(19)
(11)EP 3 257 205 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.11.2019 Bulletin 2019/47

(21)Application number: 15704000.7

(22)Date of filing:  12.02.2015
(51)International Patent Classification (IPC): 
H04L 12/751(2013.01)
H04L 12/703(2013.01)
H04L 12/24(2006.01)
(86)International application number:
PCT/EP2015/052938
(87)International publication number:
WO 2016/128051 (18.08.2016 Gazette  2016/33)

(54)

DISCOVERING LINKS BETWEEN OPERATING DOMAINS IN A COMMUNICATION NETWORK

ENTDECKUNG VON VERKNÜPFUNGEN ZWISCHEN BETRIEBSDOMÄNEN IN EINEM KOMMUNIKATIONSNETZWERK

DÉCOUVERTE DE LIAISONS ENTRE DES DOMAINES D'EXPLOITATION DANS UN RÉSEAU DE COMMUNICATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
20.12.2017 Bulletin 2017/51

(73)Proprietor: Telefonaktiebolaget LM Ericsson (publ)
164 83 Stockholm (SE)

(72)Inventors:
  • LOMBARDI, Gianluca
    S-16480 Stockholm (SE)
  • CAVIGLIA, Diego
    S-164 80 Stockholm (SE)
  • CECCARELLI, Daniele
    S-164 80 Stockholm (SE)

(74)Representative: Brann AB 
P.O. Box 3690 Drottninggatan 27
103 59 Stockholm
103 59 Stockholm (SE)


(56)References cited: : 
US-A1- 2007 201 383
US-A1- 2014 317 406
  
  • PAKZAD FARZANEH ET AL: "Efficient topology discovery in software defined networks", 2014 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), IEEE, 15 December 2014 (2014-12-15), pages 1-8, XP032729210, DOI: 10.1109/ICSPCS.2014.7021050 [retrieved on 2015-01-23]
  • Mehmet Toy: "Cable Networks, Services, and Management, Chapter 6: Future Directions in Cable Networks, Services, and Management", IEEE Press Series on Networks and Services Management, 9 January 2015 (2015-01-09), pages 246-340, XP055218449, Hoboken, NJ, USA DOI: 10.1002/9781119000334.ch6 Retrieved from the Internet: URL:http://onlinelibrary.wiley.com/store/1 0.1002/9781119000334.ch6/asset/ch6.pdf?v=1 &t=iff46b3q&s=f24163488d7bfae3d3715fe222c2 8a114a257f52 [retrieved on 2015-10-06]
  • LANG J ET AL: "Link Management Protocol (LMP); rfc4204.txt", 20051001, 1 October 2005 (2005-10-01), XP015054885, ISSN: 0000-0003
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technical Field



[0001] The present invention relates to methods for automatically discovering links between a first node of a first operating domain and a second node of a second operating domain of a communication network. The invention also relates to a computer program for carrying out methods for automatically discovering links between a first node of a first operating domain and a second node of a second operating domain of a communication network, and to first, second and control nodes in a communication network.

Background



[0002] Optical Transport Networks (OTNs) provide functionality including transport, multiplexing, switching, and management of optical channels carrying client signals. Packet-optical integration between electrical and optical domains of a communication network is an important challenge in the implementation of optical networking. One option is to implement the packet-optical integration within a Software Defined Network (SDN) environment, with a single SDN controller responsible for discovering and controlling both the packet and optical domains.

[0003] Various mechanisms exist to allow auto-discovery of the links internal to the different domains. For example it is possible to have an SDN controller passively listen to the IGP/BGP routing instance of each domain and so learn its topology. There are also mechanisms, such as LLDP or LMP, which enable links connecting different domains, also known as border links, to be discovered. However, these mechanisms are limited to discovering links within the same layer or switching capability.

[0004] In a packet-optical environment the end points of border links are the line card of the router in the electrical domain and the client port of the optical transponder in the optical domain. The client ports of the transponder are not able to process any type of packet such as Ethernet frames or IP packets, and these ports are not therefore able to run any protocol to enable link discovery. Auto-discovery of data plane connectivity between routers and optical devices is not therefore possible. The only way to populate a multilayer database of border links is to let the routing protocols populate single layer databases and then manually enter the information regarding the connectivity between layers.

[0005] There are known documents related to topology discovery and message encoding, namely US2007/201383, Pakzad Farzaneh et al, "Efficient Topology Discovery In Software Defined Networks", 8th International Conference On Signal Processing And Communication Systems (ICSPCS), (2014-12-15), pages 1 - 8, and US2014/317406. However, devices and operations as in the invention now to be described are neither disclosed nor suggested in these documents.

Summary



[0006] It is an aim of the present invention to provide a method and apparatus which obviate or reduce at least one or more of the challenges mentioned above. The present invention is defined in the independent claims. The dependent claims define particular embodiments of the invention.

[0007] According to a first aspect of the present invention, there is provided a method of automatically discovering links between a first node of a first operating domain and a second node of a second operating domain of a communication network. The method, performed in the second node, comprises receiving an in-band control message from the first node. The receiving of the in-band control message comprises receiving a plurality of dummy packets, each dummy packet having one of a plurality of different predetermined lengths. A sequence of the predetermined lengths of the plurality of dummy packets define a code corresponding to the in-band control message. The in-band control message comprises information about the first node and a first interface used by the first node for sending the control message. The method further comprises sending a link message to a control node, the link message comprising information received in the in-band control message and information about a second interface used by the second node for receiving the in-band control message.

[0008] According to examples of the invention, the information about the first node may be an identifier of the first node, for example an IP address of the node or any other identifier used within the communication network. In some examples, the link message may further comprise information about the second node, which may be an identifier of the second node.

[0009] According to examples of the invention, the first node may comprise a packet client node and the second node may comprise an optical node.

[0010] According to examples of the invention, the in-band control message may be received by the second node periodically, and the method may further comprise, if the second node fails to receive the in-band control message, sending a modified link message to the control node, the modified link message indicating failure of the link between the first node and the second node.

[0011] According to examples of the invention, failure to receive the in-band control message may comprise not receiving the message within the normal time period. Alternatively, failure to receive the in-band control message may comprise not receiving the in-band control message a predetermined number of times. In some examples, the modified link message may indicate failure of the link between the first node and the second node through the setting of a flag.

[0012] According to another aspect of the present invention, there is provided another method of automatically discovering links between a first node of a first operating domain and a second node of a second operating domain of a communication network. The method, performed in the first node, comprises sending an in-band control message to the second node. The sending of the in-band control message comprises sending a plurality of dummy packets, each dummy packet having one of a plurality of different predetermined lengths. A sequence of the predetermined lengths of the plurality of dummy packets define a code corresponding to the in-band control message. The in-band control message comprises information about the first node and a first interface used by the first node for sending the control message.

[0013] According to examples of the invention, the method may further comprise receiving a trigger message from a control node, the trigger message instructing the first node to send the in-band control message.

[0014] According to examples of the invention, the trigger message may indicate an interface of the first node to be used for sending the in-band control message, and the method may comprise sending the in-band control message to the second node using the indicated interface.

[0015] According to examples of the invention, the trigger message may specify a particular interface or a group of interfaces, for example all border interfaces of the first node. The indication of an interface may comprise a specification of an interface by address or may comprise a flag, which may for example be set to indicate all border interfaces should be used.

[0016] According to examples of the invention, the method may further comprise sending the in-band control message to the second node periodically. In some examples, the trigger message may contain an instruction that the in-band control message should be sent periodically.

[0017] According to another example of the present invention, there is provided another method of automatically discovering links between a first node of a first operating domain and a second node of a second operating domain of a communication network. The method, performed in a control node, comprises receiving a link message from the second node, the link message comprising information about the first node and a first interface used by the first node for sending an in-band control message to the second node, and information about a second interface used by the second node for receiving the in-band control message.

[0018] In some examples of the invention, the control node may comprise an SDN controller.

[0019] According to examples of the invention, the method may further comprise updating a link record with the link between the first interface of the first node and the second interface of the second node.

[0020] According to examples of the invention, the method may further comprise sending a trigger message to the first node, the trigger message instructing the first node to send the in-band control message.

[0021] In some examples, the trigger message may be sent in response to a predetermined event or may be sent periodically. For example, the trigger message may be sent on network setup or following changes to the network topology. The trigger message may also be sent following indication of a link failure.

[0022] According to examples of the invention, the trigger message may indicate an interface of the first node to be used for sending the in-band control message.

[0023] According to examples of the invention, the trigger message may specify a particular interface or a group of interfaces, for example all border interfaces of the first node. The indication of an interface may comprise a specification of an interface by address or may comprise a flag, which may for example be set to indicate all border interfaces should be used.

[0024] According to examples of the invention, the trigger message may instruct the first node to send the in-band control message periodically.

[0025] According to examples of the invention, the method may further comprise checking for receipt from a second node of a link message corresponding to the trigger message, and, on failure to receive from the second node a link message corresponding to the trigger message, resending the trigger message.

[0026] In some examples, the method may comprise checking for receipt from a second node of a link message including information about a first interface, and, on failure to receive the link message, resending a trigger message specifying the first interface.

[0027] According to examples of the invention, the method may further comprise, on failure to receive a link message from the second node corresponding to the re-sent trigger message, updating a link record with failure of the link between the first node and the second node corresponding to the re-sent trigger message.

[0028] According to examples of the invention, the method may further comprise receiving a modified link message from the second node, the modified link message indicating failure of the link between the first node and the second node.

[0029] According to examples of the invention, the method may further comprise updating a link record with failure of the link between the first node and the second node.

[0030] According to another aspect of the present invention, there is provided a computer program configured, when run on a computer, to carry out a method according to any of the preceding aspects of the present invention.

[0031] According to another aspect of the present invention, there is provided a computer program product comprising computer readable media having stored thereon a computer program as specified above.

[0032] According to another aspect of the present invention, there is provided a control node configured to automatically discover links between a first node of a first operating domain and a second node of a second operating domain of a communication network, the control node comprising a processor and a memory, the memory containing instructions executable by the processor, such that the control node is configured to carry out a method according to the third aspect of the present invention.

[0033] According to another aspect of the present invention, there is provided a first node for a first operating domain of a communication network and configured to automatically discover links between the first node and a second node of a second operating domain of the communication network, the first node comprising a processor and a memory, the memory containing instructions executable by the processor, such that the first node is configured to carry out a method according to the second aspect of the present invention.

[0034] According to another aspect of the present invention, there is provided a second node for a second operating domain of a communication network and configured to automatically discover links between the second node and a first node of a first operating domain of the communication network, the second node comprising a processor and a memory, the memory containing instructions executable by the processor, such that the second node is configured to carry out a method according to the first aspect of the present invention.

[0035] According to another aspect of the present invention, there is provided a control node configured to automatically discover links between a first node of a first operating domain and a second node of a second operating domain of a communication network. The control node comprises a receiving unit configured to receive a link message from the second node, the link message comprising information about the first node and a first interface used by the first node for sending an in-band control message to the second node, and information about a second interface used by the second node for receiving the in-band control message.

[0036] According to another aspect of the present invention, there is provided a first node for a first operating domain of a communication network, configured to automatically discover links between the first node and a second node of a second operating domain of the communication network. The first node comprises a transmitting unit configured to send an in-band control message to the second node, the in-band control message being encoded using size of packets of the control message and providing information about the first node and a first interface used by the first node for sending the control message.

[0037] According to another aspect of the present invention, there is provided a second node for a second operating domain of a communication network, configured to automatically discover links between the second node and a first node of a first operating domain of the communication network. The second node comprises a receiving unit configured to receive an in-band control message from the first node, the in-band control message being encoded using size of packets of the control message and providing information about the first node and a first interface used by the first node for sending the control message, and a transmitting unit configured to send a link message to a control node, the link message comprising information received in the in-band control message and information about a second interface used by the second node for receiving the in-band control message.

Brief Description of the Drawings



[0038] For a better understanding of the present invention, and to show more clearly how it may be carried into effect, reference will now be made, by way of example, to the following drawings in which:

Figure 1 is a representation of a communication network;

Figure 2 illustrates functional units in a router node;

Figure 3 illustrates a message exchange according to an example method for discovering border links;

Figures 4a and 4b illustrate example message formats;

Figure 5 illustrates another message exchange according to an example method for discovering border links;

Figure 6 illustrates another example message format;

Figure 7 illustrates another message exchange according to an example method for discovering border links;

Figure 8 illustrates another example message format;

Figure 9 illustrates another message exchange according to an example method for discovering border links;

Figure 10 illustrates another example message format;

Figure 11 is a flow chart illustrating process steps in a method for discovering border links;

Figure 12 is a flow chart illustrating process steps in another method for discovering border links;

Figure 13 is a flow chart illustrating process steps in another method for discovering border links;

Figure 14 is a block diagram illustrating functional units in a control node;

Figure 15 is a block diagram illustrating functional units in a first node;

Figure 16 is a block diagram illustrating functional units in a second node;

Figure 17 is a block diagram illustrating functional units in another example of control node;

Figure 18 is a block diagram illustrating functional units in another example of first node; and

Figure 19 is a block diagram illustrating functional units in another example of second node.


Detailed Description



[0039] Aspects of the present invention use an in-band control channel of a communication network to exchange information between a first node of a first domain and a second node of a second domain of a communication network. This exchange enables the running of an auto-discovery protocol between the nodes, allowing border link connectivity and characteristics to be advertised to a control node such as an SDN controller.

[0040] Examples of the invention implement a new protocol, referred to as a Multi Layer-Border Link Discovery Protocol (ML-BLDP), which runs between a control node such as an SDN controller and first and second nodes in first and second domains of a communication network. The first node may for example be a border router in a packet domain and the second node may be a border optical node in an optical domain, where no packet processing takes place. This network scenario is illustrated in Figure 1, in which a communication network 2 is illustrated. The communication network 2 comprises a first domain 4 and a second domain 6. Integration between the first and second domains is implemented via an SDN controller 10. The first domain 4 is a packet domain comprising a plurality of routers 8, some of which are border routers 8a having links 12 with border elements in the second domain 6. The second domain 6 comprises a plurality of server domains 14, including border server domains 14a. The second domain may implement a range of different technologies, in particular transport technologies such OTN, SDN, WDM etc. In the following discussion, the example of WDM technology is used, and the server domains are thus referred to as Reconfigurable Optical Add Drop Multiplexers (ROADMs), but it will be appreciated that this is merely for the purposes or explanation, and the server domains may comprise other types of nodes. The ROADMs 14, 14a are unable to process packets, and hence no protocol can be run between the routers 8a and ROADMs 14a to enable auto-discovery of border links.

[0041] Examples of the present invention make use of methods disclosed in PCT/EP2013/069571 for creating an in-band control channel between nodes of a communication network based upon the dimensions of dummy packets. Methods according to the present invention exploit the in-band control chanel to send light messages between nodes over which it is not possible to run any complex routing protocol owing to the inability of at least one of the nodes to process packets. A full explanation of the method for creating an in-band control channel between nodes of a communication network is provided in PCT/EP2013/069571, however a short summary is provided below for the purposes of illustration, using the example of communication between a border router and an optical node.

[0042] Figure 2 illustrates a first node in the form of a router 20 and a second node in the form of an optical node 30. The router 20 comprises input interfaces 22 connected to a packet switch 24. The packet switch 24 is connected to a plurality of output interfaces 26. In the example of Figure 2, at least one of the plurality of output interfaces 26 is in direct communication with at least one of a plurality of input interfaces 32 of the optical node 30. The input interfaces 32 are connected to corresponding input interfaces of a ROADM output 34.
According to the method for creating an in-band control channel, the optical node 30 is adapted to comprise a receiver, a decoder and a controller. In a control mode of operation, the receiver is configured to receive a plurality of dummy packets, each dummy packet having one of a plurality of different predetermined lengths, and the sequence of the dummy packets defining a code corresponding to at least one control command. The decoder is configured to check the length of each received dummy packet and to decode at least one control command based on the sequence of lengths of the received dummy packets. The controller is configured to control operation of the optical node 30 in accordance with the at least one decoded control command.

[0043] The router 20 is similarly adapted such that a transmitter is configured to transmit a plurality of dummy packets to the optical node 30, each dummy packet having one of a plurality of different predetermined lengths and the sequence of the dummy packets defining a code corresponding to at least one control command for the optical node 30.

[0044] In the above described manner, an in-band control channel is created for a communication network in which the nodes have limited capability for inspecting the payload of received packets. The communication between router nodes and optical nodes is established mixing control plane communication into the data plane and relying on the optical node's capability to recognise packet length without requiring the optical node to process received packets. Further detail of the method for establishing an in-band control channel between nodes in a communication network may be found in PCT/EP2013/069571.

[0045] The methods of the present invention make use of the above described in-band control channel to send messages of the new ML-BLDP protocol from a first node to a second node. An example overview of the ML-BLDP protocol messages and procedures is given below with reference to the network scenario of Figure 1 and Figures 3 to 10.

[0046] Referring to Figure 3, the SDN controller 10 triggers the auto-discovery of border links by sending a trigger message 16, also referred to as an ML-BLDP Type 1 message 16, to a border router 8a over a control channel 17 between the SDN controller 10 and router 8a. In the illustrated example, the border router 8a is router R3, which has border links with border ROADMs S1 and S2, 14ai and 14aii. The trigger message 16 indicates to which border interfaces of the router R3 the trigger message applies. In one example a flag may be used to assist with this indication, such that when the flag is set, the trigger message applies to a specific border interface, and when the flag is cleared, the trigger message applies to all border interfaces of the router receiving the trigger message.

[0047] In one example, the trigger message has a TLV format, as illustrated in Figures 4a and 4b. The trigger message 16 thus includes a type indication 18, a length indication 20 and a value 22. As discussed above, the trigger message also includes a flag I 24. In the example message 16a of Figure 4a, the flag 24 is cleared, and the value 22 is set to all zeros. In this example the SDN controller 10 is instructing a router to trigger auto-discovery on all of its border interfaces. In the example message 16b of Figure 4b, the flag 24 is set, and the value 22 include three fields, each of 8 bits, indicating the Shelf ID 26, Card ID 27 and Port ID 28 of the interface on which the auto-discovery procedure is to be triggered. In the following description, it is assumed that a trigger message in the form of message 16a is sent to the router R3, and that auto-discovery on both of the router R3's border interfaces is triggered.

[0048] Referring to Figure 5, the router R3 8a then sends an in-band control message 40, also referred to as an ML-BLDP Type 2 message 40, to each of the ROADMs S1, S2 14ai 14aii, to which it is connected. The in-band control messages 40 are sent over in-band control channels 41, 43 established between the router R3 and ROADMs S1, S2 as described above and in PCT/EP2013/069571. Each in-band control message 40 identifies the router 8a's own identity R3 as well as the address of the interface over which the in-band control message is sent. In the illustrated example, the in-band control message 40a to ROADM S1 thus identifies Shelf (1), Card (2), Port (1), while the in-band control message 40b to ROADM S2 identifies Shelf (1), Card (2), Port (2).

[0049] In one example, the in-band control message 40 may also have a TLV format, as illustrated in Figure 6, including a type indication 42, a length indication 44 and a value. The value includes the router ID 46 and three fields, each of 8 bits, indicating the Shelf ID 47, Card ID 48 and Port ID 49 of the interface on which the in-band control message 40 is sent. The router ID may be the IP address of the router or any other identity used in the communication network.

[0050] Referring to Figure 7, on receipt of the in-band control message 40, each ROADM 14ai, 14aii, at which the presently described protocol is configured, sends a link message 50, also referred to as an ML-BLDP Type 3 message 50, to the SDN controller 10. The link messages 50 are sent over control channels 51, 53 between the ROADMs 14ai, 14aii and the SDN controller 10. Each link message 50 replicates the in-band control message 40 received by the ROADM and also includes the interface at the ROADM on which the in-band control message 40 was received. In the illustrated example, the link message 50a from ROADM S1 thus identifies router R3 and router interface address Shelf (1), Card (2), Port (1) on which the in-band control message 40a was sent; this is the information included in the in-band control message 40a received by ROADM S1. The link message 50a also includes the ROADM's own identity S1 and the ROADM interface address Shelf (1), Card (3), Port (4) on which the in-band control message 40a was received. The link message 50b from ROADM S2 identifies router R3 and router interface address Shelf (1), Card (2), Port (2) on which the in-band control message 40b was sent; this is the information included in the in-band control message 40b received by ROADM S2. The link message 50b also includes the ROADM's own identity S2 and the ROADM interface address Shelf (1), Card (1), Port (2) on which the in-band control message 40b was received.

[0051] In one example, the link message 50 may also include a flag to signal a link failure to the SDN controller 10. When the fag is cleared the link message 50 merely reports the results of auto-discovery, identifying the interfaces of the border link between the relevant router and ROADM. When the flag is set, the link message becomes a modified link message and is used to report failure of a previously discovered border link to the SDN controller 10. This process is described in further detail below with reference to Figures 11 to 13.

[0052] In one example, the link message 40 may also have a TLV format, as illustrated in Figure 8, including a type indication 52, a length indication 54 and a value. The value includes the router ID 56 and three fields, each of 8 bits, indicating the Shelf ID 57, Card ID 58 and Port ID 59 of the router interface on which the in-band control message 40 was sent. The value also includes the ROADM ID 60, flag 62 and three fields, each of 8 bits, indicating the Shelf ID 63, Card ID 64 and Port ID 65 of the ROADM interface on which the in-band control message 40 was received.

[0053] On receipt of the link message 50 from each of the ROADMs S1 and S2, the SDN controller may populate a database with records of each of the links discovered. Each link record may include the identities of the two nodes between which the link exists and the addresses of the interfaces comprising the end points of the link.

[0054] Figure 9 illustrates failure of a previously discovered link between the router R3 and ROADM S1. Failure of the link may be identified by the ROADM S1 for example if an in-band control message 40 is not received at an expected time, as discussed in further detail below. In the event of failure, the ROADM S1 sends the modified link message 50c over the channel 51. The modified link message 50c is illustrated in Figure 10 and includes all of the information of the link message 50, and has the flag 62 set, indicating that failure of the specified link is being reported.

[0055] The above described protocol is implemented via methods running on each of the nodes involved. Figures 11 to 13 illustrate example methods implementing the above described protocol according to aspects of the present invention. The methods take place at a control node, which may be as an SDN controller, a first node, which may be a packet client node such as a router, and a second node, which may be an optical node.

[0056] Figure 11 illustrates process steps in a method 100 performed at a control node. The method 100 illustrates one example of how an aspect of the present invention may be implemented. Referring to Figure 11, in a first step 102, the control node checks for occurrence of a trigger event. The trigger event may for example be network set up or an update in network topology. Alternatively, the trigger event may simply be a timer, according to which the control node triggers auto-discovery of border links between domains of the communication network in which is it located. On occurrence of the trigger event, the control node proceeds at step 104 to identify interfaces for discovery. This may comprise identifying one or more first nodes which are border nodes in a first domain of the communication network, and one or more interfaces on the identified first nodes, which are border interfaces. On initial network set up or following changes to network topology, the control node may elect to trigger auto-discovery on all border interfaces of all first nodes. Alternatively, in some circumstances, the control node may elect to trigger auto-discovery on only one or some first nodes, and/or on only one or some border interfaces of the selected first nodes. Having identified the interfaces for discovery, the control node then sends a trigger message for those interfaces at step 106. This may involve sending a Type 1 ML-BLDP message as discussed above to all first nodes having an interface on which auto-discovery is to be triggered. As discussed above, the trigger message may specify particular interfaces for the or each first node or may indicate that the protocol should be run for all border interfaces of the node. In some examples, a flag may be used to indicate whether the trigger message is specific to certain interfaces or not. In other examples, the absence of one or more interface addresses may be taken by the first node to mean that the message applies to all of the node's border interfaces. The trigger message may also specify whether an active or passive protocol should be followed. Alternatively, instructions concerning the use of an active or passive protocol may be pre-configured into the control node and first and second nodes. According to a passive protocol, first nodes receiving a trigger message may continue to send in-band control messages periodically, with the control node expecting to receive corresponding link messages each time a periodic in-band control message is sent. According to an active protocol, first nodes may only send an in-band control message on receipt of a suitable trigger message, and hence a new trigger message is required before a first node will send a new in-band control message. Active and passive protocols are discussed in further detail below.

[0057] Following the sending of the trigger message or messages, the methods 200, 300, illustrated in Figures 12 and 13, are carried out in the relevant first and second nodes, as discussed in detail below. Briefly, this involves receipt by a first node of the rigger message and consequent sending of one or more in-band control messages on the indicated interfaces. These in-band control messages are received by second nodes, which send corresponding link messages to the control node, identifying both the first node interface on which the in-band control message was sent, and the second node interface on which the in-band control message was received.

[0058] After sending the trigger message or messages, the control node thus proceeds to check for receipt of link messages from one or more second nodes. In step 108, the control node selects a new identified interface. This is one of the interfaces that was identified at step 104 for auto-discovery, and which was specified in a trigger message sent at step 106. Having selected a new identified interface, the control node checks whether or not a link message has been received identifying that interface in step 110.

[0059] If a link message specifying the interface has been received, then an in-band control message has been successfully sent from that interface and received by a second node. The control node thus updates a link record with the details of the link from the link message in step 112. These details include the address of the selected interface and the identity of the first node on which the interface is located, the identity of the second node that received the in-band control message sent on the selected interface and the address of the interface on the second node at which the in-band control message was received. The link record thus includes the end point addresses of the border link between the first and second nodes.

[0060] If a link message has not been received for the selected interface (No at step 110), the control node then checks whether or not a modified link message has been received at step 120. As discussed above, a modified link message is a link message in which a failure of an identified link is reported. If a modified link message has been received, then the control node proceeds to update a link record with failure of the link specified in the link message at step 126. If a modified link message has not been received, then the control node re-sends a trigger message for the selected identified interface at step 122 and checks for receipt of a link message at step 124. Failure to receive any kind of link message may suggest that there is a problem on the link between the first and second nodes, meaning the second node did not receive the in-band control message sent by the first node in response to the trigger message, and so was not prompted to send a link message. If a link message specifying the selected identified interface is received at step 124 then the control node proceeds to update the link record accordingly at step 112. If a link message is still not received for the selected identified interface, then the control node concludes that there is a failure on the link having an end point at the selected identified interface and updates the link record accordingly at step 126. In another example, (not shown), the control node may check whether or not the link on the selected interface has already been discovered previously, before concluding link failure at step 126. If the link has not previously been discovered, and the present attempt is thus the first attempt to discover the link, then the control node may conclude that the link is simply not connected, as opposed to having failed, and may update the link record accordingly. However, if the link has previously been successfully discovered then the control node may proceed with concluding link failure, and updating the link record accordingly at step 126.

[0061] Following update of the link record in step 112 or 126, the control node then checks whether all of the interfaces identified at step 104 have been selected, that is the control node verifies whether it has checked for receipt of a link message relating to each of the interfaces specified in trigger messages sent in step 106. If all identified interfaces have not yet been selected, then the control node returns to step 108, selects a new identified interface and follows the subsequent procedure to check for receipt of a link message an update a link record. Once all identified interfaces have been selected, the control node then checks, at step 116, whether a passive mode of the auto-discovery protocol is running. As discussed above, passive mode involves a periodic sending by first nodes of an in-band control message following receipt of an initial trigger message. If passive mode is not running, then the control node returns to step 102 to await a new trigger event which will trigger the control node to re-start the auto-discovery procedure. If passive mode is running, then the first node or nodes will be re-sending their in-band control messages at periodic intervals. The control node thus waits for the appropriate time period to elapse at step 118, and when the appropriate time period has elapsed, the control node returns to step 108 and restarts the procedure of checking for link messages corresponding to each identified interface.

[0062] Figure 12 illustrates process steps in a method 200 performed at a first node, which may be a border node such as a router. As in the case of Figure 11, the method 200 illustrates one example of how an aspect of the present invention may be implemented. Referring to Figure 12, in a first step 202, the first node receives a trigger message from a control node. In the illustrated example, a flag is used in the trigger message to specify whether the trigger message applies to all border interfaces on the first node or only to specific border interfaces. The first node thus checks, at step 204, whether the flag is set in the trigger message. If the flag is set, then the first node identifies the interface or interfaces specified in the trigger message at step 206. If the flag is cleared, then the first node identifies all of its border interfaces in step 208. Following interface identification in step 206 or 208, the first node then sends an in-band control message to a second node or second nodes on the identified interface or interfaces. The in-band control message or messages may be sent in accordance with the procedures explained above; each in-band control message including the identity of the first node and the address of the interface on which the message is sent. After sending the in-band control message or messages, the first node checks in step 212 whether passive mode is running. If passive more is not running, then the first node returns to step 202 and awaits receipt of a new trigger message. If passive mode is running, then the first node checks whether the appropriate time period has elapsed in step 214. Once the time period has elapsed, the first node makes an additional check as to whether a new trigger message has been received in step 216, which might override the passive procedure. If a new trigger message has been received then the first node returns to step 204 and processes the trigger message as discussed above. If no new trigger message has been received then the first node continues the passive mode by returning to step 210 and re-sending the in-band control message or messages. It will be appreciated that in some examples the steps of checking whether the time period has elapsed and checking for receipt of a new trigger message may be performed in a different order.

[0063] Figure 13 illustrates process steps in a method 300 performed at a second node, which may be an optical node. As in the case of Figures 11 and 12, the method 300 illustrates one example of how an aspect of the present invention may be implemented. Referring to Figure 13, in a first step 302 the second node receives an in-band control message from a first node with which it has a link. In step 304, the second node sends a link message to a control node. As discussed above, the link message includes the information from the received in-band control message together with the second node's own identity and the address of the interface on which the in-band control message was received. The second node then checks whether passive mode is running in step 306. If passive mode is not running then the second node returns to step 302 and awaits the arrival of a new in-band control message. If passive mode is running then the second node checks, at step 308, whether the appropriate time period has elapsed. Once the time period has elapsed, the second node checks in step 310 for receipt of the same in-band control message, which in passive mode will be resent by the first node periodically. If the in-band control message has been received as expected, then the second node returns to step 304 and sends another link message to the control node. If the in-band control message has not been received as expected, then the second node sends a modified link message to the control node, indicating that the previously reported link has failed. It will be appreciated that in some examples the second node may wait for multiple time periods before assuming link failure and sending the modified link message. The second node may for example wait for two, three or more missed in-band control messages before sending the modified link message in step 312.

[0064] Figures 14 to 16 illustrate examples of a control node 400, first node 500 and second node 600 which may execute the methods of the present invention, for example on receipt of suitable instructions from a computer program. Referring to Figures 14 to 16, each of the control node 400, first node 500 and second node 600 comprises a processor 401, 501, 601 and a memory 402, 502, 602. Each memory 402, 502, 602 contains instructions executable by the corresponding processor 401, 501, 601 such that the control node is operable to carry out examples of the method 100, the first node is operable to carry out examples of the method 200 and the second node is operable to carry out examples of the method 300.

[0065] Figure 17 illustrates functional units in another example of control node 700, which may execute a method of automatically discovering links between a first node of a first operating domain and a second node of a second operating domain of a communication network. The method may be performed for example according to computer readable instructions received from a computer program. It will be understood that the units illustrated in Figure 17 are functional units, and may be realised in any appropriate combination of hardware and/or software.

[0066] Referring to Figure 17, the control node 700 comprises a receiving unit 710 configured to receive a link message from the second node, the link message comprising information about the first node and a first interface used by the first node for sending an in-band control message to the second node, and information about a second interface used by the second node for receiving the in-band control message.

[0067] The control node 700 may also comprise a record unit 720 configured to update a link record with the link between the first interface of the first node and the second interface of the second node. The control node 700 may also comprise a transmitting unit 730 configured to send a trigger message to the first node, the trigger message instructing the first node to send the in-band control message. The trigger message may indicate an interface of the first node to be used for sending the in-band control message and may instruct the first node to send the in-band control message periodically.

[0068] The control node 700 may also comprise a timing unit 740 configured to check for receipt from a second node of a link message corresponding to the trigger message, and, on failure to receive from the second node a link message corresponding to the trigger message, to cause the transmitting unit to resend the trigger message. The timing unit may also be configured to check for receipt of a link message from the second node corresponding to the re-sent trigger message and, on failure to receive such a message, to cause the record unit 720 to update a link record with failure of the link between the first node and the second node corresponding to the re-sent trigger message.

[0069] The receiving unit 710 may be further configured to receive a modified link message from the second node, the modified link message indicating failure of the link between the first node and the second node. The record unit 720 may be configured to update a link record with failure of the link between the first node and the second node.

[0070] Figure 18 illustrates functional units in another example of first node 800, which may execute a method of automatically discovering links between the first node, which is in a first operating domain of a communication network, and a second node of a second operating domain of the communication network. The method may be performed for example according to computer readable instructions received from a computer program. It will be understood that the units illustrated in Figure 18 are functional units, and may be realised in any appropriate combination of hardware and/or software. the first node 800 may for example be a packet client node.

[0071] Referring to Figure 18, the first node 800 comprises a transmitting unit 810 configured to send an in-band control message to the second node, the in-band control message being encoded using size of packets of the control message and providing information about the first node and a first interface used by the first node for sending the control message. The first node 800 may also comprise a receiving unit 820 configured to receive a trigger message from a control node, the trigger message instructing the first node to send the in-band control message. The trigger message may also indicate an interface of the first node to be used for sending the in-band control message and the transmitting unit 810 may be configured to send the in-band control message to the second node using the indicated interface. The transmitting unit 810 may further be configured to send the in-band control message to the second node periodically.

[0072] Figure 19 illustrates functional units in another example of second node 900, which may execute a method of automatically discovering links between a first node of a first operating domain of a communication network, and the second node, which is in a second operating domain of the communication network. The method may be performed for example according to computer readable instructions received from a computer program. It will be understood that the units illustrated in Figure 19 are functional units, and may be realised in any appropriate combination of hardware and/or software. The second node 900 may for example be an optical node.

[0073] Referring to Figure 19, the second node 900 comprises a receiving unit 910 configured to receive an in-band control message from the first node, the in-band control message being encoded using size of packets of the control message and providing information about the first node and a first interface used by the first node for sending the control message. The second node 900 further comprises a transmitting unit 920 configured to send a link message to a control node, the link message comprising information received in the in-band control message and information about a second interface used by the second node for receiving the in-band control message.

[0074] The in-band control message may be received by the second node periodically and the second node 900 may further comprise a timing unit 930 configured, if the second node fails to receive the in-band control message, to cause the transmitting unit 920 to send a modified link message to the control node, the modified link message indicating failure of the link between the first node and the second node.

[0075] Aspects of the present invention thus provide a method for the automatic discovery of links between non homogeneous network domains, including for example packet and optical domains, in a multilayer environment, which may be an SDN environment. Examples of the present invention provide light messages and procedures which may be used in links between router interfaces and transponder client interfaces, at which it is not possible to run any complex routing protocol as transponders are unable to process packets. Examples of the invention make use of methods for establishing an in-band control channel as defined in PCT/EP2013/069571.

[0076] Examples of methods according to the present invention allow for the automatic population and update of a multi-layer topology database. Without such procedures, network operators are obliged to insert the border links into a topology database manually, and to implement a polling mechanism that periodically queries the status of the interfaces so to check the status of each link. Aspects of the present invention thus reduce operational expenditure for network configuration and also enable detection of configuration mistakes which otherwise are extremely difficult to detect and require in field intervention to correct.

[0077] The methods of the present invention may be implemented in hardware, or as software modules running on one or more processors. The methods may also be carried out according to the instructions of a computer program, and the present invention also provides a computer readable medium having stored thereon a program for carrying out any of the methods described herein. A computer program embodying the invention may be stored on a computer-readable medium, or it could, for example, be in the form of a signal such as a downloadable data signal provided from an Internet website, or it could be in any other form.

[0078] It should be noted that the above-mentioned examples illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. The word "comprising" does not exclude the presence of elements or steps other than those listed in a claim, "a" or "an" does not exclude a plurality, and a single processor or other unit may fulfil the functions of several units recited in the claims. Any reference signs in the claims shall not be construed so as to limit their scope.


Claims

1. A method (300) of automatically discovering links between a first node of a first operating domain and a second node of a second operating domain of a communication network, the method (300), performed in the second node, comprising:

receiving (302) an in-band control message from the first node, wherein the receiving (302) comprises receiving a plurality of dummy packets, each dummy packet having one of a plurality of different predetermined lengths, wherein a sequence of the predetermined lengths of the plurality of dummy packets define a code corresponding to the in-band control message, and wherein the in-band control message comprises information about the first node and a first interface used by the first node for sending the in-band control message; and

sending (304) a link message to a control node, the link message comprising the information received in the in-band control message and information about a second interface used by the second node for receiving the in-band control message.


 
2. The method (300) as claimed in claim 1, wherein the first node comprises a packet client node and the second node comprises an optical node.
 
3. The method (300) as claimed in claim 1 or 2, wherein the in-band control message is received by the second node periodically, the method further comprising, if the second node fails to receive the in-band control message (310), sending (312) a modified link message to the control node, the modified link message indicating a failure of the link between the first node and the second node.
 
4. A method (200) of automatically discovering links between a first node of a first operating domain and a second node of a second operating domain of a communication network, the method (200), performed in the first node, comprising:
sending (210) an in-band control message to the second node, wherein the sending (210) comprises sending a plurality of dummy packets, each dummy packet having one of a plurality of different predetermined lengths, wherein a sequence of the predetermined lengths of the plurality of dummy packets define a code corresponding to the in-band control message, and wherein the in-band control message comprises information about the first node and a first interface used by the first node for sending the in-band control message.
 
5. The method (200) as claimed in claim 4, further comprising:
receiving a trigger message from a control node (202), the trigger message instructing the first node to send the in-band control message.
 
6. The method (200) as claimed in claim 5, wherein the trigger message indicates an interface of the first node to be used for sending the in-band control message and the method comprises sending the in-band control message to the second node using the indicated interface.
 
7. The method (200) as claimed in claim 4 or 5, further comprising:
sending the in-band control message to the second node periodically.
 
8. A computer program configured, when run on a computer, to carry out a method according to any one of the preceding claims.
 
9. A computer program product comprising computer readable media having stored thereon the computer program as claimed in claim 8.
 
10. A first node (500) for a first operating domain of a communication network, configured to automatically discover links between the first node (500) and a second node of a second operating domain of the communication network, the first node (500) comprising a processor (501) and a memory (502), the memory (502) containing instructions executable by the processor (501), such that the first node (500) is operable to:
send an in-band control message to the second node, wherein to send the in-band control message the first node (500) is operable to send a plurality of dummy packets, each dummy packet having one of a plurality of different predetermined lengths, wherein a sequence of the predetermined lengths of the plurality of dummy packets define a code corresponding to the in-band control message, and wherein the in-band control message comprises information about the first node and a first interface used by the first node (500) for sending the in-band control message.
 
11. The first node (500) as claimed in claim 10, wherein the first node (500) is further operable to receive a trigger message from a control node, the trigger message instructing the first node (500) to send the in-band control message.
 
12. The first node (500) as claimed in claim 11, wherein the trigger message indicates an interface of the first node (500) to be used for sending the in-band control message and the first node (500) is further operable to send the in-band control message to the second node using the indicated interface.
 
13. The first node (500) as claimed in claim 11 or claim 12, further operable to send the in-band control message to the second node periodically.
 
14. A second node (600) for a second operating domain of a communication network, configured to automatically discover links between the second node (600) and a first node of a first operating domain of the communication network, the second node (600) comprising a processor (601) and a memory (602), the memory (602) containing instructions executable by the processor (601), such that the second node (600) is operable to:

receive an in-band control message from the first node, wherein to receive the in-band control message the second node (600) is operable to receive a plurality of dummy packets, each dummy packet having one of a plurality of different predetermined lengths, wherein a sequence of the predetermined lengths of the plurality of dummy packets define a code corresponding to the in-band control message, and wherein the in-band control message comprises information about the first node and a first interface used by the first node for sending the in-band control message; and

send a link message to a control node, the link message comprising the information received in the in-band control message and information about a second interface used by the second node (600) for receiving the in-band control message.


 
15. The second node (600) as claimed in claim 14, wherein the in-band control message is received by the second node (600) periodically, and the second node (600) is further operable, if the second node (600) fails to receive the in-band control message, to send a modified link message to the control node, the modified link message indicating failure of the link between the first node and the second node (600).
 


Ansprüche

1. Verfahren (300) zum automatischen Entdecken von Verknüpfungen zwischen einem ersten Knoten einer ersten Betriebsdomäne und einem zweiten Knoten einer zweiten Betriebsdomäne eines Kommunikationsnetzwerks, wobei das Verfahren (300), das in dem zweiten Knoten durchgeführt wird, Folgendes umfasst:

Empfangen (302) einer In-Band-Steuernachricht von dem ersten Knoten, wobei das Empfangen (302) das Empfangen einer Vielzahl von Dummy-Paketen umfasst, wobei jedes Dummy-Paket eine aus einer Vielzahl von unterschiedlichen vorbestimmten Längen aufweist, wobei eine Sequenz der vorbestimmten Längen aus der Vielzahl von Dummy-Paketen einen Code entsprechend der In-Band-Steuernachricht definiert und wobei die In-Band-Steuernachricht Informationen über den ersten Knoten und eine erste Schnittstelle umfasst, die von dem ersten Knoten verwendet wird, um die In-Band-Steuernachricht zu senden; und

Senden (304) einer Verknüpfungsnachricht an einen Steuerknoten, wobei die Verknüpfungsnachricht die Informationen, die in der In-Band-Steuernachricht empfangen werden, und Informationen über eine zweite Schnittstelle umfasst, die von dem zweiten Knoten verwendet wird, um die In-Band-Steuernachricht zu empfangen.


 
2. Verfahren (300) nach Anspruch 1, wobei der erste Knoten einen Paket-Client-Knoten umfasst und der zweite Knoten einen optischen Knoten umfasst.
 
3. Verfahren (300) nach Anspruch 1 oder 2, wobei die In-Band-Steuernachricht periodisch durch den zweiten Knoten empfangen wird, wobei das Verfahren ferner, wenn der zweite Knoten die In-Band-Steuernachricht (310) nicht empfängt, das Senden (312) einer modifizierten Verknüpfungsnachricht an den Steuerknoten umfasst, wobei die modifizierte Verknüpfungsnachricht ein Scheitern der Verknüpfung zwischen dem ersten Knoten und dem zweiten Knoten angibt.
 
4. Verfahren (200) zum automatischen Entdecken von Verknüpfungen zwischen einem ersten Knoten einer ersten Betriebsdomäne und einem zweiten Knoten einer zweiten Betriebsdomäne eines Kommunikationsnetzwerks, wobei das Verfahren (200), das in dem ersten Knoten durchgeführt wird, Folgendes umfasst:
Senden (210) einer In-Band-Steuernachricht an den zweiten Knoten, wobei das Senden (210) das Senden einer Vielzahl von Dummy-Paketen umfasst, wobei jedes Dummy-Paket eine aus einer Vielzahl von unterschiedlichen vorbestimmten Längen aufweist, wobei eine Sequenz der vorbestimmten Längen aus der Vielzahl von Dummy-Paketen einen Code entsprechend der In-Band-Steuernachricht definiert, und wobei die In-Band-Steuernachricht Informationen über den ersten Knoten und eine erste Schnittstelle umfasst, die von dem ersten Knoten verwendet wird, um die In-Band-Steuernachricht zu senden.
 
5. Verfahren (200) nach Anspruch 4, ferner umfassend:
Empfangen einer Auslösernachricht von einem Steuerknoten (202), wobei die Auslösernachricht den ersten Knoten anweist, die In-Band-Steuernachricht zu senden.
 
6. Verfahren (200) nach Anspruch 5, wobei die Auslösernachricht eine Schnittstelle des ersten Knotens angibt, die zu verwenden ist, um die In-Band-Steuernachricht zu senden und das Verfahren das Senden der In-Band-Steuernachricht an den zweiten Knoten unter Verwendung der angegebenen Schnittstelle umfasst.
 
7. Verfahren (200) nach Anspruch 4 oder 5, ferner umfassend:
periodisches Senden der In-Band-Steuernachricht an den zweiten Knoten.
 
8. Computerprogramm, das konfiguriert ist, um, wenn es auf einem Computer ausgeführt wird, ein Verfahren nach einem der vorhergehenden Ansprüche durchzuführen.
 
9. Computerprogrammprodukt, umfassend computerlesbare Medien, in denen das Computerprogramm nach Anspruch 8 gespeichert ist.
 
10. Erster Knoten (500) für eine erste Betriebsdomäne eines Kommunikationsnetzwerks, der konfiguriert ist, um automatisch Verknüpfungen zwischen dem ersten Knoten (500) und einem zweiten Knoten einer zweiten Betriebsdomäne des Kommunikationsnetzwerks zu entdecken, wobei der erste Knoten (500) einen Prozessor (501) und einen Speicher (502) umfasst, wobei der Speicher (502) Anweisungen enthält, die durch den Prozessor (501) ausführbar sind, sodass der erste Knoten (500) für Folgendes bedienbar ist:
Senden einer In-Band-Steuernachricht an den zweiten Knoten, wobei der erste Knoten (500) zum Senden der In-Band-Steuernachricht bedienbar ist, um eine Vielzahl von Dummy-Paketen zu senden, wobei jedes Dummy-Paket eine aus einer Vielzahl von unterschiedlichen vorbestimmten Längen aufweist, wobei eine Sequenz der vorbestimmten Längen aus der Vielzahl von Dummy-Paketen einen Code entsprechend der In-Band-Steuernachricht definiert und wobei die In-Band-Steuernachricht Informationen über den ersten Knoten und eine erste Schnittstelle umfasst, die von dem ersten Knoten (500) verwendet wird, um die In-Band-Steuernachricht zu senden.
 
11. Erster Knoten (500) nach Anspruch 10, wobei der erste Knoten (500) ferner bedienbar ist, um eine Auslösernachricht von einem Steuerknoten zu empfangen, wobei die Auslösernachricht den ersten Knoten (500) anweist, die In-Band-Steuernachricht zu senden.
 
12. Erster Knoten (500) nach Anspruch 11, wobei die Auslösernachricht eine Schnittstelle des ersten Knotens (500) angibt, die zu verwenden ist, um die In-Band-Steuernachricht zu senden und der erste Knoten (500) ferner bedienbar ist, um die In-Band-Steuernachricht unter Verwendung der angegebenen Schnittstelle an den zweiten Knoten zu senden.
 
13. Erster Knoten (500) nach Anspruch 11 oder Anspruch 12, der ferner bedienbar ist, um die In-Band-Steuernachricht periodisch an den zweiten Knoten zu senden.
 
14. Zweiter Knoten (600) für eine zweite Betriebsdomäne eines Kommunikationsnetzwerks, der konfiguriert ist, um automatisch Verknüpfungen zwischen dem zweiten Knoten (600) und einem ersten Knoten einer ersten Betriebsdomäne des Kommunikationsnetzwerks zu entdecken, wobei der zweite Knoten (600) einen Prozessor (601) und einen Speicher (602) umfasst, wobei der Speicher (602) Anweisungen enthält, die durch den Prozessor (601) ausführbar sind, sodass der zweite Knoten (600) für Folgendes bedienbar ist:

Empfangen einer In-Band-Steuernachricht von dem ersten Knoten, wobei der zweite Knoten (600) zum Empfangen der In-Band-Steuernachricht bedienbar ist, um eine Vielzahl von Dummy-Paketen zu empfangen, wobei jedes Dummy-Paket eine aus einer Vielzahl von unterschiedlichen vorbestimmten Längen aufweist, wobei eine Sequenz der vorbestimmten Längen aus der Vielzahl von Dummy-Paketen einen Code entsprechend der In-Band-Steuernachricht definiert und wobei die In-Band-Steuernachricht Informationen über den ersten Knoten und eine erste Schnittstelle umfasst, die von dem ersten Knoten verwendet wird, um die In-Band-Steuernachricht zu senden; und

Senden einer Verknüpfungsnachricht an einen Steuerknoten, wobei die Verknüpfungsnachricht die Informationen, die in der In-Band-Steuernachricht empfangen werden, und Informationen über eine zweite Schnittstelle umfasst, die von dem zweiten Knoten (600) verwendet wird, um die In-Band-Steuernachricht zu empfangen.


 
15. Zweiter Knoten (600) nach Anspruch 14, wobei die In-Band-Steuernachricht periodisch durch den zweiten Knoten (600) empfangen wird und der zweite Knoten (600) ferner, wenn der zweite Knoten (600) die In-Band-Steuernachricht nicht empfängt, bedienbar ist, um eine modifizierte Verknüpfungsnachricht an den Steuerknoten zu senden, wobei die modifizierte Verknüpfungsnachricht ein Scheitern der Verknüpfung zwischen dem ersten Knoten und dem zweiten Knoten (600) angibt.
 


Revendications

1. Procédé (300) de découverte automatique de liaisons entre un premier nœud d'un premier domaine d'exploitation et un second nœud d'un second domaine d'exploitation d'un réseau de communication, le procédé (300), réalisé dans le second nœud, comprenant :

la réception (302) un message de commande dans la bande passante en provenance du premier message, dans lequel la réception (302) comprend la réception d'une pluralité de paquets factices, chaque paquet factice ayant l'une d'une pluralité de longueurs prédéterminées différentes, dans lequel une séquence des longueurs prédéterminées de la pluralité de paquets factices définit un code correspondant au message de commande dans la bande passante, et dans lequel le message de commande dans la bande passante comprend des informations concernant le premier nœud et une première interface utilisée par le premier nœud pour envoyer le message de commande dans la bande passante ; et

l'envoi (304) d'un message de liaison à un nœud de commande, le message de liaison comprenant les informations reçues dans le message de commande dans la bande passante et des informations concernant une seconde interface utilisée par le second nœud pour recevoir le message de commande dans la bande passante.


 
2. Procédé (300) selon la revendication 1, dans lequel le premier nœud comprend un nœud client de paquets et le second nœud comprend un nœud optique.
 
3. Procédé (300) selon la revendication 1 ou 2, dans lequel le message de commande dans la bande passante est reçu par le second nœud périodiquement, le procédé comprenant en outre, si le second nœud échoue à recevoir le message de commande dans la bande passante (310), l'envoi (312) d'un message de liaison modifié au nœud de commande, le message de liaison modifié indiquant un échec de la liaison entre le premier nœud et le second nœud.
 
4. Procédé (200) de découverte automatique de liaisons entre un premier nœud d'un premier domaine d'exploitation et un second nœud d'un second domaine d'exploitation d'un réseau de communication, le procédé (200), réalisé dans le premier nœud, comprenant :
l'envoi (210) d'un message de commande dans la bande passante au second nœud, dans lequel l'envoi (210) comprend l'envoi d'une pluralité de paquets factices, chaque paquet factice ayant l'une d'une pluralité de longueurs prédéterminées différentes, dans lequel une séquence des longueurs prédéterminées de la pluralité de paquets factices définit un code correspondant au message de commande dans la bande passante, et dans lequel le message de commande dans la bande passante comprend des informations concernant le premier nœud et une première interface utilisée par le premier nœud pour envoyer le message de commande dans la bande passante.
 
5. Procédé (200) selon la revendication 4, comprenant en outre :
la réception d'un message de déclenchement en provenance d'un nœud de commande (202), le message de commande ordonnant au premier nœud d'envoyer le message de commande dans la bande passante.
 
6. Procédé (200) selon la revendication 5, dans lequel le message de déclenchement indique une interface du premier nœud à utiliser pour envoyer le message de commande dans la bande passante et le procédé comprend l'envoi du message de commande dans la bande passante au second nœud à l'aide de l'interface indiquée.
 
7. Procédé (200) selon la revendication 4 ou 5, comprenant en outre :
l'envoi du message de commande dans la bande passante au second nœud périodiquement.
 
8. Programme informatique configuré, lorsqu'il est exécuté sur un ordinateur, pour réaliser un procédé selon l'une quelconque des revendications précédentes.
 
9. Produit de programme informatique comprenant des supports lisibles sur un ordinateur comportant le programme informatique selon la revendication 8.
 
10. Premier nœud (500) pour un premier domaine d'exploitation d'un réseau de communication, configuré pour découvrir automatiquement des liaisons entre le premier nœud (500) et un second nœud d'un second domaine d'exploitation du réseau de communication, le premier nœud (500) comprenant une unité de traitement (501) et une mémoire (502), la mémoire (502) contenant des instructions exécutables par l'unité de traitement (501), de sorte que le premier nœud (500) est exploitable pour :
envoyer un message de commande dans la bande passante au second nœud, dans lequel pour envoyer le message de commande dans la bande passante le premier nœud (500) est exploitable pour envoyer une pluralité de paquets factices, chaque paquet factice ayant l'une d'une pluralité de longueurs prédéterminées différentes, dans lequel une séquence des longueurs prédéterminées de la pluralité de paquets factices définit un code correspondant au message de commande dans la bande passante, et dans lequel le message de commande dans la bande passante comprend des informations concernant le premier nœud et une première interface utilisée par le premier nœud (500) pour envoyer le message de commande dans la bande passante.
 
11. Premier nœud (500) selon la revendication 10, dans lequel le premier nœud (500) est en outre exploitable pour recevoir un message de déclenchement en provenance d'un nœud de commande, le message de déclenchement ordonnant au premier nœud (500) d'envoyer le message de commande dans la bande passante.
 
12. Premier nœud (500) selon la revendication 11, dans lequel le message de déclenchement indique une interface du premier nœud (500) à utiliser pour envoyer le message de commande dans la bande passante et le premier nœud (500) est en outre exploitable pour envoyer le message de commande dans la bande passante au second nœud à l'aide de l'interface indiquée.
 
13. Premier nœud (500) selon la revendication 11 ou la revendication 12, en outre exploitable pour envoyer le message de commande dans la bande passante au second nœud périodiquement.
 
14. Second nœud (600) pour un second domaine d'exploitation d'un réseau de communication, configuré pour découvrir automatiquement des liaisons entre le second nœud (600) et un premier nœud d'un premier domaine d'exploitation du réseau de communication, le second nœud (600) comprenant une unité de traitement (601) et une mémoire (602), la mémoire (602) contenant des instructions exécutables par l'unité de traitement (601), de sorte que le second nœud (600) est exploitable pour :

recevoir un message de commande dans la bande passante en provenance du premier nœud, dans lequel pour recevoir le message de commande dans la bande passante le second nœud (600) est exploitable pour recevoir une pluralité de paquets factices, chaque paquet factice ayant l'une d'une pluralité de longueurs prédéterminées différentes, dans lequel une séquence des longueurs prédéterminées de la pluralité de paquets factices définit un code correspondant au message de commande dans la bande passante, et dans lequel le message de commande dans la bande passante comprend des informations concernant le premier nœud et une première interface utilisée par le premier nœud pour envoyer le message de commande dans la bande passante ; et

envoyer un message de liaison à un nœud de commande, le message de liaison comprenant les informations reçues dans le message de commande dans la bande passante et des informations concernant une seconde interface utilisée par le second nœud (600) pour recevoir le message de commande dans la bande passante.


 
15. Second nœud (600) selon la revendication 14, dans lequel le message de commande dans la bande passante est reçu par le second nœud (600) périodiquement, et le second nœud (600) est en outre exploitable, si le second nœud (600) échoue à recevoir le message de commande dans la bande passante, pour envoyer un message de liaison modifié au second nœud, le message de liaison modifié indiquant un échec de la liaison entre le premier nœud et le second nœud (600).
 




Drawing


















































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description