(19)
(11)EP 3 259 812 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 16753198.7

(22)Date of filing:  19.02.2016
(51)International Patent Classification (IPC): 
H01S 5/125(2006.01)
G01J 1/42(2006.01)
H01S 5/40(2006.01)
H01S 5/042(2006.01)
H01S 3/23(2006.01)
H01S 5/10(2006.01)
H01S 5/026(2006.01)
H01S 5/22(2006.01)
G02B 1/11(2015.01)
H01S 3/109(2006.01)
H01S 5/068(2006.01)
H01S 5/0683(2006.01)
H01S 5/00(2006.01)
H01S 5/14(2006.01)
H01S 5/028(2006.01)
H01S 5/343(2006.01)
(86)International application number:
PCT/US2016/018808
(87)International publication number:
WO 2016/134332 (25.08.2016 Gazette  2016/34)

(54)

CHIP-SCALE POWER SCALABLE ULTRAVIOLET OPTICAL SOURCE

LEISTUNGSSKALIERBARE ULTRAVIOLETTE OPTISCHE QUELLE IN CHIP-GRÖSSE

SOURCE OPTIQUE ULTRAVIOLETTE ÉVOLUTIVE À L'ÉCHELLE D'UNE PUCE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 20.02.2015 US 201562118676 P

(43)Date of publication of application:
27.12.2017 Bulletin 2017/52

(73)Proprietor: HRL Laboratories, LLC
Malibu, CA 90265-4799 (US)

(72)Inventors:
  • SAYYAH, Keyvan
    Santa Monica, California 90403 (US)
  • EFIMOV, Oleg M.
    Thousand Oaks, California 91360 (US)
  • PATTERSON, Pamela R.
    Los Angeles, California 90049 (US)
  • KISELEV, Andrey A.
    Malibu, California 90265 (US)

(74)Representative: Richards, John et al
Ladas & Parry LLP
Temple Chambers 3-7 Temple Avenue London EC4Y 0DA
Temple Chambers 3-7 Temple Avenue London EC4Y 0DA (GB)


(56)References cited: : 
EP-A2- 2 299 549
US-A- 5 321 718
US-A- 5 838 709
US-A1- 2006 140 237
US-A1- 2012 057 610
US-B1- 7 394 841
US-B2- 7 433 374
US-A- 5 003 550
US-A- 5 742 045
US-A1- 2004 101 317
US-A1- 2011 052 114
US-A1- 2014 169 800
US-B1- 8 615 028
  
  • BARTELT-BERGER L ET AL: "POWER-SCALABLE SYSTEM OF PHASE-LOCKED SINGLE-MODE DIODE LASERS", APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, DC; US, vol. 38, no. 27, 20 September 1999 (1999-09-20), pages 5752-5760, XP000860562, ISSN: 0003-6935, DOI: 10.1364/AO.38.005752
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

CROSS REFERENCE TO RELATED APPLICATIONS



[0001] This application is related to and claims the benefit of U.S. Provisional Patent Application Serial No. 62/118,676, filed February 20, 2015.

TECHNICAL FIELD



[0002] This disclosure relates to ultra violet (UV) lasers, and in particular chip-scale UV lasers.

BACKGROUND



[0003] Prior art chip-scale ultra-violet lasers include diode pumped solid-sate lasers, gas lasers, and fiber lasers. While chip-scale refers to the size of the devices, these prior art chip-scale ultra-violet lasers are relatively bulky in nature, and have low wall-plug efficiencies (WPEs) of less than 2%. Ultra violet lasing structures based on second harmonic generation (SHG) outside the cavity have been demonstrated. However, the demonstrated output power levels are extremely low (<1 µW) due to the inefficiency of the extra-cavity frequency doubling approach used, and the free-space implementation results in a lack of robustness for practical applications.

[0004] The shortest UV wavelength laser diode that has been demonstrated in the prior art has a wavelength of 336 nm, and is based on an Al.06Ga.94N/ Al.16Ga.84N multiple quantum well (MQW) structure grown on a sapphire substrate. The WPE of this laser diode is an extremely low 0.014%, with an output power of about 3 mW in the pulse mode. The main reason for the poor performance of these laser diodes is the poor AlGaN material quality, which is in particular poor as the Al mole fraction is increased for shorter emission wavelengths. As an example, an AlGaN/GaN MQW laser diode emitting at 345 nm, again grown on a sapphire substrate, had a slightly improved WPE of about 0.077%, and a peak pulsed power of 35 mV as described in Reference 6 below.

[0005] Other research in this area includes optically pumped AlxGa1-xN heterostructure lasers grown on AlN substrates with emissions at 248 nm using a KrF excimer laser as a pump source. A threshold optical power density of 40 kW/cm2 has been demonstrated with this laser structure. The disadvantage of this approach is that the UV laser is optically rather than electrically pumped, making it less suitable for system insertions.

[0006] Frequency multiplication has also been used to achieve lasing in the UV band. For example, an average output power of 600 mW has been demonstrated using a two-stage extra-cavity frequency doubling of a Nd:YAG fiber laser emitting at 946 nm. The first stage (946-to-473 nm) using a BiBO (Bismuth Borate, BiB3O6) crystal had a conversion efficiency of 38%, while the second stage (473-236.5 nm) using a BBO (beta barium borate) crystal had a 17% conversion efficiency as described by Reference 7 below. Also, frequency quadrupling of a Ti-sapphire laser at 820 nm with a ps pulse train using LBO (Lithium triborate (LiB3O5)) and BBO crystals in resonant doubling cavities has been demonstrated to have a 25 mW output at 205 nm with an overall conversion efficiency of 4.5%.

[0007] Although no intra-cavity frequency doubling has been reported in the deep UV band with a wavelength of less than 240 nm, continuous wave (CW) intra-cavity generation at 320 nm UV wavelength with a conversion efficiency of 35% has been demonstrated using an optically pumped red-emitting Pr:BaY2F8 crystal and a LBO nonlinear optical crystal (NLC) as described in Reference 8 below. Also, over 5W of continuous wave (CW) power in the visible (585 nm) has been demonstrated with intracavity frequency doubling using an optically pumped vertical extended cavity surface emitting laser (VECSEL) emitting at 1170 nm and a LBO NLC with a conversion efficiency of >58% as described in Reference 2 below.

[0008] Another possible chip-scale approach is to use a semiconductor-based nonlinear element, such as GaN, in a resonant cavity, such as a micro-ring resonator, to achieve on-chip frequency doubling. However, the second harmonic generation (SHG) power levels demonstrated so far using this approach have been quite low, with power levels on the order of a few microwatts measured at a wavelength of 780 nm using >100 mW of pump power at 1550 nm, which is a conversion efficiency of <0.01%. Furthermore, GaN cannot be used for second harmonic generation (SHG) generation at 220-240 nm wavelengths because of its absorption.

References



[0009] 
  1. 1. R.G. Smith, IEEE J. Quant. Electr., Vol. QE-6, p.215 (1970).
  2. 2. M. Fallahi et al., IEEE PTL, Vol. 20, p.1700 (2008).
  3. 3. J.W. Raring et al., Appl. Phys. Express, Vol. 3, p.112101-1 (2010).
  4. 4. S.R. Selmic et al., IEEE Photonics Tech. Letter, Vol. 14, p.890 (2002).
  5. 5. B. Agnarsson et al., Optics Express, Vol.19, p.22929 (2011).
  6. 6. M. Kuwabara et al., Japanese Journal of Appl. Phys., Vol. 52, p.08JG10 (2013).
  7. 7. L. Deyra et al., Optics Letters, Vol. 39, p.2236 (2014).
  8. 8. A. Richter et al., Optics Express, Vol. 14, p.3282 (2006).
  9. 9. H.B. Sun et al., Proc. SPIE, Vol. 3885, p.311 (1999).
  10. 10. B. Agnarsson et al., Optics Express, Vol. 19, p.22929 (2011).
  11. 11. S. Ghosh et al., Phys. Rev. B., Vol. 65, p.075202 (2002).
  12. 12. D. Feeze1l et al., Japanese Journal of Appl. Phys., Vol. 46, p.L284 (2007).
  13. 13. N. Eriksson et al., IEEE JQE, Vol. 32, p.1038 (1996).
  14. 14. A. Yariv, "Photonics: Optical electronics in modern communications," 2007, New York: Oxford University Press.
  15. 15. J.E. Epler, Electronics Lett., Vol. 23, p.754 (1987).
  16. 16. R.M. Farrell et al., Appl. Phys. Express, Vol. 4, p.092105 (2011).


[0010] US 2004/101317 A1 discloses an optical frequency modulated transmitter comprising a plurality of slave lasers, each of the slave lasers having an output, the outputs of the plurality of slave lasers being combined to form a single output beam of the optical frequency modulated transmitter, the lasers of the plurality of lasers being separately phased-controlled; and a master optical oscillator which outputs an optical signal for injection locking said plurality of slave lasers.

[0011] What is needed is an improved chip-scale ultra-violet laser. The embodiments of the present disclosure answer these and other needs.

SUMMARY



[0012] In a first embodiment disclosed herein, a chip scale ultra violet laser source comprises a substrate, a plurality of chip scale ultra violet laser elements on the substrate, wherein each chip scale ultra violet laser element comprises a back cavity mirror, a tapered gain medium coupled to the back cavity mirror, an outcoupler coupled to the tapered gain medium, a nonlinear crystal coupled to the outcoupler at a front facet of the nonlinear crystal, wherein the front facet has a first coating that has anti-reflectivity (AR) to a fundamental wavelength of the laser element and high reflectivity (HR) to ultra violet wavelengths, and wherein an exit facet of the nonlinear crystal has a second coating that has HR to a fundamental wavelength of the laser element and AR to the ultra violet wavelengths, a photodetector coupled to the outcoupler, a phase modulator coupled to the photodetector and coupled to the back cavity mirror, and a master laser diode on the substrate coupled to the phase modulator of each laser element and coupled to the photodetector of each laser element, wherein each laser element emits an ultra violet beamlet from the exit facet, and wherein each laser element is frequency and phase locked to the master laser diode.

[0013] In another embodiment disclosed herein, a method of fabricating a chip scale ultra violet laser source comprises forming an InGaN/GaN MQW blue laser epi structure on a m-plane GaN substrate, defining a distributed Bragg reflector master laser in the epi, forming a plurality of chip scale ultra violet laser elements on the substrate, wherein forming each chip scale ultra violet laser element comprises forming a back cavity distributed Bragg reflector (DBR), forming a tapered gain medium coupled to the back cavity DBR, forming an outcoupler grating coupled to the tapered gain medium, forming a nonlinear crystal coupled to the outcoupler at a front facet of the nonlinear crystal, wherein the front facet has a first coating that has anti-reflectivity (AR) to a fundamental wavelength of the laser element and high reflectivity (HR) to ultra violet wavelengths, and wherein an exit facet of the nonlinear crystal has a second coating that has HR to a fundamental wavelength of the laser element and AR to the ultra violet wavelengths, forming a photodetector coupled to the outcoupler grating, and forming a phase modulator coupled to the photodetector and coupled to the back cavity DBR.

[0014] These and other features and advantages will become further apparent from the detailed description and accompanying figures that follow. In the figures and description, numerals indicate the various features, like numerals referring to like features throughout both the drawings and the description.

BRIEF DESCRIPTION OF THE DRAWINGS



[0015] 

FIGs. 1A and 1B show an integrated chip-scale UV laser with coherent beam combining and phase locking capability in accordance with the present disclosure;

FIG. 2 shows a graph of the dependence of the 2nd harmonic optical power on the product of the intra-cavity fundamental mode power and NLC thickness for two different beam cross-section areas in accordance with the present disclosure;

FIG. 3 shows a graph of CW output power of more than 750 mW demonstrated in single-lateral-mode blue (447 nm) laser diodes grown on nonpolar GaN substrates in accordance with the present disclosure;

FIG. 4A shows intensity distributions of the guided and radiation modes along the depth of the structure, and the refractive-index profile, and FIG. 4B shows the duty cycle distribution vs. grating length and corresponding relative emission in air and in the substrate in accordance with the present disclosure;

FIGs. 5A, 5B, 5C, 5D, 5E, 5F, 5G, 5H and 5I show a process flow for fabricating a chip-scale UV laser in accordance with the present disclosure; and

FIG. 6 shows a cross-section view of a chip-scale UV laser with an integrated BBO crystal in accordance with the present disclosure.


DETAILED DESCRIPTION



[0016] In the following description, numerous specific details are set forth to clearly describe various specific embodiments disclosed herein. One skilled in the art, however, will understand that the presently claimed invention may be practiced without all of the specific details discussed below. In other instances, well known features have not been described so as not to obscure the invention.

[0017] The present disclosure describes a chip-scale intra-cavity frequency multiplied ultra-violet (UV) (200-400 nm) laser source with on-chip coherent beam-combining and phase-locking capability that produces a high power (>1 W CW) ultra-violet laser light with high spectral quality with a linewidth of less than 0.01 nm and spatial beam quality of (M2<2) in a small package with a volume of less than 0.1 cm3 with a wall-plug efficiency of greater than 10%. All the required functionalities may be provided in a small, fully-integrated chip of less than 1x0.2x0.5 cm3 in volume.

[0018] A heterogeneously integrated optical cavity is disclosed that has a high power tapered optical amplifier structure for providing high optical gain for the fundamental mode in the laser cavity, and a curved detuned second-order grating outcoupler structure 14 with a nonuniform grating duty cycle for providing a well-collimated outcoupling of the fundamental mode into a nonlinear crystal 16 for frequency conversion. The end mirrors in each chip-scale UV lasing element for the fundamental laser oscillation mode are provided by distributed Bragg reflectors (DBRs) 34 at the back end of the tapered optical amplifier structure, and a high reflectivity coating 32 on the output facet of the nonlinear crystal 16.

[0019] The present disclosure also describes on-chip coherent beam combining of an array of chip-scale UV laser elements with an integrated phase locking network for efficient power scaling of the emitted ultra-violet light.

[0020] Now referring to FIG. 1A, the chip-scale UV laser source 10 is composed of an array of coherently combined and phase-locked chip-scale UV lasing elements. The optical cavity of each chip-scale UV lasing element consists of: a Ga ridge gain medium 48 with a ridge gain electrode 44, a GaN tapered gain medium 12 with a Gaussian electrode 46 to provide a semiconductor-based tapered semiconductor optical amplifier (SOA) structure that provides a high gain medium for the generation of a high power fundamental mode in the blue UV region (440-460 nm); a detuned second-order curved grating outcoupling structure 14 for collimated and uniform outcoupling of the fundamental mode; and a prism 90 for reflecting the outcoupled fundamental mode into a heterogeneously integrated nonlinear optical crystal (NLC)16 for frequency multiplying of the fundamental mode in the blue region (440-480 nm) to generate UV in the 220-240 nm wavelength range.

[0021] The curved detuned second-order grating out-coupler structure 14 has a nonuniform grating duty cycle and provides a well-collimated outcoupling 200 of the fundamental mode of the laser cavity with high efficiency (>97%) and high power density for pumping the nonlinear crystal 16 integrated above the semiconductor-based chip for efficient harmonic UV generation.

[0022] An integrated phase locking network, which ensures robust coherent beam combining, extracts a small sample of the fundamental mode from each chip-scale UV lasing element via its grating outcoupler 14 and optically mixes it with a sample of the master laser 36 in a photodetector 28 for phase detection and phase locking by the phase modulators 18.

[0023] An integrated semiconductor-based single mode visible or near-IR master laser diode 36 locks by optical injection the frequency of the free-running chip-scale UV lasing elements. The integrated phase modulators 18 operate together with the photodetectors 28 for each chip-scale UV lasing element to provide phase control for coherent combining. The photodetectors 28 integrated on the chip detect the optical phase of each chip-scale UV lasing element and the phase of the master laser diode 36 to provide feedback to the phase modulators 18 for maintaining phase lock for each chip-scale UV lasing element. The inverse tapered waveguides 20, and waveguides 22, 24, 26, 38 couple the photodetectors 28 and the phase modulators 18. A person skilled in the art would understand that the feedback from the photodetectors 28 to the phase modulators 18 may be made by many other connections.

[0024] The result is a fully integrated chip-scale UV optical source with a single spatial and spectral-mode output beam, and with power scaling capability. The chip-scale UV laser source can be considered an "internally pumped" frequency-doubled laser cavity with a high frequency conversion efficiency of greater than 35%, and, hence, a high overall wall-plug efficiency (WPE) of greater than 10%. This WPE value is very difficult to match with direct electrical injection UV laser diode structures due to the extremely challenging material issues associated with the required higher bandgap AlGaN-based structures. Nevertheless, the chip-scale coherent beam-combining and phase-locking scheme described in the present disclosure can be used with direct injection UV laser diodes.

[0025] The chip-scale intra-cavity frequency-doubled UV laser structure, shown in FIG. 1A, emits in the deep UV 220-240 nm wavelength (UV-C) band. It consists of a tapered GaN-based optical gain structure 12 for generating a high-power fundamental optical mode in the blue region, and a curved grating out-coupler 14 with a nonuniform duty cycle for redirecting and collimating the fundamental optical mode with high power density onto the nonlinear crystal (NLC) 16, which is heterogeneously integrated with the chip for second harmonic generation (SHG) within the cavity. The NLC 16 has on its exit facet 32 a first coating with high reflectivity (HR) for the fundamental (blue) mode and anti-reflectivity (AR) for the second harmonic (UV), which results in the fundamental mode being reflected from the first coating and the UV being transmitted through the first coating. The NLC 16 also has a second coating on its entrance facet 30 reverse reflectivities of anti-reflectivity (AR) for the fundamental (blue) mode and high reflectivity (HR) for the second harmonic (UV), which results in the UV being reflected from the second coating and the fundamental mode being transmitted through the second coating.

[0026] On-chip coherent beam combining of a small array of the chip-scale UV laser elements is achieved by injection-locking them to a single-mode GaN-based master laser diode 36 emitting at the fundamental (blue) wavelength, and phase controlling them via optical phase modulators 18 placed between the master laser 36 and each chip-scale UV laser element. The optical phase modulators 18 operate in the blue wavelength band and are based on an efficient thermo-optic effect in low-loss polymer waveguides. The optical phase modulators 18 may include a heater 82, as shown in FIG. 7. The same polymer material can be used in passive low loss waveguide structures 24 and 26 to couple the master laser diode 36 to the photodetectors 28, passive low loss waveguide structure 38 to couple the master laser diode 36 to the optical phase modulators 18, and passive low loss waveguide structures 20 and 22 to couple the curved grating outcoupler 14 to the photodetectors 28.

[0027] On-chip phase locking of UV beamlets 50, which exit the facet facet 32 of the nonlinear crystal 16, is achieved by interfering a small sample of their fundamental mode with that of the master laser 36 using an array of polymer waveguides 20, 22, 24 and 26 and GaN-based photodetectors 28 and phase modulators 18 formed on the chip to detect and lock the optical phase of each chip-scale UV lasing element to that of the master laser 36. The extraction of the fundamental mode samples of each chip-scale UV lasing element is obtained via a small leakage through each curved grating out-coupler 14, which is then coupled to the polymer waveguide array 20, as shown in FIG. 1A.

[0028] The efficiency of second harmonic generation (SHG) using the NLC 16 is strongly dependent on the power density of the fundamental mode laser power incident on the NLC 16. Usually the most efficient SHG is obtained using very high peak power lasers with greater than 1 GW/cm2) which have a large size, weight and power (SWaP), which is unsuitable for the chip-scale implementation. Thus, achieving an intra-cavity SHG in a semiconductor-based laser resonator with limited fundamental mode optical power is highly desirable.

[0029] In resonators with intra-cavity SHG, the conversion rates for the forward (+) and backward waves (-) in the NLC 16 of thickness 1 is given by Equation [1].



[0030] Here, deff is a non-linear coefficient, Aeff is the effective cross section of the fundamental mode beam, with the resulting beam intensity,

In laser resonators with high reflection (HR) mirrors, meaning when simultaneous extraction of the fundamental mode is not desired,

and, consequently,

The sinc

term in Eq. 1 reaches its maximum of unity in the case of phase-matched operation, with Δkn2ω - nω ≡ 0. Maximum second harmonic power extraction, neglecting extraction of the fundamental mode, takes place when (η+ + η-) is matched to internal optical losses in the resonator. Energy conservation requires that optical intensity-dependent gain is balanced by internal losses plus SHG, setting the intensity of the fundamental mode. Forward and backward second harmonic (SH) propagating beams can be utilized independently or combined together by means of internal mirrors. In this case, careful phase matching of the forward and backward second harmonic (SH) waves is desired for the optimal power extraction. With optimum phase matching, conversion efficiencies of greater than 35%, which is the ratio of the generated second harmonic power to the pumped fundamental mode power, lasers can be achieved in intra-cavity SHG lasers, as described in Reference above.

[0031] As an example, using a BBO nonlinear crystal with deff ≈ 2 pm/V for SHG, nωn2ω ≈ 1.75, and with the proper crystal cut allowing optimal second harmonic generation,



(in Watts) for λω = 2λ2ω = 450 nm is given by Equation 2:



[0032] For a realistic Aeff = 0.1×0.2 mm2 obtained by the width of the tapered gain structure 12 and the matching dimensions of the curved grating outcoupler 14, as further described below, and the product of the optical power of the fundamental mode in the cavity and the NLC 16 length of

the extracted second harmonic power is

as shown in FIG. 2, which shows the dependence of 2nd harmonic optical power on the product of the intra-cavity fundamental mode power and NLC 16 thickness for two different beam cross-section areas. Using a meaningful BBO crystal 16 ranging in thickness from 1mm to about 5 mm, the power density of the fundamental mode at the end of the semiconductor optical amplifier (SOA) taper is estimated to be about 80 MW/cm2 assuming about 1 µm mode size in the vertical direction, which is consistent with the power densities obtained in high-power blue laser diodes, as described in Reference 3 above. However, other considerations such as the effect of high power densities in the tapered gain structure on the spatial mode profile and, hence, beam quality or the M2 value, need to be considered.

[0033] The SHG power levels of 400 mW per chip-scale UV lasing element for the above example requires the power combining of 3 such lasing elements for a total ultra violet chip scale output power of approximately 1 W, with a coherent beam combining efficiency of 0.9. A combiner 400, as shown in FIG. 1B, may be used to combine the UV beamlets 50 in order to add their laser power.

[0034] Another consideration is the acceptance angle of the NLC 16. For the above example of using a BBO crystal, the acceptance angle at 450 nm fundamental wavelength is about 1 mrad cm. For a BBO thickness of 5 mm used here, the acceptance angle of 2 mrad is consistent with the beam divergence of about 2.3 mrads obtained using a curved grating outcoupler 14 structure with a dimension of 0.2 mm in the critical crystal direction.

[0035] In short, a trade-off among the above device parameters, namely, the taper and grating outcoupler 14 dimensions, the NLC 16 thickness, and the number of chip-scale UV lasing elements needs to be made with respect to the output beam quality and power level. Other considerations include the spatial profile and finite linewidth of the fundamental mode, the NLC 16 walk-off angle, and the reflectivity of the cavity mirrors provided by coating 32 and DBR grating 34.

[0036] Maximum SHG conversion efficiency may be achieved by matching the optical phase of the fundamental mode and the second harmonic UV optical beams in the NLC 16. This phase matching may be obtained by an accurate cut of the birefringent nonlinear crystal 16, as well as with a precise heterogeneous integration of the NLC 16 with the GaN chip to control the tilt angle to be less than 1 mrad. Also, by fine tuning the wavelength of the fundamental mode by about 0.01 nm in the injection-locked chip-scale UV lasing elements via the master laser diode 36 drive current, the constructive interference between the beams of the fundamental mode in the forward and backward directions can be maximized in order to maximize the intensity of the fundamental mode incident on the NLC 16 following reflection from an intra-cavity high reflectivity (HR) mirror coating 31 placed below the outcoupler grating. This is further described below.

[0037] Blue laser diodes based on the InGaN/GaN MQW optical gain structures have achieved significant progress in recent years, demonstrating peak WPE values of about 23% WPE values and single-lateral-mode output powers of greater than 750 mW, as described in Reference 3 above. In order to increase the power density of the fundamental blue mode in each chip-scale UV lasing element cavity, the volume of the GaN gain region may be increased. However, simply increasing the width of the single-lateral-mode gain medium is not sufficient since filamentation and multimode operation limits the power density of the fundamental mode below the levels required for efficient frequency conversion.

[0038] A tapered semiconductor optical amplifier (SOA) 12 using a highly efficient blue InGaN/GaN multiple quantum well (MQW) structure is grown on a nonpolar GaN substrate 42 as the optical gain medium 12 for the chip-scale UV lasing element. Growth on these GaN crystal planes eliminates the internal polarization-related fields which result in the separation of the electron and hole wave functions in the MQW gain medium, and, hence, reduce the radiative recombination rates. FIG. 3 shows CW optical powers of greater than 750 mW obtained in single-lateral-mode ridge waveguide laser diodes at 447 nm grown on nonpolar GaN substrates.

[0039] As shown in FIG. 1A, the GaN-based gain structure has a GaN ridge gain medium 48 with a ridge electrode 44 on the GaN ridge gain medium 48, which allows a single-lateral-mode, and a GaN tapered gain region 12 with a Gaussian electrode 46 on the GaN tapered gain region 12, which increases the gain volume. The distributed Bragg reflector (DBR) grating 34 is before the ridge waveguide region 44 to define the single-longitudinal spectral mode, together with a similar design for the grating outcoupler 14. A Gaussian injection current profile is formed by using the Gaussian electrode 46 on the tapered gain region 12, as shown in FIG. 1A, to match the lateral mode profile in order to reduce self-focusing and beam instability effects. This approach has been successfully used in the near-IR tapered laser structures described in Reference 4 above. The combination of the single-lateral and single-longitudinal mode design ensures both close-to-diffraction-limited (M2<2), and a narrow linewidth (Δλ<0.01 nm) frequency doubled UV-C output beam 50.

[0040] The recirculating fundamental mode in the chip-scale UV lasing structure is outcoupled from the GaN tapered gain medium 12 to the NLC 16 via a specially designed slightly detuned second-order surface emitting grating outcoupler 14. The grating 14 has a tailored curvature to outcouple a collimated beam to the NLC 16 in order to increase the SHG conversion efficiency. This curved grating structure 14 has a number of parameters, such as its shape, depth, refractive index, duty cycle, and pitch that need to be optimized for efficient radiation into the NLC 16. One key parameter is the duty cycle of the grating 14 that needs to be tailored in order to form an outcoupled beam intensity profile with a super-Gaussian shape to facilitate single-transverse-mode generation of the fundamental frequency in the cavity. Also, by implementing a small nonuniformity in the grating period in its beginning and ending sections, the collimation of the outcoupled beam can be optimized.

[0041] Since a fraction of the tapered amplifier fundamental mode is outcoupled from the grating outcoupler 14 in the substrate 42 direction, a multilayer GaN/InGaN mirror 31 with HR to the fundamental mode is placed below the outcoupler grating 14 at the position of the lower cladding layer. By choosing the proper thickness for the lower cladding layer, the outcoupled fraction of the beam in the substrate direction is reflected back and constructively interferes with the fraction outcoupled into air in order to maximize the intensity of the fundamental mode incident on the NLC 16. Furthermore, by the proper design of the outcoupler grating 14 length and duty cycle distribution, a controlled fraction (<1%) of the total fundamental power is allowed to transmit through the grating outcoupler 14 to the inverse taper polymer waveguide 20 for phase locking, as described above.

[0042] FIG. 4A shows intensity distributions of the guided and radiation modes along the depth of the structure, and the refractive-index profile, including the grating region, the waveguide core and lower cladding, and the 20 pair GaN/InGaN multilayer mirror. FIG. 4B shows the duty cycle distribution vs. grating length and corresponding relative emission in air and the substrate. The simulation results shown in FIGs. 4A and 4B are for the grating outcoupler 14 with a pitch and depth of 185 nm and 130 nm, respectively. The refractive index profile in the vertical direction, including those of the waveguide and the multilayer mirror 31, as well as the optical mode and intensity profiles in air and in the substrate 42 are shown in FIG. 4A. The duty cycle profile and the resulting outcoupled super-Gaussian profile are shown in FIG. 4B. An outcoupling efficiency of greater than 99%, integrated over the beam profile, may be achieved.

[0043] Coherent beam combining of multiple injection-locked chip-scale UV lasing elements for UV power scaling requires 2π phase control. In the embodiment of FIG. 1A, a polymer-based thermo-optic phase modulator 18 with an integrated heater is integrated before each chip-scale lasing element. The polymer waveguide structure 18 is based on a poly(methyl methacrylate (PMMA) core layer, with a refractive index of ∼1.49 in the visible, and a fluorinated polymer, such as CYTOP, with a refractive index of ∼1.34, as the upper and lower cladding layers. The relatively high index contrast of Δn∼0.15 allows good mode confinement and compact bending of the waveguide 18. Given the thermo-optic coefficient of 10-4 /°K for this polymer, as described in Reference 5 above, a phase modulator 18 length of only 450 µm will result in 2π phase change with only 10°C of temperature control at a wavelength of 450 nm, since Δφ = 2π(dn/dT)ΔTL/λ, where Δφ is the optical phase change, dn/dT is the thermo-optic coefficient, ΔT is the temperature control range, L is the modulator length, and λ is the free-space wavelength. Also, the propagation loss of ∼3 dB/cm demonstrated for these waveguides 18 result in a very small insertion loss of <0.15 dB for the polymer phase modulators 18.

[0044] Phase locking of the injection-locked chip-scale UV lasing elements is required for optimum coherent beam combining. Although the phase control for each element is provided by the integrated polymer phase modulators 18 described above, an efficient means for ensuring phase locking is required.

[0045] In the present disclosure phase locking is achieved by first extracting a small fraction (<1%) of the fundamental mode in each chip-scale UV lasing element, which is designed to leak through the grating outcoupler 14 structure, and then coupling it to the polymer waveguide network 20, 22, 24 and 26 formed on the chip, as shown in FIG. 1A. The sample of the fundamental mode is then mixed with a fraction of the master DBR laser 36 reference beam, sampled through the backside DBR mirror 34, in a GaN-based waveguide photodetector 28, as shown in FIG. 1A. The network of low-loss polymer waveguides 20, 22, 24, 26 and 38 formed on the chip, couple the extracted beams from the master DBR laser diode 36 and fundamental mode of the chip-scale UV lasing elements to the photodetectors 28 for phase locking. The interference of the master laser and sampled UV beamlets 50 in the photodetector 28 is given by Equation 3:


where, IPDi is the photodetector current for the ith chip-scale UV lasing element, ηPD is the photodetector 28 conversion efficiency, Pr and Pi are the optical power extracted from the master laser 36 and the ith chip-scale lasing element incident on the photodetector, respectively, Δφi is the optical phase difference between the master laser 36 and the ith chip-scale UV lasing element, and φ0i is the phase offset due to possible optical path length differences. By pre-calibrating the values of the fixed parameters Pr, Pi and φ0i for each element, the photocurrent value IPDi for phase locking condition (Δφi = 0) is obtained.

[0046] The process flow for fabrication of the chip-scale UV laser is shown (cross section view) in FIGs. 5A, 5B, 5C, 5D, 5E, 5F, 5G, 5H and 5I.

[0047] In the step shown in FIG. 5A, an InGaN/GaN MQW blue laser epi structure is grown on a m-plane GaN substrate 42. A simplified structure comprised of the core 60 and upper 62 and lower 64 cladding layers is shown. Metal-organic chemical vapor deposition (MOCVD) growth of the epilayers is performed at atmospheric pressure using common group III and group V precursors including trimethylgallium, triethylgallium, trimethylindium, trimethylaluminum and ammonia. The n-type dopant utilized may be Si [disilane] and the p-type dopant may be Mg [bis-cyclopentadienylmagnesium]. All layer depositions may be performed at >800C (optimized for each layer) and with specific flows and other chamber conditions on bulk GaN substrates.

[0048] After growth, the active devices, including the DBR master laser 36, the tapered laser gain medium 92, including the ridge electrode 44, the GaN ridge gain medium 48, the Gaussian electrode 46, and the GaN tapered gain medium 12, and the pin photodetector diode 28 are defined with optical lithography and dry etched, as shown in FIG. 5B. The epi layers are then etched down to a GaN layer in the lower cladding region 64, which provides the template for epitaxial re-growth. Oxide 70 is then deposited and windows are opened in the oxide 70 for selective epi re-growth of the outcoupling grating 14, and laser gratings 34 and 36, as shown in FIG. 5C. The total etch depth is about 1.3 microns, and the oxide 70 may be planarized using chemical-mechanical-polish (CMP), if needed, to minimize the effect of this topography on the subsequent patterning of laser gratings 34 and 36 and the out-coupler grating 14. The epitaxial layers that define the laser gratings 34 and 36 and the out-coupler grating 14 are re-grown in the open oxide windows, as shown in FIG. 5D.

[0049] Then as shown in FIG. 5E, the laser gratings 34 and 36 and the out-coupler grating 14 are patterned with e-beam lithography and etched into the 130 nm InGaN top layer of the re-grown structure using a chlorine based inductively coupled plasma (ICP) reactive ion etcher (RIE) to an AlGaN etch stop layer 76. After removing the oxide re-growth mask, electrodes and routing metal 78 are patterned with optical lithography and metal lift-off, as shown in FIG. 5F.

[0050] Then the tri-layer polymer waveguide structures 80, including waveguides 20, 22, 24, 26, 38 and 40 are formed with low index polymer cladding layers, flouropolymers and a high index photo-sensitive core layer (PMMA). After spinning on the lower cladding layer 64, the core layer PMMA will be spun on and patterned using e-beam followed by a final layer of flouropolymer for the upper cladding, as shown in FIG. 5G. The tri-layer polymer stack may be used as a thermo-optic modulator by patterning and depositing a Ni/Cr heating element 82 on a section of the polymer waveguide, as shown in FIG. 5H. After the structures are defined on the front side, the substrate is thinned and the backside metal electrode 84 is deposited, as shown in FIG. 5I.

[0051] The most lithographically demanding patterning on each chip-scale UV laser element is the curved grating out-coupler 14, which requires minimum features between 80nm to 100 nm and maintaining line width critical dimensions (CDs) across the continuously varying grating duty cycle. A constant depth over the entire grating is critical to optical performance. Aspect ratio dependent etch rates are typical in dry etch processes whereby smaller openings etch slower than large openings. A solution to provide constant depth is to use an etch stop layer, such as etch stop layer 76 so that the higher aspect ratio areas can be etched longer while not increasing the depth of the larger openings. A thin AlGaN etch stop 76 is used for etching the grating out-coupler 14. In chlorine chemistry the AlGaN:InGaN selectivity is >10:1, which provides the margin needed to etch the grating out-coupler 14.

[0052] The final step in the fabrication of the chip-scale UV laser is the bonding of the nonlinear crystal 16, which may be a BBO, above the grating out-coupler 14 for the frequency conversion from blue to UV light. By adding an angled prism 90 to the BBO NLC 16 edge, the long axis of the crystal is parallel to the substrate providing a more robust integration over a vertical structure, where the long axis is perpendicular to substrate, since the aspect ratio of the BBO crystal length to thickness is over 10:1. The BBO NLC 16 may be bonded to the grating out-coupler 14 using Au-Au 100 metal thermo-compression bonding.

[0053] A critical parameter for the BBO crystal bonding is the parallelism of the NLC 16 crystal surface to the grating out-coupler 14. State-of-the-art die bonders are capable of leveling two bonding surfaces with a resolution of 4.2 pradians and a sensitivity of 20 µradians, well exceeding the accuracy required for the bonded surfaces here. The distance between the out-coupler 14 and the BBO NLC 16 is also important for loss. The closer the crystal, the lower the loss. In the present disclosure, this distance is controlled by adjusting the thickness of the gold bond pads 100. With metal deposition processes, this thickness can be controlled to within about 50nm. Bonds have been demonstrated with pads on both sides of the bond pair of 500nm. The distance between the surfaces can be on the order of 2 to 3 microns.

[0054] A cross-section view of the fully-integrated chip-scale UV laser 10 with a BBO NLC 16 is shown in FIG. 6.

[0055] Having now described the invention, those skilled in this art will understand how to make changes and modifications to the present invention to meet their specific requirements or conditions. Such changes and modifications may be made without departing from the scope of the invention which is defined by the claims.

[0056] The foregoing Detailed Description of exemplary and preferred embodiments is presented for purposes of illustration and disclosure. It is not intended to be exhaustive nor to limit the invention to the precise form(s) described, but only to enable others skilled in the art to understand how the invention may be suited for a particular use or implementation. The possibility of modifications and variations will be apparent to practitioners skilled in the art. No limitation is intended by the description of exemplary embodiments which may have included tolerances, feature dimensions, specific operating conditions, engineering specifications, or the like, and which may vary between implementations or with changes to the state of the art, and no limitation should be implied therefrom. Applicant has made this disclosure with respect to the current state of the art, but also contemplates advancements and that adaptations in the future may take into consideration of those advancements, namely in accordance with the then current state of the art. It is intended that the scope of the invention be defined by the Claims as written. Reference to a claim element in the singular is not intended to mean "one and only one" unless explicitly so stated.


Claims

1. A chip scale ultra violet laser source (10) comprising:

a substrate (42);

a plurality of chip scale ultra violet-generating laser elements on the substrate, wherein each chip scale ultra violet-generating laser element comprises:

a back cavity mirror (34);

a tapered gain medium (12) coupled to the back cavity mirror (34);

a nonlinear crystal (16),

wherein the front facet of the nonlinear crystal has a first coating that has anti-reflectivity AR to a fundamental wavelength of the laser element and high reflectivity HR to ultra violet wavelengths, and wherein an exit facet (32) of the nonlinear crystal has a second coating that has HR to a fundamental wavelength of the laser element and AR to the ultra violet wavelengths such that the second coating and the back cavity mirror form a laser cavity;

an outcoupler (14) to which the front facet of the non linear crystal is coupled, the out coupler also being coupled to the tapered gain medium (12), the outcoupler (14) being configured to couple a fraction of the fundamental wavelength out of the cavity;

a photodetector (28) coupled to the outcoupler;

a phase modulator (18) coupled to the photodetector (28) and coupled to the back cavity mirror; and

a single mode master laser diode (36) on the substrate coupled to the phase modulator of each laser element and coupled to the photodetector of each laser element, the master diode being configured to emit at the fundamental wavelength;

wherein the photodetector detects optical phases of both the fundamental wavelength of its respective chip and the fundamental wavelength of the single mode master laser diode;

wherein the non-linear crystal (16) is configured to convert the fundamental wavelength to an ultra violet wavelength so that each laser element emits an ultra violet beamlet (50) from the exit facet (32); and

wherein each laser element is frequency and phase locked to the master laser diode (36).


 
2. The chip scale ultra violet laser source of claim 1 wherein the outcoupler (14) comprises:
a curved grating outcoupler having a nonuniform grating duty cycle.
 
3. The chip scale ultra violet laser source of claim 2 further comprising:

a mirror (41) on the substrate below the curved grating outcoupler (14), the mirror having high reflectivity; or

a prism (90) coupled between the curved grating outcoupler (14) and the front facet of the nonlinear crystal (16).


 
4. The chip scale ultra violet laser source of claim 1 wherein each phase modulator comprises:

a low-loss polymer waveguide (20, 22, 24, 26, 38) ; and

a heater (82) coupled to the low-loss polymer waveguide; or
wherein the photodetector (28) is coupled to the outcoupler (14) by an inverse tapered waveguide (20).


 
5. The chip scale ultra violet laser source of claim 1 wherein the master laser diode (36) comprises a single-mode GaN laser diode emitting at the fundamental wavelength; or wherein :

the master laser diode comprises a GaN distributed Bragg reflector ; and

the back cavity mirror comprises a distributed Bragg reflector (34) .


 
6. The chip scale ultra violet laser source of claim 1, further comprising a combiner (400) for combining the ultra violet beamlets (50); or
further comprising: a first plurality of low loss polymer waveguides (24, 26) coupling the master laser diode (36) to the photodetectors (28); and
a second plurality of low loss polymer waveguides (38) coupling the master laser diode (36) to the optical phase modulators (18); and
a third plurality of low loss polymer waveguides (20, 22) coupling the outcoupler (14) to the photodetectors (28); or
further comprising feedback circuity coupling the photodetector to the phase modulator.
 
7. The chip scale ultra violet laser source of claim 1 wherein the substrate (42) comprises a nonpolar GaN substrate.
 
8. A method of fabricating a chip scale ultra violet laser source, the method comprising:

providing a substrate;

forming a plurality of chip scale ultra violet-generating laser elements on the substrate, wherein each chip scale ultra violet-generating laser element comprises:

a back cavity mirror;

a tapered gain medium coupled to the back cavity mirror ;

a nonlinear crystal,

wherein the front facet of the nonlinear crystal has a first coating that has anti-reflectivity AR to a fundamental wavelength of the laser element and high reflectivity HR to ultra violet wavelengths, and

wherein an exit facet of the nonlinear crystal has a second coating that has HR to a fundamental wavelength of the laser element and AR to the ultra violet wavelengths such that the second coating and the back cavity mirror form a laser cavity;

an outcoupler to which the front facet of the non-linear crystal is coupled, the outcoupler also being coupled to the tapered gain medium, the outcoupler being configured to couple a fraction of the fundamental wavelength out of the cavity;

providing a photodetector coupled to the outcoupler;

providing a single mode master laser diode on the substrate coupled to the phase modulator of each laser element and coupled to the photodetector of each laser element, the master laser diode being configured to emit at the fundamental wavelength; and

providing a phase modulator coupled to the photodetector and coupled to the back cavity mirror

wherein the non-linear crystal is configured to convert the fundamental wavelength to an ultra violet wavelength so that each laser element emits an ultra violet beamlet from the exit facet; and

wherein each laser element is frequency and phase locked to the master laser diode.


 
9. The method of claim 8, wherein:

said forming a plurality of chip scale ultra violet laser elements on the substrate comprises forming an InGaN/GaN MQW blue laser epi structure on a m-plane GaN substrate;

said master laser diode comprising a distributed Bragg reflector master laser in the epi;

said back cavity mirror comprising a distributed Bragg reflector; and

said outcoupler being an outcoupler grating.


 
10. The method of claim 9 further comprising:

using optical lithography and dry etching to form the tapered gain medium and the photodetector;

etching the epi layers to a GaN layer in a lower cladding region to provide a template for epitaxial re-growth;

depositing an oxide mask;

opening windows in the oxide mask for selective epi re-growth for the outcoupling grating, and gratings for the distributed Bragg reflector master laser and the back cavity distributed Bragg reflector DBR;

regrowing epitaxial layers in the windows for the outcoupling grating, the distributed Bragg reflector master laser and the back cavity distributed Bragg reflector DBR; patterning and etching gratings for the outcoupling grating, the distributed Bragg reflector master laser and the back cavity distributed Bragg reflector DBR;

removing the oxide mask;

forming electrodes and routing metal using optical lithography and metal lift-off;

forming tri-layer polymer waveguide structures for waveguides with low index polymer cladding layers,

fluoropolymers and a high index photo-sensitive core layer PMMA;

forming the phase modulator by depositing a Ni/Cr heating element on a section of the tri-layer polymer waveguide structures; and

depositing a backside metal electrode; and bonding the nonlinear crystal above the grating out-coupler using Au-Au (100) metal thermo-compression bonding.


 
11. The chip scale ultra violet laser source of claim 1 or the method of claim 8:

wherein the fundamental wavelength comprises wavelengths ranging from 440nm to 480nm;

wherein the ultra violet wavelengths comprise wavelengths ranging from 220nm to 240nm.


 
12. The method of claim 10 further comprising connecting a prism between the grating outcoupler and the front facet of the nonlinear crystal.
 
13. The chip scale ultra violet laser source of claim 1 or the method of claim 8 wherein the tapered gain medium further comprises:

a GaN ridge gain medium coupled to the back cavity mirror and; and

a GaN tapered gain medium coupled to the ridge gain medium and to the outcoupler.


 
14. The chip scale ultra violet laser source or method of claim 13 wherein each tapered gain medium further comprises:

a ridge electrode on the ridge gain medium; and

a Gaussian electrode on the GaN tapered gain medium.


 
15. The method of claim 9 wherein the forming the outcoupler grating comprises forming a curved grating outcoupler having a nonuniform grating duty cycle; or
further comprising forming a mirror on the substrate below the curved grating outcoupler.
 


Ansprüche

1. Ultraviolett-Laserquelle (10) in Chipgröße, die folgendes umfasst:

ein Substrat (42);

eine Mehrzahl von ultravioletter Strahlung erzeugenden Laserelementen in Chipgröße auf dem Substrat, wobei jedes der ultraviolette Strahlung erzeugenden Laserelemente in Chipgröße folgendes umfasst:

einen Resonatorendspiegel (34);

ein konisches Verstärkungsmedium (12), das mit dem Resonatorendspiegel (34) gekoppelt ist;

ein nichtlineares Kristall (16);

wobei die vordere Facette des nichtlinearen Kristalls eine erste Beschichtung mit Antireflexfunktion (AR) in Bezug auf eine Grundwellenlänge und einer hohen Reflexion (HR) in Bezug auf UV-Strahlungswellenlängen aufweist, und wobei eine Austrittsfacette (32) des nichtlinearen Kristalls eine zweite Beschichtung mit HR in Bezug auf eine Grundwellenlänge des Laserelements und mit AR in Bezug auf die UV-Strahlungswellenlängen aufweist, so dass die zweite Beschichtung und der Resonatorendspiegel einen Laserresonator bilden;

einen Auskoppler (14), mit dem die vordere Facette des nichtlinearen Kristalls gekoppelt ist, wobei der Auskoppler auch mit dem konischen Verstärkungsmedium (12) gekoppelt ist, wobei der Auskoppler (14) so gestaltet ist, dass er einen Teil der Grundwellenlänge aus dem Resonator heraus koppelt;

einen Photodetektor (28), der mit dem Auskoppler gekoppelt ist;

einen Phasenmodulator (18), der mit dem Photodetektor (28) und mit dem Resonatorendspiegel gekoppelt ist; und

eine Einmoden-Hauptlaserdiode (36) auf dem Substrat, gekoppelt mit dem Phasenmodulator jedes Laserelements und gekoppelt mit dem Photodetektor jedes Laserelements, wobei die Hauptdiode so gestaltet ist, dass sie auf einer Grundwellenlänge emittiert;

wobei der Photodetektor optische Phasen sowohl der Grundwellenlänge seines entsprechenden Chips als auch der Grundwellenlänge der Einmoden-Hauptlaserdiode erkennt;

wobei das nichtlineare Kristall (16) so gestaltet ist, dass es die Grundwellenlänge in eine UV-Strahlungswellenlänge umwandelt, so dass jedes Laserelement einen kleinen UV-Strahl (50) von seiner Austrittsfacette (32) emittiert; und

wobei jedes Laserelement mit der Hauptlaserdiode (36) frequenz- und phasenverriegelt ist.


 
2. Ultraviolett-Laserquelle in Chipgröße nach Anspruch 1, wobei der Auskoppler (14) folgendes umfasst:
einen Auskoppler mit gekrümmtem Gitter mit einem uneinheitlichen Gitterarbeitszyklus.
 
3. Ultraviolett-Laserquelle in Chipgröße nach Anspruch 2, wobei diese ferner folgendes umfasst:

einen Spiegel (41) auf dem Substrat unterhalb des Auskopplers (14) mit gekrümmtem Gitter, wobei der Spiegel einen hohen Reflexionsgrad aufweist; oder

ein Prisma (90), das zwischen dem Auskoppler (14) mit gekrümmtem Gitter und der vorderen Facette des nichtlinearen Kristalls (16) gekoppelt ist.


 
4. Ultraviolett-Laserquelle in Chipgröße nach Anspruch 1, wobei jeder Phasenmodulator folgendes umfasst:

einen verlustarmen polymeren Wellenleiter (20, 22, 24, 26, 28); und

eine Heizeinrichtung (82), die mit dem verlustarmen polymeren Wellenleiter gekoppelt ist; oder

wobei der Photodetektor (28) durch einen umgekehrt konischen Wellenleiter (20) mit dem Auskoppler (14) gekoppelt ist.


 
5. Ultraviolett-Laserquelle in Chipgröße nach Anspruch 1, wobei die Hauptlaserdiode (36) eine Einmoden-GaN-Laserdiode umfasst, die auf der Grundwellenlänge emittiert; oder wobei:

die Hauptlaserdiode einen verteilten GaN-Bragg-Reflektor umfasst; und

der Resonatorendspiegel einen verteilten Bragg-Reflektor (34) umfasst.


 
6. Ultraviolett-Laserquelle in Chipgröße nach Anspruch 1, wobei diese ferner einen Kombinator (400) zum Kombinieren der kleinen UV-Strahlen (50) umfasst; oder
wobei sie ferner folgendes umfasst: eine erste Mehrzahl verlustarmer polymerer Wellenleiter (24, 26), welche die Hauptlaserdiode (36) mit den Photodetektoren (28) koppelt; und
eine zweite Mehrzahl verlustarmer polymerer Wellenleiter (38), welche die Hauptlaserdiode (36) mit den optischen Phasenmodulatoren (18) koppelt; und
eine dritte Mehrzahl verlustarmer polymerer Wellenleiter (20, 22), welche den Auskoppler (14) mit den Photodetektoren (28) koppelt; oder
wobei sie ferner eine Rückkopplungsschaltkreisanordnung umfasst, welche den Photodetektor mit dem Phasenmodulator koppelt.
 
7. Ultraviolett-Laserquelle in Chipgröße nach Anspruch 1, wobei das Substrat (42) ein nichtpolares GaN-Substrat umfasst.
 
8. Verfahren zum Herstellen einer Ultraviolett-Laserquelle in Chipgröße, wobei das Verfahren folgendes umfasst:

Bereitstellen eines Substrats;

Ausbilden einer Mehrzahl von ultravioletter Strahlung erzeugenden Laserelementen in Chipgröße auf dem Substrat, wobei jedes der ultraviolette Strahlung erzeugenden Laserelemente in Chipgröße folgendes umfasst:

einen Resonatorendspiegel;

ein konisches Verstärkungsmedium, das mit dem Resonatorendspiegel gekoppelt ist;

ein nichtlineares Kristall;

wobei die vordere Facette des nichtlinearen Kristalls eine erste Beschichtung mit Antireflexfunktion (AR) in Bezug auf eine Grundwellenlänge und einer hohen Reflexion (HR) in Bezug auf UV-Strahlungswellenlängen aufweist, und wobei eine Austrittsfacette des nichtlinearen Kristalls eine zweite Beschichtung mit HR in Bezug auf eine Grundwellenlänge des Laserelements und mit AR in Bezug auf die UV-Strahlungswellenlängen aufweist, so dass die zweite Beschichtung und der Resonatorendspiegel einen Laserresonator bilden;

einen Auskoppler, mit dem die vordere Facette des nichtlinearen Kristalls gekoppelt ist, wobei der Auskoppler auch mit dem konischen Verstärkungsmedium gekoppelt ist, wobei der Auskoppler so gestaltet ist, dass er einen Teil der Grundwellenlänge aus dem Resonator heraus koppelt;

Bereitstellen eines Photodetektors, der mit dem Auskoppler gekoppelt ist;

Bereitstellen einer Einmoden-Hauptlaserdiode auf dem Substrat, gekoppelt mit dem Phasenmodulator jedes Laserelements und gekoppelt mit dem Photodetektor jedes Laserelements, wobei die Hauptdiode so gestaltet ist, dass sie auf einer Grundwellenlänge emittiert; und

Bereitstellen eines Phasenmodulators, der mit dem Photodetektor und mit dem Resonatorendspiegel gekoppelt ist;

wobei das nichtlineare Kristall so gestaltet ist, dass es die Grundwellenlänge in eine UV-Strahlungswellenlänge umwandelt, so dass jedes Laserelement einen kleinen UV-Strahl von seiner Austrittsfacette emittiert; und

wobei jedes Laserelement mit der Hauptlaserdiode frequenz- und phasenverriegelt ist.


 
9. Verfahren nach Anspruch 8, wobei:

das Ausbilden einer Mehrzahl von ultravioletter Strahlung erzeugenden Laserelementen in Chipgröße auf dem Substrat das Ausbilden einer InGaN/GaN MQW blauer Laser Epistruktur auf einem m-Ebenen-GaN-Substrat umfasst;

wobei die Hauptlaserdiode einen verteilten Bragg-Reflektor-Hauptlaser in der Epistruktur umfasst;

wobei der Resonatorendspiegel einen verteilten Bragg-Reflektor umfasst; und

wobei der Auskoppler ein Auskopplergitter ist.


 
10. Verfahren nach Anspruch 9, wobei dieses ferner folgendes umfasst:

Verwenden von optischer Lithographie und Trockenätzen zum Ausbilden des konischen Verstärkungsmediums und des Photodetektors;

Ätzen der Epischichten auf eine GaN-Schicht in einem unteren Mantelbereich, um eine Vorlage für epitaxiales Wiederwachstum bereitzustellen;

Abscheiden einer Oxidmaske;

Öffnen von Fenstern in der Oxidmaske für selektives epitaxiales Wiederwachstum für das Auskopplungsgitter und Gittern für den verteilten Bragg-Reflektor-Hauptlaser und den Endresonator verteilten Bragg-Reflektor (DBR);

erneutes Wachstum epitaxialer Schichten in den Fenstern für das Auskopplungsgitter, den verteilten Bragg-Reflektor-Hauptlaser und den Endresonator verteilten Bragg-Reflektor (DBR);

Mustern und Ätzen von Gittern für das Auskopplungsgitter, den verteilten Bragg-Reflektor-Hauptlaser und den Endresonator verteilten Bragg-Reflektor (DBR);

Entfernen der Oxidmaske;

Ausbilden von Elektroden und Leitmetall unter Verwendung optischer Lithographie und Metall-Lift-off;

Ausbilden dreischichtiger polymerer Wellenleiterstrukturen für Wellenleiter mit Mantelschichten aus Polymer mit niedrigem Index, Fluorpolymeren und einer lichtempfindlichen Kernschicht mit hohem Index (PMMA);

Ausbilden des Phasenmodulators durch Abscheiden eines Ni/Cr-Heizelements auf einen Abschnitt der dreischichtigen polymeren Wellenleiterstrukturen; und

Abscheiden einer rückseitigen Metallelektrode; und

Bonden des nichtlinearen Kristalls über dem Gitterauskoppler unter Verwendung von Au-Au-Metall-Thermokompressions-Bonding (100).


 
11. Ultraviolett-Laserquelle in Chipgröße nach Anspruch 1 oder Verfahren nach Anspruch 8,
wobei die Grundwellenlänge Wellenlängen im Bereich von 440 nm bis 480 nm umfasst;
wobei die UV-Strahlungswellenlängen Wellenlängen im Bereich von 220 nm bis 240 nm umfassen.
 
12. Verfahren nach Anspruch 10, wobei dieses ferner das Verbinden eines Prismas zwischen dem Gitterauskoppler und der vorderen Facette des nichtlinearen Kristalls.
 
13. Ultraviolett-Laserquelle in Chipgröße nach Anspruch 1 oder Verfahren nach Anspruch 8, wobei das konische Verstärkungsmedium ferner folgendes umfasst:

ein GaN-Grat-Verstärkungsmedium, das mit dem Resonatorendspiegel gekoppelt ist; und

ein konisches GaN-Verstärkungsmedium, das mit dem Grat-Verstärkungsmedium und mit dem Auskoppler gekoppelt ist.


 
14. Ultraviolett-Laserquelle in Chipgröße oder Verfahren nach Anspruch 13, wobei jedes konische Verstärkungsmedium ferner folgendes umfasst:

eine Grat-Elektrode auf dem Grat-Verstärkungsmedium; und

eine Gaußsche Elektrode auf dem konischen GaN-Verstärkungsmedium.


 
15. Verfahren nach Anspruch 9, wobei das Ausbilden des Auskopplergitters das Ausbilden eines Auskopplers mit gekrümmtem Gitter mit einem uneinheitlichen Gitterarbeitszyklus umfasst; oder
wobei es ferner das Ausbilden eines Spiegels auf dem Substrat unter dem Auskoppler mit gekrümmtem Gitter umfasst.
 


Revendications

1. Source laser ultraviolette évolutive à l'échelle d'une puce (10) comprenant :

un substrat (42) ;

une pluralité d'éléments laser produisant des ultraviolets à l'échelle d'une puce sur le substrat, chaque élément laser produisant des ultraviolets à l'échelle d'une puce comprenant :

un miroir de cavité arrière (34) ;

un milieu amplificateur conique (12) couplé au miroir de cavité arrière (34) ;

un cristal non linéaire (16),

la facette avant du cristal non linéaire ayant un premier revêtement qui a une antiréflectivité AR à une longueur d'onde fondamentale de l'élément laser et une haute réflectivité HR aux longueurs d'onde ultraviolettes, et une facette de sortie (32) du cristal non linéaire ayant un second revêtement qui a une HR à une longueur d'onde fondamentale de l'élément laser et une AR aux longueurs d'onde ultraviolettes de sorte que le second revêtement et le miroir de cavité arrière forment une cavité laser ;

un coupleur de sortie (14) auquel est couplée la facette avant du cristal non linéaire, le coupleur de sortie étant également couplé au milieu amplificateur conique (12), le coupleur de sortie (14) étant conçu pour coupler une fraction de la longueur d'onde fondamentale à l'extérieur de la cavité ;

un photodétecteur (28) couplé au coupleur de sortie ;

un modulateur de phase (18) couplé au photodétecteur (28) et couplé au miroir de cavité arrière ; et

une diode laser maîtresse monomode (36) sur le substrat couplée au modulateur de phase de chaque élément laser et couplée au phoitodetecteur de chaque élément laser, la diode maîtresse étant conçue pour émettre à la longueur d'onde fondamentale ;

le photodétecteur détectant des phases optiques de la longueur d'onde fondamentale de sa puce respective et de la longueur d'onde fondamentale de la diode laser maîtresse monomode ;

le cristal non linéaire (16) étant conçu pour convertir la longueur d'onde fondamentale en une longueur d'onde ultraviolette de sorte que chaque élément laser émette un petit faisceau ultraviolet (50) depuis la facette de sortie (32) ; et

chaque élément laser étant verrouillé en fréquence et en phase sur la diode laser maîtresse (36).


 
2. Source laser ultraviolette à l'échelle d'une puce selon la revendication 1, le coupleur de sortie (14) comprenant :
un coupleur de sortie à réseau courbe ayant un cycle de service de réseau non uniforme.
 
3. Source de laser ultraviolette à l'échelle d'une puce selon la revendication 2, comprenant en outre :

un miroir (41) sur le substrat en dessous de coupleur de sortie à réseau courbe (14), le miroir ayant une réflectivité élevée ; ou

un prisme (90) couplé entre le coupleur de sortie à réseau courbe (14) et la facette avant du cristal non linéaire (16).


 
4. Source laser ultraviolette à l'échelle d'une puce selon la revendication 1, chaque modulateur de phase comprenant :

un guide d'ondes polymère à faible perte (20, 22, 24, 26, 38) ; et

un élément chauffant (82) couplé au guide d'onde polymère à faible perte ; ou le photodétecteur (28) étant couplé au coupleur de sortie (14) par un guide d'onde conique inverse (20).


 
5. Source laser ultraviolette à l'échelle d'une puce selon la revendication 1, la diode laser maîtresse (36) comprenant une diode laser GaN monomode émettant à la longueur d'onde fondamentale ; ou
la diode laser maîtresse comprenant un réflecteur Bragg réparti GaN ; et
le miroir de cavité arrière comprenant un réflecteur Bragg réparti (34) .
 
6. Source laser ultraviolette à l'échelle d'une puce selon la revendication 1, comprenant en outre un combinateur (400) pour combiner les petits faisceaux ultraviolets (50) ; ou
comprenant en outre : une première pluralité de guides d'ondes polymères à faible perte (24, 26) couplant la diode laser maîtresse (36) aux photodétecteurs (28) ; et
une deuxième pluralité de guides d'ondes polymères à faible perte (38) couplant la diode laser maîtresse (36) aux modulateurs de phase optiques (18) ; et
une troisième pluralité de guides d'ondes polymères à faible perte (20, 22) couplant coupleur de sortie (14) aux photodétecteurs (28) ; ou
comprenant en outre un circuit de rétroaction couplant le photodétecteur au modulateur de phase.
 
7. Source laser ultraviolette à l'échelle d'une puce selon la revendication 1, le substrat (42) comprenant un substrat GaN non polaire.
 
8. Procédé de fabrication d'une source laser ultraviolette à l'échelle d'une puce, le procédé comprenant les étapes consistant à :

fournir un substrat ;

former une pluralité d'éléments laser générant des ultraviolets à l'échelle d'une puce sur le substrat, chaque élément laser générant des ultraviolets à l'échelle d'une puce comprenant :

un miroir de cavité arrière ;

un milieu amplificateur conique couplé au miroir de cavité arrière ;

un cristal non linéaire,

la facette avant du cristal non linéaire ayant un premier revêtement qui a une antiréflectivité AR à une longueur d'onde fondamentale de l'élément laser et une haute réflectivité HR aux longueurs d'onde ultraviolettes, et

une facette de sortie du cristal non linéaire ayant un second revêtement qui a une HR à une longueur d'onde fondamentale de l'élément laser et une AR aux longueurs d'onde ultraviolettes de sorte que le second revêtement et le miroir de cavité arrière forment une cavité laser ;

un coupleur de sortie auquel est couplée la facette avant du cristal non linéaire, le coupleur de sortie étant également couplé au milieu amplificateur conique, le coupleur de sortie étant conçu pour coupler une fraction de la longueur d'onde fondamentale à l'extérieur de la cavité ;

fournir un photodétecteur couplé au coupleur de sortie ;

fournir une diode laser maîtresse monomode sur le substrat couplée au modulateur de phase de chaque élément laser et couplée au phoitodetecteur de chaque élément laser, la diode maîtresse étant conçue pour émettre à la longueur d'onde fondamentale ; et

fournir un modulateur de phase couplé au photodétecteur et couplé au miroir de cavité arrière ;

le cristal non linéaire étant conçu pour convertir la longueur d'onde fondamentale en une longueur d'onde ultraviolette de sorte que chaque élément laser émette un faisceau ultraviolet depuis la facette de sortie ; et

chaque élément laser étant verrouillé en fréquence et en phase sur la diode laser maîtresse.


 
9. Procédé selon la revendication 8,
ladite formation d'une pluralité d'éléments laser ultraviolets à l'échelle d'une puce sur le substrat comprenant l'étape consistant à former une structure épi laser bleue InGaN/GaN MQW sur un substrat GaN à plan m ;
ladite diode laser maîtresse comprenant un laser maître à réflecteur Bragg réparti dans l'épi ;
ledit miroir de cavité arrière comprenant un réflecteur Bragg réparti ; et
ledit coupleur de sortie étant un réseau de coupleur de sortie.
 
10. Procédé selon la revendication 9 comprenant en outre les étapes consistant à :

utiliser la lithographie optique en milieu de gravure à sec pour former le milieu amplificateur conique et le photodétecteur ;

graver les couches épi sur une couche GaN dans une région de métallisation inférieure afin de fournir un modèle pour la repousse épitaxiale ;

déposer un masque d'oxyde ;

ouvrir des fenêtres dans le masque d'oxyde pour la repousse épi sélective pour le réseau de couplage de sortie, et des réseaux pour le laser maître à réflecteur Bragg réparti et le réflecteur Bragg réparti DBR de cavité arrière ;

faire repousser des couches épitaxiales dans les fenêtres pour le réseau de couplage de sortie, le laser maître à réflecteur Bragg réparti et le réflecteur Bragg réparti DBR de cavité arrière ;

modéliser et graver des réseaux pour le réseau de couplage de sortie, le laser maître à réflecteur Bragg réparti et le réflecteur Bragg réparti DBR de cavité arrière ;

enlever le masque d'oxyde ;

former des électrodes et acheminer le métal par lithographie optique et soulèvement du métal ;

former des structures de guides d'ondes polymères tri-couches pour les guides d'ondes avec des couches de métallisation polymère à faible indice, les fluoropolymères et une couche centrale photosensible PMMA à indice élevé ;

former le modulateur de phase en déposant un élément chauffant Ni/Cr sur une section des structures de guide d'ondes en polymère à trois couches ; et

déposer une électrode métallique côté l'arrière ; et

coller le cristal non-linéaire au-dessus du coupleur de sortie à réseau à l'aide d'un collage par thermocompression métallique Au-Au (100).


 
11. Source laser ultraviolette à l'échelle d'une puce selon la revendication 1 ou procédé selon la revendication 8 :

la longueur d'onde fondamentale comprenant des longueurs d'onde allant de 440 nm à 480 nm ;

les longueurs d'onde des ultraviolets comprenant des longueurs d'onde allant de 220 nm à 240 nm.


 
12. Procédé selon la revendication 10 comprenant en outre l'étape consistant à connecter un prisme entre le coupleur de sortie à réseau et la facette avant du cristal non linéaire.
 
13. Source laser ultraviolette à l'échelle d'une puce selon la revendication 1 ou procédé selon la revendication 8, le milieu amplificateur conique comprenant en outre :

un milieu amplificateur de crête GaN couplé au miroir de cavité arrière ; et

un milieu amplificateur conique GaN couplé au milieu amplificateur de crête et au coupleur de sortie.


 
14. Source laser ultraviolette à l'échelle d'une puce ou procédé selon la revendication 13, chaque milieu amplificateur conique comprenant en outre :

une électrode de crête sur le milieu amplificateur de crête ; et

une électrode gaussienne sur le milieu amplificateur GaN conique.


 
15. Procédé selon la revendication 9, la formation du réseau de coupleur de sortie comprenant l'étape consistant à former un coupleur de sortie à réseau courbe ayant un cycle de service de réseau non uniforme ; ou
comprenant en outre l'étape consistant à former un miroir sur le substrat sous le coupleur de sortie à réseau courbe.
 




Drawing





























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description