(19)
(11)EP 3 253 014 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 16194000.2

(22)Date of filing:  14.10.2016
(51)International Patent Classification (IPC): 
H04L 12/931(2013.01)
H04L 12/803(2013.01)

(54)

SUPPLEMENTAL CONNECTION FABRIC FOR CHASSIS-BASED NETWORK DEVICE

ZUSÄTZLICHES VERBINDUNGELEMEMT FÜR GESTELLBASIERTE NETZWERKVORRICHTUNG

ROUTEUR DE CONNEXION SUPPLÉMENTAIRE POUR CONNEXIONS RÉSEAU INCLUSES DANS LE CHÂSSIS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.06.2016 US 201615170608

(43)Date of publication of application:
06.12.2017 Bulletin 2017/49

(73)Proprietor: Juniper Networks, Inc.
Sunnyvale, CA 94089 (US)

(72)Inventors:
  • KENNEY, John B.
    Groton, MA 01450 (US)
  • OTTE, Christopher J.
    Hollis, NH 03049 (US)
  • PATEL, Bhavesh
    Fremont, CA 94539 (US)
  • KUGEL, Valery
    Mountain View, CA 94040 (US)
  • SAGARWALA, Muhammad
    Los Gatos, CA 95032 (US)

(74)Representative: D Young & Co LLP 
120 Holborn
London EC1N 2DY
London EC1N 2DY (GB)


(56)References cited: : 
EP-A1- 2 164 209
US-A1- 2007 110 088
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Network devices (e.g., routers, gateways, switches, hubs, etc.) may route network traffic between devices. The network traffic may be associated with information that identifies a source and/or destination of the network traffic (e.g., headers, footers, etc.), and the network devices may use this information to route the network traffic. For example, the network traffic may include packets to be routed, and the network devices may use packet headers associated with the packets to switch or route the network traffic to an appropriate device.
    European patent application EP 2 164 209 A1 of 17 March 2010 describes systems, methods, and apparatus for a data centre. More specifically, this document discusses an apparatus including a first edge device that can have a packet processing module. The first edge device can be configured to receive a packet. The packet processing module of the first edge device can be configured to produce a plurality of cells based on the packet. A second edge device can have a packet processing module configured to reassemble the packet based on the plurality of cells. A multi-stage switch fabric can be coupled to the first edge device and the second edge device. The multi-stage switch fabric can define a single logical entity. The multi-stage switch fabric can have a plurality of switch modules. Each switch module from the plurality of switch modules can have a shared memory device. The multi-stage switch fabric can be configured to switch the plurality of cells so that the plurality of cells are sent to the second edge device. US patent application US 2007/0110088 A1 of 17 May 2007 describes methods and systems for scalable interconnect. More specifically, this document discusses a modular architecture that provides the physical level of interconnect that is used to deploy high performance and high flexibility communication networks. Aspects of the physical communications are described to deliver scalable computer to computer communications as well as scalable computer to I/0 communications, scalable I/0 to I/0 communications, and scalable function to function communications with a low cable count. The discussions focus on the physical switched communications layer, as the interconnect physical layer, functions, chassis; modules have been designed as an integrated solution.
    However, neither of these documents disclose at least the following features of appended claim 1: a switching component configured to connect with the I/O component via the one or more first connections and one or more second connections, the switching component being configured to be connected with the one or more second connections (170, 360) via a connector component (160, 350) that is removable from the switching component, and the switching component being configured to provide network traffic to or receive network traffic from the I/O component via the one or more first connections and the one or more second connections when the switching component is connected with the I/O component via the connector component.

    SUMMARY



    [0002] According to some possible implementations, a network device may include a chassis that includes a set of first connections. The chassis may permit an input/output (I/O) component to connect with one or more first connections of the plurality of first connections. The network device may include a switching component to connect with the I/O component the one or more first connections and one or more second connections. The switching component may be connected with the one or more second connections via a connector component that is removable from the switching component. The switching component may provide network traffic to or receive network traffic from the I/O component via the one or more first connections and the one or more second connections when the switching component is connected with the I/O component via the connector component. The switching component may provide network traffic to or receive network traffic from the I/O component via the one or more first connections and not the one or more second connections when the switching component is not connected with the I/O component via the connector component.

    [0003] According to some possible implementations, a computer-readable medium may store one or more instructions that, when executed by one or more processors of a network device, cause the one or more processors to receive network traffic to be provided to an input/output (I/O) component that is connected to the network device by one or more first connections via a chassis of the network device. The one or more instructions, when executed by one or more processors of a network device, cause the one or more processors to determine whether the I/O component is connected to the network device by one or more second connections. The one or more second connections may be connections via a connector component that connects the network device with the I/O component. The connector component may not be attached to the chassis. The one or more instructions, when executed by one or more processors of a network device, cause the one or more processors to selectively provide, to the I/O component, the network traffic via the one or more first connections or via the one or more first connections and the one or more second connections. The network traffic may be provided via the one or more first connections and the one or more second connections when the I/O component is associated with the one or more second connections. The network traffic may be provided via the one or more first connections and not via the one or more second connections when the I/O component is not associated with the one or more second connections.

    [0004] According to some possible implementations a method may include receiving, by a switching component of a network device, network traffic to be provided to an I/O component of the network device. The method may include routing, by the switching component, the network traffic to the I/O component based on whether the I/O component is connected to the switching component via the one or more first connections and via one or more second connections.
    The one or more first connections may be connections via a chassis of the network device. The one or more second connections may be connections via a connector component that is removable from the switching component. The network traffic may be routed via the one or more first connections and the one or more second connections when the I/O component is connected via the one or more first connections and the one or more second connections. The network traffic may be routed via the one or more first connections and not via the one or more second connections when the I/O component is connected via the one or more first connections and not via the one or more second connections.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0005] 

    Figs. 1A and 1B are diagrams of an overview of an example implementation described herein;

    Fig. 2 is a diagram of an example environment in which systems and/or methods, described herein, may be implemented;

    Figs. 3A and 3B are diagrams of example components of one or more devices of Fig. 2;

    Fig. 4 is a flow chart of an example process for configuring a dual plane I/O component and/or a supplemental connector component; and

    Fig. 5 is a flow chart of an example process for routing or switching network traffic via a network device that includes a supplemental connection fabric.


    DETAILED DESCRIPTION



    [0006] The following detailed description of example implementations refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements.

    [0007] A network device may route network traffic between devices that are connected to a network. Some network devices include a chassis to which I/O components (e.g., line cards, network interface cards, etc.) may be connected. For example, the chassis may include slots, sockets, or the like, to which the I/O components are mounted. The chassis may include a midplane or a backplane. Midplane connections may form connections, on or through the midplane, between the I/O components and a switching component of the network device. The connections and circuitry between the ingress and egress I/O components are sometimes referred to collectively as a switching fabric, and may include a set of crossbar switches, or the like.

    [0008] As an example of routing network traffic via a network device, an ingress I/O component of the network device may receive the network traffic, and may provide the network traffic to the switching component via a midplane connection. After receiving the network traffic, the switching component may determine an egress I/O component via which the network traffic is to be provided to a destination, and may route the network traffic to the destination via the egress I/O component (e.g., on another midplane connection).

    [0009] Usable bandwidth of the network device may be limited to approximately a sum of the bandwidths of the midplane connections associated with the chassis. The midplane connections may not be easily replaced. For example, the midplane connections may be hardwired to the chassis of the network device, may be etched into the chassis, may be permanently affixed to the chassis, or the like. As the network device ages, the usable bandwidth may become obsolete, thereby necessitating replacement of the network device, costly retrofitting of the midplane connections, or implementation of additional network devices.

    [0010] Implementations described herein relate to a supplemental connector component that can be connected with a switching component of a network device. Dual plane I/O components may be connected with the switching component via both a chassis-based midplane connection and a supplemental connection with a supplemental connector component. As used herein, "dual plane" denotes that an I/O component is capable of connecting with a switching component via both a midplane connection and a supplemental (i.e., frontplane, front-panel, etc.) connection. As also used herein, "single plane" denotes that an I/O component is capable of connecting with a switching component via a midplane connection and not via a supplemental (i.e., frontplane, front-panel, etc.) connection.

    [0011] As one possible example, the supplemental connector component may include a daughter board, and the supplemental connections may include cables that collectively form a supplemental connection fabric, or a cabled fabric, for communication between dual plane I/O components and the switching component. In such a case, the supplemental connector component may be referred to as a cabled fabric daughter board.

    [0012] In some implementations, implementations described herein may be implemented without powering down the network device or negatively impacting bandwidth of the network device during installation, which improves network resilience and simplifies implementation. For example, the supplemental connector component, the dual plane I/O components, and the supplemental connections may be "hot-pluggable" or "hot-swappable" based on a configuration of the network device, which simplifies installation and upgrade of the supplemental connections.

    [0013] Figs. 1A and 1B are diagrams of an overview of an example implementation 100 described herein. As shown in Fig. 1A, a network device may include a midplane 110. Midplane 110 may be included in chassis to which I/O components, shown by reference number 120, are connected. An I/O component may include, for example, a line card, a network interface card, an input component (e.g., an ingress component), an output component (e.g., an egress component), a combination of an input component and an output component, or the like. As further shown, the I/O components may communicate with a switching component of the network device via connections in midplane 110, hereinafter referred to as "midplane connections." As shown, each midplane connection may have a bandwidth of BM. As shown by reference number 130, based on each midplane connection having a bandwidth BM, a usable bandwidth of the network device is limited to the sum of the bandwidths of the midplane connections (e.g., 4*BM).

    [0014] For example, network traffic to be routed from a source device to a destination device may arrive at an ingress I/O component, of the I/O components, from a network. The first I/O component may provide the network traffic to the switching component via one or more midplane connections. The switching component may determine an egress I/O component, of the I/O components, via which to provide the network traffic to the destination device (e.g., based on stored information identifying the egress I/O component). The switching component may provide the network traffic to the egress I/O component via a midplane connection, and the egress I/O component may transmit the network traffic toward the destination device via the network.

    [0015] Fig. 1B is a diagram of an example implementation of a network device with supplemental fabric connections. As shown in Fig. 1B, implementations described herein may include single plane I/O components 140 and dual plane I/O components 150. The single-plane I/O components may connect with a switching component of the network device via midplane connections. The dual plane I/O components may connect with the switching component via midplane connections and a supplemental connector component, shown by reference number 160. The supplemental connector component may be connected with the switching component, and may provide a chip-to-chip connection between the dual plane I/O components and the switching component. For example, the supplemental connector component may include one or more components to convert a signal from a dual plane I/O component to a medium compatible with the switching component and/or to process signals from a dual plane I/O component to be compatible with the switching component.

    [0016] As shown by reference number 170, the dual plane I/O components are connected to the supplemental connector component by supplemental connections that each have a bandwidth of BS. In some implementations, BS may be equal to BM. In some implementations, Bs may be different than BM. The supplemental connections may include optical connections, electrical connections, cabled connections, or the like.

    [0017] The dual plane I/O components provide network traffic to the switching component via one or more midplane connections and via one or more supplemental connections (e.g., based on a network traffic apportionment process, based on values of BS and BM, etc.), which increases bandwidth of the dual plane I/O components, and therefore increases bandwidth of the network device. As shown by reference number 180, the effective bandwidth of the network device may be approximately equal to a sum of the midplane connection bandwidths and the frontplane connection bandwidths, or 4*BM + 2*BS.

    [0018] In this way, the supplemental connector component and the dual plane I/O components increase bandwidth of the network device using a supplemental connection fabric that is separate from the midplane connections of the network device. In some implementations, the supplemental connector component and the dual plane I/O cards may be implemented without powering down or retrofitting the network device, which simplifies implementation and improves network resilience.

    [0019] As indicated above, Figs. 1A and 1B are provided merely as an example. Other examples are possible and may differ from what was described with regard to Figs. 1A and 1B.

    [0020] Fig. 2 is a diagram of an example environment 200 in which systems and/or methods, described herein, may be implemented. As shown in Fig. 2, environment 200 may include one or more network devices 210-1 through 210-M (M ≥ 1) (hereinafter referred to collectively as "network devices 210," and individually as "network device 210") and a network 220. Devices of environment 200 may interconnect via wired connections, wireless connections, or a combination of wired and wireless connections.

    [0021] Network device 210 includes one or more devices (e.g., one or more traffic transfer devices) capable of processing and/or transferring network traffic between endpoint devices (e.g., devices connected to network 220). For example, network device 210 may include a firewall, a router, a gateway, a switch, a hub, a bridge, a reverse proxy, a server (e.g., a proxy server), a security device, an intrusion detection device, a load balancer, or a similar device. Network device 210 may have a chassis to which I/O components are connected, as described in more detail below.

    [0022] Network 220 may include one or more wired and/or wireless networks. For example, network 220 may include a cellular network (e.g., a long-term evolution (LTE) network, a 3G network, a code division multiple access (CDMA) network, etc.), a public land mobile network (PLMN), a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a private network, an ad hoc network, an intranet, the Internet, a fiber optic-based network, a cloud computing network, an optical connection, an electrical connection, or the like, and/or a combination of these or other types of networks.

    [0023] The number and arrangement of devices and networks shown in Fig. 2 is provided as an example. In practice, there may be additional devices and/or networks, fewer devices and/or networks, different devices and/or networks, or differently arranged devices and/or networks than those shown in Fig. 2. Furthermore, two or more devices shown in Fig. 2 may be implemented within a single device, or a single device shown in Fig. 2 may be implemented as multiple, distributed devices. Additionally, or alternatively, a set of devices (e.g., one or more devices) of environment 200 may perform one or more functions described as being performed by another set of devices of environment 200.

    [0024] Fig. 3A is a diagram of example components of network device 210, shown in Fig. 2. As shown, network device 210 may include a switching component 310, one or more single plane I/O components 320-1 through 320-N (N ≥ 1) (hereinafter referred to collectively as "single plane I/O components 320," and individually as "single plane I/O component 320"), one or more midplane connections 330, one or more dual plane I/O components 340-1 through 340-P (P ≥ 1) (hereinafter referred to collectively as "dual plane I/O components 340," and individually as "dual plane I/O component 340"), a supplemental connector component 350, one or more supplemental connections 360, and a controller 370. In some implementations, components of devices 300 may interconnect via wired connections.

    [0025] Switching component 310 interconnects single plane I/O components 320 and dual plane I/O components 320. In some implementations, switching component 310 may be implemented via one or more crossbars, via one or more busses, and/or using shared memory. The shared memory may act as a temporary buffer to store packets from single plane I/O component 320 and/or dual plane I/O component 340 before the packets are eventually scheduled for delivery to a destination (e.g., single plane I/O component 320 or dual plane I/O component 340). In some implementations, switching component 310 may enable single plane I/O component 320, dual plane I/O component 340, and/or controller 370 to communicate (e.g., via midplane connection 330, supplemental connection 360, and/or a different type of connection).

    [0026] Single plane I/O component 320 includes a component capable of communicating with switching component 310 via midplane connection 330. Single plane I/O component 320 may process incoming and/or outbound traffic, such as by performing data link layer encapsulation or decapsulation. In some implementations, single plane I/O component 320 may send and/or receive packets. In some implementations, single plane I/O component 320 may include a network interface card, an input line card, an output line card, and/or an input/output line card that includes one or more packet processing components (e.g., in the form of integrated circuits), such as one or more interface cards (IFCs), packet forwarding components, line card controller components, input ports, output ports, processors, memories, and/or input queues. In some implementations, the input line cards and/or the output line cards may include single plane I/O component 320 and/or dual plane I/O component 340.

    [0027] Midplane connection 330 includes a chassis-based connection between switching component 310 and single plane I/O component 320 or dual plane I/O component 340, such as a crossbar, a switching fabric, an optical fiber, an electrical connection, or the like. "Chassis-based," as used herein, may indicate that midplane connection 330 is hard-wired to a chassis of network device 210, that midplane connection 330 requires shutdown of network device 210 to replace, that midplane connection 330 requires costly reconstruction of network device 210 to replace, or the like. As other examples, a chassis-based midplane connection 330 may be etched from a substrate of network device 210, may be soldered to network device 210, or the like. In some implementations, line cards (e.g., single plane I/O component 320 and/or dual plane I/O component 340) may be connected with midplane connection 330 via a socket, a slot, a port, or the like, that is attached to a chassis of network device 210.

    [0028] In some implementations, midplane connection 330 may include multiple, different connections between an I/O component and switching component 310. For example, midplane connection 330 may be implemented in a switching fabric of network device 210, and single plane I/O component 320 or dual plane I/O component 340 may be connected with switching component 310 via multiple, different connections in the switching fabric. The multiple, different connections may be shared by multiple single plane I/O components 320 and/or dual plane I/O components 340 based on bandwidth requirements of the multiple single plane I/O components 320 and/or dual plane I/O components 340.

    [0029] Dual plane I/O component 340 includes a component capable of communicating with switching component 310 via midplane connection 330 and via supplemental connection 360. Dual plane I/O component 340 may process incoming and/or outbound traffic, such as by performing data link layer encapsulation or decapsulation. In some implementations, dual plane I/O component 340 may send and/or receive packets. In some implementations, dual plane I/O component 340 may include a network interface, an input line card, an output line card, and/or an input/output line card that includes one or more packet processing components (e.g., in the form of integrated circuits), such as one or more interface cards (IFCs), packet forwarding components, line card controller components, input ports, output ports, processors, memories, and/or input queues. Dual plane I/O component 340 may include ports to which supplemental connections 360 can be connected, such as a pluggable cable port, or the like.

    [0030] Supplemental connector component 350 includes a component (e.g., a card, a daughter board, a chip, a converter, etc.) that enables switching component 310 and dual plane I/O component 340 to communicate via supplemental connection 360. In some implementations, supplemental connector component 350 receives network traffic from switching component 310 en route to dual plane I/O component 340 and provides the network traffic to dual plane I/O component 340 via supplemental connection 360. In some implementations, supplemental connector component 350 receives network traffic from dual plane I/O component 340 and via supplemental connection 360 and provides the network traffic to switching component 310 (e.g., without converting a medium of the network traffic or after converting the network traffic to a different medium).

    [0031] In some implementations, supplemental connector component 350 may include an optical/electrical converter, an electrical retimer, an electrical repeater, or the like, to facilitate a chip-to-chip link between switching component 310 and dual plane I/O component 340 and/or to convert between an optical signal medium and an electrical signal medium.

    [0032] In some implementations, supplemental connector component 350 may connect with switching component 310 via a slot, a socket, a port, or the like. In some implementations, multiple supplemental connector components 350 may be connected with a single switching component 310, which increases effective bandwidth of network device 210.

    [0033] Supplemental connection 360 includes a connection between dual plane I/O component 340 and supplemental connector component 350. In some implementations, supplemental connection 360 may be a non-chassis-based connection. For example, supplemental connection 360 may include a cable, a wire, or the like, that can be removed from supplemental connector component 350 and/or dual plane I/O component 340 without removing network device 210 from service. Supplemental connection 360 may connect to dual plane I/O component 340 and/or supplemental connector component 350 via a port, a plug, or the like.

    [0034] Controller 370 includes a processor in the form of, for example, a central processing unit (CPU), a microprocessor, a microcontroller, a field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), and/or another type of processor that can interpret and/or execute instructions. The processor is implemented in hardware, firmware, or a combination of hardware and software. In some implementations, controller 370 may include one or more processors that can be programmed to perform a function.

    [0035] In some implementations, controller 370 may include a random access memory (RAM), a read only memory (ROM), and/or another type of dynamic or static storage device (e.g., a flash memory, a magnetic memory, an optical memory, etc.) that stores information and/or instructions for use by controller 370.

    [0036] In some implementations, controller 370 may communicate with other devices, networks, and/or systems connected to network device 210 to exchange information regarding network topology. Controller 370 may create forwarding tables based on the network topology information, may create forwarding tables based on the forwarding tables, and may forward the forwarding tables to single plane I/O component 320 and/or dual plane I/O component 340. Single plane I/O component 320 and/or dual plane I/O component 340 may use the forwarding tables to perform route lookups for incoming and/or outgoing packets.

    [0037] Controller 370 may perform one or more processes described herein. Controller 370 may perform these processes in response to executing software instructions stored by a non-transitory computer-readable medium such as a computer memory, cache or storage device. A computer program product may include software instructions for executing one or more processes. A computer program product may be provided on a computer-readable medium which may include a non-transitory memory device or a transient transmission medium. A memory device includes memory space within a single physical storage device or memory space spread across multiple physical storage devices. A transmission medium includes carrier signals encoding instructions and/or data moving through a transmission channel, which channel may occur within a computer, between a group of computers in a network or between large numbers of computers in a internetworked computing environment.

    [0038] Software instructions may be read into a memory and/or a storage component associated with controller 370 from another computer-readable medium or from another device via a communication interface. When executed, software instructions stored in a memory and/or a storage component associated with controller 370 may cause controller 370 to perform one or more processes described herein. Additionally, or alternatively, hardwired circuitry may be used in place of or in combination with software instructions to perform one or more processes described herein. Thus, implementations described herein are not limited to any specific combination of hardware circuitry and software.

    [0039] Fig. 3B is a diagram of an example implementation of using supplemental connector component 350 as a connector between two network devices 210. For example, a first network device 210 and a second network device 210 may include a first switching component 310-1 and a second switching component 310-2, respectively, which may be connected with a first supplemental connector component 350-1 and a second supplemental connector component 350-2, respectively. One or more supplemental connections 360 may connect the first supplemental connector component 350 with the second supplemental connector component 350. In this way, the first switching component 310 may route network traffic to the second switching component 310 via the one or more supplemental connections 360, which may increase bandwidth of a link between the first network device 210 and the second network device 210. Furthermore, the first supplemental connector component 350 and the second supplemental connector component 350, and the one or more supplemental connections 360, may be implemented using similar components to those described in connection with adding a supplemental connector fabric to a single network device 210, which improves versatility and reduces cost of implementation.

    [0040] The number and arrangement of components shown in Figs. 3A and 3B are provided as an example. In practice, network device 210 may include additional components, fewer components, different components, or differently arranged components than those shown in Figs. 3A and 3B. Additionally, or alternatively, a set of components (e.g., one or more components) of network device 210 may perform one or more functions described as being performed by another set of components of network device 210.

    [0041] Fig. 4 is a flow chart of an example process 400 for configuring a dual plane I/O component and/or a supplemental connector component. In some implementations, one or more process blocks of Fig. 4 may be performed by network device 210 (e.g., switching component 310 of network device 210). In some implementations, one or more process blocks of Fig. 4 may be performed by another component of network device 210, such as single plane I/O component 320, dual plane I/O component 340, and/or controller 370.

    [0042] As shown in Fig. 4, process 400 may include determining a connection with a supplemental connector component (block 410). For example, switching component 310 may determine a connection with supplemental connector component 350. In some implementations, switching component 310 may include a port, a slot, a socket, etc. via which supplemental connector component 350 may be connected, and switching component 310 may determine a connection with supplemental connector component 350 via the port, slot, socket, etc. In some implementations, supplemental connector component 350 may be connected to switching component 310 without removing network device 210 from service (i.e., supplemental connector component 350 may be "hot-pluggable"), which may reduce impact on network performance of installing supplemental connector component 350.

    [0043] As further shown in Fig. 4, process 400 may include determining, via the supplemental connector component, a supplemental connection with a dual plane I/O component that is associated with a midplane connection (block 420). For example, switching component 310 may determine a supplemental connection 360 with dual plane I/O component 340 (e.g., via supplemental connector 360). In some implementations, dual plane I/O component 340 may be connected with switching component 310 via midplane connection 330, and a user may connect dual plane I/O component 340 with supplemental connector component 350 via supplemental connection 360. For example, a user may plug dual plane I/O component 340 into midplane connection 330 on a chassis of network device 210, and may connect dual plane I/O component 340 with supplemental connector component 350 using supplemental connection 360.

    [0044] Switching component 310 may determine or receive information identifying dual plane I/O component 340 based on detecting supplemental connection 360 and/or midplane connection 330. For example, when dual plane I/O component 340 or single plane I/O component 320 is connected with switching component 310 via midplane connection 330, dual plane I/O component 340 or single plane I/O component 320 may transmit component information relating to dual plane I/O component 340 or single plane I/O component 320 (e.g., a device identifier, a media access control (MAC) address, a network address, a bandwidth of dual plane I/O component 340 or single plane I/O component 320, etc.).

    [0045] Similarly, when dual plane I/O component 340 connects with switching component 310 via supplemental connection 360, dual plane I/O component 340 may transmit component information, relating to dual plane I/O component 340, to switching component 310 (e.g., a capacity of supplemental connection 360, a combined capacity of supplemental connection 360 and midplane connection 330, a device identifier, a MAC address, a network address, a bandwidth of dual plane I/O component 340, etc.). Switching component 310 may use the component information to route network traffic via single plane I/O component 320 and/or dual plane I/O component 340, as described in more detail below.

    [0046] As further shown in Fig. 4, process 400 may include storing and/or providing component information identifying the dual plane I/O component, the midplane connection, and/or the supplemental connection (block 430). For example, when switching component 310 connects with a component (e.g., single plane I/O component 320, dual plane I/O component 340, and/or supplemental connector component 350), switching component 310 may receive and/or determine component information identifying the component. The information may identify a network address, a device identifier, a bandwidth of the component, a ratio of bandwidth of midplane connection 330 to supplemental connection 360 for the component, or the like. Switching component 310 may use the component information to configure the component or route network traffic via the component.

    [0047] In some implementations, switching component 310 may store the component information. For example, single plane I/O component 320 may store and/or use a forwarding table that identifies a set of rules for routing network traffic in network device 210. The forwarding table may identify single plane I/O component 320 and/or dual plane I/O component 340, bandwidth of midplane connection 330, bandwidth of supplemental connection 360, network addresses associated with single plane I/O component 320 and/or dual plane I/O component 340, or the like. Single plane I/O component 320 or controller 370 may configure the forwarding table to route network traffic via midplane connection 330 and supplemental connection 360 based on the component information, as described in more detail below.

    [0048] In some implementations, switching component 310 may provide the component information. For example, switching component 310 may provide the component information to single plane I/O component 320 and/or dual plane I/O component 340. When single plane I/O component 320 or dual plane I/O component 340 receives network traffic from network 220 (i.e., network traffic inbound to network device 210), single plane I/O component 320 or dual plane I/O component 340 routes the network traffic to switching component 310 based on the component information. When dual plane I/O component 340 routes network traffic to switching component 310, dual plane I/O component 340 may use the component information to apportion the network traffic between midplane connection 330 and supplemental connection 360 based on bandwidths of midplane connection 330 and supplemental connection 360 (i.e., to load balance the network traffic), as described in more detail below.

    [0049] Although Fig. 4 shows example blocks of process 400, in some implementations, process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.

    [0050] Fig. 5 is a flow chart of an example process 500 for routing or switching network traffic via a network device that includes a supplemental connection fabric. In some implementations, one or more process blocks of Fig. 5 may be performed by network device 210 (e.g., switching component 310 of network device 210). In some implementations, one or more process blocks of Fig. 5 may be performed by another component of network device 210, such as single plane I/O component 320, dual plane I/O component 340, and/or controller 370.

    [0051] As shown in Fig. 5, process 500 may include receiving network traffic en route to an egress I/O component (block 510). For example, switching component 310 may receive network traffic en route to an egress I/O component. In some implementations, the egress I/O component may be a single plane I/O component 320. In some implementations, the egress I/O component may be a dual plane I/O component 340. Switching component 310 may receive the network traffic to route the network traffic to the egress I/O component via midplane connection 330 (e.g., when an ingress I/O component associated with the network traffic is a single plane I/O component 320) or via midplane connection 330 and/or supplemental connection 360 (e.g., when the ingress I/O component associated with the network traffic is a dual plane I/O component 340).

    [0052] Switching component 310 may determine the egress I/O component based on forwarding information associated with the network traffic. For example, the network traffic may include packets, cells, frames, or the like, that are associated with routing information identifying a destination of the network traffic (e.g., a destination device connected to network 220, an egress I/O component, a next hop device on a route to reach the destination device, etc.). Based on the forwarding information, switching component 310 may determine the egress I/O component. For example, when the forwarding information identifies the egress I/O component, switching component 310 may determine the egress I/O component based on parsing the forwarding information. When the forwarding information identifies a destination device connected to network device 210 or network 220, switching component 310 may use a forwarding table to identify an egress I/O component via which to route the network traffic toward the destination device.

    [0053] In some implementations, switching component 310 may receive the network traffic via midplane connection 330 and not supplemental connector component 350. For example, when switching component 310 receives the network traffic from an ingress single plane I/O component 320, switching component 310 may receive the network traffic via one or more midplane connections 330.

    [0054] In some implementations, switching component 310 may receive network traffic via midplane connection 330 and via supplemental connector component 350 corresponding to one or more supplemental connections 360. For example, when an ingress dual plane I/O component 340 provides network traffic to switching component 310, the ingress dual plane I/O component 340 provides network traffic via midplane connection 330 and supplemental connection 360, thereby increasing effective bandwidth of network device 210. In such implementations, the ingress dual plane I/O component 340 may provide first portions of network traffic via midplane connection 330 and second portions of network traffic via supplemental connection 360. For example, the ingress dual plane I/O component 340 may divide the network traffic into the first portions and the second portions based on respective bandwidths of midplane connection 330 and supplemental connection 360, based on respective quantities of network traffic queued for midplane connection 330 and supplemental connector 360, or the like. The ingress dual plane I/O component 340 may transmit the first portions and the second portions via midplane connection 330 and supplemental connection 360, respectively. Switching component 310 may generate a network traffic flow from the first portions and the second portions, and may provide the network traffic flow to an egress I/O component.

    [0055] As further shown in Fig. 5, process 500 may include determining whether the egress I/O component is associated with a supplemental connection (block 520). For example, switching component 310 may determine whether the egress I/O component is connected with supplemental connector component 350 via supplemental connection 360. In some implementations, switching component 310 may determine whether the egress I/O component is associated with a supplemental connection 360 based on component information associated with the egress I/O component. For example, when a particular dual plane I/O component 340 is connected with switching component 310 via supplemental connector component 350, switching component 310 may store component information indicating that dual plane I/O component 340 is associated with a supplemental connection 360.

    [0056] As further shown in Fig. 5, when switching component 310 determines that the egress I/O component is not associated with a supplemental connection (block 520 - NO), process 500 may include providing the network traffic to the egress I/O component via a midplane connection with the egress I/O component (block 530). For example, when the egress I/O component is a single plane I/O component 320, or is a dual plane I/O component 340 that is not connected with supplemental connector component 350, the egress I/O component is not associated with a supplemental connection 360. In such cases, switching component 310 may provide network traffic to the egress I/O component via one or more midplane connections 330.

    [0057] As further shown in Fig. 5, when switching component 310 determines that the egress I/O component is associated with a supplemental connection (block 520 - YES), process 500 may include providing the network traffic to the egress I/O component via a midplane connection with the egress I/O component and the supplemental connection with the egress I/O component (block 540). For example, when the egress I/O component is a dual plane I/O component 340 that is connected with supplemental connector component 350 via a supplemental connection 360, switching component 310 may provide network traffic to the egress I/O component via the supplemental connection 360 and via midplane connection 330 with the egress I/O component.

    [0058] As an example, assume that network device 210 is associated with 24 midplane connections 330 that each has an effective bandwidth of 24 gigabits per second. As used herein, an effective bandwidth refers to a total bandwidth of a connection, adjusted to account for bandwidth that is to be used for packet headers, system management, forward error correction, or the like. In other words, the effective bandwidth of a connection is a bandwidth of the connection that can be used for network traffic payloads.

    [0059] Continuing the above example, when communicating via the midplane connections 330, network device 210 may have a total usable bandwidth of 576 gigabits per second (i.e., 24 gigabits per second multiplied by 24 connections). Now assume that a user connects supplemental connector component 350 to network device 210, and connects 12 supplemental connections 360 with respective dual plane I/O components 340. Assume further that each supplemental connection 360 has an effective bandwidth of 20 gigabits per second. In that case, network device 210 may have an additional 240 gigabits per second of available bandwidth, for a total usable bandwidth of 816 gigabits per second. This can be accomplished without modifying midplane connections 330 and without modifying a chassis of network device 210. Furthermore, the configuration information for switching component 310 and/or controller 370 to implement the dual plane routing configuration may be provided to switching component 310 and/or controller 370 in a firmware update, thereby simplifying implementation of the supplemental connection fabric.

    [0060] In some implementations, switching component 310 may apportion network traffic between multiple connections (i.e., one or more midplane connections 330 and one or more supplemental connections 360) based on available bandwidth of each of the multiple connections. For example, assume that midplane connection 330 to dual plane I/O component 340 is associated with 10 gigabits of available bandwidth, and assume that supplemental connection 360 to dual plane I/O component 340 is associated with 20 gigabits of available bandwidth. In that case, network device 210 may route two-thirds of a network traffic flow (e.g., two-thirds of packets, cells, frames, etc. included in the network traffic flow) via supplemental connection 360, and may route one-third of the network traffic flow via midplane connection 330. In this way, switching component 310 improves efficiency of bandwidth usage, thereby increasing an effective bandwidth of network device 210.

    [0061] In some implementations, switching component 310 may perform such a bandwidth apportionment process among multiple midplane connections 330 and/or supplemental connections 360, which further increases effective bandwidth of network device 210. For example, network device 210 may include multiple midplane connections 330 between a particular I/O component (e.g., single plane I/O component 320 or dual plane I/O component 340) and switching component 310 and/or multiple supplemental connections 360 between the particular I/O component and switching component 310.

    [0062] In some implementations, supplemental connection 360 may use optical connections, which may increase bandwidth available via supplemental connection 360. In such implementations, supplemental connector component 350 may include optical/electrical converters corresponding to supplemental connections 360, which permits dual plane I/O component 340 to communicate with a switching component 310 configured for electrical midplane connections 330. In some implementations, the optical/electrical converters may be included in another component of network device 210, such as switching component 310, single plane I/O component 320, dual plane I/O component 340, or controller 370.

    [0063] In some implementations, supplemental connection 360 may use an electrical connection (e.g., a copper connection, a gold connection, or a connection using another electrical conductor), which may reduce cost of implementing supplemental connection 360. In such implementations, supplemental connector component 350 may include electrical retimers or electrical repeaters that permit dual plane I/O component 340 to communicate with switching component 310 using supplemental connection 360.

    [0064] In some implementations, switching component 310 may be associated with multiple, different supplemental connector components 350, which may increase effective bandwidth of network device 210. Further, in some implementations, one of a set of supplemental connector components 350 may be disconnected from switching component 310 without impacting performance of others of the set of supplemental connector components 350. In other words, supplemental connector component 350 may be "hot-swappable," which simplifies implementation of supplemental connector component 350 and which reduces impact of disconnecting supplemental connector component 350 on effective bandwidth of network device 210.

    [0065] In some implementations, supplemental connector component 350 may be used as a connector between two network devices 210. For example, a first network device 210 and a second network device 210 may include a first switching component 310 and a second switching component 310, respectively, which may be connected with a first supplemental connector component 350 and a second supplemental connector component 350, respectively. One or more supplemental connections 360 may connect the first supplemental connector component 350 with the second supplemental connector component 350. In this way, the first switching component 310 may route network traffic to the second switching component 310 via the one or more supplemental connections 360, which may increase bandwidth of a link between the first network device 210 and the second network device 210. Furthermore, the first supplemental connector component 350 and the second supplemental connector component 350, and the one or more supplemental connections 360, may be implemented using similar components to those described in connection with adding a supplemental connector fabric to a single network device 210, which improves versatility and reduces cost of implementation.

    [0066] In this way, supplemental connector component 350 and supplemental connections 360 provide a supplemental connector fabric for a chassis-based network device 210, which improves bandwidth of network device 210, and which may be implemented without modifying a midplane or a chassis of network device 210.

    [0067] Although Fig. 5 shows example blocks of process 500, in some implementations, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.

    [0068] The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the implementations to the precise form disclosed. Modifications and variations are possible in light of the above disclosure or may be acquired from practice of the implementations.

    [0069] Therefore, from one perspective, there has been described that a system may receive, by a switching component of the system, network traffic to be provided to an I/O component of the network device. The system may route, by the switching component, the network traffic to the I/O component based on whether the I/O component is connected to the switching component via the first connections and/or via second connections. The first connections may be connections via a chassis of the system. The second connections may be connections via a connector component that is removable from the switching component. The network traffic may be routed via the first connections and the second connections when the I/O component is connected via the first connections and the second connections. The network traffic may be routed via the first connections and not via the second connections when the I/O component is connected via the first connections and not via the second connections.

    [0070] As used herein, the term component is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.

    [0071] As used herein, network traffic or traffic may refer to information communicated using a communication structure, such as a protocol data unit (PDU), a packet, a frame, a datagram, a segment, a message, a block, a cell, a subframe, a slot, a symbol, a portion of any of the above, and/or another type of formatted or unformatted unit of data capable of being transmitted via a network or internal to a network device.

    [0072] It will be apparent that systems and/or methods, described herein, may be implemented in different forms of hardware, firmware, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the implementations. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code, it is understood that software and hardware can be designed to implement the systems and/or methods based on the description herein.

    [0073] No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Furthermore, as used herein, the term "set" is intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, etc.), and may be used interchangeably with "one or more." Where only one item is intended, the term "one" or similar language is used. Also, as used herein, the terms "has," "have," "having," or the like are intended to be open-ended terms. Further, the phrase "based on" is intended to mean "based, at least in part, on" unless explicitly stated otherwise.


    Claims

    1. A network device, comprising:

    a chassis that includes a plurality of first connections,
    the chassis permitting an input/output, I/O, component (150) being configured to connect with one or more first connections of the plurality of first connections; and

    a switching component (310) configured to connect with the I/O component via the one or more first connections (330) and one or more second connections (170, 360),

    the switching component being configured to be connected with the one or more second connections via a connector component (160, 350) that is removable from the switching component, and

    the switching component being configured to provide network traffic to or receive network traffic from the I/O component via the one or more first connections and the one or more second connections when the switching component is connected with the I/O component via the connector component.


     
    2. The network device of claim 1, where the switching component is configured to:

    receive first portions of a network traffic flow via the one or more first connections and second portions of the network traffic flow via the one or more second connections;

    combine the first portions and the second portions to form the network traffic flow; and

    provide, to a egress I/O component, the network traffic flow.


     
    3. The network device of claims 1 or 2, where the switching component is configured to:

    determine that network traffic is to be provided to the I/O component via the one or more first connections and the one or more second connections;

    divide the network traffic into first portions and second portions; and

    provide the first portions and the second portions via the one or more first connections and the one or more second connections, respectively.


     
    4. The network device of claim 3, where the switching component is configured to select sizes of the first portions and the second portions based on an available bandwidth of the one or more first connections and an available bandwidth of the one or more second connections.
     
    5. The network device of any of the preceding claims, where the connector component is configured to convert network traffic between a first signal medium associated with the switching component and a second signal medium associated with the one or more second connections.
     
    6. The network device of claim 5, where the connector component includes one or more optical or electrical converters to convert the network traffic between the first signal medium and the second signal medium.
     
    7. The network device of any of the preceding claims, where the connector component comprises at least one of:

    an electrical retimer, or

    an electrical repeater.


     
    8. The network device of any of the preceding claims, where the connector component comprises a board that is configured to be mounted to the switching component.
     
    9. A method, comprising:

    receiving, by a switching component (310) of a network device, network traffic to be provided to an input/output, I/O, component (150) of the network device; and

    routing, by the switching component, the network traffic to the I/O component based on whether the I/O component is connected to the switching component via one or more first connections (330) and via one or more second connections (170, 360),

    the one or more first connections being connections via a chassis of the network device, and

    the one or more second connections being connections via a connector component (160, 350) that is removable from the switching component, and

    the network traffic being routed via the one or more first connections and the one or more second connections when the I/O component is connected via the one or more first connections and the one or more second connections.


     
    10. The method of claim 9, where the I/O component is a first I/O component; and
    where receiving the network traffic comprises:
    receiving, by the switching component and from a second I/O component, the network traffic.
     
    11. The method of claim 10, further comprising:

    receiving, by the second I/O component, the network traffic to be provided to the switching component; and

    selectively providing, by the second I/O component, the network traffic to the switching component via the chassis, or via the chassis and the connector component,

    the second I/O component providing the network traffic via the chassis and the connector component when the second I/O component is connected with the switching component via the connector component, or

    the second I/O component providing the network traffic via the chassis and not via the connector component when the second I/O component is not connected with the switching component via the connector component.


     
    12. The method of claim 11, where providing the network traffic to the switching component via the one or more first connections and the one or more second connections comprises:
    dividing, by the second I/O component and based on bandwidths of the one or more first connections and the one or more second connections, the network traffic into first portions and second portions,

    the first portions being provided via the one or more first connections, and

    the second portions being provided via the one or more second connections.


     
    13. The method of any of claims 9-12, where routing the network traffic via the one or more first connections and the one or more second connections comprises:
    providing a first portion of the network traffic via the one or more first connections and a second portion of the network traffic via the one or more second connections,
    relative sizes of the first portion and the second portion being determined based on respective capacities of the one or more first connections and the one or more second connections.
     
    14. The method of any of claims 9-13, where determining whether the I/O component is connected to the switching component via the one or more first connections or via the one or more first connections and the one or more second connections comprises:
    determining, based on stored information, whether the I/O component is connected to the switching component via the one or more second connections,
    the switching component determining the stored information based on detecting the one or more first connections or the one or more second connections with the I/O component.
     
    15. A computer program product comprising machine executable instructions residing on computer readable media, which, when loaded and executed by a processor, cause the processor to perform operations according to the method of any one of claims 9-14.
     


    Ansprüche

    1. Netzwerkvorrichtung, aufweisend:

    ein Chassis, das eine Mehrzahl von ersten Verbindungen umfasst,
    wobei das Chassis ermöglicht, dass eine Eingabe-/Ausgabe, E-/A,-Komponente (150) ausgelegt ist, um mit einer oder mehreren ersten Verbindungen der Mehrzahl von ersten Verbindungen eine Verbindung herzustellen; und

    eine Schaltkomponente (310), die zum Herstellen einer Verbindung mit der E-/A-Komponente über die eine oder die mehreren ersten Verbindungen (330) und eine oder mehrere zweite Verbindungen (170, 360) ausgelegt ist,

    wobei die Schaltkomponente ausgelegt ist, um mit der einen oder den mehreren zweiten Verbindungen über eine Verbinderkomponente (160, 350) verbunden zu werden, die von der Schaltkomponente entfernt werden kann, und

    die Schaltkomponente so ausgelegt ist, dass die Schaltkomponente, wenn sie mit der E-/A-Komponente über die Verbinderkomponente verbunden ist, über die eine oder die mehreren ersten Verbindungen und die eine oder die mehreren zweiten Verbindungen Netzwerkverkehr an die E-/A-Komponente liefert oder Netzwerkverkehr davon empfängt.


     
    2. Netzwerkvorrichtung nach Anspruch 1, wobei die Schaltkomponente ausgelegt ist zum:

    Empfangen von ersten Teilen eines Netzwerkverkehrsflusses über die eine oder die mehreren ersten Verbindungen und zweiten Teilen des Netzwerkverkehrsflusses über die eine oder die mehreren zweiten Verbindungen;

    Kombinieren der ersten Teile und der zweiten Teile, um den Netzwerkverkehrsfluss zu bilden; und

    Liefern des Netzwerkverkehrsflusses an eine Ausgangs-E-/A-Komponente.


     
    3. Netzwerkvorrichtung nach Anspruch 1 oder 2, wobei die Schaltkomponente ausgelegt ist zum:

    Bestimmen, dass der Netzwerkverkehr über die eine oder die mehreren ersten Verbindungen und die eine oder die mehreren zweiten Verbindungen an die E-/A-Komponente geliefert werden soll;

    Teilen des Netzwerkverkehrs in erste Teile und zweite Teile; und

    Liefern der ersten Teile und der zweiten Teile über die eine oder die mehreren ersten Verbindungen bzw. die eine oder die mehreren zweiten Verbindungen.


     
    4. Netzwerkvorrichtung nach Anspruch 3, wobei die Schaltkomponente zum Auswählen von Größen der ersten Teile und der zweiten Teile basierend auf einer verfügbaren Bandbreite der einen oder der mehreren ersten Verbindungen und einer verfügbaren Bandbreite der einen oder der mehreren zweiten Verbindungen ausgelegt ist.
     
    5. Netzwerkvorrichtung nach einem der vorhergehenden Ansprüche, wobei die Verbinderkomponente so ausgelegt ist, dass sie Netzwerkverkehr zwischen einem ersten Signalmedium, das mit der Schaltkomponente assoziiert ist, und einem zweiten Signalmedium umwandelt, das mit der einen oder den mehreren zweiten Verbindungen assoziiert ist.
     
    6. Netzwerkvorrichtung nach Anspruch 5, wobei die Verbinderkomponente einen oder mehrere optische oder elektrische Wandler zum Umwandeln des Netzwerkeverkehrs zwischen dem ersten Signalmedium und dem zweiten Signalmedium umfasst.
     
    7. Netzwerkvorrichtungen nach einem der vorhergehenden Ansprüche, wobei die Verbinderkomponente mindestens eines aufweist von:

    einem elektrischen Retimer oder

    einem elektrischen Repeater.


     
    8. Netzwerkvorrichtungen nach einem der vorhergehenden Ansprüche, wobei die Verbinderkomponente eine Platte aufweist, die ausgelegt ist, um an der Schaltkomponente befestigt zu werden.
     
    9. Verfahren, umfassend:

    Empfangen von Netzwerkverkehr, der an eine Eingabe-/Ausgabe, E-/A,-Komponente (150) der Netzwerkvorrichtung geliefert werden soll, durch eine Schaltkomponente (310) einer Netzwerkvorrichtung; und

    Leiten des Netzwerkverkehrs basierend darauf, ob die E-/A-Komponente über eine oder mehrere erste Verbindungen (330) oder über eine oder mehrere zweiten Verbindungen (170, 360) mit der Schaltkomponente verbunden ist, durch die Schaltkomponente zur E-/A-Komponente,

    wobei die eine oder die mehreren ersten Verbindungen Verbindungen über ein Chassis der Netzwerkvorrichtung sind, und

    die eine oder die mehreren zweiten Verbindungen Verbindungen über eine Verbinderkomponente (160, 350) sind, die von der Schaltkomponente entfernt werden kann,

    der Netzwerkverkehr über die eine oder die mehreren ersten Verbindungen und die eine oder die mehreren zweiten Verbindungen geleitet wird, wenn die E-/A-Komponente über die eine oder die mehreren ersten Verbindungen und die eine oder die mehreren zweien Verbindungen verbunden ist.


     
    10. Verfahren nach Anspruch 9, wobei die E-/A-Komponente eine erste E-/A-Komponente ist; und
    wobei das Empfangen des Netzwerkverkehrs aufweist:
    Empfangen des Netzwerkverkehrs durch die Schaltkomponente und von einer zweiten E-/A-Komponente.
     
    11. Verfahren nach Anspruch 10, ferner aufweisend:

    Empfangen des Netzwerkverkehrs, der an die Schaltkomponente geliefert werden soll, durch die zweite E-/A-Komponente; und

    selektives Liefern des Netzwerkverkehrs durch die zweite E-/A-Komponente an die Schaltkomponente über das Chassis oder über das Chassis und die Verbinderkomponente,

    wobei die zweite E-/A-Komponente den Netzwerkverkehr über das Chassis und die Verbinderkomponente liefert, wenn die zweite E-/A-Komponente über die Verbinderkomponente mit der Schaltkomponente verbunden ist, oder

    wobei die zweite E-/A-Komponente den Netzwerkverkehr über das Chassis und nicht über die Verbinderkomponente liefert, wenn die zweite E-/A-Komponente nicht über die Verbinderkomponente mit der Schaltkomponente verbunden ist.


     
    12. Verfahren nach Anspruch 11, wobei das Liefern des Netzwerkverkehrs über die eine oder die mehreren ersten Verbindungen und die eine oder die mehreren zweiten Verbindungen an die Schaltkomponente aufweist:
    Teilen des Netzwerkverkehrs durch die zweite E-/A-Komponente und basierend auf Bandbreiten der einen oder der mehreren ersten Verbindungen und der einen oder der mehreren zweiten Verbindungen in erste Teile und zweite Teile,

    wobei die ersten Teile über die eine oder die mehreren ersten Verbindungen geliefert werden, und

    wobei die zweiten Teile über die eine oder die mehreren zweiten Verbindungen geliefert werden.


     
    13. Verfahren nach einem der Ansprüche 9 bis 12, wobei das Leiten des Netzwerkverkehrs über die eine oder die mehreren ersten Verbindungen und die eine oder die mehreren zweiten Verbindungen aufweist:
    Liefern eines ersten Teils des Netzwerkverkehrs über die eine oder die mehreren ersten Verbindungen und eines zweiten Teils des Netzwerkverkehrs über die eine oder die mehreren zweiten Verbindungen,
    wobei relative Größen des ersten Teils und des zweiten Teils basierend auf jeweiligen Kapazitäten der einen oder der mehreren ersten Verbindungen und der einen oder der mehreren zweiten Verbindungen bestimmt werden.
     
    14. Verfahren nach einem der Ansprüche 9 bis 13, wobei das Bestimmen, ob die E-/A-Komponente über die eine oder die mehreren ersten Verbindungen oder über die eine oder die mehreren zweiten Verbindungen mit der Schaltkomponente verbunden ist, aufweist:
    Bestimmen basierend auf gespeicherten Informationen, ob die E-/A-Komponente über die eine oder die mehreren zweiten Verbindungen mit der Schaltkomponente verbunden ist,
    wobei die Schaltkomponente die gespeicherten Informationen basierend auf einem Erkennen der einen oder der mehreren ersten Verbindungen oder der einen oder der mehreren zweiten Verbindungen mit der E-/A-Komponente bestimmt.
     
    15. Computerprogrammprodukt, umfassend maschinenausführbare Anweisungen, die sich auf computerlesbaren Medien befinden und die, wenn durch einen Prozessor geladen und ausgeführt, den Prozessor zum Durchführen von Operationen gemäß dem Verfahren nach einem der Ansprüche 9 bis 14 veranlassen.
     


    Revendications

    1. Dispositif de réseau, comprenant :

    un châssis qui comprend une pluralité de premières connexions,

    le châssis permettant à un composant d'entrée/sortie, E/S, (150) d'être configuré pour se connecter avec une ou plusieurs premières connexions de la pluralité de premières connexions ; et

    un composant de commutation (310) configuré pour se connecter avec le composant d'E/S par l'intermédiaire des une ou plusieurs premières connexions (330) et des une ou plusieurs secondes connexions (170, 360),

    le composant de commutation étant configuré pour être connecté aux une ou plusieurs secondes connexions par l'intermédiaire d'un composant de connecteur (160, 350) qui peut être retiré du composant de commutation, et

    le composant de commutation étant configuré pour fournir du trafic réseau à, ou recevoir du trafic réseau depuis, le composant E/S par l'intermédiaire des une ou plusieurs premières connexions et des une ou plusieurs secondes connexions lorsque le composant de commutation est connecté au composant d'E/S par l'intermédiaire du composant de connecteur.


     
    2. Dispositif de réseau selon la revendication 1, dans lequel le composant de commutation est configuré pour :

    recevoir les premières parties d'un flux de trafic réseau par l'intermédiaire des une ou plusieurs premières connexions et les secondes parties du flux de trafic réseau par l'intermédiaire des une ou plusieurs secondes connexions ;

    combiner les premières parties et les secondes parties pour former le flux de trafic réseau ; et

    fournir, à un composant d'E/S, le flux de trafic réseau.


     
    3. Dispositif de réseau selon les revendications 1 ou 2, dans lequel le composant de commutation est configuré pour :

    déterminer que le trafic réseau doit être fourni au composant d'E/S par l'intermédiaire des une ou plusieurs premières connexions et des une ou plusieurs secondes connexions ;

    diviser le trafic réseau en premières parties et en secondes parties ; et

    fournir les premières parties et les secondes parties par l'intermédiaire des une ou plusieurs premières connexions et des une ou plusieurs secondes connexions, respectivement.


     
    4. Dispositif de réseau selon la revendication 3, dans lequel le composant de commutation est configuré pour sélectionner les tailles des premières parties et des secondes parties sur la base d'une bande passante disponible des une ou plusieurs premières connexions et d'une bande passante disponible des une ou plusieurs secondes connexions.
     
    5. Dispositif de réseau selon l'une quelconque des revendications précédentes, dans lequel le composant de connecteur est configuré pour convertir le trafic réseau entre un premier support de signal associé au composant de commutation et un second support de signal associé aux une ou plusieurs secondes connexions.
     
    6. Dispositif de réseau selon la revendication 5, dans lequel le composant de connecteur comprend un ou plusieurs convertisseurs optiques ou électriques pour convertir le trafic réseau entre le premier support de signal et le second support de signal.
     
    7. Dispositif de réseau selon l'une quelconque des revendications précédentes, dans lequel le composant de connecteur comprend au moins l'un des éléments suivants :

    un redresseur électrique, ou

    un répéteur électrique.


     
    8. Dispositif de réseau selon l'une quelconque des revendications précédentes, dans lequel le composant de connecteur comprend une carte qui est configurée pour être montée sur le composant de commutation.
     
    9. Procédé comprenant les étapes suivantes :

    recevoir, par un composant de commutation (310) d'un dispositif de réseau, du trafic réseau à fournir à un composant d'entrée/sortie, E/S, (150) du dispositif de réseau ; et

    router, par le composant de commutation, le trafic réseau vers le composant d'E/S selon que le composant d'E/S est connecté, ou non, au composant de commutation par l'intermédiaire d'une ou plusieurs premières connexions (330) et par l'intermédiaire d'une ou plusieurs secondes connexions (170, 360),

    les une ou plusieurs premières connexions étant des connexions par l'intermédiaire d'un châssis du dispositif de réseau, et

    les une ou plusieurs secondes connexions étant des connexions par l'intermédiaire d'un composant de connecteur (160, 350) qui peut être retiré du composant de commutation, et

    le trafic réseau étant routé par l'intermédiaire des une ou plusieurs premières connexions et des une ou plusieurs secondes connexions lorsque le composant d'E/S est connecté par l'intermédiaire des une ou plusieurs premières connexions et des une ou plusieurs secondes connexions.


     
    10. Procédé selon la revendication 9, dans lequel le composant d'E/S est un premier composant d'E/S ; et
    dans lequel la réception du trafic réseau comprend :
    la réception, par le composant de commutation et depuis un second composant d'E/S, du trafic réseau.
     
    11. Procédé selon la revendication 10, comprenant en outre les étapes suivantes :

    recevoir, par le second composant d'E/S, le trafic réseau à fournir au composant de commutation ; et

    fournir sélectivement, par le second composant d'E/S, le trafic réseau au composant de commutation par l'intermédiaire du châssis, ou par l'intermédiaire du châssis et du composant de connecteur,

    le second composant d'E/S fournissant le trafic réseau par l'intermédiaire du châssis et du composant de connecteur lorsque le second composant d'E/S est connecté au composant de commutation par l'intermédiaire du composant de connecteur, ou

    le second composant d'E/S fournissant le trafic réseau par l'intermédiaire du châssis et non par l'intermédiaire du composant de connecteur lorsque le second composant d'E/S n'est pas connecté au composant de commutation par l'intermédiaire du composant de connecteur.


     
    12. Procédé selon la revendication 11, dans lequel fournir le trafic réseau au composant de commutation par l'intermédiaire des une ou plusieurs premières connexions et des une ou plusieurs secondes connexions comprend les étapes suivantes :

    diviser, par le second composant d'E/S et sur la base des bandes passantes des une ou plusieurs premières connexions et des une ou plusieurs secondes connexions, le trafic réseau en premières parties et en secondes parties,

    les premières parties étant fournies par l'intermédiaire des une ou plusieurs premières connexions, et

    les secondes parties étant fournies par l'intermédiaire des un ou plusieurs secondes connexions.


     
    13. Procédé selon l'une quelconque des revendications 9 à 12, dans lequel le routage du trafic réseau par l'intermédiaire des une ou plusieurs premières connexions et des une ou plusieurs secondes connexions comprend les étapes suivantes :

    fournir une première partie du trafic réseau par l'intermédiaire des une ou plusieurs premières connexions et une seconde partie du trafic réseau par l'intermédiaire des une ou plusieurs secondes connexions,

    les tailles relatives de la première partie et de la seconde partie étant déterminées en fonction des capacités respectives des une ou plusieurs premières connexions et des une ou plusieurs secondes connexions.


     
    14. Procédé selon l'une quelconque des revendications 9 à 13, dans lequel déterminer si le composant d'E/S est connecté au composant de commutation par l'intermédiaire des une ou plusieurs premières connexions ou par l'intermédiaire des une ou plusieurs premières connexions et des une ou plusieurs secondes connexions comprend les étapes suivantes :

    déterminer, sur la base des informations stockées, si le composant d'E/S est connecté au composant de commutation par l'intermédiaire des une ou plusieurs secondes connexions,

    le composant de commutation déterminant les informations stockées sur la base de la détection des une ou plusieurs premières connexions ou des une ou plusieurs secondes connexions avec le composant d'E/S.


     
    15. Produit programme informatique comprenant des instructions exécutables par la machine résidant sur des supports lisibles par ordinateur qui, lorsqu'elles sont chargées et exécutées par un processeur, amènent le processeur à exécuter les opérations selon le procédé de l'une quelconque des revendications 9 à 14.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description