A1- 2007 250 214
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF INVENTION



    [0001] The present invention relates to control systems and industrial automation. More particularly, the present invention relates to utilising transition data for controlling processes.

    BACKGROUND



    [0002] Often in manufacturing process industries such as cement industry, paper industry, metallurgical process industry, certain processes can produce various grade of product across a span of time. For example, in paper manufacturing, by modifying the relevant process variable, various grades of paper can be produced over a period of time. The term "grade" identifies a set of product specifications, such as sheet weight, sheet calliper, sheet brightness, sheet colour, etc. The process in which the process line, which is initially configured to produce sheets of one specification, is transitioned to produce sheets of another specification is referred to as a grade change or a transition.

    [0003] Conventionally, in terms of control philosophy such transitions are defined as a change of output parameter of a process due to a notable shift in the operating point or parameters of the process. The shift or change in the operating point by the plant control that is interfaced with the various controllers and other devices in the plant. Specifically, the plant control system automates the operational set points of various functional components of the continuous process to ensure the product is produced in accordance with the new product specification identified by the grade change or transition.

    [0004] While control of processes in steady-state are well-established and are effectively and efficiently performed by conventional control systems, such control systems offer inadequate performance when used to control processes having a plurality of transitions.

    [0005] Therefore, there is a need for a system and method that can effectively control processes having one or more transitions.

    [0006] US 2007/0250214 describes that a process state is classified into three fuzzy variables, i.e., "Rapid Transition", "Slow Transition", and "Steady State". Based on current process dynamics and reference trajectories, a proper period of historical data to perform statistical analysis is determined. The process state is then designated as "Rapid Transition", "Slow Transition", and "Steady State" based on the statistical test results. For example, the coefficient of variation has been found to work well for this particular purpose. US 2002/128731 A1 describes an improved empirical model-based surveillance or control system for monitoring or controlling a process or machine provides identification of transitions between operational states. Empirical model-based estimates generated in response to receiving actual operational parameters are compared using a global similarity operator to the actual parameters to indicate whether the process or machine is operating in a stable state, or is in transition from one state to another.

    BRIEF DESCRIPTION OF THE INVENTION



    [0007] In one aspect, the present invention discloses a method according to independent claim 1 for controlling a process in a process plant using a controller and a system according to independent claim 5 for controlling a process in a process plant. The process plant includes one or more field devices.

    [0008] At a first instance of time, the process is in a first steady state wherein the controller controls the process within first operating region. At a second instance of time the process is in a second steady state wherein the controller controls the process within second operating region. Between the first instance of time and the second instance of time, the process undergoes a transition between the first steady state and second steady state.

    [0009] The method comprises receiving process data from at least field device in relation to a first process variable associated with the process, determining a first value of at least one key performance indicator associated with the transition from the process data from at least one field device between the first steady state and the second steady state, comparing the determined first value of the at least one key performance indicator against a threshold value associated with the at least one key performance indicator, and determining a correction factor for a process variable to be corrected based on comparison.

    [0010] In an embodiment, the method further comprises receiving process data of a second process variable associated with the process, comparing the process data of the first process variable and the process data of the second process variable against a model of transition.

    [0011] In an embodiment, the at least one key performance indicator is one of time period between start of transition and end of transition, percentage of overshoot in transition, number of oscillations in transition, gradient of transition. In yet another embodiment, the at least one key performance indicator is based on a weighted average of one or more of time period between start of transition and end of transition, percentage of overshoot in transition, number of oscillations in transition, gradient of transition.

    [0012] In another aspect, a system for controlling a process in a process plant. The system comprising one or more field devices, a controller operatively coupled to the one or more field devices to control the process based on one or more predetermined set points, a historian configured to store historic process data, and a server communicatively coupled to the controller and the historian.

    [0013] The server is configured to receive process data from at least field device in relation to one or more process variable associated with the process, determine a first value of at least one key performance indicator associated with the transition from the process data of a first process variable between the first steady state and the second steady state, compare the determined first value of the at least one key performance indicator against a threshold value associated with the at least one key performance indicator, and determine a correction factor for a process variable to be corrected based on comparison of the first value of the at least one key performing indicator and the threshold value for controlling the process in the process plant.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] 

    Figure 1 illustrates a system for controlling a process using a controller in a process plant, in accordance with various embodiments of the present invention;

    Figure 2 illustrates a method for a system for controlling a process using a controller in a process plant, in accordance with various embodiments of the present invention; and

    Figure 3 illustrates process data of three process variables over a span of time.


    DETAILED DESCRIPTION OF THE INVENTION



    [0015] In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments, which may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the embodiments, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical and other changes may be made without departing from the scope of the embodiments. The following detailed description is, therefore, not to be taken in a limiting sense.

    [0016] Figure 1 illustrates a system 100 for controlling a process using a controller 115 of a control system 110 in a process plant. The controller 115 is connected to a plurality of field devices (130, 140 and 150) for controlling a rolling and drying section 160 of the process plant on the basis of the set points stored in the controller 115. The plurality of field devices (130, 140 and 150) includes one or more sensors (shown in the figure as sensor 130 and sensor 140) located in various areas of the section 160 for measuring process variables associated with the process. These process variables are herein referred to as measured process variables. The controller 115 receives measurements in relation to one or more process variables from the sensors 130 and 140 for regulating the process in the rolling and drying section 160.

    [0017] Additionally, the plurality of field devices includes one or more actuators (shown in the figure as valve 150) which regulate various physical parameters in relation to the process in the section 160. The one or more actuators including the valve 150 are operatively coupled to the controller 115. The controller 115 operates the one or more actuators to regulate the process in the rolling and drying section 160 on the basis of the measurements from the sensors and the set points.

    [0018] Further, the controller 115 is communicatively coupled to a server 120 via communication channel 175. The controller 115 transmits the measurements of the one or more process variables from the field devices to the server 120. The server 120 is configured to receive the measurements of the one or more process variables (also referred to as process data) from the controller 115 and determine a first steady state, a second steady state and a transition between the first and second steady in the process data. Then the server 120 determines a first value of at least one key performance indicator associated with the transition from the process data. Subsequently, the server 120 compares the determined first value of the at least one key performance indicator against a threshold value associated with the at least one key performance indicator and determines a correction factor for modifying a process variable to be corrected based on comparison of the first value of the at least one key performing indicator and the threshold value associated with the at least one key performance indicator for controlling the process in the process plant.

    [0019] In an embodiment, upon determining the correction factor, the server 120 sends the correction factor to the controller 115 which accordingly, corrects the set point of the corresponding process variable to be corrected on the basis of the recommended correction factor. In another embodiment, the server 120 sends the correction factor in relation to the process variable to be corrected to an upstream device or a downstream device to take necessary regulatory action.

    [0020] Additionally, the control system 110 includes a historian 170. The historian 170 is configured to store historic process data. The server 120 utilizes the historic data to determine the threshold value associated with the at least one key performance indicator. In an embodiment, the server 120 analyses historic process data of a plurality of process variables. The server 120 identifies a plurality of transitions between the first steady state and the second steady state, determines a statistical parameter or statistical representative value such as mean value associated with the at least one key performance indicator determined from the plurality of transitions, and sets the threshold value to the determined statistical representative value, which in the current example, is the determined mean value.

    [0021] In an embodiment the server 120 is configured to receive proves data of a second process variable from a second field device. Then the server 120 compares the process data of the first process variable and the process data of the second process variable to a model of transition to determine the process variable to be corrected. In an embodiment, the model of transition is a multivariate principal component analysis model used to determine the process variable to be corrected by identifying whether the first process variable or the second process variable or combination thereof contributed to the transition being abnormal. The server 120 builds the model of the transition by utilizing the historic process data of the first and second process variables. In an embodiment, the server 120 determines a plurality of transitions from the historic process data. Then the server 120 determines at least one key performance indicator for each of the transition from the plurality of transitions. Based on the at least one key performance indicator, the server 120 selects a set of transitions whose value of at least one key performance indicator is above a particular threshold or below a particular threshold as needed. The server 120 utilizes the process data during these selected transitions to build the model of transition. These aspects are further explained in the description of figure 2.

    [0022] It is to be noted by a person skilled in the art that which the figure illustrates one configuration of the system 100, various other configuration are possible and are conventionally known to a person skilled in the art. For example, in an embodiment, the server 120 is connected to directly or indirectly (via an I/O interface or a relay interface) to the one or more field devices for receiving the process data. In an embodiment, the historian 170 is a part of the server 120.

    [0023] Similarly, it is to be noted by a person skilled in the art that the statistical methods utilized above to explain the system are merely illustrative and can be substituted by a plurality of conventionally known statistical methods. For example, the principal component analysis model can be substituted by a regression model, partial least squares (PLS) model.

    [0024] Figure 2 illustrates a method 200 for controlling a process using a controller 115 in the process plant, in accordance with various embodiments of the present invention. The current method is detailed below and is explained using exemplary graphs of process data of the process variable basis weight (shown in graph 310), process variable reel moisture (shown in graph 320) and the process variable size moisture (shown in graph 330) illustrated in figure 3.

    [0025] At a first instance of time, the process is in a first steady state where the controller 115 controls the process within first operating region. The term steady state herein refers to a period of time where the values of the process variables are uniform or substantially uniform i.e. within a band or range of threshold values. Referring to figure 3, it can be seen that the process is at a first steady state till instance of time T1, as all the three exemplary process variables (basis weight, size moisture and reel moisture) are relatively stable.

    [0026] At a second instance of time, the process is in a second steady state where the controller 115 controls the process within second operating region. In between the first steady state and the second steady state, the grade of the resultant product from the process of the rolling and drying section 160 is changed. Accordingly, the operating point of the controller 115 is modified. Therefore, the process undergoes a transition between the first steady state and second steady state.

    [0027] Similarly, referring to figure 3, it can be seen that at instance of time T2, the process has stabilised and is in a second steady state, as all the three exemplary process variables basis weight, reel moisture and size moisture are relatively stable after T2. Based on the rate of change of the values of the process variable basis weight, size moisture and reel moisture, the server 120 determines that a transition has taken place between instance of time T1 and instance of time T2.

    [0028] At step 210, the server 120 receives process data of from a first field device in relation to a first process variable associated with the process. The server 120 continuously receives process data of the field devices (130, 140 and 150) through the controller 115.

    [0029] Continuing the above mentioned example, the server 120 continuously receives process data associated with basis weight, reel moisture and size moisture. The server 120 continuously determines a rate of change or gradient for each variable for all three process variables. Immediately after or at T1, the rate of change of value the process variables reel moisture and size moisture are above a predetermined threshold value, and accordingly the server 120 determines that a transition has started. Similarly, at T2, the rate of change for all the process variables are below the predetermined threshold value and accordingly, the server 120 decides that the transition has ended.

    [0030] At step 220, the server 120 determines a first value of at least one key performance indicator associated with the transition from the process data of the first process variable. Herein key performance indicator refers to a score or a grade indicative of the profile of the transition as seen in the process variable. For example, key performance indicator includes, but is not limited to, transition time i.e. time taken to go from first steady state to second steady state, percentage of overshoot, smoothness index, number of oscillations as seen in the process data of the at least one process variable, etc. In an example, the smoothness index is determined by server 120 by fitting a quadratic path between the end instance of the first steady state and the beginning instance of the second steady state as seen from the process data of the first process variable, and then by quantifying the deviation of the first process variable from the quadratic path during the transition. Similarly, by using N order paths between the end instance of the first steady state and the beginning instance of the second steady state, the deviation of the first process variable can be quantified.

    [0031] When the transition is observed in process data of one or more process variables, one or more values of the key performance indicator are calculated from process data of the one or more process variables.

    [0032] Continuing the above mentioned example, the server 120 calculates the value of percentage of overshoot for basic weight, reel moisture and size moisture from the corresponding process data of basic weight, reel moisture and size moisture between T1 and T2.

    [0033] At step 230, the server 120 compares the determined first value of the at least one key performance indicator against the threshold value associated at least one key performance indicator. Continuing the above mentioned example, the server 120 compares the three first values of the percentage of the overshoot against the threshold value of the percentage of overshoot.

    [0034] In an embodiment, the at least one key performance indicator is based on a weighted average of one or more of time period between start of transition and end of transition, percentage of overshoot in transition, number of oscillations in transition, gradient of transition.

    [0035] At step 250, based on the above mentioned comparison, the server 120 determines a correction factor for modifying a set point of the process variable stored in the controller for controlling the process in the process plant. Continuing the above mentioned example, when the three first value of percentage of overshoot in all the three process variables is greater than the threshold value associated with percentage of overshoot, the server 120 calculates a correction factor for a set point of a process variable used by the controller on the basis of the difference between the three first values and the three threshold value.

    [0036] In an embodiment, the server 120 is configured to receive process data of a second process variable. The server 120 then compares the process data of the first process variable and the process data of the second process variable between the first steady state and the second steady state to a model of transition. When there are one or more process variables, server 120 is configured to determine the influence of each process variable in the transition using the model of transition.

    [0037] Continuing the above mentioned example, , the server 120 determines the influence of reel moisture, size moisture, and basis weight on the transition between T1 and T2 by performing a principal component analysis using a multivariate model of transition generated from historic process data of the three variables.

    [0038] In an embodiment, the server 120 is configured to perform the above mentioned method using offline process data of one or more process variables taken from field devices across a batch operation or a predetermined period of time in case of a continuous operation. The server 120 utilises the above mentioned rate of change to determine a plurality of steady states and a plurality of transitions in the process data of the one or more variables. Subsequent to detection of all the steady states, the server 120 clusters all steady states that are similar to each other into groups or clusters. Then the server 120 calculates a transition matrix map.

    [0039] Transition Map is a matrix which shows the number of transitions that have been taken place between any two non-clustered Steady states. The number of transitions that take place between every steady state and the other steady state is counted and stored as the cell element in the transition matrix. Then the server 120 considers the transitions between those steady states that have a large number of transitions (more than a predetermined threshold). Accordingly, the server 120 applies the above mentioned method to the selected transitions.

    [0040] The current invention allows for utilization of process data during transition for effective and efficient control of the process. By monitoring the grade of the transition, the system 100 can accordingly regulate the process.

    [0041] .This written description uses examples to describe the subject matter herein, including the best mode, and also to enable any person skilled in the art to make and use the subject matter. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.


    Claims

    1. A method (200) for controlling a process in a process plant having one or more field devices (130, 140 and 150) using control system (110) having a controller (115), the process including a first steady state wherein the controller (115) controls the process within first operating region, a second steady state wherein the controller (115) controls the process within a second operating region, and a transition between the first steady state and second steady state, wherein the method, by using the control system (110), comprises:

    (i) receiving process data from at least one field device in relation to a first process variable and a second process variable associated with the process;

    (ii) determining a first value of at least one key performance indicator from the process data of at least one of the first process variable and the second process variable between the first steady state and the second steady state, wherein the at least on key performance indicator is indicative of a profile of the transition;

    (iii) comparing the first value with a first threshold value corresponding to the at least one key performance indicator wherein the first threshold value is calculated from one or more transitions from historic process data of the first process variable;

    (iv) comparing the process data of the first process variable and the process data of the second process variable between the first steady state and the second steady state to a model of transition (125),
    wherein an influence of the first process variable and the second process variable in the transition is determined using the model of transition;

    (v) determining a process variable to be corrected by the comparing of the process data of the first process variable and the process data of the second process variable with the model of transition by identifying whether the first process variable or the second process variable or combination thereof contributed to the transition being abnormal; and

    (vi) determining a correction factor for the process variable to be corrected, based on comparison of the first value of the at least one key performing indicator with the first threshold value for controlling the process in the process plant (100).


     
    2. The method as claimed in claim 1, wherein the at least one key performance indicator is one of time period between start of transition and end of transition, percentage of overshoot in transition, number of oscillations in transition, gradient of transition.
     
    3. The method as claimed in claim 1, wherein the at least one key performance indicator is based on a weighted average of one or more of time period between start of transition and end of transition, percentage of overshoot in transition, number of oscillations in transition, gradient of transition.
     
    4. The method as claimed in claim 1, further comprising

    (i) transmitting the correction factor to the controller (115), and

    (ii) modifying set point of the process variable to be corrected by the correction factor.


     
    5. A system (100) for controlling a process in a process plant, the process including a first steady state, a second steady state, and a transition between the first steady state and second steady state, the system comprising:

    (i) One or more field devices (130, 140 and 150);

    (ii) a controller (115) operatively coupled to the one or more field devices to control the process;

    (iii) a historian (170) configured to store historic process data associated with one or more process variables; and

    (iv) a server (120) communicatively coupled to the controller and the historian (170), the server (120) configured to

    a. receive process data from at least field device in relation to a first process variable and a second process variable associated with the process;

    b. determine a first value of at least one key performance indicator associated with the transition from the process data of at least one of the first process variable and the second process variable, between the first steady state and the second steady state;

    c. compare the determined first value of the at least one key performance indicator against a threshold value associated with the at least one key performance indicator;

    d. compare the process data of the first process variable and the process data of the second process variable between the first steady state and the second steady state to a model of transition (125), wherein an influence of the first process variable and the second process variable in the transition is determined using the model of transition;

    e. determine a process variable to be corrected by the comparing of the process data of the first process variable and the process data of the second process variable with the model of transition by identifying whether the first process variable or the second process variable or combination thereof contributed to the transition being abnormal;

    f. determine a correction factor for the process variable to be corrected based on comparison of the first value of the at least one key performing indicator and the threshold value for controlling the process in the process plant (100).


     


    Ansprüche

    1. Verfahren (200) zum Steuern eines Prozesses in einer Prozessanlage mit einem oder mehreren Feldgeräten (130, 140 und 150) unter Verwendung eines Steuersystems (110) mit einem Controller (115), wobei der Prozess einen ersten stationären Zustand, in dem der Controller (115) den Prozess innerhalb eines ersten Betriebsbereichs steuert, einen zweiten stationären Zustand, in dem der Controller (115) den Prozess innerhalb eines zweiten Betriebsbereichs steuert, und einen Übergang zwischen dem ersten stationären Zustand und dem zweiten stationären Zustand umfasst, wobei das Verfahren unter Verwendung des Steuersystems (110) umfasst:

    (i) Empfangen von Prozessdaten von mindestens einem Feldgerät in Bezug auf eine erste Prozessvariable und eine zweite Prozessvariable, die mit dem Prozess assoziiert sind;

    (ii) Ermitteln eines ersten Wertes mindestens eines Key Performance-Indikators aus den Prozessdaten von mindestens einer der ersten Prozessvariablen und der zweiten Prozessvariablen zwischen dem ersten stationären Zustand und dem zweiten stationären Zustand, wobei der mindestens eine Key Performance-Indikator bezeichnend für ein Profil des Übergangs ist;

    (iii) Vergleichen des ersten Wertes mit einem ersten Schwellenwert, der dem mindestens einen Key Performance-Indikator entspricht, wobei der erste Schwellenwert aus einem oder mehreren Übergängen von historischen Prozessdaten der ersten Prozessvariablen berechnet wird;

    (iv) Vergleichen der Prozessdaten der ersten Prozessvariablen und der Prozessdaten der zweiten Prozessvariablen zwischen dem ersten stationären Zustand und dem zweiten stationären Zustand mit einem Übergangsmodell (125), wobei ein Einfluss der ersten Prozessvariablen und der zweiten Prozessvariablen in dem Übergang unter Verwendung des Übergangsmodells ermittelt wird;

    (v) Ermitteln einer zu korrigierenden Prozessvariablen durch das Vergleichen der Prozessdaten der ersten Prozessvariablen und der Prozessdaten der zweiten Prozessvariablen mit dem Übergangsmodell durch Identifizieren, ob die erste Prozessvariable oder die zweite Prozessvariable oder eine Kombination davon dazu beigetragen hat, dass der Übergang anormal war; und

    (vi) Ermitteln eines Korrekturfaktors für die zu korrigierende Prozessvariable basierend auf einem Vergleich des ersten Wertes des mindestens einen Key Performance-Indikators mit dem ersten Schwellenwert zum Steuern des Prozesses in der Prozessanlage (100).


     
    2. Verfahren nach Anspruch 1, bei dem der mindestens eine Key Performance Indikator einer der folgenden ist: Zeitspanne zwischen dem Beginn des Übergangs und dem Ende des Übergangs, Prozentsatz der Überschwingung beim Übergang, Anzahl der Schwingungen beim Übergang, Gradient des Übergangs.
     
    3. Verfahren nach Anspruch 1, wobei der mindestens eine wichtige Key Performance Indikator auf einem gewichteten Durchschnitt eines oder mehrerer der folgenden basiert: Zeitspanne zwischen dem Beginn des Übergangs und dem Ende des Übergangs, Prozentsatz der Überschwingung beim Übergang, Anzahl der Schwingungen beim Übergang, Gradient des Übergangs.
     
    4. Das Verfahren nach Anspruch 1 ferner umfassend

    (i) Übertragen des Korrekturfaktors an den Controller (115), und

    (ii) Ändern des Sollwerts der zu korrigierenden Prozessvariablen durch den Korrekturfaktor.


     
    5. Ein System (100) zum Steuern eines Prozesses in einer Prozessanlage, wobei der Prozess einen ersten stationären Zustand, einen zweiten stationären Zustand und einen Übergang zwischen dem ersten stationären Zustand und dem zweiten stationären Zustand umfasst, wobei das System umfasst:

    (i) Ein oder mehrere Feldgeräte (130, 140 und 150);

    (ii) einen Controller (115), der operativ mit einem oder mehreren Feldgeräten gekoppelt ist, um den Prozess zu steuern;

    (iii) einen Datenschreiber (170), der so konfiguriert ist, dass er historische Prozessdaten speichert, die mit einer oder mehreren Prozessvariablen assoziiert sind; und

    (iv) einen Server (120), der kommunikativ mit dem Controller und dem Datenschreiber (170) gekoppelt ist, wobei der Server (120) konfiguriert ist zum

    a. Empfangen von Prozessdaten von mindestens einem Feldgerät in Bezug auf eine erste Prozessvariable und eine zweite Prozessvariable, die mit dem Prozess assoziiert sind;

    b. Ermitteln eines ersten Wertes mindestens eines Key Performance Indikators, der mit dem Übergang von den Prozessdaten von mindestens einer der ersten Prozessvariablen und der zweiten Prozessvariablen zwischen dem ersten stationären Zustand und dem zweiten stationären Zustand assoziiert ist;

    c. Vergleichen des ermittelten ersten Werts des mindestens einen Key Performance Indikators mit einem Schwellenwert, der mit dem mindestens einen Key Performance Indikators assoziiert ist;

    d. Vergleichen der Prozessdaten der ersten Prozessvariablen und die Prozessdaten der zweiten Prozessvariablen zwischen dem ersten stationären Zustand und dem zweiten stationären Zustand mit einem Übergangsmodell (125), wobei ein Einfluss der ersten Prozessvariablen und der zweiten Prozessvariablen in dem Übergang unter Verwendung des Übergangsmodells ermittelt wird;

    e. Ermitteln einer zu korrigierenden Prozessvariablen durch den Vergleich der Prozessdaten der ersten Prozessvariablen und der Prozessdaten der zweiten Prozessvariablen mit dem Übergangsmodell, durch Identifizieren, ob die erste Prozessvariable oder die zweite Prozessvariable oder eine Kombination davon dazu beigetragen hat, dass der Übergang anormal war;

    f. Ermitteln eines Korrekturfaktors für die zu korrigierende Prozessvariable basierend auf einem Vergleich des ersten Wertes des mindestens einen Key Performance-Indikators mit dem Schwellenwert zum Steuern des Prozesses in der Prozessanlage (100).


     


    Revendications

    1. Procédé (200) pour commander un processus dans une installation de processus ayant un ou plusieurs dispositifs de champ (130, 140 et 150) en utilisant un système de commande (110) ayant un contrôleur (115), le processus incluant un premier état d'équilibre dans lequel le contrôleur (115) commande le processus à l'intérieur d'une première région d'exploitation, un deuxième état d'équilibre dans lequel le contrôleur (115) commande le processus à l'intérieur d'une deuxième région d'exploitation, et une transition entre le premier état d'équilibre et le deuxième état d'équilibre, dans lequel le procédé, en utilisant le système de commande (110), comprend :

    (i) la réception de données de processus depuis au moins un dispositif de champ par rapport à une première variable de processus et une deuxième variable de processus associées au processus ;

    (ii) la détermination d'une première valeur d'au moins un indicateur de performance clé à partir des données de processus d'au moins l'une parmi la première variable de processus et la deuxième variable de processus entre le premier état d'équilibre et le deuxième état d'équilibre, dans lequel l'au moins un indicateur de performance clé est indicatif d'un profil de la transition ;

    (iii) la comparaison de la première valeur à une première valeur seuil correspondant à l'au moins un indicateur de performance clé dans lequel la première valeur seuil est calculée à partir d'une ou plusieurs transitions provenant de données de processus historiques de la première variable de processus ;

    (iv) la comparaison des données de processus de la première variable de processus et des données de processus de la deuxième variable de processus entre le premier état d'équilibre et le deuxième état d'équilibre à un modèle de transition (125),
    dans lequel une influence de la première variable de processus et de la deuxième variable de processus dans la transition est déterminée en utilisant le modèle de transition ;

    (v) la détermination d'une variable de processus à corriger par la comparaison des données de processus de la première variable de processus et des données de processus de la deuxième variable de processus au modèle de transition en identifiant si la première variable de processus ou la deuxième variable de processus ou une combinaison de celles-ci a contribué à rendre la transition anormale ; et

    (vi) la détermination d'un facteur de correction pour la variable de processus à corriger, sur la base d'une comparaison de la première valeur de l'au moins un indicateur de performance clé à la première valeur seuil pour commander le processus dans l'installation de processus (100).


     
    2. Procédé selon la revendication 1, dans lequel l'au moins un indicateur de performance clé est l'un parmi une période de temps entre le début de transition et la fin de transition, un pourcentage de dépassement lors de la transition, un nombre d'oscillations lors de la transition, un gradient de transition.
     
    3. Procédé selon la revendication 1, dans lequel l'au moins un indicateur de performance clé est basé sur une moyenne pondérée d'un ou plusieurs parmi une période de temps entre le début de transition et la fin de transition, un pourcentage de dépassement lors de la transition, un nombre d'oscillations lors de la transition, un gradient de transition.
     
    4. Procédé selon la revendication 1, comprenant en outre

    (i) la transmission du facteur de correction au contrôleur (115), et

    (ii) la modification d'un point de consigne de la variable de processus à corriger par le facteur de correction.


     
    5. Système (100) pour commander un processus dans une installation de processus, le processus incluant un premier état d'équilibre, un deuxième état d'équilibre, et une transition entre le premier état d'équilibre et le deuxième état d'équilibre, le système comprenant :

    (i) un ou plusieurs dispositifs de champ (130, 140 et 150) ;

    (ii) un contrôleur (115) couplé fonctionnellement au ou aux dispositifs de champ pour commander le processus ;

    (iii) un historien (170) configuré pour stocker des données de processus historiques associées à une ou plusieurs variables de processus ; et

    (iv) un serveur (120) couplé par communications avec le contrôleur et l'historien (170), le serveur (120) configuré pour

    a. recevoir des données de processus depuis au moins dispositif de champ en rapport avec une première variable de processus et une deuxième variable de processus associées au processus ;

    b. déterminer une première valeur d'au moins un indicateur de performance clé associé à la transition des données de processus d'au moins l'une parmi la première variable de processus et la deuxième variable de processus, entre le premier état d'équilibre et le deuxième état d'équilibre ;

    c. comparer la première valeur déterminée de l'au moins un indicateur de performance clé par rapport à une valeur seuil associée à l'au moins un indicateur de performance clé ;

    d. comparer les données de processus de la première variable de processus et les données de processus de la deuxième variable de processus entre le premier état d'équilibre et le deuxième état d'équilibre à un modèle de transition (125), dans lequel une influence de la première variable de processus et de la deuxième variable de processus dans la transition est déterminée en utilisant le modèle de transition ;

    e. déterminer une variable de processus à corriger par la comparaison des données de processus de la première variable de processus et des données de processus de la deuxième variable de processus au modèle de transition en identifiant si la première variable de processus ou la deuxième variable de processus ou une combinaison de celles-ci a contribué à rendre la transition anormale ;

    f. déterminer un facteur de correction pour la variable de processus à corriger sur la base d'une comparaison de la première valeur de l'au moins un indicateur de performance clé et de la valeur seuil pour commander le processus dans l'installation de processus (100).


     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description