(19)
(11)EP 3 252 886 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.03.2020 Bulletin 2020/10

(21)Application number: 16743039.6

(22)Date of filing:  07.01.2016
(51)International Patent Classification (IPC): 
H01R 43/00(2006.01)
H01R 12/71(2011.01)
H01R 13/50(2006.01)
H01R 13/648(2006.01)
H01R 43/24(2006.01)
H01R 107/00(2006.01)
H01R 4/02(2006.01)
H01R 13/405(2006.01)
H01R 13/52(2006.01)
H01R 43/02(2006.01)
H01R 13/6581(2011.01)
H01R 12/72(2011.01)
(86)International application number:
PCT/JP2016/050317
(87)International publication number:
WO 2016/121435 (04.08.2016 Gazette  2016/31)

(54)

CONNECTOR PRODUCTION METHOD AND CONNECTOR

VERBINDERHERSTELLUNGSVERFAHREN UND VERBINDER

PROCÉDÉ DE FABRICATION DE CONNECTEUR ET CONNECTEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.01.2015 JP 2015015728

(43)Date of publication of application:
06.12.2017 Bulletin 2017/49

(73)Proprietor: Japan Aviation Electronics Industry, Limited
Tokyo 150-0043 (JP)

(72)Inventors:
  • TADA, Takashi
    Tokyo 150-0043 (JP)
  • ARAI, Katsumi
    Tokyo 150-0043 (JP)
  • SHIMODA, Toshiyuki
    Tokyo 150-0043 (JP)

(74)Representative: Qip Patentanwälte Dr. Kuehn & Partner mbB 
Goethestraße 8
80336 München
80336 München (DE)


(56)References cited: : 
EP-A1- 2 790 274
WO-A1-2014/103591
CN-U- 203 859 322
JP-A- 2002 164 127
JP-A- 2012 059 540
US-A1- 2015 311 636
EP-A1- 3 220 488
WO-A1-2014/203486
CN-U- 203 859 324
JP-A- 2003 017 176
JP-B2- 5 623 836
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a connector production method, particularly to a connector production method for producing a connector having one or more contacts and a shell.

    [0002] In addition, the present invention relates to a connector having one or more contacts and a shell.

    BACKGROUND ART



    [0003] Recently, electronic devices such as computers and mobile phones have been widely spread, and these electronic devices are normally equipped with connectors to be connected with outside devices to transmit electrical signals. As a connector of this type, desired is one which is shielded from the electromagnetic interference by means of a metal shell covering an outer periphery of an insulator that holds contacts such that the transmitted electrical signals are prevented from being affected by electromagnetic waves from outside and that a peripheral electronic device is prevented from being affected by electromagnetic noise generated from the transmitted electrical signals.

    [0004] For example, Patent Literature 1 discloses a connector production method in which, when a shell 1 and a plurality of contacts 2 are fixed with an insulator, the insulator is formed through resin molding while a shell carrier 4 that holds the shell 1 via shell-connecting pieces 3 and a contact carrier 6 that holds the contacts 2 via contact-connecting pieces 5 are connected to each other and are maintained in this state, as illustrated in FIG. 18. Since the shell carrier 4 and the contact carrier 6 are connected to each other, the insulator can be formed with end portions of the contacts 2 being positioned at predetermined locations within the shell 1. Devices of the type mentioned at the beginning are also known from CN 203 589 322 U, EP 2 790 274 A1, JP 5 623836 B2, WO 2014/103591 A1, CN 203 859 324 U and WO 2014/203486 A1.

    CITATION LIST


    PATENT LITERATURE



    [0005]  Patent Literature 1: JP 5623836 B

    SUMMARY OF INVENTION


    TECHNICAL PROBLEMS



    [0006] However, if the shell 1 and the shell carrier 4 connected to each other via the shell-connecting pieces 3 have positional variability therebetween due to production tolerance, and similarly if the plurality of contacts 2 and the contact carrier 6 connected to each other via the contact-connecting pieces 5 have positional variability therebetween due to production tolerance, even when the shell carrier 4 is connected to the contact carrier 6, the shell 1 and the end portions of the contacts 2 disposed within the shell 1 may be misaligned with each other and may undergo the resin molding with such misalignment.

    [0007] For a connector having a shell, attempts have been made to construct a connector in which a flat plate conductor such as a ground plate, a mid-plate and the like is held by an insulator and disposed inside the shell adjacent to contacts so that the shell and the flat plate conductor are brought to the ground level to enhance the shielding effect.

    [0008] A connector having such structure requires a large number of components and has difficulty in integrally molding all components at a time through molding of a resin that constitutes the insulator. A bonding step using an adhesive may be added as a countermeasure, but the use of an adhesive raises the production cost, which would be a problem.

    [0009] The present invention has been made to eliminate the conventional drawback as above, aiming at providing a connector production method capable of producing a highly-accurate connector having a large number of components in which misalignment among the components is suppressed without the use of an adhesive.

    [0010] In addition, the present invention also aims at providing a highly-accurate connector having a large number of components in which misalignment among the components is suppressed.

    SOLUTION TO PROBLEMS



    [0011] A connector production method according to the present invention comprises: holding a flat plate conductor with a first insulator; joining central portions of one or more contacts to the first insulator such that front end portions of the one or more contacts are exposed at a front part of the first insulator and rear end portions of the one or more contacts project from a rear part of the first insulator, wherein the contacts extend in a direction of a fitting axis and wherein a direction from a front to a back of the connector along the fitting axis is called "Y direction", wherein a "X direction" is perpendicular to the "Y direction"; and placing a shell made of metal over the first insulator such that the shell covers outer peripheral portions of the one or more contacts; fixing and electrically connecting the shell to the flat plate conductor; characterized by the step of forming a second insulator by insert molding such that the second insulator covers the rear part of the first insulator and a rear part of the shell and adheres to surfaces of a pair of arm sections projecting in the +Y direction respectively from opposite ends in the X direction of a flat plate section of the shell while the rear end portions of the one or more contacts project from the second insulator and such that the second insulator closes the rear part in the +Y-direction of the shell and of the first insulator covered by the shell, wherein the shell is fixed to and electrically connected to the flat plate conductor through welding.

    [0012]  Preferably, the flat plate conductor includes ground plates that are disposed so as to be exposed on surfaces of the first insulator, and the ground plates are pressed into the first insulator to be held by the first insulator.

    [0013] The flat plate conductor may include a mid-plate that is disposed in a vicinity of front end portions of the one or more contacts, and the first insulator is formed so as to cover surfaces of the mid-plate so that the mid-plate is held by the first insulator.

    [0014] After the one or more contacts are pressed into the first insulator in a state of being attached to a contact carrier and the central portions of the one or more contacts are joined to the first insulator, the one or more contacts may be detached from the contact carrier.

    [0015] After the shell is placed over the first insulator in a state of being attached to a shell carrier and formation of the second insulator is completed, the shell may be detached from the shell carrier.

    [0016] Preferably, each of the one or more contacts is provided in a portion thereof covered by the second insulator with a contact-side waterproof shaped section comprising at least one groove or at least one protrusion for blocking entry of water.

    [0017] Preferably, the shell is provided in a portion thereof covered by the second insulator with a shell-side waterproof shaped section comprising at least one groove or at least one protrusion for blocking entry of water.

    [0018] It is preferable that the method further comprises providing a waterproof sealing section to a surface of a portion of the second insulator from which the rear end portions of the one or more contacts project.

    [0019] The method may further comprise disposing a seamless waterproof member that surrounds an outer periphery of the second insulator.

    [0020] A connector according to the present invention comprises: a first insulator; a flat plate conductor that is held by the first insulator; one or more contacts whose central portions are joined to the first insulator such that front end portions of the one or more contacts are exposed at a front part of the first insulator and rear end portions of the one or more contacts project from a rear part of the first insulator, wherein the contacts extend in a direction of a fitting axis and wherein a direction from a front to a back of the connector along the fitting axis is called "Y direction", wherein a "X direction" is perpendicular to the "Y direction"; and a shell made of metal that is placed over the first insulator so as to cover outer peripheral portions of the one or more contacts and that is fixed to and electrically connected to the flat plate conductor, characterized by a second insulator that is formed by insert molding so as to cover the rear part of the first insulator and a rear part of the shell and adheres to surfaces of a pair of arm sections projecting in the +Y direction respectively from opposite ends in the X direction of a flat plate section of the shell while the rear end portions of the one or more contacts project from the second insulator and wherein the second insulator is formed so as to close the rear part in the +Y-direction of the shell and of the first insulator covered by the shell, wherein the shell is fixed to and electrically connected to the flat plate conductor through welding.

    [0021] Preferably, the flat plate conductor includes ground plates that are pressed into the first insulator so as to be held by the first insulator and exposed on surfaces of the first insulator.

    [0022] Also, the flat plate conductor preferably includes a mid-plate that is held by the first insulator through formation of the first insulator and that is disposed near front end portions of the one or more contacts.

    [0023] It is preferable that each of the one or more contacts is provided in a portion thereof covered by the second insulator with a contact-side waterproof shaped section comprising at least one groove or at least one protrusion for blocking entry of water.

    [0024] The shell is preferably provided in a portion thereof covered by the second insulator with a shell-side waterproof shaped section comprising at least one groove or at least one protrusion for blocking entry of water. Preferably, the connector further comprises a waterproof sealing section provided to a surface of a portion of the second insulator from which the rear end portions of the one or more contacts project.

    [0025] The connector may further comprise a seamless waterproof member that surrounds an outer periphery of the second insulator.

    ADVANTAGEOUS EFFECTS OF INVENTION



    [0026] According to the present invention, central portions of contacts are joined to a first insulator that holds a flat plate conductor, a shell made of metal is placed over the first insulator so as to cover outer peripheral portions of the contacts, the shell is fixed and electrically connected to the flat plate conductor, and thereafter a second insulator is formed so as to cover a rear part of the first insulator and a rear part of the shell while rear end portions of the contacts project from the second insulator. Accordingly, it is possible to obtain a highly-accurate connector having a large number of components in which misalignment among the components is suppressed without the use of an adhesive.

    BRIEF DESCRIPTION OF DRAWINGS



    [0027] 

    [FIG. 1] FIG. 1 is a perspective view showing a connector according to Embodiment 1 of the present invention.

    [FIG. 2] FIG. 2 is a perspective view showing a first insulator and contacts used in the connector according to Embodiment 1.

    [FIG. 3] FIG. 3 is a flowchart illustrating a connector production method.

    [FIG. 4] FIG. 4 is a perspective view showing the first insulator that holds a mid-plate.

    [FIG. 5] FIG. 5 is a perspective view showing the first insulator that holds ground plates.

    [FIG. 6] FIG. 6 is a perspective view showing a plurality of second contacts as being attached to a second contact carrier and pressed into the first insulator.

    [FIG. 7] FIG. 7 is a perspective view showing the first insulator that holds the plurality of second contacts with the second contact carrier having been detached from the plurality of second contacts.

    [FIG. 8] FIG. 8 is a perspective view showing a plurality of first contacts as being attached to a first contact carrier and pressed into the first insulator.

    [FIG. 9] FIG. 9 is a perspective view showing the first insulator that holds the plurality of first contacts and the plurality of second contacts with the first contact carrier having been detached from the plurality of first contacts.

    [FIG. 10] FIG. 10 is a perspective view showing a shell as being attached to a shell carrier and placed over the first insulator.

    [FIG. 11] FIG. 11 is a partially enlarged perspective view showing the shell placed over the first insulator when viewed obliquely from above.

    [FIG. 12] FIG. 12 is a partially enlarged perspective view showing the shell placed over the first insulator when viewed obliquely from below.

    [FIG. 13] FIG. 13 is a perspective view showing a second insulator that is formed while the shell is attached to the shell carrier.

    [FIG. 14] FIG. 14 is a perspective view showing the second insulator that holds the shell with the shell carrier having been detached from the shell.

    [FIG. 15] FIG. 15 is a perspective view showing a connector according to Embodiment 2.

    [FIG. 16] FIG. 16 is a partial perspective view showing contacts used in a connector according to Embodiment 3.

    [FIG. 17] FIG. 17 is a partial perspective view showing an arm section of a shell used in the connector according to Embodiment 3.

    [FIG. 18] FIG. 18 is a sectional side view illustrating a conventional connector production method.


    DESCRIPTION OF EMBODIMENTS



    [0028] Embodiments of the present invention are described below based on the appended drawings.

    Embodiment 1



    [0029] FIG. 1 illustrates a connector 11 according to Embodiment 1. The connector 11 is a receptacle connector to be fixed to a substrate in an electronic device such as a mobile device or an information device and connected to a counter connector (not shown) that is inserted along a fitting axis C.

    [0030] The connector 11 includes a plurality of first contacts 12 each extending in a direction of the fitting axis C which are arranged in a direction orthogonal to the fitting axis C and a plurality of second contacts 13 each extending in the direction of the fitting axis C and arranged in parallel to the plurality of first contacts 12.

    [0031]  A tubular shell 14 made of metal and extending along the fitting axis C is disposed so as to cover the outer peripheries of front end portions in the fitting axis C direction of the first contacts 12 and second contacts 13, and a second insulator 15 is formed so as to close a rear end portion in the fitting axis C direction of the shell 14.

    [0032] A seamless waterproof member 16 made of an elastic material such as rubber is disposed so as to surround the outer periphery of the second insulator 15.

    [0033] For convenience, a direction from front to back of the connector 11 along the fitting axis C is called "Y direction", an arrangement direction of the first contacts 12 and second contacts 13 "X direction", and a direction perpendicular to an XY plane and extending from the second contacts 13 to the first contacts 12 "Z direction".

    [0034] A first insulator 17 illustrated in FIG. 2 is placed inside the shell 14, and central portions in the Y direction of the first contacts 12 and central portions in the Y direction of the second contacts 13 are held by the first insulator 17, respectively. The first insulator 17 includes an insulator body 17A and a tongue-like section 17B extending from the insulator body 17A in the -Y direction along the fitting axis C, while end portions in the -Y direction of the first contacts 12 are exposed from the tongue-like section 17B toward the +Z direction, and end portions in the -Y direction of the second contacts 13 are exposed from the tongue-like section 17B toward the -Z direction. End portions in the +Y direction of the first contacts 12 and second contacts 13 are exposed at the rear part of the insulator body 17A and, as illustrated in FIG. 1, project rearward, i.e., in the +Y direction from a rear face 15A of the second insulator 15.

    [0035] A mid-plate 18 made of metal is embedded in the first insulator 17 and disposed between the first contacts 12 and the second contacts 13, and a pair of ground plates 19 made of metal are fixed to the first insulator 17 and cover, respectively from the +Z direction side and the -Z direction side, the central portions in the Y direction of the first contacts 12 and the central portions in the Y direction of the second contacts 13, respectively. The mid-plate 18 and the pair of ground plates 19 are electrically connected to the shell 14 with the first insulator 17 being accommodated inside the shell 14.

    [0036]  The mid-plate 18 and the pair of ground plates 19 constitute a flat plate conductor in the present invention. When the shell 14, the mid-plate 18 and the pair of ground plates 19 that are electrically connected to one another are brought to ground potential, the connector is shielded from electromagnetic waves, whereby reliable signal transmission can be performed while suppressing influences of the electromagnetic waves.

    [0037] Referring to a flowchart in FIG. 3, a connector production method to obtain the connector 11 will be described.

    [0038] In Step S1, the mid-plate 18 and the pair of ground plates 19 as the flat plate conductor are held by the first insulator 17.

    [0039] First, the first insulator 17 is formed using an insulating resin through insert-molding, whereby the mid-plate 18 is embedded in the first insulator 17 as illustrated in FIG. 4. At this time, opposite side portions in the X direction at an end in the -Y direction of the mid-plate 18 are respectively exposed from opposite side ends in the X direction of the tongue-like section 17B and constitute counter connector-connecting sections 18A to be connected to a counter connector when the connector 11 is fitted with the counter connector, whereas opposite side portions in the X direction at an end in the +Y direction of the mid-plate 18 each overhang from the insulator body 17A in the X direction as overhanging sections 18B.

    [0040] On the surface of the first insulator 17 facing the +Z direction, the insulator body 17A has a stepped section 17C located at an end in the +Y direction and projecting in the +Z direction and a flat ground plate-mounting surface 17D located on the -Y direction side next to the stepped section 17C. The stepped section 17C is provided with a plurality of ground plate-fixing grooves 17E extending in the Z direction for fixing one of the ground plates 19. Furthermore, the insulator body 17A is provided with a plurality of through-holes 17F corresponding to the plurality of first contacts 12 and extending in the Y direction, while the tongue-like section 17B is provided with a plurality of contact grooves 17G respectively connected to the plurality of through-holes 17F of the insulator body 17A and extending in the Y direction.

    [0041] Although not shown, also on the surface of the first insulator 17 facing the -Z direction, the insulator body 17A similarly has a stepped section 17C located at an end in the +Y direction and projecting in the -Z direction and a flat ground plate-mounting surface 17D located on the -Y direction side next to the stepped section 17C. The stepped section 17C is provided with a plurality of ground plate-fixing grooves 17E extending in the Z direction for fixing the other ground plate 19. Furthermore, the insulator body 17A is provided with a plurality of through-holes 17F corresponding to the plurality of second contacts 13 and extending in the Y direction, while the tongue-like section 17B is provided with the plurality of contact grooves 17G respectively connected to a plurality of through-holes 17F of the insulator body 17A and extending in the Y direction.

    [0042] Next, as illustrated in FIG. 5, on the surface of the first insulator 17 facing the +Z direction, one of the ground plates 19 is mounted on the insulator body 17A. The ground plate 19 includes a flat section 19A extending along the XY plane, a pair of upright sections 19B each extending in the +Z direction from an end portion in the +Y direction of the flat section 19A, and a shell connection section 19C connecting between ends in the +Z direction of the two upright sections 19B and extending along the XY plane.

    [0043] The ground plate 19 is aligned with the insulator body 17A such that the flat section 19A of the ground plate 19 is located above the ground plate-mounting surface 17D of the insulator body 17A and the shell connection section 19C is located above the stepped section 17C of the insulator body 17A, and the pair of upright sections 19B of the ground plate 19 are pressed into the corresponding ground plate-fixing grooves 17E of the insulator body 17A, whereby the ground plate 19 can be held by the first insulator 17.

    [0044] On the surface of the first insulator 17 facing the - Z direction, the other ground plate 19 is mounted on the insulator body 17A in the same manner.

    [0045] After the mid-plate 18 and the pair of ground plates 19 as the flat plate conductor are held by the first insulator 17 in this manner, the first contacts 12 and the second contacts 13 are joined to the first insulator 17 in Step S2.

    [0046] As illustrated in FIG. 6, first, the second contacts 13 attached to a second-contact carrier 20 are pressed into the through-holes 17F formed on the -Z direction side of the first insulator 17. While the second-contact carrier 20 is attached to the ends in the +Y direction of the second contacts 13, the ends in the -Y direction of the second contacts 13 are aligned with ends in the +Y direction of the through-holes 17F, and the second-contact carrier 20 is moved in the -Y direction relatively to the first insulator 17, whereby the second contacts 13 are pressed into the through-holes 17F from the +Y direction toward the -Y direction.

    [0047] The second contacts 13 are pressed into the through-holes 17F until the ends in the -Y direction of the second contacts 13 project from the through-holes 17F to reach the tongue-like section 17B of the first insulator 17, central portions of the second contacts 13 are located inside the through-holes 17F and the ends in the +Y direction of the second contacts 13 are exposed in the +Y direction from the first insulator 17, and thereafter the second-contact carrier 20 is detached from the ends in the +Y direction of the second contacts 13. In this manner, the second contacts 13 are joined to and held by the first insulator 17 as illustrated in FIG. 7.

    [0048] In this process, the ends in the -Y direction of the second contacts 13 projecting in the -Y direction from the through-holes 17F are inserted into the contact grooves 17G formed in the surface facing the -Z direction of the tongue-like section 17B of the first insulator 17.

    [0049] Once the second contacts 13 are joined to the first insulator 17, as illustrated in FIG. 8, the first contacts 12 attached to a first-contact carrier 21 are pressed into the through-holes 17F formed on the +Z direction side of the first insulator 17. The first-contact carrier 21 is attached to the ends in the +Y direction of the first contacts 12, the other ends in the -Y direction of the first contacts 12 are aligned with ends in the +Y direction of the through-holes 17F, and the first-contact carrier 21 is moved in the -Y direction relatively to the first insulator 17, whereby the first contacts 12 are pressed into the through-holes 17F from the +Y direction toward the -Y direction.

    [0050] The first contacts 12 are pressed into the through-holes 17F until the ends in the -Y direction of the first contacts 12 project from the through-holes 17F to reach the tongue-like section 17B of the first insulator 17, central portions of the first contacts 12 are located inside the through-holes 17F and the ends in the +Y direction of the first contacts 12 are exposed in the +Y direction from the first insulator 17, and thereafter the first-contact carrier 21 is detached from the ends in the +Y direction of the first contacts 12. In this manner, the first contacts 12 are joined to and held by the first insulator 17 as illustrated in FIG. 9.

    [0051] In this process, the ends in the -Y direction of the first contacts 12 projecting in the -Y direction from the through-holes 17F are inserted into the contact grooves 17G formed in the surface facing the +Z direction of the tongue-like section 17B of the first insulator 17.

    [0052] After the first contacts 12 and the second contacts 13 are joined to the first insulator 17 in this manner, the shell 14 is placed over the first insulator 17 in Step S3. As illustrated in FIG. 10, a shell carrier 22 is moved from the -Y direction toward the +Y direction relatively to the first insulator 17, whereby the shell 14 is placed over the first insulator 17 while being attached to the shell carrier 22.

    [0053] The shell 14 includes a flattened tubular section 14A whose central axis extends along the Y direction and which has a larger length in the X direction than the length in the Z direction, and the tubular section 14A includes a pair of flat plate sections 14B extending along the XY plane and facing each other. At an end in the +Y direction of the tubular section 14A, provided are a pair of projection sections 14C projecting in the +Y direction respectively from opposite ends in the X direction of the tubular section 14A, a pair of arm sections 14D projecting in the +Y direction respectively from opposite ends in the X direction of the flat plate section 14B on the +Z direction side, and a pair of projection sections 14E projecting in the +Y direction respectively from opposite ends in the X direction of the flat plate section 14B on the -Z direction side.

    [0054] The shell carrier 22 is attached to ends in the +Y direction of the pair of arm sections 14D. At an end in the +Y direction of each of the pair of arm sections 14D, a substrate connection section 14F projecting and extending in the -Z direction is provided. In addition, at an end in the +Y direction and in a central portion in the X direction of each flat plate section 14B, a cutout 14G is provided.

    [0055] When tip-end surfaces of the pair of projection sections 14C projecting in the +Y direction from the tubular section 14A of the shell 14 respectively come into contact with end surfaces in the -Y direction of the corresponding overhanging sections 18B of the mid-plate 18 overhanging in the X direction from the first insulator 17 as illustrated in FIG. 11, the shell 14 is aligned with the first insulator 17.

    [0056] At this time, tip ends of the pair of projection sections 14E projecting in the +Y direction from the flat plate section 14B on the -Z direction side of the tubular section 14A of the shell 14 respectively come into contact with surfaces facing the -Z direction of the corresponding overhanging sections 18B of the mid-plate 18.

    [0057] The cutout 14G formed in the flat plate section 14B on the +Z direction side of the tubular section 14A of the shell 14 is positioned so as to be overlapped on the shell connection section 19C of the ground plate 19 that is disposed on the +Z direction side of the first insulator 17, whereby the shell connection section 19C is exposed inside the cutout 14G.

    [0058] Similarly, as illustrated in FIG. 12, the cutout 14G formed in the flat plate section 14B on the -Z direction side of the tubular section 14A of the shell 14 is positioned so as to be overlapped on the shell connection section 19C of the ground plate 19 that is disposed on the -Z direction side of the first insulator 17, whereby the shell connection section 19C is exposed inside the cutout 14G.

    [0059] After being placed over the first insulator 17 in this manner, the shell 14 is fixed to and electrically connected to the mid-plate 18 and the pair of ground plates 19 as the flat plate conductor in Step S4.

    [0060] When the shell 14 is aligned with the first insulator 17, the tip-end surfaces of the pair of projection sections 14C of the shell 14 come into contact with the end surfaces in the -Y direction of the corresponding overhanging sections 18B of the mid-plate 18 as illustrated in FIG. 11. Accordingly, by means of welding between each of the projection sections 14C of the shell 14 and the corresponding overhanging section 18B of the mid-plate 18 to form a welded portion W1, the shell 14 can be fixed to and electrically connected to the mid-plate 18.

    [0061] In addition, since the cutout 14G formed in the flat plate section 14B on the +Z direction side of the tubular section 14A of the shell 14 is positioned so as to be overlapped on the corresponding shell connection section 19C of the ground plate 19 disposed on the +Z direction side of the first insulator 17, by means of welding between an edge of the cutout 14G of the shell 14 and the shell connection section 19C of the ground plate 19 to form a weld W2, the shell 14 can be fixed to and electrically connected to the ground plate 19 disposed on the +Z direction side of the first insulator 17.

    [0062] When the shell 14 is aligned with the first insulator 17, the tip ends of the pair of projection sections 14E of the shell 14 come into contact with the surfaces facing -Z direction of the corresponding overhanging sections 18B of the mid-plate 18 as illustrated in FIG. 12. Accordingly, by means of welding between each of the projection sections 14E of the shell 14 and the corresponding overhanging section 18B of the mid-plate 18 to form a welded portion W3, reliability of fixation and electrical connection between the shell 14 and the mid-plate 18 can be improved.

    [0063] Furthermore, since the cutout 14G formed in the flat plate section 14B on the -Z direction side of the tubular section 14A of the shell 14 is positioned so as to be overlapped on the shell connection section 19C of the ground plate 19 disposed on the -Z direction side of the first insulator 17, by means of welding between an edge of the cutout 14G of the shell 14 and the shell connection section 19C of the ground plate 19 to form a welded portion W4, the shell 14 can be fixed to and electrically connected to the ground plate 19 disposed on the -Z direction side of the first insulator 17.

    [0064] The welded portions W1 to W4 can be formed, for example, by laser welding using laser beam irradiation. More specifically, a contact portion between each of the projection sections 14C of the shell 14 and the corresponding overhanging section 18B of the mid-plate 18 is irradiated with a laser beam to form the welded portion W1; a boundary portion between the cutout 14G on the +Z direction side of the shell 14 and the shell connection section 19C of the ground plate 19 on the +Z direction side is irradiated with a laser beam to form the welded portion W2; the tip end of each projection section 14E of the shell 14 in contact with the -Z direction side of the corresponding overhanging section 18B of the mid-plate 18 is irradiated with a laser beam from the -Z direction to form the welded portion W3; and a boundary portion between the cutout 14G on the -Z direction side of the shell 14 and the shell connection section 19C of the ground plate 19 on the -Z direction side is irradiated with a laser beam to form the welded portion W4.

    [0065] For the improved reliability of electrical connection between the shell 14 and the pair of ground plates 19 through welding, it is preferable to form a plurality of welded portions W2 in the cutout 14G on the +Z direction side of the shell 14 and a plurality of welded portions W4 in the cutout 14G on the -Z direction side of the shell 14. In FIGS. 11 and 12, welded portions W2 are formed at three locations within the cutout 14G on the +Z direction side of the shell 14, while welded portions W4 are formed at three locations within the cutout 14 on the -Z direction side of the shell 14.

    [0066] After the shell 14 is fixed to and electrically connected to the mid-plate 18 and the pair of ground plates 19 as above, the second insulator 15 is formed in Step S5.

    [0067] With the shell 14 being kept attached to the shell carrier 22 as illustrated in FIG. 13, a mold (not show) is fitted to the shell 14 and the first contacts 12 and the second contacts 13, and a molten insulating resin is poured into the mold and solidified, whereby the second insulator 15 is formed. Thereafter, the mold is removed, and the shell carrier 22 is detached from the ends in the +Y direction of the pair of arm sections 14D of the shell 14.

    [0068] Accordingly, as illustrated in FIG. 14, the rear part in the +Y direction of the shell 14 and the rear part in the +Y direction of the first insulator 17 covered by the shell 14 are closed by the second insulator 15, while the end portions in the +Y direction of the first contacts 12 and second contacts 13 project in the +Y direction from the rear face 15A of the second insulator 15.

    [0069] The welded portions W1 to W4 between the mid-plate 18 or the pair of ground plates 19 and the shell 14 are covered by the second insulator 15.

    [0070] In addition, a seamless waterproof member insertion groove 15B is formed so as to surround an outer periphery of the second insulator 15, and the waterproof member 16 is disposed in the waterproof-member insertion groove 15B, whereby the connector 11 shown in FIG. 1 is produced.

    [0071] Since the second insulator 15 is thus formed, the insulating resin that constitutes the second insulator 15 adheres to surfaces of intermediate portions of the first contacts 12 and second contacts 13 covered by the second insulator 15, and, accordingly, even if water enters from front end portions in the -Y direction of the first contacts 12 and second contacts 13 exposed inside the shell 14 along the surfaces of the contacts, water is blocked at the adhesion site in the second insulator 15 and is prevented from reaching the rear face 15A side of the second insulator 15.

    [0072] Similarly, since the second insulator 15 is thus formed, the insulating resin that constitutes the second insulator 15 also adheres to surfaces of the pair of arm sections 14D of the shell 14, and, accordingly, even if water enters from the tubular section 14A along the surface of the shell 14, water is blocked at the adhesion site between the second insulator 15 and the arm sections 14D of the shell 14 and is prevented from reaching the arm sections 14D that are exposed on the rear face 15A side of the second insulator 15.

    [0073] Moreover, the seamless waterproof member 16 surrounding the outer periphery of the second insulator 15 is disposed.

    [0074] Therefore, the connector 11 having waterproof properties can be realized.

    [0075] As described above, since the second insulator 15 is formed after the welded portions W1 to W4 are formed to fix and electrically connect the shell 14 to the mid-plate 18 and the pair of ground plates 19, the highly accurate connector 11 having a large number of components in which misalignment among the components is suppressed without the use of an adhesive can be produced.

    [0076] Because no adhesive is used, the production cost can be decreased and, at the same time, the production process can be simplified.

    [0077] In Embodiment 1 above, the first-contact carrier 21 is detached from the first contacts 12 that are pressed into the first insulator 17, and thereafter in Step S3, the shell 14 attached to the shell carrier 22 is placed over the first insulator 17, but the present invention is not limited to this, and the shell 14 attached to the shell carrier 22 may be placed over the first insulator 17 while the first-contact carrier 21 is connected to the first contacts 12. In that case, it is required to align the shell 14 with the first insulator 17 without connecting the first-contact carrier 21 and the shell carrier 22 to each other to form the welded portions W1 to W4.

    Embodiment 2



    [0078] FIG. 15 illustrates a connector 31 according to Embodiment 2.

    [0079] The connector 31 is the same as the connector 11 of Embodiment 1 as illustrated in FIG. 1 with an addition of a waterproof sealing section 32 disposed on the rear face 15A of the second insulator 15 from which the end portions in the +Y direction of the first contacts 12 and second contacts 13 project.

    [0080] The waterproof sealing section 32 can be formed by the process of coating, after the second insulator 15 is formed, a flowable sealing material made from a molten resin, adhesive or the like over the rear face 15A of the second insulator 15 so as to bury root portions of the first contacts 12 and second contacts 13 that project from the rear face 15A of the second insulator 15 and drying the sealing material. Alternatively, an elastic and waterproof material is preliminarily formed into a waterproof sealing member, and the waterproof sealing member is fitted onto the rear face 15A of the second insulator 15, whereby the waterproof sealing section 32 can be made.

    [0081] Since the waterproof sealing section 32 is disposed on the rear face 15A of the second insulator 15 in this manner, even if water enters along surfaces of the first contacts 12 and second contacts 13 to reach the rear face 15A side of the second insulator 15, the waterproof sealing section 32 can block water and thus improve the waterproof properties.

    Embodiment 3



    [0082] In the connector 11 of Embodiment 1 or the connector 31 of Embodiment 2 above, a contact-side waterproof shaped section 41 as illustrated in FIG. 16 may be provided to a surface of a portion of each of the first contacts 12 and second contacts 13 to be covered by the second insulator 15.

    [0083] The contact-side waterproof shaped section 41 is to block entry of water along the surface of the first contact 12 or the second contact 13 and is composed of a plurality of grooves or a plurality of protrusions that are formed to surround and enclose the periphery of the first contact 12 or the second contact 13.

    [0084] While the insulating resin that constitutes the second insulator 15 adheres to the surfaces of the portions of the first contacts 12 and second contacts 13 where the second insulator 15 covers as described above, since such contact-side waterproof shaped section 41 is provided to each of the first contacts 12 and second contacts 13, even if the insulating resin that had adhered to the surfaces of the first contacts 12 and second contacts 13 separates therefrom and allows water to enter along the surfaces thereof, water is blocked by the contact-side waterproof shaped sections 41 and cannot reach the rear face 15A side of the second insulator 15.

    [0085] Accordingly, the connectors 11 and 31 can be configured to have further improved waterproof properties.

    [0086] Similarly, a shell-side waterproof shaped section 42 as illustrated in FIG. 17 may be provided on a surface of a portion of each of the pair of arm sections 14D of the shell 14 to be covered by the second insulator 15.

    [0087] The shell-side waterproof shaped section 42 is to block entry of water along the surface of the arm section 14D of the shell 14 and is composed of a plurality of grooves or a plurality of protrusions that are formed to surround and enclose the periphery of the arm section 14D.

    [0088] While the insulating resin that constitutes the second insulator 15 adheres to the surfaces of the portions of the arm sections 14D of the shell 14 where the second insulator 15 covers as described above, since such shell-side waterproof shaped section 42 as above is provided to each of the arm sections 14D, even if the insulating resin that had adhered to the surfaces of the arm sections 14D of the shell 14 separates therefrom and allows water to enter along the surfaces thereof, water is blocked by the shell-side waterproof shaped sections 42 and cannot reach portions of the arm sections 14D exposed from the rear face 15A of the second insulator 15.

    [0089] Accordingly, the waterproof properties can be further improved.

    [0090] While the contact-side waterproof shaped section 41 is composed of a plurality of grooves or a plurality of protrusions that are formed to surround and enclose the periphery of each of the first contacts 12 and the second contacts 13, and the shell-side waterproof shaped section 42 is composed of a plurality of grooves or a plurality of protrusions that are formed to surround and enclose the periphery of each of the arm sections 14D of the shell 14, the grooves or protrusions are not necessarily formed to surround and enclose the periphery, but may be formed partially along the circumference to exhibit the waterproof effect. Meanwhile, the better waterproof function can be achieved when the grooves or protrusions are formed to surround and enclose the periphery.

    [0091]  While each of the contact-side waterproof shaped section 41 and the shell-side waterproof shaped section 42 is composed of a plurality of grooves or protrusions, a single groove or protrusion can still suppress the entry of water along the interface between the relevant surface and the second insulator 15. In the meantime, the higher waterproof effect can be obtained when a plurality of grooves or protrusions are formed.

    [0092] To suppress the entry of water along the interface between the relevant surface and the second insulator 15, it is preferable for a groove or protrusion to have a height difference of, for instance, not less than 0.01 mm.

    [0093] While in the foregoing Embodiments 1 to 3, the first contacts 12 and the second contacts 13 are arranged in two rows separately on both surfaces of the mid-plate 18 to face each other, the present invention is not limited thereto and may be applied to a connector in which a plurality of contacts are arranged in a single row.

    [0094] The number of contacts is not limited, and it suffices if one or more contacts are held in a housing.

    REFERENCE SIGNS LIST



    [0095] 1 shell; 2 contact; 3 shell-connecting piece; 4 shell carrier; 5 contact-connecting piece; 6 contact carrier; 11, 31 connector; 12 first contact; 13 second contact; 14 shell; 14A tubular section; 14B flat plate section; 14C, 14E projection section; 14D arm section; 14F substrate connection section; 14G cutout; 15 second insulator; 15A rear face; 15B waterproof member insertion groove; 16 waterproof member; 17 first insulator; 17A insulator body; 17B tongue-like section; 17C stepped section; 17D ground plate-mounting surface; 17E ground plate-fixing groove; 17F through-hole; 17G contact groove; 18 mid-plate; 18A counter connector-connecting section; 18B overhanging section; 19 ground plate; 19A flat section; 19B upright section; 19C shell connection section; 20 second-contact carrier; 21 first-contact carrier; 22 shell carrier; 32 waterproof sealing section; 41 contact-side waterproof shaped section; 42 shell-side waterproof shaped section; C fitting axis; W1 - W4 welded portion


    Claims

    1. A connector (11, 31) production method comprising:

    holding a flat plate conductor with a first insulator (17);

    joining central portions of one or more contacts (2, 13) to the first insulator (17) such that front end portions of the one or more contacts (2, 13) are exposed at a front part of the first insulator (17) and rear end portions of the one or more contacts (2, 13) project from a rear part of the first insulator (17), wherein the contacts (2, 13) extend in a direction of a fitting axis (C) and wherein a direction from a front to a back of the connector (11, 31) along the fitting axis (C) is called Y direction, wherein a X direction is perpendicular to the Y direction; and

    placing a shell (1, 14) made of metal over the first insulator (17) such that the shell (1, 14) covers outer peripheral portions of the one or more contacts (2, 13);

    fixing and electrically connecting the shell (1, 14) to the flat plate conductor;

    characterized by the step of
    forming a second insulator (15) by insert molding such that the second insulator (15) covers the rear part of the first insulator (17) and a rear part of the shell (1, 14) and adheres to surfaces of a pair of arm sections (14D) projecting in a +Y direction respectively from opposite ends in the X direction of a flat plate section (14B) of the shell (1, 14) while the rear end portions of the one or more contacts (2, 13) project from the second insulator (15) and such that the second insulator (15) closes the rear part in the +Y direction of the shell and of the first insulator (17) covered by the shell (14),

    wherein the shell (1, 14) is fixed to and electrically connected to the flat plate conductor through welding.


     
    2. The connector (11, 31) production method according to claim 1, wherein the flat plate conductor includes ground plates (19) that are disposed so as to be exposed on surfaces of the first insulator (17), and the ground plates (19) are pressed into the first insulator (17) to be held by the first insulator (17).
     
    3. The connector (11, 31) production method according to claim 1 or 2, wherein the flat plate conductor includes a mid-plate (18) that is disposed in a vicinity of front end portions of the one or more contacts (2, 13), and the first insulator (17) is formed so as to cover surfaces of the mid-plate (18) so that the mid-plate (18) is held by the first insulator (17).
     
    4. The connector (11, 31) production method according to any one of claims 1 to 3, wherein after the one or more contacts (2, 13) are pressed into the first insulator (17) in a state of being attached to a contact carrier (6) and the central portions of the one or more contacts (2, 13) are joined to the first insulator (17), the one or more contacts (2, 13) are detached from the contact carrier (6).
     
    5. The connector (11, 31) production method according to any one of claims 1 to 4, wherein after the shell (1, 14) is placed over the first insulator (17) in a state of being attached to a shell carrier (4) and formation of the second insulator (15) is completed, the shell (1, 14) is detached from the shell carrier (4).
     
    6. The connector (11, 31) production method according to any one of claims 1 to 5, wherein each of the one or more contacts (2, 13) is provided in a portion thereof covered by the second insulator (15) with a contact-side waterproof shaped section comprising at least one groove or at least one protrusion for blocking entry of water.
     
    7. The connector (11, 31) production method according to any one of claims 1 to 6, wherein the shell (1, 14) is provided in a portion thereof covered by the second insulator (15) with a shell-side waterproof shaped section comprising at least one groove or at least one protrusion for blocking entry of water.
     
    8. The connector (11, 31) production method according to any one of claims 1 to 7, further comprising providing a waterproof sealing section (32) to a surface of a portion of the second insulator (15) from which the rear end portions of the one or more contacts (2, 13) project.
     
    9. The connector (11, 31) production method according to any one of claims 1 to 8, further comprising disposing a seamless waterproof member (16) that surrounds an outer periphery of the second insulator (15).
     
    10. A connector (11, 31) comprising:

    a first insulator (17);

    a flat plate conductor that is held by the first insulator (17);

    one or more contacts (2, 13) whose central portions are joined to the first insulator (17) such that front end portions of the one or more contacts (2, 13) are exposed at a front part of the first insulator (17) and rear end portions of the one or more contacts (2, 13) project from a rear part of the first insulator (17), wherein the contacts (2, 13) extend in a direction of a fitting axis (C) and wherein a direction from a front to a back of the connector (11, 31) along the fitting axis (C) is called Y direction, wherein a X direction is perpendicular to the Y direction; and

    a shell (1, 14) made of metal that is placed over the first insulator (17) so as to cover outer peripheral portions of the one or more contacts (2, 13) and that is fixed to and electrically connected to the flat plate conductor,

    characterized by

    a second insulator (15) that is formed by insert molding so as to cover the rear part of the first insulator (17) and a rear part of the shell and adheres to surfaces of a pair of arm sections (14D) projecting in a +Y direction respectively from opposite ends in the X direction of a flat plate section (14B) of the shell (1, 14) while the rear end portions of the one or more contacts (2, 13) project from the second insulator (15) and wherein the second insulator (15) is formed so as to close the rear part in the +Y direction of the shell and of the first insulator (17) covered by the shell (14),

    wherein the shell (1, 14) is fixed to and electrically connected to the flat plate conductor through welding.


     
    11. The connector (11, 31) according to claim 10, wherein the flat plate conductor includes ground plates (19) that are pressed into the first insulator (17) so as to be held by the first insulator (17) and exposed on surfaces of the first insulator (17).
     
    12. The connector (11, 31) according to claim 10 or 11, wherein the flat plate conductor includes a mid-plate (18) that is held by the first insulator (17) through formation of the first insulator (17) and that is disposed near front end portions of the one or more contacts (2, 13).
     
    13. The connector (11, 31) according to any one of claims 10 to 12, wherein each of the one or more contacts (2, 13) is provided in a portion thereof covered by the second insulator (15) with a contact-side waterproof shaped section (41) comprising at least one groove or at least one protrusion for blocking entry of water.
     
    14. The connector (11, 31) according to any one of claims 10 to 13, wherein the shell (1, 14) is provided in a portion thereof covered by the second insulator (15) with a shell-side waterproof shaped section (42) comprising at least one groove or at least one protrusion for blocking entry of water.
     
    15. The connector (11, 31) according to any one of claims 10 to 14, further comprising a waterproof sealing section provided to a surface of a portion of the second insulator (15) from which the rear end portions of the one or more contacts (2, 13) project.
     
    16. The connector (11, 31) according to any one of claims 10 to 15, further comprising a seamless waterproof member (16) that surrounds an outer periphery of the second insulator (15).
     


    Ansprüche

    1. Herstellungsverfahren für Verbinder (11, 31), umfassend:

    Halten eines Flachplattenleiters mit einem ersten Isolator (17) ;

    Verbinden mittlerer Abschnitte eines oder mehrerer Kontakte (2, 13) mit dem ersten Isolator (17), dergestalt, dass vordere Endabschnitte des einen oder der mehreren Kontakte (2, 13) an einem vorderen Teil des ersten Isolators (17) frei liegen und hintere Endabschnitte des einen oder der mehreren Kontakte (2, 13) von einem hinteren Teil des ersten Isolators (17) vorstehen, wobei sich die Kontakte (2, 13) in einer Richtung einer Montageachse (C) erstrecken, und wobei eine Richtung von einer Vorderseite zu einer Rückseite des Verbinders (11, 31) entlang der Montageachse (C) als Y-Richtung bezeichnet wird, wobei eine X-Richtung senkrecht zu der Y-Richtung verläuft; und

    Platzieren einer Schale (1, 14) aus Metall über dem ersten Isolator (17), dergestalt, dass die Schale (1, 14) äußere Umfangsabschnitte des einen oder mehrerer Kontakte (2, 13) bedeckt;

    Befestigen und elektrisches Verbinden der Schale (1, 14) mit dem Flachplattenleiter;

    gekennzeichnet durch den Schritt des Bildens eines zweiten Isolators (15) durch Zweistufen-Spritzgießen, dergestalt, dass der zweite Isolator (15) den hinteren Teil des ersten Isolators (17) und einen hinteren Teil der Schale (1, 14) bedeckt und an Flächen eines Paares von Armabschnitten (14D) anhaftet, die in einer +Y-Richtung jeweils von in der X-Richtung entgegengesetzten Enden eines Flachplattenabschnitts (14B) der Schale (1, 14) vorstehen, während die hinteren Endabschnitte des einen oder der mehreren Kontakte (2, 13) von dem zweiten Isolator (15) vorstehen, dergestalt, dass der zweite Isolator (15) den hinteren Teil in der +Y-Richtung der Schale und des durch die Schale (14) bedeckten ersten Isolators (17) verschließt, wobei die Schale (1, 14) durch Schweißen an dem Flachplattenleiter befestigt und mit diesem elektrisch verbunden wird.


     
    2. Herstellungsverfahren für Verbinder (11, 31) nach Anspruch 1, wobei der Flachplattenleiter Erdungsplatten (19) aufweist, die so angeordnet sind, dass sie an Flächen des ersten Isolators (17) freiliegen, und die Erdungsplatten (19) in den ersten Isolator (17) hineingedrückt werden, um durch den ersten Isolator (17) gehalten zu werden.
     
    3. Herstellungsverfahren für Verbinder (11, 31) nach Anspruch 1 oder 2, wobei der Flachplattenleiter eine Mittelplatte (18) umfasst, die in einer Nähe vorderer Endabschnitte des einen oder der mehreren Kontakte (2, 13) angeordnet ist, und der erste Isolator (17) so ausgebildet ist, dass er Flächen der Mittelplatte (18) bedeckt, dergestalt, dass die Mittelplatte (18) durch den ersten Isolator (17) gehalten wird.
     
    4. Herstellungsverfahren für Verbinder (11, 31) nach einem der Ansprüche 1 bis 3, wobei, nachdem der eine oder die mehreren Kontakte (2, 13) in den ersten Isolator (17) hineingedrückt wurden, während sie an einem Kontaktträger (6) befestigt sind, und die mittleren Abschnitte des einen oder der mehreren Kontakte (2, 13) mit dem ersten Isolator (17) verbunden wurden, der eine oder die mehreren Kontakte (2, 13) von dem Kontaktträger (6) gelöst werden.
     
    5. Herstellungsverfahren für Verbinder (11, 31) nach einem der Ansprüche 1 bis 4, wobei, nachdem die Schale (1, 14) über dem ersten Isolator (17) platziert wurde, während sie an einem Schalenträger (4) befestigt ist, und nachdem die Bildung des zweiten Isolators (15) vollendet ist, die Schale (1, 14) von dem Schalenträger (4) gelöst wird.
     
    6. Herstellungsverfahren für Verbinder (11, 31) nach einem der Ansprüche 1 bis 5, wobei jeder des einen oder der mehreren Kontakte (2, 13) in einem durch den zweiten Isolator (15) bedeckten Abschnitt mit einer kontaktseitigen wasserdichten geformten Sektion versehen ist, die mindestens eine Nut oder mindestens einen Vorsprung zum Blockieren des Eintritts von Wasser aufweist.
     
    7. Herstellungsverfahren für Verbinder (11, 31) nach einem der Ansprüche 1 bis 6, wobei die Schale (1, 14) in einem durch den zweiten Isolator (15) bedeckten Abschnitt mit einer schalenseitigen wasserdichten geformten Sektion versehen ist, die mindestens eine Nut oder mindestens einen Vorsprung zum Blockieren des Eintritts von Wasser aufweist.
     
    8. Herstellungsverfahren für Verbinder (11, 31) nach einem der Ansprüche 1 bis 7, des Weiteren umfassend das Bereitstellen einer wasserdichten Dichtungssektion (32) an einer Fläche eines Abschnitts des zweiten Isolators (15), von der die hinteren Endabschnitte des einen oder der mehreren Kontakte (2, 13) vorstehen.
     
    9. Herstellungsverfahren für Verbinder (11, 31) nach einem der Ansprüche 1 bis 8, des Weiteren umfassend das Anordnen eines nahtlosen wasserdichten Elements (16), das einen äußeren Umfang des zweiten Isolators (15) umgibt.
     
    10. Verbinder (11, 31), umfassend:

    einen ersten Isolator (17);

    einen Flachplattenleiter, die durch den ersten Isolator (17) gehalten wird;

    einen oder mehrere Kontakte (2, 13), deren mittige Abschnitte mit dem ersten Isolator (17) verbunden sind, dergestalt, dass vordere Endabschnitte des einen oder der mehreren Kontakte (2, 13) an einem vorderen Teil des ersten Isolators (17) frei liegen und hintere Endabschnitte des einen oder der mehreren Kontakte (2, 13) von einem hinteren Teil des ersten Isolators (17) vorstehen, wobei sich die Kontakte (2, 13) in einer Richtung einer Montageachse (C) erstrecken, und wobei eine Richtung von einer Vorderseite zu einer Rückseite des Verbinders (11, 31) entlang der Montageachse (C) als Y-Richtung bezeichnet wird, wobei eine X-Richtung senkrecht zu der Y-Richtung verläuft; und

    eine Schale (1, 14) aus Metall, die über dem ersten Isolator (17) platziert ist, um äußere Umfangsabschnitte des einen oder der mehreren Kontakte (2, 13) zu bedecken, und die an dem Flachplattenleiter befestigt und elektrisch mit diesem verbunden ist,

    gekennzeichnet durch einen zweiten Isolator (15), der durch Zweistufen-Spritzgießen gebildet ist, dergestalt, dass er den hinteren Teil des ersten Isolators (17) und einen hinteren Teil der Schale bedeckt und an Flächen eines Paares von Armabschnitten (14D) anhaftet, die in einer +Y-Richtung jeweils von in der X-Richtung entgegengesetzten Enden eines Flachplattenabschnitts (14B) der Schale (1, 14) vorstehen, während die hinteren Endabschnitte des einen oder der mehreren Kontakte (2, 13) von dem zweiten Isolator (15) vorstehen, und wobei der zweite Isolator (15) so ausgebildet ist, dass er den hinteren Teil in der +Y-Richtung der Schale und des durch die Schale (14) bedeckten ersten Isolators (17) verschließt, wobei die Schale (1, 14) durch Schweißen an dem flachen Plattenleiter befestigt und mit diesem elektrisch verbunden ist.


     
    11. Verbinder (11, 31) nach Anspruch 10, wobei der Flachplattenleiter Erdungsplatten (19) aufweist, die in den ersten Isolator (17) so hineingepresst sind, dass sie durch den ersten Isolator (17) gehalten werden und an Flächen des ersten Isolators (17) freiliegen.
     
    12. Verbinder (11, 31) nach Anspruch 10 oder 11, wobei der Flachplattenleiter eine Mittelplatte (18) aufweist, die durch den ersten Isolator (17) durch Bilden des ersten Isolators (17) gehalten ist und die nahe vorderer Endabschnitte des einen oder der mehreren Kontakte (2, 13) angeordnet ist.
     
    13. Verbinder (11, 31) nach einem der Ansprüche 10 bis 12, wobei jeder des einen oder der mehreren Kontakte (2, 13) in einem durch den zweiten Isolator (15) bedeckten Abschnitt mit einer kontaktseitigen wasserdichten geformten Sektion (41) versehen ist, die mindestens eine Nut oder mindestens einen Vorsprung zum Blockieren des Eintritts von Wasser aufweist.
     
    14. Verbinder (11, 31) nach einem der Ansprüche 10 bis 13, wobei die Schale (1, 14) in einem durch den zweiten Isolator (15) bedeckten Abschnitt mit einer schalenseitigen wasserdichten geformten Sektion (42) versehen ist, die mindestens eine Nut oder mindestens einen Vorsprung zum Blockieren des Eintritts von Wasser aufweist.
     
    15. Verbinder (11, 31) nach einem der Ansprüche 10 bis 14, ferner aufweisend eine wasserdichte Dichtungssektion, die an einer Fläche eines Abschnitts des zweiten Isolators (15) angeordnet ist, von der die hinteren Endabschnitte des einen oder der mehreren Kontakte (2, 13) vorstehen.
     
    16. Verbinder (11, 31) nach einem der Ansprüche 10 bis 15, fner aufweisend ein nahtloses wasserdichtes Element (16), das einen äußeren Umfang des zweiten Isolators (15) umgibt.
     


    Revendications

    1. Procédé de fabrication d'un connecteur (11, 31), comprenant les étapes suivantes :

    maintenir un conducteur de type plaque plane avec un premier isolant (17) ;

    assembler des parties centrales d'un ou de plusieurs contact(s) (2, 13) au premier isolant (17), de manière que des parties d'extrémité avant du ou des contact(s) (2, 13) soient apparentes à une partie avant du premier isolant (17) et que des parties d'extrémité arrière du ou des contact(s) (2, 13) fassent saillie depuis une partie arrière du premier isolant (17), dans lequel les contacts (2, 13) s'étendent dans la direction d'un axe de raccordement (C) et dans lequel une direction de l'avant vers l'arrière du connecteur (11, 31) le long de l'axe de raccordement (C) est dénommée direction Y, dans lequel une direction X est perpendiculaire à la direction Y ; et

    placer une coque (1, 14) constituée de métal par-dessus le premier isolant (17) de manière que la coque (1, 14) recouvre des parties périphériques extérieures du ou des contact(s) (2, 13) ;

    fixer et connecter électriquement la coque (1, 14) au conducteur de type plaque plane ;

    caractérisé par l'étape consistant à :
    former un second isolant (15) par moulage sur prisonnier, de manière que le second isolant (15) recouvre la partie arrière du premier isolant (17) et une partie arrière de la coque (1, 14) et adhère à des surfaces d'une paire de sections bras (14D) faisant saillie dans une direction +Y respectivement depuis des extrémités opposées dans la direction X d'une section plaque plane (14B) de la coque (1, 14) tandis que les parties d'extrémité arrière du ou des contact(s) (2, 13) font saillie depuis le second isolant (15) et de manière que le second isolant (15) ferme la partie arrière dans la direction +Y de la coque et du premier isolant (17) recouvert par la coque (14),

    dans lequel la coque (1, 14) est fixée au conducteur de type plaque plane et électriquement connectée à celui-ci par soudage.


     
    2. Procédé de fabrication d'un connecteur (11, 31) selon la revendication 1, dans lequel le conducteur de type plaque plane comporte des plaques de masse (19) qui sont disposées de façon à être apparentes sur des surfaces du premier isolant (17), et les plaques de masse (19) sont pressées dans le premier isolant (17) pour être maintenues par le premier isolant (17).
     
    3. Procédé de fabrication d'un connecteur (11, 31) selon la revendication 1 ou 2, dans lequel le conducteur de type plaque plane comporte une plaque intermédiaire (18) qui est disposée au voisinage de parties d'extrémité avant du ou des contact (s) (2, 13), et le premier isolant (17) est formé de façon à recouvrir des surfaces de la plaque intermédiaire (18) de manière que la plaque intermédiaire (18) soit maintenue par le premier isolant (17).
     
    4. Procédé de fabrication d'un connecteur (11, 31) selon l'une quelconque des revendications 1 à 3, dans lequel, après que le (s) contact (s) (2, 13) a ou ont été pressé (s) dans le premier isolant (17) à l'état fixé à un support de contacts (6) et que les parties centrales du ou des contact(s) (2, 13) ont été assemblées au premier isolant (17), le(s) contact(s) (2, 13) est ou sont détaché(s) du support de contacts (6).
     
    5. Procédé de fabrication d'un connecteur (11, 31) selon l'une quelconque des revendications 1 à 4, dans lequel, après que la coque (1, 14) a été placée par-dessus le premier isolant (17) à l'état fixé à un support de coque (4) et que la formation du second isolant (15) a été achevée, la coque (1, 14) est détachée du support de coque (4).
     
    6. Procédé de fabrication d'un connecteur (11, 31) selon l'une quelconque des revendications 1 à 5, dans lequel chacun du ou des contact(s) (2, 13) est pourvu en une partie de celui-ci recouverte par le second isolant (15) d'une section profilée imperméable à l'eau côté contact, comprenant au moins une rainure ou au moins une protubérance pour empêcher la pénétration d'eau.
     
    7. Procédé de fabrication d'un connecteur (11, 31) selon l'une quelconque des revendications 1 à 6, dans lequel la coque (1, 14) est pourvue en une partie de celle-ci recouverte par le second isolant (15) d'une section profilée imperméable à l'eau côté coque, comprenant au moins une rainure ou au moins une protubérance pour empêcher la pénétration d'eau.
     
    8. Procédé de fabrication d'un connecteur (11, 31) selon l'une quelconque des revendications 1 à 7, comprenant en outre la mise en place d'une section d'étanchéité imperméable à l'eau (32) sur une surface d'une partie du second isolant (15) d'où font saillie les parties d'extrémité arrière du ou des contact(s) (2, 13).
     
    9. Procédé de fabrication d'un connecteur (11, 31) selon l'une quelconque des revendications 1 à 8, comprenant en outre la disposition d'un élément imperméable à l'eau sans joint (16), qui entoure une périphérie extérieure du second isolant (15).
     
    10. Connecteur (11, 31) comprenant :

    un premier isolant (17) ;

    un conducteur de type plaque plane qui est maintenu par le premier isolant (17) ;

    un ou plusieurs contact (s) (2, 13) dont les parties centrales sont assemblées au premier isolant (17), de manière que des parties d'extrémité avant du ou des contact(s) (2, 13) soient apparentes à une partie avant du premier isolant (17) et que des parties d'extrémité arrière du ou des contact (s) (2, 13) fassent saillie depuis une partie arrière du premier isolant (17), dans lequel les contacts (2, 13) s'étendent dans la direction d'un axe de raccordement (C) et dans lequel une direction de l'avant vers l'arrière du connecteur (11, 31) le long de l'axe de raccordement (C) est dénommée direction Y, dans lequel une direction X est perpendiculaire à la direction Y ; et

    une coque (1, 14) constituée de métal, qui est placée par-dessus le premier isolant (17) de manière à recouvrir des parties périphériques extérieures du ou des contact(s) (2, 13), et qui est fixée au conducteur de type plaque plane et électriquement connectée à celui-ci,

    caractérisé par :

    un second isolant (15) qui est formé par moulage sur prisonnier, de manière à recouvrir la partie arrière du premier isolant (17) et une partie arrière de la coque, et qui adhère à des surfaces d'une paire de sections bras (14D) faisant saillie dans une direction +Y respectivement depuis des extrémités opposées dans la direction X d'une section plaque plane (14B) de la coque (1, 14) tandis que les parties d'extrémité arrière du ou des contact (s) (2, 13) font saillie depuis le second isolant (15) et dans lequel le second isolant (15) est formé de manière à fermer la partie arrière dans la direction +Y de la coque et du premier isolant (17) recouvert par la coque (14),

    dans lequel la coque (1, 14) est fixée au conducteur de type plaque plane et électriquement connectée à celui-ci par soudage.


     
    11. Connecteur (11, 31) selon la revendication 10, dans lequel le conducteur de type plaque plane comporte des plaques de masse (19) qui sont pressées dans le premier isolant (17) de manière à être maintenues par le premier isolant (17) et apparentes sur des surfaces du premier isolant (17).
     
    12. Connecteur (11, 31) selon la revendication 10 ou 11, dans lequel le conducteur de type plaque plane comporte une plaque intermédiaire (18) qui est maintenue par le premier isolant (17) par formation du premier isolant (17) et qui est disposée près de parties d'extrémité avant du ou des contact(s) (2, 13).
     
    13. Connecteur (11, 31) selon l'une quelconque des revendications 10 à 12, dans lequel chacun du ou des contact (s) (2, 13) est pourvu en une partie de celui-ci recouverte par le second isolant (15) d'une section profilée imperméable à l'eau côté contact (41), comprenant au moins une rainure ou au moins une protubérance pour empêcher la pénétration d'eau.
     
    14. Connecteur (11, 31) selon l'une quelconque des revendications 10 à 13, dans lequel la coque (1, 14) est pourvue en une partie de celle-ci recouverte par le second isolant (15) d'une section profilée imperméable à l'eau côté coque (42), comprenant au moins une rainure ou au moins une protubérance pour empêcher la pénétration d'eau.
     
    15. Connecteur (11, 31) selon l'une quelconque des revendications 10 à 14, comprenant en outre une section d'étanchéité imperméable à l'eau, mise en place sur une surface d'une partie du second isolant (15) d'où font saillie les parties d'extrémité arrière du ou des contact(s) (2, 13).
     
    16. Connecteur (11, 31) selon l'une quelconque des revendications 10 à 15, comprenant en outre un élément imperméable à l'eau sans joint (16), qui entoure une périphérie extérieure du second isolant (15).
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description