(19)
(11)EP 3 261 335 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 17176154.7

(22)Date of filing:  14.06.2017
(51)Int. Cl.: 
H04N 5/369  (2011.01)
H04N 5/378  (2011.01)
H04N 5/374  (2011.01)
H01L 27/146  (2006.01)

(54)

MINIMUM HEIGHT CMOS IMAGE SENSOR

CMOS-BILDSENSOR MIT MINIMUMHÖHE

CAPTEUR D'IMAGE CMOS DE HAUTEUR MINIMALE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.06.2016 US 201615187845

(43)Date of publication of application:
27.12.2017 Bulletin 2017/52

(73)Proprietor: Hand Held Products, Inc.
Fort Mill, SC 29707 (US)

(72)Inventors:
  • FENG, Chen
    Morris Plains, NJ New Jersey 07950 (US)
  • BREMER, Edward C.
    Morris Plains, NJ New Jersey 07950 (US)
  • XIAN, Tao
    Morris Plains, NJ New Jersey 07950 (US)
  • GIORDANO, Patrick Anthony
    Morris Plains, NJ New Jersey 07950 (US)
  • KEARNEY, Sean Philip
    Morris Plains, NJ New Jersey 07950 (US)
  • POLONIEWICZ, Paul
    Morris Plains, NJ New Jersey 07950 (US)

(74)Representative: Haseltine Lake Kempner LLP 
Lincoln House, 5th Floor 300 High Holborn
London WC1V 7JH
London WC1V 7JH (GB)


(56)References cited: : 
US-A1- 2001 040 633
US-A1- 2005 174 452
US-A1- 2010 117 224
US-A1- 2013 057 737
US-A1- 2015 281 623
US-A1- 2016 065 924
US-A1- 2004 251 509
US-A1- 2006 199 296
US-A1- 2010 177 227
US-A1- 2013 068 929
US-A1- 2015 373 289
US-B1- 6 259 478
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to Complementary Metal-Oxide Semiconductor-type (CMOS) image sensors.

    BACKGROUND



    [0002] Generally speaking, the layout for the sensor die of a CMOS image sensor includes a sensor array, an Analog-to-Digital (ADC) module, digital logic circuits, and a timing and control panel. The sensor array is not centered on the sensor die in order to keep similar components together. The sensor die layout design is optimized to keep like components together, which allows for some advantages. For example, the ADC module in a conventional image sensor outputs in row-to-row image digital format, which is compatible with traditional image display devices. However, there are adverse consequences to these layout designs. For example, centering the sensor array on the die is sacrificed in order to keep similar components together. Additionally, by keeping like components together, the possibility of a smaller footprint for the sensor is held hostage to conventions. This can especially problematic for edge mount sensors such as imaging barcode scanners.

    [0003] Therefore, a need exists for a CMOS image sensor, which allows the sensor array to be centered on the die as much as possible, and has a minimum height versus conventional image sensors.

    [0004] US patent application 2015/0281623 A1 discloses an image sensor having a column ADC configuration including, for every pixel row, an analog digital converter (ADC) that converts a pixel signal including an analog signal generated by photoelectric conversion into an output signal including a digital signal. The image sensor includes a plurality of clamp operation units each configured to calculate a reference level based on each output signal of a plurality of ADC groups, and a reference voltage output unit configured to convert a digital signal of the reference level calculated by the clamp operation unit into a reference voltage including an analog signal, and supply the reference voltage to each the ADC that constitutes the ADC group.

    [0005] US patent applications 2013/0057737A1, 2010/0177227A1 and 2010/0177227 A1 describe further image sensors.

    SUMMARY



    [0006] The present invention provides for a CMOS image sensor as claimed in the accompanying claims.

    [0007] Exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] 

    Figure 1 schematically depicts a prior art CMOS image sensor die layout.

    Figure 2 schematically depicts a minimum height CMOS image sensor die in accordance with the present invention.

    Figure 3 schematically depicts a split column ADC CMOS sensor die.

    Figure 4 schematically depicts a row ADC CMOS sensor die.

    Figure 5 schematically depicts a stacked sensor die in accordance with the present invention.

    Figure 6 depicts in a flow chart, the processing output for the sensor die of Figure 5.


    DETAILED DESCRIPTION



    [0009] Prior art CMOS image sensors have a layout generally as depicted in prior art Figure 1. The prior art CMOS sensor (10), generally speaking, has a layout of components on the sensor die (11) which includes a sensor array (12), an Analog-to-Digital (ADC) module (13), digital logic circuits (14), a timing and control panel(15), an analog signal processing module (17), and may include bonding pads (18) around the periphery of the sensor die (11). As can be seen from the Figure, the prior are sensor array (12) is not centered on the sensor die (11).

    [0010] The present invention embraces a CMOS image sensor for a camera assembly with a sensor array centered on the sensor die and with a smaller footprint.

    [0011] In an exemplary embodiment, referring to Figure 2, a CMOS image sensor (200) is provided. The particular embodiment of Figure 2 has a minimum height. The CMOS sensor (200) has a sensor die (21) which holds the other components of the sensor. The sensor die (21) has a set of opposing faces (22), the upper face designated (22a) and lower face not shown in this Figure. On the sensor die (21) is a sensor array (24). The sensor array (24) may be a pixel sensor color-imaging array consisting of pixels arranged in rows and columns. The sensor array (24) has a first set (25) and a second set (26) of opposing sides. The first set (25) is the top edge (25a) and the bottom edge (25b) of the sensor array (24). The second set (26) is the first edge (26a) and the second edge (26b). The sensor die (21) also has an analog-to-digital module (ADC) (27). The ADC (27) is split into two modules, submodule (27a), and submodule (27b). In the present embodiment, each ADC submodule (27a and 27b), is positioned on either side of the sensor array (24) adjacent to each of the second set of opposing sides (26) of the sensor array (24). The sensor die (21) also includes a digital logic circuit (28) which forms a circuitry row disposed on the first (26a) of the second set of opposing sides (26) of the sensor array (24). A timing and clock control circuit (29) and an analog signal processing circuit (30) form a second row disposed on the second (26b) of the second set of opposing sides (26b) of the sensor array (24). The ADC submodules (27a and 27b) are positioned directly adjacent to the sensor array (24). Bonding pads (39) are arranged on the outer edges (23) of the sensor die (21). In other embodiments, the bonding pads (39) may extend on the top and bottom edges of the sensor die (21). As can be seen, the ADC submodules (27a and 27b) are substantially similar in dimensions.

    [0012] By positioning the ADC submodules (27a and 27b) adjacent to each of the second set of opposing sides (26a and 26b), the sensor die (21), positioning bonding pads only on the sensor die (21) contiguous to the vertical edges (23) of the sensor die (21), and positioning the digital logic circuit (28) on an opposing side of the sensor array (24) from the timing and clock control circuit (29) and the analog signal processing circuit (30), guarantees that the sensor die (21) has a minimum height, essentially that of the sensor array (24) itself. In this configuration, the sensor array (24) is centered both vertically and horizontally on the sensor die (21). The camera assembly associated with using this minimum height sensor die can achieve minimum vertical dimension to allow it to be integrated into thinner mobile application devices. While many smart devices have thicknesses of 6.5 to 7.0 mm, soon these may be reduced to less than 6.0 mm. Therefore, the minimum height embodiment of the present Figure 2 can meet these new slimmer designs.

    [0013] In Figure 3, the CMOS image sensor (300) is similar in configuration in that the sensor array (24) is centered on the sensor die (21). However, in Figure 3, the ADC submodules (27a and 27b) are positioned on the first set (25) of opposing sides (25a and 25b) of the sensor array (24). Additionally, the bonding pads (39) are positioned around all sides of the sensor die. The configuration of the CMOS image sensor (300) in the figure is an advantage of the prior (Figure 1) in that the sensor array is centered, however, the sensor height is the same as the prior art. Offset related lens-sensor assembly dimension can be minimized due to the centering of the sensor array (24).

    [0014] Figure 4 shows another option for the CMOS image sensor (400) layout. The height of the sensor die (21) is reduced by keeping the ADC module (27) as one row, being adjacent to the one side of the sensor array (24). While the sensor array (24) remains centered on the sensor die (21) vertically, there is now a horizontal offset. This horizontal offset becomes a new issue as the wide horizontal direction dimension with excessive offset will further complicate the lens-sensor integration with non-symmetric structural and thermal related quality issues.

    [0015] In yet another exemplary embodiment depicted in Figure 5, a CMOS image sensor (500) is provided and shown from the upper face (22a) of the sensor die and from a side perspective. The CMOS image sensor (500) is very similar to the minimum height CMOS image sensor (200) of Figure 1. However, the present embodiment, there are no bonding pads. The present embodiment shows a stacked die CMOS image sensor with dual frame buffer.

    [0016] A memory die (33) is provided. The memory die has opposing faces (34), and first face (34a) and a second face (34b). The memory die's (33) face dimensions are similar to the sensor die's (21). The memory die (33) is positioned under the lower face (22b) of the sensor die (21) and aligned with the sensor die (21). Through silicon vias (36) electrically connect the sensor die (21) to the memory die (33). The memory die includes a frame buffer memory (not shown). Although not shown in the Figure, in some situations, especially as electronic components get reduced in size, a processing die may be provided on the same die as the memory die.

    [0017] In a further embodiment, depicted in the present Figure 5, a processing die (37) is also provided on a separate die. The processing die has an upper face (38). The processing die's (37) face dimensions are similar to the memory die's (33). The processing die (37) is positioned under the second face (34b) of the memory die (33) and aligned with the memory die (33). Through silicon vias (36) electrically connect the memory die (33) to the processing die (37). The processing die (37) includes a central processing unit (CPU) (not shown).

    [0018] As discussed hereinbefore, the sensor array is preferably a pixel sensor color-imaging array consisting of pixels arranged in rows and columns. The sensor array has an output sequence for the pixels captured on the sensor array to the ADC module. Because the ADC module is split into two row-wise submodules, the sensor array output sequence must accommodate this arrangement. Thus, the output sequence of pixels from the sensor array to the ADC submodules is column-by-column with even-numbered pixels going to one of the ADC submodules and odd-numbered pixels going to the other of the ADC submodules. The ADC submodules convert the pixels to digital output and recombine the now digital output at the output port of the sensor die (not shown) in a column-by-column digital output. Because some display devices, can only process row-by-row digital output, the CMOS sensor of the present invention, when using more than one ADC submodules, (Figures 2, 3, and 5 for example) is be provided with a video sequence converter. The video sequence converter receives digital image signal in column-by-column format and outputs digital images in row-by-row image format. In some cases, the video sequence converter is configured to output the digital images in even and odd rows separately in order to support traditional interlace display.

    [0019] The video sequence converter may include a dual port frame buffer, digital logic, and timing control. The frame buffer may include logic to correct geometric distortion.

    [0020] The video sequence converted may be located on the lower face of the sensor die. In configurations where the memory die is located and connected to the sensor die at the lower face of the sensor die, the video sequence converter may be located on the memory die, or for example on the processing die. The video sequence converter is electrically connected to the output of the sensor die with silicon vias if located on a separate die.

    [0021] The video sequence converter gives the inventive CMOS image sensor more versatility. For example, traditional image display devices such as TV are working in "raster scan mode" with row-by-row signal input. Conventional CMOS image sensor can directly connected to these display devices. Minimum height CMOS image sensor (Figure 2 and Figure 5) requires video sequence converter to support these traditional display devices. The video sequence converter is a dual port frame buffer with digital logical and timing control to read in the column-by-column image and output row-by-row image. The same frame buffer can also support traditional interlace display by outputting even and odd rows separately. Some additional corrections can also be performed with specially programmed digital read out logic, such as geometric distortion. The distortion correction can also be used to correct rolling shutter introduce motion distortion or even smear.

    [0022] Figure 6 shows in a flow chart of the processing of signals (600) according to the CMOS image sensor (500) of Figure 5, including the presence of a video sequence converter (40). The sensor die (21) includes, as discussed hereinbefore, the pixel sensor array, the ADC modules, and timing and control circuits. The memory die (33) receives data and transmits information to the CPU on the processing die (37). The sensor outputs pixels to the video sequence converter (40) which includes digital logic and timing functions. The video sequence converter (40) interacts with the memory die (33) and outputs to the CPU on the processing die (37). The CPU on the processing die (37) outputs the digital image data and control functions.

    [0023] In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term "and/or" includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.


    Claims

    1. A CMOS image sensor (200) for a camera assembly comprising:
    a sensor die (21) having opposite faces (22), an upper face (22a) and a lower face (22b); the sensor die (21) having components on the upper face (22a) comprising:

    a sensor array (24) having a first set (25) and a second set (26) of opposing sides; the first set (25) being a top edge (25a) and a bottom edge (25b), the second set (26) being a first edge (26a) and a second edge (26b) extending from the top edge (25a) to the bottom edge (25b) of the first set (25), the sensor array (24) being substantially centered on the sensor die (21);

    an analog-to-digital conversion module (27); the analog-to-digital conversion module (27) being disposed in two submodules (27a, 27b), the two submodules (27a, 27b) being disposed adjacent to the sensor array (24), the two submodules (27a, 27b) being positioned apart from each other, and the two submodules (27a, 27b) being respectively positioned on the second set (26) of opposing sides of the sensor array (24);

    a digital logic circuit (28) forming a first row;

    a timing and clock control circuit (29);

    an analog signal processing circuit (30);

    the timing and clock control circuit (29) and the analog signal processing circuit (30) being adjacent and forming a second row; and

    the first row and the second row having similar dimensions and being disposed on opposite sides of the second set (26) of opposing sides.


     
    2. The CMOS image sensor of claim 1, wherein the analog-to-digital conversion submodules are split evenly dimensionally.
     
    3. The CMOS image sensor of claim 2, wherein the two analog-to-digital conversion submodules respectively form submodule rows positioned adjacent the second set of opposing sides, one submodule row being intermediate the sensor array first edge and the first row, and the second submodule row being intermediate the sensor array second edge and the second row.
     
    4. The CMOS image sensor of claim 1, further comprising a memory die, the memory die being provided with a frame buffer memory, the memory die having opposing first and second faces; the memory die and the sensor die having substantially similar face dimensions; the first face of the memory die being under, dimensionally aligned to, and adjacent to the lower face of the sensor die; the CMOS image sensor further comprising through silicon vias, the through silicon vias electrically connecting the memory die and the sensor die.
     
    5. The CMOS image sensor of claim 4, further comprising a processing die, the processing die having an upper face; the processing die and the memory die having substantially similar face dimensions; the upper face of the processing die being under, dimensionally aligned to, and adjacent to the second face of the memory die; the processing die and the memory die being electrically connected with through silicon vias.
     
    6. The CMOS image sensor of claim 1, wherein the sensor die has opposing vertical edges parallel to the second set of opposing sides of the sensor array; the CMOS image sensor further comprising bonding pads, the bonding pads forming two bonding pad rows, the first bonding pad row being positioned on the upper face of the sensor die contiguous to one of the opposing vertical edges of the sensor die, the second bonding pad row being positioned on the upper face of the sensor die contiguous to the second of the opposing vertical edges of the sensor die.
     
    7. The CMOS image sensor of claim 4, further comprising a processing die having a central processing unit; the processing die being positioned under the second face of the memory die.
     
    8. The CMOS image sensor of claim 5, wherein the processing die includes a central processing unit.
     
    9. The CMOS image sensor of claim 1, wherein the sensor array is a pixel sensor color imaging array consisting of pixels arranged in rows and columns; and wherein the sensor array has an output sequence for the pixels captured on the sensor array to the analog-to-digital conversion module; the output sequence configured to send pixels to the analog-to-digital conversion module column-by-column, even numbered pixels in a column going to one of the analog-to-digital conversion submodules to be converted into digital output, and odd numbered pixels in a column going to the other of the analog-to-digital conversion submodules to be converted into digital output; the digital output from the two analog-to-digital conversion submodules being recombined at an output port of the sensor die.
     
    10. The CMOS image sensor of claim 9, further comprising a video sequence converter, the video sequence converter being disposed on the lower face of the sensor die; the video sequence converter having a dual port frame buffer, digital logic, and timing control; the video sequence converter being configured to receive the digital output from the two analog-to-digital conversion submodules in column-by-column image format; the video sequence converter being further configured to output digital images in row-by-row image format.
     
    11. The CMOS image sensor of claim 10, wherein the video sequence converter frame buffer includes digital read out logic to correct geometric distortion.
     
    12. The CMOS image sensor of claim 10, wherein the video sequence converter is configured to output digital images in even and odd rows separately to support interlace display.
     
    13. The CMOS image sensor of claim 9, further comprising a video sequence converter, the video sequence having a dual port frame buffer, digital logic, and timing control; the video sequence converter being configured to receive the digital output from the two analog-to-digital conversion submodules in column-by-column image format; the video sequence converter being further configured to output digital images in row-by-row image format; the video sequence converter being disposed at a location other than on the sensor die, the location being a die electrically connected with through silicon vias to the sensor die.
     


    Ansprüche

    1. CMOS-Bildsensor (200) für eine Kameraeinheit, umfassend:
    einen Sensorchip (21), der gegenüberliegende Seiten (22), eine Oberseite (22a) und eine Unterseite (22b) aufweist wobei der Sensorchip (21) Komponenten auf der Oberseite (22a) aufweist, umfassend:

    eine Sensoranordnung (24), die einen ersten Satz (25) und einen zweiten Satz (26) gegenüberliegender Seiten aufweist; wobei der erste Satz (25) eine Oberkante (25a) und eine Unterkante (25b) ist, der zweite Satz (26) eine erste Kante (26a) und eine zweite Kante (26b) ist, die sich von der Oberkante (25a) zur Unterkante (25b) des ersten Satzes (25) erstrecken, wobei die Sensoranordnung (24) im Wesentlichen auf dem Sensorchip (21) zentriert ist;

    ein Analog-Digital-Wandlungsmodul (27); wobei das Analog-Digital-Wandlungsmodul (27) in zwei Submodulen (27a, 27b) angeordnet ist, wobei die zwei Submodule (27a, 27b) benachbart zu der Sensoranordnung (24) angeordnet sind, wobei die zwei Submodule (27a, 27b) voneinander getrennt positioniert sind und die zwei Submodule (27a, 27b) jeweils auf dem zweiten Satz (26) gegenüberliegender Seiten der Sensoranordnung (24) positioniert sind;

    eine digitale Logikschaltung (28), die eine erste Reihe bildet;

    eine Zeitsteuer- und Taktsteuerschaltung (29);

    eine analoge Signalverarbeitungsschaltung (30);

    wobei die Zeitsteuer- und Taktsteuerschaltung (29) und die analoge Signalverarbeitungsschaltung (30) benachbart sind und eine zweite Reihe bilden; und

    wobei die erste Reihe und die zweite Reihe ähnliche Abmessungen aufweisen und auf gegenüberliegenden Seiten des zweiten Satzes (26) gegenüberliegender Seiten angeordnet sind.


     
    2. CMOS-Bildsensor nach Anspruch 1, wobei die Analog-Digital-Wandlungs-Submodule gleichmäßig dimensional aufgeteilt sind.
     
    3. CMOS-Bildsensor nach Anspruch 2, wobei die zwei Analog-Digital-Wandlungs-Submodule jeweils Submodulreihen bilden, die benachbart zu dem zweiten Satz gegenüberliegender Seiten positioniert sind, wobei eine Submodulreihe zwischen der ersten Kante der Sensoranordnung und der ersten Reihe liegt, und die zweite Submodulreihe zwischen der zweiten Kante der Sensoranordnung und der zweiten Reihe liegt.
     
    4. CMOS-Bildsensor nach Anspruch 1, ferner umfassend einen Speicherchip, wobei der Speicherchip mit einem Bildspeicher versehen ist, wobei der Speicherchip gegenüberliegende erste und zweite Seiten aufweist; wobei der Speicherchip und der Sensorchip im Wesentlichen ähnliche Seitenabmessungen aufweisen; wobei sich die erste Seite des Speicherchips unter der Unterseite des Sensorchips befindet und benachbart zu dieser angeordnet ist; wobei der CMOS-Bildsensor ferner Siliciumdurchkontaktierungen umfasst, die den Speicherchip und den Sensorchip elektrisch verbinden.
     
    5. CMOS-Bildsensor nach Anspruch 4, ferner umfassend einen Verarbeitungschip, wobei der Verarbeitungschip eine Oberseite aufweist; wobei der Verarbeitungschip und der Speicherchip im Wesentlichen ähnliche Seitenabmessungen aufweisen; wobei die Oberseite des Verarbeitungschips unter der zweiten Seite des Speicherchips liegt, mit dieser dimensional ausgerichtet und dazu benachbart ist; wobei der Verarbeitungschip und der Speicherchip durch Siliziumdurchkontaktierungen elektrisch verbunden sind.
     
    6. CMOS-Bildsensor nach Anspruch 1, wobei der Sensorchip gegenüberliegende vertikale Kanten parallel zu dem zweiten Satz gegenüberliegender Seiten der Sensoranordnung aufweist; wobei der CMOS-Bildsensor ferner Bondfleckflächen umfasst, wobei die Bondfleckflächen zwei Bondfleckflächenreihen bilden, wobei die erste Bondfleckflächenreihe auf der Oberseite des Sensorchips neben einer der gegenüberliegenden vertikalen Kanten des Sensorchips positioniert ist, die zweite Bondfleckfläche auf der Oberseite des Sensorchips neben der zweiten der gegenüberliegenden vertikalen Kanten des Sensorchips positioniert ist.
     
    7. CMOS-Bildsensor nach Anspruch 4, ferner umfassend einen Verarbeitungschip, der eine Zentraleinheit aufweist; wobei der Verarbeitungschip unter der zweiten Seite des Speicherchips positioniert ist.
     
    8. CMOS-Bildsensor nach Anspruch 5, wobei der Verarbeitungschip eine Zentraleinheit einschließt.
     
    9. CMOS-Bildsensor nach Anspruch 1, wobei die Sensoranordnung eine Pixelsensor-Farbbildgebungsanordnung ist, die aus in Zeilen und Spalten angeordneten Pixeln besteht; und wobei die Sensoranordnung eine Ausgabesequenz für die auf der Sensoranordnung erfassten Pixel zu dem Analog-Digital-Wandlungsmodul aufweist; die Ausgabesequenz konfiguriert ist, um Pixel spaltenweise an das Analog-Digital-Wandlungsmodul zu senden, geradzahlige Pixel in einer Spalte zu einem von den Analog-Digital-Wandlungs-Submodulen gehen, um in eine digitale Ausgabe umgewandelt zu werden, und ungeradzahlige Pixel in einer Spalte zu dem anderen von den Analog-Digital-Wandlungs-Submodulen gehen, um in eine digitale Ausgabe umgewandelt zu werden; die digitale Ausgabe der zwei Analog-Digital-Wandlungs-Submodule an einem Ausgabeport des Sensorchips rekombiniert wird.
     
    10. CMOS-Bildsensor nach Anspruch 9, ferner umfassend einen Videosequenzwandler, wobei der Videosequenzwandler auf der Unterseite des Sensorchips angeordnet ist; wobei der Videosequenzwandler einen Dual-Port-Bildspeicher, digitale Logik und Zeitsteuerung aufweist; wobei der Videosequenzwandler konfiguriert ist, um die digitale Ausgabe von den zwei Analog-Digital-Wandlungs-Submodulen im spaltenweisen Bildformat zu empfangen; wobei der Videosequenzwandler ferner konfiguriert ist, um digitale Bilder im zeilenweisen Bildformat auszugeben.
     
    11. CMOS-Bildsensor nach Anspruch 10, wobei der Videosequenzwandler-Bildspeicher eine digitale Ausleselogik einschließt, um eine geometrische Verzerrung zu korrigieren.
     
    12. CMOS-Bildsensor nach Anspruch 10, wobei der Videosequenzwandler konfiguriert ist, um digitale Bilder in geraden und ungeraden Zeilen getrennt auszugeben, um die Interlaced-Anzeige zu unterstützen.
     
    13. CMOS-Bildsensor nach Anspruch 9, ferner umfassend einen Videosequenzwandler, wobei die Videosequenz einen Dual-Port-Bildspeicher, digitale Logik- und Zeitsteuerung aufweist; wobei der Videosequenzwandler konfiguriert ist, um die digitale Ausgabe von den zwei Analog-Digital-Wandlungs-Submodulen im spaltenweisen Bildformat zu empfangen; wobei der Videosequenzwandler ferner so konfiguriert ist, dass er digitale Bilder im zeilenweisen Bildformat ausgibt; wobei der Videosequenzwandler an einem anderen Ort als auf dem Sensorchip angeordnet ist, wobei der Ort ein Chip ist, der durch Siliciumdurchkontaktierungen mit dem Sensorchip elektrisch verbunden ist.
     


    Revendications

    1. Capteur d'image CMOS (200) pour un ensemble caméra comprenant :
    une puce de capteur (21) ayant des faces opposées (22), une face supérieure (22a) et une face inférieure (22b) ; la puce de capteur (21) ayant des composants sur la face supérieure (22a) comprenant :

    un réseau de capteurs (24) ayant un premier ensemble (25) et un second ensemble (26) de côtés opposés ; le premier ensemble (25) étant un bord supérieur (25a) et un bord inférieur (25b), le second ensemble (26) étant un premier bord (26a) et un second bord (26b) s'étendant du bord supérieur (25a) au bord inférieur (25b) du premier ensemble (25), le réseau de capteurs (24) étant sensiblement centré sur la puce de capteur (21) ;

    un module de conversion analogique-numérique (27) ; le module de conversion analogique-numérique (27) étant disposé dans deux sous-modules (27a, 27b), les deux sous-modules (27a, 27b) étant disposés à côté du réseau de capteurs (24), les deux sous-modules (27a, 27b) étant positionnés séparément l'un de l'autre et les deux sous-modules (27a, 27b) étant respectivement positionnés sur le second ensemble (26) de côtés opposés du réseau de capteurs (24) ;

    un circuit logique numérique (28) formant une première rangée ;

    un circuit de commande de synchronisation et d'horloge (29) ;

    un circuit de traitement de signal analogique (30) ;

    le circuit de commande de synchronisation et d'horloge (29) et le circuit de traitement de signal analogique (30) étant adjacents et formant une seconde rangée ; et

    la première rangée et la seconde rangée ayant des dimensions similaires et étant disposées sur des côtés opposés du second ensemble (26) de côtés opposés.


     
    2. Capteur d'image CMOS selon la revendication 1, dans lequel les sous-modules de conversion analogique-numérique sont divisés uniformément sur le plan dimensionnel.
     
    3. Capteur d'image CMOS selon la revendication 2, dans lequel les deux sous-modules de conversion analogique-numérique forment respectivement des rangées de sous-modules positionnées adjacentes au second ensemble de côtés opposés, une rangée de sous-modules étant située entre le premier bord du réseau de capteurs et la première rangée et la seconde rangée de sous-modules étant située entre le second bord du réseau de capteurs et la seconde rangée.
     
    4. Capteur d'image CMOS selon la revendication 1, comprenant en outre une puce de mémoire, la puce de mémoire étant pourvue d'une mémoire tampon de trame, la puce de mémoire ayant des première et seconde faces opposées ; la puce de mémoire et la puce de capteur ayant des dimensions de face sensiblement similaires ; la première face de la puce de mémoire étant située sous, alignée dimensionnellement et adjacente à la face inférieure de la puce de capteur ; le capteur d'image CMOS comprenant en outre des trous d'interconnexion de silicium traversants, les trous d'interconnexion de silicium traversants connectant électriquement la puce de mémoire et la puce de capteur.
     
    5. Capteur d'image CMOS selon la revendication 4, comprenant en outre une puce de traitement, la puce de traitement ayant une face supérieure ; la puce de traitement et la puce de mémoire ayant des dimensions de face sensiblement similaires ; la face supérieure de la puce de traitement étant située sous, alignée dimensionnellement et adjacente à la seconde face de la puce de mémoire ; la puce de traitement et la puce de mémoire étant connectées électriquement avec des trous d'interconnexion de silicium traversants.
     
    6. Capteur d'image CMOS selon la revendication 1, dans lequel la puce de capteur a des bords verticaux opposés parallèles au second ensemble de côtés opposés du réseau de capteurs ; le capteur d'image CMOS comprenant en outre des plots de liaison, les plots de liaison formant deux rangées de plots de liaison, la première rangée de plots de liaison étant positionnée sur la face supérieure de la puce de capteur contiguë à l'un des bords verticaux opposés de la puce de capteur, la seconde rangée de plots de liaison étant positionnée sur la face supérieure de la puce de capteur contiguë au second des bords verticaux opposés de la puce de capteur.
     
    7. Capteur d'image CMOS selon la revendication 4, comprenant en outre une puce de traitement ayant une unité centrale de traitement ; la puce de traitement étant positionnée sous la seconde face de la puce de mémoire.
     
    8. Capteur d'image CMOS selon la revendication 5, dans lequel la puce de traitement comprend une unité centrale de traitement.
     
    9. Capteur d'image CMOS selon la revendication 1, dans lequel le réseau de capteurs est un réseau d'imagerie couleur de capteurs de pixels constitué de pixels disposés en rangées et en colonnes ; et dans lequel le réseau de capteurs a une séquence de sortie pour les pixels capturés sur le réseau de capteurs vers le module de conversion analogique-numérique ; la séquence de sortie configurée pour envoyer des pixels au module de conversion analogique-numérique colonne par colonne, des pixels pairs dans une colonne allant vers l'un des sous-modules de conversion analogique-numérique pour être convertis en sortie numérique et des pixels impairs dans une colonne allant vers l'autre des sous-modules de conversion analogique-numérique pour être convertis en sortie numérique ; la sortie numérique des deux sous-modules de conversion analogique-numérique étant recombinée au niveau d'un port de sortie de la puce de capteur.
     
    10. Capteur d'image CMOS selon la revendication 9, comprenant en outre un convertisseur de séquence vidéo, le convertisseur de séquence vidéo étant disposé sur la face inférieure de la puce de capteur ; le convertisseur de séquence vidéo ayant un tampon de trame à double accès, une logique numérique et une commande de synchronisation ; le convertisseur de séquence vidéo étant configuré pour recevoir la sortie numérique des deux sous-modules de conversion analogique-numérique dans un format d'image colonne par colonne ; le convertisseur de séquence vidéo étant en outre configuré pour produire des images numériques au format d'image rangée par rangée.
     
    11. Capteur d'image CMOS selon la revendication 10, dans lequel le tampon de trame du convertisseur de séquence vidéo comprend une logique de lecture numérique pour corriger la distorsion géométrique.
     
    12. Capteur d'image CMOS selon la revendication 10, dans lequel le convertisseur de séquence vidéo est configuré pour produire des images numériques dans des rangées paires et impaires séparément pour prendre en charge l'affichage entrelacé.
     
    13. Capteur d'image CMOS selon la revendication 9, comprenant en outre un convertisseur de séquence vidéo, la séquence vidéo ayant un tampon de trame à double accès, une logique numérique et une commande de synchronisation ; le convertisseur de séquence vidéo étant configuré pour recevoir la sortie numérique des deux sous-modules de conversion analogique-numérique dans un format d'image colonne par colonne ; le convertisseur de séquence vidéo étant en outre configuré pour produire des images numériques dans un format d'image rangée par rangée ; le convertisseur de séquence vidéo étant disposé à un emplacement autre que sur la puce de capteur, l'emplacement étant une puce connectée électriquement avec des trous d'interconnexion de silicium traversants à la puce de capteur.
     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description