(19)
(11)EP 3 261 049 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 15873631.4

(22)Date of filing:  22.12.2015
(51)International Patent Classification (IPC): 
G06Q 50/06(2012.01)
G01R 31/36(2020.01)
G01R 31/26(2020.01)
(86)International application number:
PCT/KR2015/014130
(87)International publication number:
WO 2016/105104 (30.06.2016 Gazette  2016/26)

(54)

SOC MANAGEMENT SYSTEM OF ENERGY STORAGE DEVICE, AND METHOD THEREFOR

SOC-VERWALTUNGSSYSTEM EINER ENERGIESPEICHERVORRICHTUNG UND VERFAHREN DAFÜR

SYSTÈME DE GESTION D'ÉTAT DE CHARGE (SOC) D'UN DISPOSITIF DE STOCKAGE D'ÉNERGIE, ET PROCÉDÉ ASSOCIÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.12.2014 KR 20140186501

(43)Date of publication of application:
27.12.2017 Bulletin 2017/52

(73)Proprietor: Hyosung Heavy Industries Corporation
Seoul 04144 (KR)

(72)Inventors:
  • AN, Geon Ho
    Incheon 22225 (KR)
  • CHOI, In Sun
    Gunpo-si Gyeonggi-do 15816 (KR)
  • WON, Dong Jun
    Incheon 22001 (KR)
  • CHOI, Jin Young
    Bucheon-si Gyeonggi-do 14745 (KR)
  • LEE, Sang Ji
    Wonju-si Gangwon-do 26313 (KR)

(74)Representative: Viering, Jentschura & Partner mbB Patent- und Rechtsanwälte 
Am Brauhaus 8
01099 Dresden
01099 Dresden (DE)


(56)References cited: : 
WO-A1-2014/106082
JP-A- 2003 084 017
KR-A- 20090 065 931
KR-A- 20110 092 714
KR-B1- 101 322 617
WO-A1-2014/187487
KR-A- 20090 065 931
KR-A- 20110 092 714
KR-A- 20140 130 890
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to an SOC management system and an SOC management method for an energy storage device, and more particularly, to an SOC management system and an SOC management method for an energy storage device, capable of providing reliability to a system operator and improving system efficiency by performing a frequency control operation using an energy storage device having a fast output response in consideration of a state of charge (SOC) of each device.

    BACKGROUND ART



    [0002] In general, in order to provide high quality electric power by minimizing a frequency variation depending on a variation of the load, it is necessary to maintain a constant frequency by determining priorities of a plurality of energy storage devices depending on state of charges (SOCs) of each energy storage device and charging or discharging each energy storage device as necessary on a priority basis.

    [0003] In the case of an energy storage device of the related art, discharging is performed if a frequency supplied to a power grid system is lower than a predetermined value. Meanwhile, charging is performed if the frequency supplied to the power grid system is higher than the predetermined value. In addition, a separate reserve power unit compares the SOCs of a plurality of energy storage devices and determines the priorities of the energy storage devices and how many energy storage devices participate in the market.

    [0004] That is, in the technique of the related art, how many energy storage devices participate in the market or which one is rejected is determined by determining the priorities of the energy storage devices depending on the SOCs of the energy storage devices In addition, the energy is discharged if the frequency supplied to the power grid system decreases. Meanwhile, the energy is charged if the frequency supplied to the power grid system increases.

    [0005] However, in the technique of the related art, an energy storage device may be rejected from the power grid system if its SOC exceeds another reference level.

    [0006] In such a system, the rejected energy storage device may fail to respond to a frequency control signal. This may reduce a user's incentive chance, and a user may suffer from any disadvantage caused by failing to participate in the frequency control.

    SUMMARY OF INVENTION



    [0007] Therefore, it is demanded to provide a system capable of stably managing the SOCs of the energy storage devices.

    [0008] In view of the aforementioned problems, the present invention provides an SOC management system and an SOC management method for an energy storage device, capable of increasing a total system generation energy amount by allowing a generator that has been driven to output a fluctuating generation power in the past to provide a constant output power as the energy storage device performs a frequency response ancillary service.

    [0009] The present invention also provides an SOC management system and an SOC management method for an energy storage device, capable of implementing a governor free control (FGC) based on an active power/frequency (P-f) droop control for an energy storage device and an SOC management algorithm considering the SOC of the energy storage device to allow the energy storage device to participate in the frequency control without being rejected.

    [0010] According to an aspect of the present invention, there is provided a state of charge (SOC) management system for managing an energy storage system including at least an energy storage device, wherein the SOC management system manages the SOC of the energy storage device by performing an active power/frequency (P-f) droop control based on a droop coefficient, a reference frequency, and a dead band to determine an output power of each energy storage device.

    [0011] According to another aspect of the present invention, there is provided a state of charge (SOC) management method in an SOC management system for managing an energy storage system including at least an energy storage device, wherein the SOC management system manages the SOC of the energy storage device by performing an active power/frequency (P-f) droop control based on a droop coefficient, a reference frequency, and a dead band to determine output power of each energy storage device.

    [0012] As described above, using the SOC management system and the SOC management method for the energy storage device according to the present invention, it is possible to increase a total system generation energy amount by allowing a generator that has been driven to output a fluctuating generation power in the past to provide a constant output power as the energy storage device performs a frequency response ancillary service.

    [0013] In addition, using the SOC management system and the SOC management method for the energy storage device according to the present invention, it is possible to provide an energy management system capable of increasing efficiency and maximizing a profit by flexibly managing energy depending on the SOC through the P-f droop control to allow the energy storage device to participate in a lot of markets.

    BRIEF DESCRIPTION OF DRAWINGS



    [0014] 

    FIG. 1 is a graph illustrating a P-f droop control according to an embodiment of the present invention;

    FIG. 2 is a graph illustrating a movement of the reference frequency depending on an SOC of an energy storage device according to an embodiment of the present invention;

    FIG. 3 is a graph illustrating a P-f droop control according to an embodiment of the present invention when the reference frequency is shifted by Δf; and

    FIG. 4 is a flowchart illustrating an SOC management method for an energy storage device according to an embodiment of the present invention.


    DESCRIPTION OF EMBODIMENTS



    [0015] Preferred embodiments of the present invention will now be described in details with reference to the accompanying drawings. Note that like reference numerals denote like elements through the drawings. In the following description, any configuration or function well known in the art may not be described if its detailed description obscures a subject matter of the present invention.

    [0016] Various aspects of the present invention will now be described. The inventions disclosed herein may be embodied in various forms. Therefore, it would be appreciated that any particular structure and/or function disclosed herein is merely for illustrative purposes. A person ordinarily skilled in the art would appreciate that any aspect disclosed herein may be embodied independently from any other aspect, and two or more aspects may be combined in various manners on the basis of this disclosure. For example, a device or method may be implemented or embodied using any number of aspects described herein. In addition, such a device or method may be implemented in addition to one or more aspects disclosed herein or using any structure and/or function other than these aspects.

    [0017] Preferred embodiments of the present invention will now be described in details with reference to the accompanying drawings.

    [0018] FIG. 1 is a graph illustrating a P-f droop control according to an embodiment of the present invention.

    [0019] An SOC management system for an energy storage device according to the present invention manages a state of charge (SOC) of the energy storage device by performing an active power/frequency (P-f) droop control. FIG. 1 is a graph illustrating a droop coefficient Rf used to determine the output power depending on a frequency, a dead band (f-db, f+db) that does not respond to a signal, and a reference frequency f* in the case of the P-f droop control.

    [0020] Referring to FIG. 1, an output power amount of the active power and a frequency variation may be determined using the following Formulas 1 and 2.

    [0021] Formula 1 expresses an output power at a frequency higher than the dead band.



    [0022] Formula 2 expresses an output power at a frequency lower than the dead band.



    [0023] In general, the output power of the P-f droop control may be determined by the current system frequency f and the droop coefficient Rf.

    [0024] That is, the energy storage device may receive the current system frequency f as a signal and control the frequency by repeating charging and discharging to match the output power amount determined by Formulas 1 and 2. In this case, the SOC of the energy storage device is expressed as a sum of the current SOC and the remaining SOC after the output operation and may be determined by the following Formulas 3 and 4.

    [0025] In the following formulas, "Qc" denotes a total storable energy amount (Wh).

    [0026] Formula 3 expresses an SOC output power for charging.



    [0027] Formula 4 expresses an SOC output power for discharging.



    [0028] In Formulas 3 and 4 described above, the SOC may be determined by the output power P(t) at time t and charging/discharging efficiency ηc,d.

    [0029] In this case, the SOC determined on the basis of the formulas described above is higher than "100" or lower than "0," a normal operation of the energy storage device is impossible. In addition, here, if a user arbitrarily sets the SOC range, and the SOC is lower than a lower limit of the set SOC range or higher than an upper limit of the set SOC range, a normal operation of the energy storage device is impossible.

    [0030] In this regard, an algorithm for adjusting the charging/discharging ratio can be applied by changing a position of the dead band by adjusting the reference frequency depending on the SOC of the energy storage device.

    [0031] FIG. 2 is a graph illustrating a movement of the reference frequency depending on the SOC of the energy storage device according to an embodiment of the present invention.

    [0032] As illustrated in FIG. 2, the energy storage device according to the present invention may shift the reference frequency by "f*-SOC" on the basis of the SOC.

    [0033] That is, if the current SOC of the energy storage device exists between the lower limit SOC- and the upper limit SOC+ of the SOC, a user may set the energy storage device such that the energy storage device outputs power depending on an initial reference frequency f0. In this case, the SOC of the energy storage device that outputs power exceeds the upper limit SOC+, the reference frequency f* increases by "Δf."

    [0034] FIG. 3 is a graph for describing a P-f droop control in which the reference frequency is shifted by "Δf" according to an embodiment of the present invention.

    [0035] As illustrated in FIG. 3, the reference frequency f* is shifted by "Δf" through the P-f droop control according to the present invention. The reference frequency f* is set to 60 Hz, the dead band may change depending on the reference frequency. That is, the dead band may change depending on a variation of the reference frequency. The energy storage device responds to a charging signal as the dead band changes when the dead band is positioned in the charging side. Meanwhile, the energy storage device responds to a discharging signal when the dead band is positioned in the discharging side.

    [0036] As described above, according to the present invention, the dead band is shifted in response to a variation of the reference frequency f*. Therefore, the energy storage device advantageously stably maintains the SOC by changing the charging/discharging ratio depending on the SOC

    [0037] FIG. 4 is a flowchart illustrating a method of managing the SOC of the energy storage device according to an embodiment of the present invention.

    [0038] As illustrated in FIG. 4, in the method of controlling the SOC of the energy storage device according to the present invention, the charging/discharging range of the energy storage device is actively adjusted by shifting the reference frequency depending on the SOC of each energy storage device. Therefore, it is possible to stably maintain the SOC of the energy storage device.

    [0039] First, a current SOC calculation process S411 may be performed, in which the SOC management system of the energy storage device calculates the current SOCs of each energy storage device included in the energy storage system. Then, an SOC position determination process S412 is performed, in which it is determined whether or not the calculated SOC is included in a predetermined range (SOC-<SOCP<SOC+). In this case, in the current SOC calculation process S411, the SOC of each energy storage device included in the energy storage system may be calculated. In this case, the resulting SOC is referred to as "SOCP," and may be expressed as a percentage (0 to 100%).

    [0040] If the SOC is within the predetermined range as a result of determination of the SOC position determination process S412, a reference frequency change step S413 may be performed, in which the reference frequency is changed. That is, in the reference frequency change process S413, the reference frequency is maintained, increased, or decreased depending on the current SOC. In other words, if the SOCP is equal to or higher than the upper limit SOC+, the reference frequency may be increased. If the SOCP is equal to or lower than the lower limit SOC-, the reference frequency may be decreased. If the SOCP is positioned between the upper limit SOC+ and the lower limit SOC-, the reference frequency is maintained at the initial reference frequency f0 without a change.

    [0041] Then, a governor free control (GFC) output process S414 may be performed, in which an output power amount of the energy storage device is determined and output using the reference frequency changed in the reference frequency change process S413. After the output power amount of the energy storage device determined in the GFC output process S414 is output, an SOC re-calculation process S415 may be performed, in which the SOC of the energy storage device is re-calculated on the basis of the output power amount output in the GFC output process S414. That is, in the GFC output process S414, the output power may be calculated using the reference frequency set in the reference frequency f* change process S413. Each energy storage device may output the output power as much as the calculated output power in the process S414 and then advance to the SOC re-calculation process S415. In this case, any energy storage device can advance to the SOC position determination process S412 if the resulting SOC SOCP is positioned between the upper limit SOC+ and the lower limit SOC-.

    [0042] After the SOC re-calculation process S415, the SOC of the energy storage device remaining after the GFC is output is calculated. Then, the process may advance to the SOC position re-determination process S416. In this case, the resulting SOC is referred to as SOCP+1.

    [0043] Meanwhile, it is determined whether or not the current SOC calculated in the current SOC calculation process S411 is within a predetermined range (SOC-<SOCP<SOC+). If the SOC is not within the predetermined range as a result of the SOC position determination process S412, it may be determined whether or not the current SOC is higher than the post-discharge SOC (S416).

    [0044] If it is determined that the current SOC is lower than the post-discharge SOC (SOC+<SOCP) as a result of the determination, the reference frequency is increased (S417), and the GFC is output (S418). Then, the SOC value SOCP+1 may be re-calculated by applying the P-f droop control algorithm (S419). Then, the positions of the SOCP and the SOCP+1 calculated in the previous process are re-determined (S420). If the energy storage device having the SOC SOCP equal to or higher than the upper limit SOC+ still remains in this state, the process advances to the reference frequency f* change process S417, and the reference frequency is increased again.

    [0045] Meanwhile, if it is determined that the current SOC is higher than the post-discharge SOC (SOC+>SOCP) as a result of the determination (S416), the reference frequency is decreased (S412), and the GFC is output (S422). In addition, the SOC value SOCP+1 is re-calculated by applying the P-f droop control algorithm (S423), and the positions of the SOCs SOCP and the SOCP+1 calculated in the previous process are re-determined (S424).). If the energy storage device having the SOC SOCP equal to or higher than the upper limit SOC- still has the recalculated SOC SOCP+1 equal to or higher than SOC-, the process advances to the reference frequency f* change process S417, and the reference frequency is increased again.

    [0046] As described above, using the system and method for managing the SOC of the energy storage device according to the present invention, the energy storage device performs the governor free control (GFC) as a frequency response ancillary service. Therefore, it is possible to increase a total system power generation amount.

    [0047] In addition, using the system and method for managing the SOC of the energy storage device according to the present invention, the reference frequency is shifted depending on the SOC. Therefore, it is possible to stably maintain the SOC by smoothly controlling an increase of decrease of the SOC of the energy storage device. In addition, since the energy storage device is prevented from being fully charged or discharged in advance, it is possible to improve reliability of the response.

    [0048] The present invention relates to a method and system for managing the SOC of the energy storage device and is applicable to energy storage devices.


    Claims

    1. A state of charge (SOC) management system for managing an energy storage system including at least one energy storage device, the SOC management system comprising a controller configured to:

    manage the SOC of the at least one energy storage device by performing an active power/frequency (P-f) droop control based on a droop coefficient, a reference frequency, and a dead band to determine an output power of each of the at least one energy storage device, and

    adjust a charging/discharging ratio of the energy storage system by changing a position of the dead band by adjusting the reference frequency depending on the SOC of the at least one energy storage device,

    wherein the P-f droop control includes:

    a current SOC calculation process in which the SOC management system of the at least one energy storage device calculates the SOC of each of the at least one energy storage device belonging to the energy storage system;

    an SOC position determination process in which it is determined whether or not the SOC calculated in the current SOC determination process is within a predetermined range between an upper limit (SOC+) and a lower limit (SOC-);

    a reference frequency change process in which the reference frequency is changed depending on a result of the determination in the SOC position determination process on whether or not the calculated SOC (SOCP) is within the predetermined range, wherein, if the SOCP is equal to or higher than the SOC+, the reference frequency is increased, wherein, if the SOCP is equal to or lower than the SOC-, the reference frequency is decreased, and wherein, if the SOCP is positioned between the SOC+ and the SOC-, the reference frequency is maintained at an initial reference frequency without a change;

    a governor free control (GFC) output process in which an output power level of the energy storage device is determined and output using the reference frequency changed in the reference frequency change process;

    an SOC re-calculation process in which the output power level of the energy storage device determined in the GFC output process is output, and the SOC of the energy storage device is re-calculated on the basis of the output power level; and

    an SOC position re-determination process in which the SOC recalculated in the SOC re-calculation process is compared with the current SOC calculated in the current SOC calculation process to determine whether or not the process advances to the reference frequency change process or the current SOC calculation process.


     
    2. The SOC management system according to claim 1, wherein the P-f droop control further includes a reference frequency/SOC control to determine the reference frequency depending on the SOC of each of the at least one energy storage device.
     
    3. The SOC management system according to claim 1, wherein the droop coefficient is set to 3%, and the dead band is set to 0.04%.
     
    4. The SOC management system according to claim 1, wherein the SOC range is set to 40 to 60%.
     
    5. A state of charge (SOC) management method in an SOC management system for managing an energy storage system including at least one energy storage device, the SOC management method comprising managing the SOC of the at least one energy storage device by performing an active power/frequency (P-f) droop control based on a droop coefficient, a reference frequency, and a dead band to determine output power of each energy storage device
    wherein a charging/discharging ratio of the energy storage system is adjusted by changing a position of the dead band by adjusting the reference frequency depending on the SOC of the at least one energy storage device,
    wherein the P-f droop control includes:

    a current SOC calculation process in which the SOC management system of the at least one energy storage device calculates the SOC of each of the at least one energy storage device belonging to the energy storage system;

    an SOC position determination process in which it is determined whether or not the SOC calculated in the current SOC determination process is within a predetermined range between an upper limit (SOC+) and a lower limit (SOC-);

    a reference frequency change process in which the reference frequency is changed depending on a result of the determination in the SOC position determination process on whether or not the calculated SOC (SOCP) is within the predetermined range, wherein, if the SOCP is equal to or higher than the SOC+, the reference frequency is increased, wherein, if the SOCP is equal to or lower than the SOC-, the reference frequency is decreased, and wherein, if the SOCP is positioned between the SOC+ and the SOC-, the reference frequency is maintained at an initial reference frequency without a change;

    a governor free control (GFC) output process in which an output power level of the at least one energy storage device is determined and output using the reference frequency changed in the reference frequency change process;

    an SOC re-calculation process in which the output power level of the energy storage device determined in the GFC output process is output, and the SOC of the at least one energy storage device is re-calculated on the basis of the output power level; and

    an SOC position re-determination process in which the SOC recalculated in the SOC re-calculation process is compared with the current SOC calculated in the current SOC calculation process to determine whether or not the process advances to the reference frequency change process or the current SOC calculation process.


     
    6. The SOC management method according to claim 5, wherein the P-f droop control further includes a reference frequency/SOC control to determine the reference frequency depending on the SOC of each of the at least one energy storage device.
     
    7. The SOC management method according to claim 5, wherein the droop coefficient is set to 3%, and the dead band is set to 0.04%.
     
    8. The SOC management method according to claim 1, wherein the SOC range is set to 40 to 60%.
     


    Ansprüche

    1. Ladezustand (SOC) - Management-System zum Managen eines Energiespeichersystems, das mindestens eine Energiespeichervorrichtung aufweist, wobei das SOC-Management-System einen Controller aufweist, der konfiguriert ist zum:

    Managen des SOC der mindestens einen Energiespeichervorrichtung mittels Durchführens einer Wirkleistung/Frequenz (P-f) - Statik-Regelung basierend auf einem Statik-Koeffizienten, einer Referenzfrequenz und einer Totzone, um eine Ausgangsleistung von jeder der mindestens einen Energiespeichervorrichtung zu ermitteln, und

    Anpassen eines Lade/Entladeverhältnisses des Energiespeichersystems mittels Änderns einer Position der Totzone durch Anpassen der Referenzfrequenz in Abhängigkeit von dem SOC der mindestens einen Energiespeichervorrichtung,

    wobei die P-f-Statik-Regelung aufweist:

    einen Aktueller-SOC-Berechnungsprozess, in dem das SOC-Management-System der mindestens einen Energiespeichervorrichtung den SOC von jeder der mindestens einen Energiespeichervorrichtung, die zu dem Energiespeichersystem gehört, berechnet;

    einen SOC-Position-Ermittlungsprozess, in dem ermittelt wird, ob der in dem Aktueller-SOC-Berechnungsprozess berechnete SOC innerhalb eines vorgegebenen Bereichs zwischen einer oberen Grenze (SOC+) und einer unteren Grenze (SOC-) liegt oder nicht;

    einen Referenzfrequenzänderungsprozess, in dem die Referenzfrequenz geändert wird in Abhängigkeit von einem Ergebnis der Ermittlung in dem SOC-Position-Ermittlungsprozess, ob der berechnete SOC (SOCP) in dem vorgegebenen Bereich liegt oder nicht, wobei, wenn der SOCP gleich oder höher ist als die SOC+, die Referenzfrequenz erhöht wird, wobei, wenn der SOCP gleich oder niedriger ist als die SOC-, die Referenzfrequenz gesenkt wird, und wobei, falls der SOCP zwischen der SOC+ und der SOC- liegt, die Referenzfrequenz bei einer ursprünglichen Referenzfrequenz beibehalten wird ohne eine Änderung;

    einen reglerfreien (GFC) Ausgabeprozess, in dem ein Ausgangsleistungspegel der Energiespeichervorrichtung ermittelt und ausgegeben wird unter Verwendung der in dem Referenzfrequenzänderungsprozess geänderten Referenzfrequenz;

    einen SOC-Wiederberechnungsprozess, in dem der in dem GFC-Ausgabeprozess ermittelte Ausgangsleistungspegel der Energiespeichervorrichtung ausgegeben wird und der SOC der Energiespeichervorrichtung wieder berechnet wird auf der Basis des Ausgangsleistungspegels; und

    einen SOC-Position-Wiederermittlungsprozess, in dem der in dem SOC-Wiederberechnungsprozess wieder berechnete SOC verglichen wird mit dem in dem Aktueller-SOC-Berechnungsprozess berechneten aktuellen SOC, um zu ermitteln, ob der Prozess zu dem Referenzfrequenzänderungsprozess oder dem Aktueller-SOC-Berechnungsprozess fortschreitet.


     
    2. SOC-Management-System gemäß Anspruch 1, wobei die P-f-Statik-Regelung ferner eine Referenzfrequenz/SOC-Steuerung aufweist, um die Referenzfrequenz in Abhängigkeit von dem SOC von jeder der mindestens einen Energiespeichervorrichtung zu ermitteln.
     
    3. SOC-Management-System gemäß Anspruch 1, wobei der Statik-Koeffizient auf 3% eingestellt ist und die Totzone auf 0,04% eingestellt ist.
     
    4. SOC-Management-System gemäß Anspruch 1, wobei der SOC-Bereich auf 40 bis 60% eingestellt ist.
     
    5. Ladezustand (SOC) - Management-Verfahren in einem SOC-Management-System zum Managen eines Energiespeichersystems, das mindestens eine Energiespeichervorrichtung aufweist, wobei das SOC-Management-Verfahren aufweist Managen des SOC der mindestens einen Energiespeichervorrichtung mittels Durchführens einer Wirkleistung/Frequenz (P-f) - Statik-Regelung basierend auf einem Statik-Koeffizienten, einer Referenzfrequenz und einer Totzone, um die Ausgangsleistung jeder Energiespeichervorrichtung zu ermitteln,
    wobei ein Lade/Entladeverhältnis des Energiespeichersystems angepasst wird mittels Änderns einer Position der Totzone durch Anpassen der Referenzfrequenz in Abhängigkeit von dem SOC der mindestens einen Energiespeichervorrichtung,
    wobei die P-f-Statik-Regelung aufweist:

    einen Aktueller-SOC-Berechnungsprozess, in dem das SOC-Managementsystem der mindestens einen Energiespeichervorrichtung den SOC von jeder der mindestens einen Energiespeichervorrichtung, die zu dem Energiespeichersystem gehört, berechnet;

    einen SOC-Position-Ermittlungsprozess, in dem ermittelt wird, ob der in dem Aktueller-SOC-Berechnungsprozess berechnete SOC innerhalb eines vorgegebenen Bereichs zwischen einer oberen Grenze (SOC+) und einer unteren Grenze (SOC-) liegt oder nicht;

    einen Referenzfrequenzänderungsprozess, in dem die Referenzfrequenz geändert wird in Abhängigkeit von einem Ergebnis der Ermittlung in dem SOC-Position-Ermittlungsprozess, ob der berechnete SOC (SOCP) in dem vorgegebenen Bereich liegt oder nicht, wobei, wenn der SOCP gleich oder höher ist als die SOC+, die Referenzfrequenz erhöht wird, wobei, wenn der SOCP gleich oder niedriger ist als die SOC-, die Referenzfrequenz gesenkt wird, und wobei, falls der SOCP zwischen der SOC+ und der SOC- liegt, die Referenzfrequenz bei einer ursprünglichen Referenzfrequenz beibehalten wird ohne eine Änderung;

    einen reglerfreien (GFC) Ausgabeprozess, in dem ein Ausgangsleistungspegel der mindestens einen Energiespeichervorrichtung ermittelt und ausgegeben wird unter Verwendung der in dem Referenzfrequenzänderungsprozess geänderten Referenzfrequenz;

    einen SOC-Wiederberechnungsprozess, in dem der in dem GFC-Ausgabeprozess ermittelte Ausgangsleistungspegel der Energiespeichervorrichtung ausgegeben wird und der SOC der mindestens einen Energiespeichervorrichtung wieder berechnet wird auf der Basis des Ausgangsleistungspegels; und

    einen SOC-Position-Wiederermittlungsprozess, in dem der in dem SOC-Wiederberechnungsprozess wieder berechnete SOC verglichen wird mit dem in dem Aktueller-SOC-Berechnungsprozess berechneten aktuellen SOC, um zu ermitteln, ob der Prozess zu dem Referenzfrequenzänderungsprozess oder dem Aktueller-SOC-Berechnungsprozess fortschreitet.


     
    6. SOC-Management-Verfahren gemäß Anspruch 5, wobei die P-f-Statik-Regelung ferner eine Referenzfrequenz/SOC-Steuerung aufweist, um die Referenzfrequenz in Abhängigkeit von dem SOC von jeder der mindestens einen Energiespeichervorrichtung zu ermitteln.
     
    7. SOC-Management-Verfahren gemäß Anspruch 5, wobei der Statik-Koeffizient auf 3% eingestellt ist und die Totzone auf 0,04% eingestellt ist.
     
    8. SOC-Management-Verfahren gemäß Anspruch 1, wobei der SOC-Bereich auf 40 bis 60% eingestellt ist.
     


    Revendications

    1. Système de gestion d'état de charge (SOC) pour gérer un système de stockage d'énergie comprenant au moins un dispositif de stockage d'énergie, le système de gestion de SOC comprenant un contrôleur configuré pour :

    gérer le SOC dudit au moins un dispositif de stockage d'énergie en effectuant une commande de statisme de puissance/fréquence active (P-f) sur la base d'un coefficient de statisme, une fréquence de référence et une zone morte pour déterminer une puissance de sortie de chacun dudit au moins un dispositif de stockage d'énergie, et

    ajuster un rapport de charge/décharge du système de stockage d'énergie en changeant une position de la zone morte en ajustant la fréquence de référence en fonction du SOC dudit au moins un dispositif de stockage d'énergie,

    dans lequel la commande de statisme P-f comprend :

    un processus de calcul du SOC actuel dans lequel le système de gestion de SOC dudit au moins un dispositif de stockage d'énergie calcule le SOC de chacun dudit au moins un dispositif de stockage d'énergie appartenant au système de stockage d'énergie ;

    un processus de détermination de position de SOC dans lequel il est déterminé si le SOC calculé dans le processus de détermination de SOC actuel se situe ou non dans une plage prédéterminée entre une limite supérieure (SOC+) et une limite inférieure (SOC-) ;

    un processus de changement de fréquence de référence dans lequel la fréquence de référence est changée selon un résultat de la détermination dans le processus de détermination de position de SOC selon que le SOC calculé (SOCP) se trouve dans la plage prédéterminée ou non, où, si le SOCP est égal ou supérieur au SOC+, la fréquence de référence est augmentée, où, si le SOCP est égal ou inférieur au SOC-, la fréquence de référence est diminuée, et où, si le SOCP est positionné entre le SOC+ et le SOC-, la fréquence de référence est maintenue à une fréquence de référence initiale sans changement ;

    un processus de sortie de commande sans régulateur (GFC) dans lequel un niveau de puissance de sortie du dispositif de stockage d'énergie est déterminé et émis en sortie en utilisant la fréquence de référence changée dans le processus de changement de fréquence de référence ;

    un processus de recalcul de SOC dans lequel le niveau de puissance de sortie du dispositif de stockage d'énergie déterminé dans le processus de sortie GFC est émis en sortie, et le SOC du dispositif de stockage d'énergie est recalculé sur la base du niveau de puissance de sortie ; et

    un processus de ré-détermination de position de SOC dans lequel le SOC recalculé dans le processus de recalcul de SOC est comparé au SOC actuel calculé dans le processus de calcul de SOC actuel afin de déterminer si le processus avance ou non au processus de changement de fréquence de référence ou au processus de calcul de SOC actuel.


     
    2. Système de gestion de SOC selon la revendication 1, dans lequel la commande de statisme P-f comprend en outre une commande de fréquence de référence/SOC pour déterminer la fréquence de référence en fonction du SOC de chacun dudit au moins un dispositif de stockage d'énergie.
     
    3. Système de gestion de SOC selon la revendication 1, dans lequel le coefficient de statisme est fixé à 3% et la zone morte est fixée à 0,04%.
     
    4. Système de gestion de SOC selon la revendication 1, dans lequel la plage de SOC est fixée à 40 à 60%.
     
    5. Procédé de gestion d'état de charge (SOC) dans un système de gestion de SOC pour gérer un système de stockage d'énergie comprenant au moins un dispositif de stockage d'énergie, le procédé de gestion de SOC comprenant la gestion du SOC dudit au moins un dispositif de stockage d'énergie en effectuant une commande de statisme de puissance/fréquence active (P-f) sur la base d'un coefficient de statisme, une fréquence de référence, et une bande morte pour déterminer la puissance de sortie de chaque dispositif de stockage d'énergie,
    dans lequel un rapport de charge/décharge du système de stockage d'énergie est ajusté en changeant une position de la zone morte en ajustant la fréquence de référence en fonction du SOC dudit au moins un dispositif de stockage d'énergie,
    où la commande de statisme P-f comprend :

    un processus de calcul du SOC actuel dans lequel le système de gestion de SOC dudit au moins un dispositif de stockage d'énergie calcule le SOC de chacun dudit au moins un dispositif de stockage d'énergie appartenant au système de stockage d'énergie ;

    un processus de détermination de position de SOC dans lequel il est déterminé si le SOC calculé dans le processus de détermination de SOC actuel se situe ou non dans une plage prédéterminée entre une limite supérieure (SOC+) et une limite inférieure (SOC-) ;

    un processus de changement de fréquence de référence dans lequel la fréquence de référence est changée selon un résultat de la détermination dans le processus de détermination de position de SOC selon que le SOC calculé (SOCP) se trouve dans la plage prédéterminée ou non, où, si le SOCP est égal ou supérieur au SOC+, la fréquence de référence est augmentée, où, si le SOCP est égal ou inférieur au SOC-, la fréquence de référence est diminuée, et où, si le SOCP est positionné entre le SOC+ et le SOC-, la fréquence de référence est maintenue à une fréquence de référence initiale sans changement ;

    un processus de sortie de commande sans régulateur (GFC) dans lequel un niveau de puissance de sortie dudit au moins un dispositif de stockage d'énergie est déterminé et émis en sortie en utilisant la fréquence de référence changée dans le processus de changement de fréquence de référence ;

    un processus de recalcul de SOC dans lequel le niveau de puissance de sortie du dispositif de stockage d'énergie déterminé dans le processus de sortie GFC est émis en sortie, et le SOC dudit au moins un dispositif de stockage d'énergie est recalculé sur la base du niveau de puissance de sortie ; et

    un processus de ré-détermination de position de SOC dans lequel le SOC recalculé dans le processus de recalcul de SOC est comparé au SOC actuel calculé dans le processus de calcul de SOC actuel afin de déterminer si le processus avance ou non au processus de changement de fréquence de référence ou au processus de calcul de SOC actuel.


     
    6. Procédé de gestion de SOC selon la revendication 5, dans lequel la commande de statisme P-f comprend en outre une commande de fréquence de référence/SOC pour déterminer la fréquence de référence en fonction du SOC de chacun dudit au moins un dispositif de stockage d'énergie.
     
    7. Procédé de gestion de SOC selon la revendication 5, dans lequel le coefficient de statisme est fixé à 3% et la zone morte est fixée à 0,04%.
     
    8. Procédé de gestion de SOC selon la revendication 1, dans lequel la plage de SOC est fixée à 40 à 60%.
     




    Drawing