(19)
(11)EP 3 262 408 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.12.2019 Bulletin 2019/49

(21)Application number: 16707546.4

(22)Date of filing:  26.02.2016
(51)Int. Cl.: 
G01N 33/28  (2006.01)
G01N 9/24  (2006.01)
G01N 23/12  (2018.01)
(86)International application number:
PCT/GB2016/050507
(87)International publication number:
WO 2016/135506 (01.09.2016 Gazette  2016/35)

(54)

METHOD AND APPARATUS FOR MEASURING A COMPOSITION OF A MULTIPHASE FLUID

VERFAHREN UND VORRICHTUNG ZUR MESSUNG EINER ZUSAMMENSETZUNG EINEM MEHRPHASENFLUID

PROCÉDÉ ET APPAREIL DE MESURE D'UNE COMPOSITION D'UN FLUIDE MULTIPHASIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 27.02.2015 GB 201503348

(43)Date of publication of application:
03.01.2018 Bulletin 2018/01

(73)Proprietor: M-Flow Technologies Limited
Oxford, Oxfordshire OX14 1DY (GB)

(72)Inventors:
  • EDWARD, Giles
    Abingdon OX14 1RG (GB)
  • PARKER, Alan
    Abingdon OX14 1RG (GB)
  • TREMOLET, Arnault
    Abingdon OX14 1RG (GB)
  • WALL-CLARKE, Alex
    Oxfordshire, OX14 1DY (GB)

(74)Representative: K2 IP Limited 
c/o Keltie LLP No.1 London Bridge
London SE1 9BA
London SE1 9BA (GB)


(56)References cited: : 
WO-A1-93/21501
US-A- 4 352 288
US-A1- 2012 087 467
WO-A2-2014/064436
US-A- 5 049 823
  
  • EBERLE C S ET AL: "Optimization of a one-shot gamma densitometer for measuring area-averaged void fractions of gas-liquid flows in narrow pipelines", MEASUREMENT SCIENCE AND TECHNOLOGY, IOP, BRISTOL, GB, vol. 5, no. 9, 1 September 1994 (1994-09-01), pages 1146-1158, XP020065779, ISSN: 0957-0233, DOI: 10.1088/0957-0233/5/9/017
  • BENJAMIN KAKU ARVOH ET AL: "Estimation of volume fraction and flow regime identification in inclined pipes based on gamma measurements and multivariate calibration", JOURNAL OF CHEMOMETRICS., vol. 26, no. 8-9, 2 August 2012 (2012-08-02), pages 425-434, XP055289600, GB ISSN: 0886-9383, DOI: 10.1002/cem.2437
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD



[0001] The methods and apparatus described herein relate to measuring a composition of a fluid and, in particular, though not exclusively, to measuring a composition of a multiphase fluid comprising different components such as oil, water and gas.

BACKGROUND



[0002] As used herein, the term "gas void fraction" (GVF) of a fluid may be defined as the ratio of the volume of gas present in the fluid to the total volume of the fluid.

[0003] Also, as used herein, the term "water-cut" of a fluid may be defined as the ratio of the volume of water present in the fluid to the volume of total liquids present in the fluid.

[0004] Fluids produced from oil and gas wells may be multiphase fluids having two or three different components. In particular, it is not uncommon for fluids produced from an oil or gas well to include oil, water and gas. The water-cut of a fluid produced from an oil or gas well can be a valuable piece of information because the economic value of the produced fluid is largely determined by the relative proportions of oil and water regardless of the relative proportion of any gas present.

[0005] It is known to use a gamma-ray beam for measuring the density of a multiphase fluid flowing through a steel pipe. In such a known system, one or more gamma-ray beams may be transmitted across one or more corresponding chordal paths such as one or more diametric paths across the fluid flow path defined by the pipe. The use of one or more such gamma-ray beams may result in a measured density of the fluid which is sensitive to changes in the flow regime of the fluid within the fluid flow path.

[0006] Such a known device is disclosed in US452288 which describes a device for analysing multiphase fluids which comprises a gamma densitometer and an electromagnetic resonator.

SUMMARY



[0007] The invention provides a method according to claim 1 and an apparatus according to claim 29. Further details of the invention are defined in the dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS



[0008] Methods and apparatus for the measurement of a composition of a fluid are described by way of non-limiting example only with reference to the following figures of which:
Figure 1A
shows a schematic side view of an apparatus for use in measuring a composition of a fluid;
Figure 1B
is a transverse cross-section on AA of the apparatus of Figure 1A;
Figure 2
shows empirical calibration data measured for different known fluid compositions flowing through the fluid conduit of the apparatus of Figures 1A and 1B;
Figure 3
is a flow chart illustrating a method for estimating a fluid composition using the apparatus of Figures 1A and 1B;
Figure 4
shows the measured temporal variation in a resonant frequency of an electromagnetic field during the flow of a fluid having a time-varying composition through a fluid conduit of the apparatus of Figures 1A and 1B for different orientations of the fluid conduit;
Figure 5
is a flow chart illustrating a refinement of step 104 of the method for estimating a fluid composition of Figure 4;
Figure 6A
shows a schematic side view of an alternative apparatus for use in measuring a composition of a fluid;
Figure 6B
is a transverse cross-section on AA of the apparatus of Figure 6A;
Figure 7
is a flow chart illustrating a method for estimating a fluid composition using the apparatus of Figures 6A and 6B;
Figure 8A
shows a transverse cross-section of a first gamma densitometer arrangement for use with the apparatus of Figure 1A;
Figure 8B
shows a transverse cross-section of a second gamma densitometer arrangement for use with the apparatus of Figure 1A; and
Figure 8C
shows a transverse cross-section of a third gamma densitometer arrangement for use with the apparatus of Figure 1A.

DETAILED DESCRIPTION OF THE DRAWINGS



[0009] Referring initially to Figures 1A and 1B there is shown an apparatus generally designated 10 for use in measuring a composition of a fluid. The apparatus 10 includes a fluid conduit 12 having a wall 14 which defines a fluid flow path 18. The wall 14 is formed from an electrically non-conductive polyether ether ketone (PEEK) material. The apparatus 10 further includes an electromagnetic measurement arrangement generally designated 20 and a fluid measurement arrangement in the form of a gamma densitometer generally designated 22.

[0010] The electromagnetic measurement arrangement 20 includes an electrically conductive confinement arrangement 23 formed on an outer surface of the wall 14 of the fluid conduit 12. The confinement arrangement 23 comprises a composite material formed from a polyether ether ketone (PEEK) matrix material and one or more carbon fibre reinforcing elements embedded within the PEEK matrix material. The PEEK matrix material of the confinement arrangement 23 is continuous with the PEEK material of the wall 14 of the fluid conduit 12. The confinement arrangement 23 comprises an axially central portion 23a and axial end portions 23b located either end of the axially central portion 23a. The carbon fibres within the axially central portion 23a of the confinement arrangement 23 are generally helically aligned around the fluid conduit 12 at different angles. The carbon fibres within the axially end portions 23b of the confinement arrangement 23 are generally circumferentially aligned.

[0011] It should be understood that the confinement arrangement 23 defines a resonant cavity 25 for confinement of a radio frequency (RF) electromagnetic field extending from the confinement arrangement 23 through the wall 14 of the fluid conduit 12 and across the fluid flow path 18. The particular arrangement of carbon fibres in the axially central portion 23a and the axially end portions 23b of the confinement arrangement 23 serves to confine electromagnetic energy within the cavity 25. The PEEK material of the wall 14 of the fluid conduit 12 is relatively transparent to the radio frequency (RF) electromagnetic field. The thickness of the wall 14 is selected to provide the electromagnetic field with a relative uniform distribution across the fluid flow path 18. This may help to reduce the sensitivity of a measurement of a property of the electromagnetic field to a non-uniform distribution of any different fluid components across the fluid flow path 18. For example, this may help to reduce the sensitivity of a measurement of a resonant frequency of the electromagnetic field to a non-uniform distribution of any different fluid components across the fluid flow path 18.

[0012] The electromagnetic measurement arrangement 20 further includes an RF electrical signal generator 26 electrically connected to an antenna 28 via a circulator device 30 and an RF electrical signal detector 32 which is also electrically connected to the antenna 28 via the circulator device 30. The antenna 28 extends through the confinement arrangement 23 into the wall 14 of the fluid conduit 12. The antenna 28 is electrically isolated from the confinement arrangement 23.

[0013] The gamma densitometer 22 is axially separated from the confinement arrangement 23. The gamma densitometer 22 includes a gamma radiation source 40 and a gamma radiation detector 42. The gamma radiation source 40 and the gamma radiation detector 42 are attached to the outer surface of the wall 14 of the fluid conduit 12. The gamma radiation source 40 and the gamma radiation detector 42 are arranged so that the gamma radiation detector 42 may detect any gamma radiation transmitted from the gamma radiation source 40 through any fluid flowing through the fluid flow path 18.

[0014] Figure 8A shows a first arrangement of the gamma densitometer 22. Although not shown explicitly in Figure 8A, it should be understood that the gamma radiation source 40 and the gamma radiation detector 42 may be attached to the outer surface of the wall 14 of the fluid conduit 12. The gamma radiation source 40 and the gamma radiation detector 42 are arranged so that, in use, the gamma radiation source 40 emits a gamma-ray beam 44 which is transmitted through a first side of the wall 14 of the fluid conduit 12 into the fluid flow path 18, through any fluid flowing through the fluid flow path 18 and out of the fluid flow path 18 through a second side of the wall 14 of the fluid conduit 12 onto the gamma radiation detector 42.

[0015] As shown in Figure 8A, the gamma-ray beam 44 and gamma radiation detector 42 are much smaller than the fluid conduit 12 so that, in use, the gamma densitometer arrangement 22 only measures the density of a fluid passing through the area in the transverse plane which is exposed to the gamma-ray beam 44 and which extends generally across a diameter of the fluid conduit 12. Consequently, the density measured using the first arrangement of the gamma densitometer 22 shown in Figure 8A is only generally representative of the average density of the fluid flowing through the whole fluid flow path 18 when the distribution of the different components of the fluid flowing through the exposed area is generally representative of the distribution of the different components of the fluid flowing through the whole fluid flow path 18. In practice, however, it has been found that the density measured using the first arrangement of the gamma densitometer 22 shown in Figure 8A is only approximately representative of the average density of the fluid flowing through the whole fluid flow path 18 if the distribution of the different fluid components across the fluid flow path 18 is circularly symmetric. This is one of the reasons that some known multiphase meters (not shown) may include one or more flow structures such as one or more vanes or the like in the fluid flow path to create a swirl in the fluid so as to create circular symmetry. However, inserting such flow structures in the fluid flow path 18 of the apparatus 10 may impact on fluid flow and, in really chaotic or slugging flows, may still not create the desired degree of circular symmetry.

[0016] Figure 8B shows a second arrangement of the gamma densitometer 22. Although not shown explicitly in Figure 8A, it should be understood that the gamma radiation source 40 and the gamma radiation detector 42 may be attached to the outer surface of the wall 14 of the fluid conduit 12. The gamma radiation source 40 and the gamma radiation detector 42 are arranged so that, in use, the gamma radiation source 40 emits a gamma-ray beam 44 which is transmitted through a first side of the wall 14 of the fluid conduit 12 into the fluid flow path 18, through any fluid flowing through the fluid flow path 18 and out of the fluid flow path 18 through a second side of the wall 14 of the fluid conduit 12 onto the gamma radiation detector 42.

[0017] Unlike the first arrangement shown in Figure 8A, in the second arrangement shown in Figure 8B, the whole of the fluid flow path 18 is exposed to the gamma-ray beam 44 such that the fluid density measured by the gamma densitometer arrangement 22 of Figure 8B is representative of a density of the fluid flowing through the whole fluid flow path 18 regardless of the distribution of the different fluid components across the fluid flow path 18. Consequently, use of the second gamma densitometer arrangement 22 of Figure 8B may avoid any requirement to insert any flow structures in the fluid flow path 18.

[0018] Moreover, the uppermost and lowermost portions of the gamma-ray beam 44 are transmitted through more of the wall 14 of the fluid conduit 12 and less of the fluid flow path 18. If the fluid conduit 12 was formed from of a material which was less transparent to gamma radiation such as steel, the gamma-ray beam 44 would have to be sufficiently powerful for transmission of the uppermost and lowermost portions of the gamma-ray beam 44 through the wall 14 of the fluid conduit 12 into the fluid flow path 18, through the fluid, and through the wall 14 of the fluid conduit 12. In addition, if the fluid conduit 12 was formed from a material which was less transparent to gamma radiation such as steel, the absorption of the gamma-ray beam 44 would be particularly sensitive to any relative movement between two or more of the gamma radiation source 40, the gamma radiation detector 42 and the fluid conduit 12 and this may have a big impact on calibration. Furthermore, if the fluid conduit 12 was formed from a material which was less transparent to gamma radiation such as steel and the gamma radiation source 40 was rated to ensure penetration of the uppermost and lowermost portions of the gamma-ray beam 44 through the wall 14 of the fluid conduit 12, the middle portion of the gamma-ray beam 44 transmitted through the middle of the fluid conduit 12 where the gamma-ray beam 44 is transmitted through less of the wall 14 of the fluid conduit 12 and more of the fluid flow path 18 may be much greater. This may require the gamma radiation detector 42 to have a less sensitive middle area for receiving the middle portion of the gamma-ray beam 44 and more sensitive uppermost and lowermost areas for receiving the uppermost and lowermost portions of the gamma-ray beam 44 respectively to stop the gamma radiation detector 42 from becoming saturated. This would require a more complex gamma radiation detector 42. However, all of these issues associated with the use of a fluid conduit 12 formed from a material which is less transparent to gamma radiation such as steel may be eliminated by forming the fluid conduit from a material which is more transparent to gamma radiation such as PEEK such that the relative absorption of the uppermost and lowermost portions of the gamma-ray beam 44 is not materially different from the relative absorption of the middle portion of the gamma-ray beam 44.

[0019] It should be understood that for the second arrangement of the gamma densitometer 22 shown in Figure 8B, the gamma radiation detector 42 generally needs to be larger than the fluid conduit 12 itself and the gamma radiation source 40 has to be placed some distance away from the fluid conduit 12. This results in the second gamma densitometer arrangement 22 of Figure 8B being generally larger than the gamma densitometer arrangement 22 of Figure 8A. This may make it more difficult to mount the gamma densitometer arrangement 22 of Figure 8B around the fluid conduit 12.

[0020] Such mounting difficulties may be at least partially mitigated using the third arrangement of the gamma densitometer 22 shown in Figure 8C. Although not shown explicitly in Figure 8C, it should be understood that the gamma radiation source 40 and the gamma radiation detector 42 may be attached to the outer surface of the wall 14 of the fluid conduit 12. The gamma radiation source 40 and the gamma radiation detector 42 are arranged so that, in use, the gamma radiation source 40 emits a gamma-ray beam 44 which is transmitted through a first side of the wall 14 of the fluid conduit 12 into the fluid flow path 18, through any fluid flowing through the fluid flow path 18, out of the fluid flow path 18 through a second side of the wall 14 of the fluid conduit 12 and onto the gamma radiation detector 42.

[0021] Unlike the second arrangement shown in Figure 8B, in the third arrangement shown in Figure 8C, the gamma-ray beam 44 is transmitted across the fluid conduit so that the only area in the transverse plane within the wall 14 which is exposed to the gamma-ray beam 44 is generally defined by a diameter of the fluid conduit 12 and the wall 14. The exposed area may constitute between 40% and 60%, between 45% and 55%, between 49% and 51%, substantially equal to 50%, or 50%, of the total area defined by the wall 14 in the transverse plane. Experiments have demonstrated that the fluid density measured by the gamma densitometer arrangement 22 of Figure 8C may be representative of a density of the fluid flowing through the whole of the fluid flow path 18 when the distribution of the different fluid components across the fluid flow path 18 exhibits mirror symmetry across the diameter of the fluid flow path 18 with the accuracy of the fluid density measurements improving as the exposed area approaches 50% of the total area defined by the wall 14 in the transverse plane. This is particularly true when the fluid conduit 12 is oriented vertically. Consequently, use of the second gamma densitometer arrangement 22 of Figure 8B may not only avoid any requirement to insert any flow structures in the fluid flow path 18 to induce circular symmetry, but may also essentially half the size of the gamma radiation detector 42 required and essentially half the spacing between the gamma radiation source 40 and the fluid conduit 12.

[0022] It should be understood that because the PEEK material of the wall 14 of the fluid conduit 12 is relatively transparent to gamma radiation, the amount of gamma radiation detected by the gamma radiation detector 42 is higher than the amount of gamma radiation that would otherwise be detected by the gamma radiation detector 42 if the wall 14 were formed of a material which is less transparent to gamma radiation such as steel. In particular, for a given amount of gamma radiation emitted from the gamma radiation source 40, the amount of gamma radiation detected by the gamma radiation detector 42 is significantly higher than the amount of gamma radiation that would otherwise be detected by the gamma radiation detector 42 if the wall 14 were formed of a material which is less transparent to gamma radiation such as steel. As described in more detail below, this can have important consequences when it is necessary for the gamma radiation detector 42 to acquire measurements over a measurement period, for example by counting and averaging gamma scintillations. More specifically, use of an electrically non-conductive material such as PEEK for the wall 14 may reduce the measurement period required for a given gamma radiation source 40 and a given gamma radiation signal to noise ratio (SNR) compared with use of an electrically conductive material for the wall 14. Conversely, the use of an electrically non-conductive material such as PEEK for the wall 14 may increase the gamma radiation SNR achieved for a given gamma radiation source 40 and a given measurement period or may allow a smaller or less powerful gamma radiation source 40 to be used for a given gamma radiation SNR and a given measurement period.

[0023] Referring back to Figures 1A and 1B, the apparatus 10 further includes a controller 36 which is in communication with the electrical signal generator 26, the electrical signal detector 32, the gamma radiation source 40 and the gamma radiation detector 42.

[0024] In use, the multiphase fluid flowing through the fluid flow path 18 may include one or more liquids and one or more gases. The fluid may, in particular, include oil, water and gas. It should be understood that the relative proportions of the different components of the multiphase fluid varies over time. In particular, it should be understood that the fluid flowing through the fluid flow path 18 comprises at least some liquid during part of a measurement time period and at least some gas during a different part of the measurement time period. Such a flow regime is typical or characteristic of a multiphase fluid flow. When the fluid conduit 12 is oriented horizontally, the fluid may flow predominantly in slugs through the fluid flow path 18 during the measurement time period, wherein successive fluid slugs are separated by an intervening pocket of fluid, each fluid slug comprises liquid, and each pocket of fluid comprises gas. For example, each fluid slug may be composed substantially of liquid and each intervening pocket of fluid may be composed substantially of gas. The distribution of the different components of the fluid across the fluid flow path 18 may be non-uniform or non-homogenous. The method for use in measuring the composition of the fluid flowing through the fluid flow path 18 described in more detail below makes no assumptions about the particular distribution of the different components of the fluid across the fluid flow path 18. More specifically, the method described in more detail below does not require the different fluid components flowing through the fluid flow path 18 to be uniformly distributed or deliberately mixed before flowing through the fluid flow path 18.

[0025] As the fluid flows through the fluid flow path 18, the controller 36 determines a property of the electromagnetic field from an electrical signal generated by the electrical signal generator 26 and an electrical signal detected by the electrical signal detector 32. In particular, the controller 36 determines a resonant frequency of the electromagnetic field from the electrical signal generated by the electrical signal generator 26 and the electrical signal detected by the electrical signal detector 32 using conventional electrical measurement techniques. Such electrical measurement techniques may, for example, involve sweeping a frequency of an electrical signal generated by the electrical signal generator 26 and measuring the electrical signal detected by the electrical signal detector 32 as a function of the frequency of the generated electrical signal. The controller 36 repeatedly determines the resonant frequency of the electromagnetic field in this way over a measurement time period so as to provide a temporal variation in the resonant frequency of the electromagnetic field. The controller 36 also determines the absorption of gamma radiation in the fluid flowing through the fluid flow path 18 from the gamma densitometer 22 over the measurement time period.

[0026] Before the apparatus 10 is used to measure the composition of an unknown fluid flowing through the fluid flow path 18, the apparatus 10 is calibrated by measuring the resonant frequency of the electromagnetic field for different known fluid compositions flowing through the fluid flow path 18. For example, before the apparatus 10 is used to measure a composition of a mixture of oil, water and gas flowing through the fluid flow path 18 in unknown proportions, the apparatus 10 is calibrated by measuring the resonant frequency of the electromagnetic field for different known proportions of oil, water and gas flowing through the fluid flow path 18. During calibration, a mixture of oil, water and gas having a known water-cut value but an unknown GVF is introduced into the fluid flow path 18. The controller 36 controls the electrical signal generator 26 and the electrical signal detector 32 so as to measure the resonant frequency of the electromagnetic field repeatedly over a measurement time period and the controller 36 averages the measured resonant frequencies to determine an average resonant frequency of the electromagnetic field over the measurement time period.

[0027] The controller 36 further controls the gamma densitometer 22 so as to measure gamma absorption over the same measurement time period. The controller 36 determines an average density for the fluid flowing through the fluid flow path 18 over the measurement time period from the measured average gamma absorption and from calibration data for the gamma densitometer 22 which is stored in the controller 36. The controller 36 then uses the average density for the fluid flowing through the fluid flow path 18, the respective known densities of the oil, water and gas in the fluid flow path 18, and the known water-cut value to determine a GVF value corresponding to the average resonant frequency of the electromagnetic field. Without varying the water-cut value of the fluid introduced into the fluid flow path 18, a flow rate of the gas introduced into the fluid flow path 18 is varied and the controller 36 determines an average resonant frequency of the electromagnetic field and a GVF value for different gas flow rates. Once the average resonant frequencies and the GVF values have been determined for an appropriate range of GVF values, the water-cut is varied and the controller 36 determines the average resonant frequencies of the electromagnetic field and the GVF values for different gas flow rates across the same range of GVF values. The resulting calibration data is stored in the controller 36. It should be understood that the calibration data obtained using the procedure described above is essentially constant for a measurement time period of sufficient duration i.e. the calibration data is essentially independent of the measurement time period for measurement time periods of sufficient duration.

[0028] Figure 2 shows the calibration data obtained using the calibration procedure described above for a mixture of oil, water and gas flowing through the fluid flow path 18. It should be understood that the calibration data of Figure 2 is essentially independent of the particular flow regime of the fluid flowing through the fluid flow path 18 during the measurement time period. Without wishing to be bound by theory, this is thought to be a consequence of the generally uniform distribution of the electromagnetic field across the fluid flow path 18.

[0029] One of ordinary skill in the art will understand that the calibration data of Figure 2 is single-valued. That is, for each water-cut value and each gas void fraction value, the calibration data comprises a single value of the resonant frequency of the electromagnetic field. In effect, such calibration data defines the relationships between three variables, namely the resonant frequency of the electromagnetic field, the gas void fraction and the water-cut, and may be used to determine any one of these three variables from knowledge or a measurement of the other two variables.

[0030] Once calibration is complete, the apparatus 10 is used to measure the time-varying composition of a fluid comprising oil, water and gas using the method described with reference to Figure 3. At step 100, the controller 36 controls the electrical signal generator 26 and the electrical signal detector 32 so as to measure the resonant frequency of the electromagnetic field repeatedly over a measurement time period as the fluid flows through the fluid flow path 18 until two or more recurring local features such as two or more recurring local minima are observed in the measured temporal variation of the resonant frequency of the electromagnetic field. At step 100, the controller 36 also controls the gamma densitometer 22 so as to measure the gamma absorption over the same measurement time period.

[0031] At step 101, the controller 36 determines an average density ρavg for the fluid flowing through the fluid flow path 18 from the gamma absorption measured over the measurement time period and calibration data for the gamma densitometer 22 stored in the controller 36.

[0032] The temporal variation in the resonant frequency of the electromagnetic field measured at step 100 is plotted in blue in Figure 4. The obvious recurring local minima in the measured temporal variation of the resonant frequency of the electromagnetic field plotted in blue in Figure 4 are thought to correspond to the flow of fluid slugs composed substantially of liquid through the fluid flow path 18, wherein the different slugs comprise a liquid having a generally similar or invariant water-cut value. Such a flow regime may be typical for fluids produced from an oil or gas well.

[0033] At step 102, the controller 36 identifies the recurring local minima in the measured temporal variation of the resonant frequency of the electromagnetic field and determines a nominal value of the resonant frequency of the electromagnetic field associated with the recurring local minima. For the temporal variation of the resonant frequency of the electromagnetic field shown in Figure 4, the controller 36 determines the nominal value of the resonant frequency of the electromagnetic field associated with the recurring local minima to be approximately 895 MHz. Since the recurring local minima in the measured temporal variation of the resonant frequency of the electromagnetic field plotted in blue in Figure 4 are thought to correspond to the flow of fluid slugs composed substantially of liquid through the fluid flow path 18 wherein the different slugs comprise a liquid having a generally similar or invariant water-cut value, the controller 36 initially estimates a nominal GVF value of zero for the fluid slugs at step 104 in Figure 3.

[0034] At step 106, the controller 36 uses the nominal value of 895 MHz of the resonant frequency of the electromagnetic field and the estimated nominal GVF value in conjunction with the calibration data of Figure 2 to estimate a nominal composition of the fluid slugs flowing through the fluid flow path 18. More specifically, the controller 36 uses the calibration data of Figure 2 to estimate the water-cut value corresponding to the nominal value of the resonant frequency of the electromagnetic field of 895 MHz and the estimated nominal GVF value.

[0035] At step 108, the controller 36 uses the estimated water-cut value and the calibration data of Figure 2 to translate the measured temporal variation of the resonant frequency of the electromagnetic field plotted in blue in Figure 4 into an estimated temporal variation of GVF, GVF(t), over the measurement time period. It should be understood that the estimated water-cut value and the estimated temporal variation of GVF, GVF(t), together constitute the estimated temporal variation of the composition of the fluid flowing through the fluid flow path 18 during the measurement time period.

[0036] At step 110, the controller 36 uses the estimated water-cut value and GVF(t) over the measurement time period in conjunction with the respective known densities of the oil, water and gas to determine an estimated temporal variation in the density ρ(t) of the fluid flowing through the fluid flow path 18 over the measurement time period.

[0037] At step 112, the controller 36 determines an estimated average value of the density of the fluid ρavg' over the measurement time period by averaging the estimated temporal variation in the density ρ(t) of the fluid over the measurement time period.

[0038] At step 116, the controller 36 determines a goal function in the form of a difference Δρ between the estimated average value of the density of the fluid ρavg' and the independently measured average value of the density of the fluid ρavg which was determined by the controller 36 from the gamma absorption measurements at step 101.

[0039] At step 118, the controller 36 compares a magnitude of Δρ to a predetermined difference value Δρth.

[0040] If the controller 36 determines that the magnitude of Δρ is less than the predetermined difference value Δρth at step 118, the method ends at step 120 with the controller 36 outputting the estimated composition of the fluid flowing through the fluid flow path 18 to a user or operator of the apparatus 10. More specifically, the controller 36 outputs the estimated water-cut value and the estimated temporal variation of GVF, GVF(t), over the measurement time period to a user or operator of the apparatus 10.

[0041] If the controller 36 determines that the magnitude of Δρ is greater than or equal to the predetermined difference value Δρth, this may indicate that the fluid slugs which correspond to the recurring local minima in the measured temporal variation of the resonant frequency of the electromagnetic field plotted in blue in Figure 4 are not composed solely of liquid but may comprise a relatively small fraction of gas. Accordingly, if the magnitude of Δρ is greater than or equal to the predetermined difference value Δρth, the controller 36 re-estimates a nominal value for the GVF at step 119. More specifically, at step 119, the controller 36 compares the magnitude and/or sign of Δρ determined during one iteration of step 116 with the magnitude and/or sign of Δρ determined during a later iteration of step 116 and re-estimates the nominal GVF value at step 119 according to the result of the comparison. The controller 36 subsequently repeats steps 106 through 118 until the magnitude of Δρ is less than the predetermined difference value Δρth at step 118.

[0042] Figure 5 illustrates a refinement of step 104. At step 104a, the controller 36 estimates a nominal GVF value of zero. Steps 104b, 104c and 104d are identical to steps 106, 108 and 110 respectively. At step 104e, the controller 36 determines the density ρ(t) determined at a time or times t = tslug corresponding to one or more of the recurring local minima of Figure 4 and compares the density ρ(tslug) with a minimum density ρoil for oil. If the controller 36 determines that ρ(tslug)<ρoil this is indicative that the fluid flowing through the fluid flow path 18 at t = tslug contains some gas and that the initial estimate of zero for the nominal GVF value at t = tslug was too low. Accordingly, the controller 36 increases the initial estimate of the nominal GVF value at step 104g and repeats steps 104b, 104c, 104d and 104e until the controller 36 determines that ρ(tslug)≥ρoil at step 104e whereupon the initial estimate of the nominal GVF value is provided at step 104f.

[0043] An alternative apparatus 110 for use in measuring a composition of a fluid is shown in Figures 6A and 6B. The only difference between the apparatus 110 and the apparatus 10 is that apparatus 110 comprises an acoustic energy measurement arrangement 122 in place of the gamma densitometer 22 of apparatus 10. As shown in Figure 6B, the acoustic energy measurement arrangement 122 comprises an acoustic source 140 in place of the gamma radiation source 40 and an acoustic detector 142 in place of the gamma radiation detector 42. The acoustic source 140 may be arranged to transmit acoustic energy through the fluid flow path 18 and the controller 36 may be arranged to determine an average characteristic of the fluid in the fluid flow path 18 from the acoustic energy received by the acoustic detector 142. For example, the controller 36 may be arranged to determine the average gas void fraction from the acoustic energy transmitted by the acoustic source 140 and/or the acoustic energy received by the acoustic detector 142.

[0044] During calibration of the apparatus 110 a mixture of oil, water and gas having a known water-cut value but an unknown GVF is introduced into the fluid flow path 18. The controller 36 controls the electrical signal generator 26 and the electrical signal detector 32 so as to measure the resonant frequency of the electromagnetic field repeatedly over a measurement time period and the controller 36 averages the measured resonant frequencies to determine an average resonant frequency of the electromagnetic field over the measurement time period.

[0045] The controller 36 also controls the acoustic source 140 and the acoustic detector 142 so as to measure the transmission of acoustic energy through the fluid over the measurement time period. The controller 36 determines an average GVF value for the fluid flowing through the fluid flow path 18 over the measurement time period from the measured average transmission of acoustic energy through the fluid and from calibration data for the acoustic energy measurement arrangement 122 which is stored in the controller 36. Without varying the water-cut value of the fluid introduced into the fluid flow path 18, a flow rate of the gas introduced into the fluid flow path 18 is varied and the controller 36 determines an average resonant frequency of the electromagnetic field and an average GVF value for different gas flow rates. Once an average resonant frequency and an average GVF value has been determined for an appropriate range of average GVF values, the water-cut is varied and the controller 36 determines an average resonant frequency of the electromagnetic field and an average GVF for different gas flow rates across the same range of GVF values. The resulting calibration data is stored in the controller 36. It should be understood that the calibration data obtained using the apparatus 110 according to the calibration procedure outlined above resembles that shown in Figure 2 measured using the apparatus 10.

[0046] Once calibration is complete, the apparatus 110 may be used to measure a composition of a mixture of oil, water and gas flowing through the fluid flow path 18 in unknown proportions using the method described with reference to Figure 7. At step 200, the controller 36 controls the electrical signal generator 26 and the electrical signal detector 32 so as to measure the resonant frequency of the electromagnetic field repeatedly over a measurement time period as the fluid flows through the fluid flow path 18 until two or more recurring local features such as two or more recurring local minima are observed in the measured temporal variation of the resonant frequency of the electromagnetic field. At step 200, the controller 36 also controls the acoustic energy measurement arrangement 122 so as to measure the transmission of acoustic energy over the same measurement time period.

[0047] At step 201, the controller 36 determines an average GVF value, GVFavg, for the fluid flowing through the fluid flow path 18 from the transmission of acoustic energy measured over the measurement time period and the calibration data for the acoustic energy measurement arrangement 122 stored in the controller 36. The temporal variation in the resonant frequency of the electromagnetic field measured at step 200 is the same as that plotted in blue in Figure 4. As such, steps 202, 204, 206 and 208 are effectively identical to steps 102, 104, 106 and 108 described with reference to Figure 3.

[0048] At step 208, the controller 36 uses the estimated water-cut value and the calibration data of Figure 2 to translate the measured temporal variation of the resonant frequency of the electromagnetic field plotted in blue in Figure 4 into an estimated temporal variation of GVF, GVF(t), over the measurement time period. It should be understood that the estimated water-cut value and the estimated temporal variation of GVF, GVF(t), together constitute the estimated temporal variation of the composition of the fluid flowing through the fluid flow path 18 during the measurement time period.

[0049] At step 212, the controller 36 determines an estimated average GVF value, GVFavg', over the measurement time period by averaging GVF(t) over the measurement time period.

[0050] At step 216, the controller 36 determines a goal function in the form of a difference ΔGVF between the estimated average GVF value, GVFavg', and the independently measured average GVF value, GVFavg, determined by the controller 36 from the acoustic transmission measurement at step 201.

[0051] At step 218, the controller 36 subsequently compares a magnitude of ΔGVF to a predetermined difference value ΔGVFth.

[0052] If the controller 36 determines that the magnitude of ΔGVF is less than the predetermined difference value ΔGVFth at step 218, the method ends at step 220 with the controller 36 outputting the estimated fluid composition to a user or operator of the apparatus 110.

[0053] If the controller 36 determines that the magnitude of ΔGVF is greater than or equal to the predetermined difference value ΔGVFth, this may indicate that the fluid slugs which correspond to the recurring local minima in the measured temporal variation of the resonant frequency of the electromagnetic field plotted in blue in Figure 4 are not composed solely of liquid but may comprise a relatively small fraction of gas. Accordingly, if the magnitude of ΔGVF is greater than or equal to the predetermined difference value ΔGVFth, the controller 36 re-estimates a nominal value for the GVF at step 219. More specifically, at step 219, the controller 36 compares the magnitude and/or sign of ΔGVF determined during one iteration of step 216 with the magnitude and/or sign of ΔGVF determined during a later iteration of step 216 and re-estimates the nominal GVF value at step 219 according to the result of the comparison. The controller 36 subsequently repeats steps 206 through 218 until the magnitude of ΔGVF is less than the predetermined difference value ΔGVFth at step 218.

[0054] One of ordinary skill in the art will appreciate that various modifications of the apparatus and methods described above may be made. For example, the apparatus 10 or the apparatus 110 may comprise both a gamma densitometer and an acoustic energy transmission arrangement. Furthermore, although the method described with reference to Figure 3 was based upon measuring an average density using the gamma densitometer 22 and comparing the measured average density with an estimated average density determined from measurements of the resonant frequency of the electromagnetic field, the method may instead comprise measuring an average GVF value using the gamma densitometer 22 and comparing the measured average GVF value with an estimated average GVF value determined from measurements of the resonant frequency of the electromagnetic field. More specifically, rather than determining an average density value, ρavg, from the measured gamma absorption at step 101 of Figure 3 and comparing ρavg at step 116 with an estimated average density value, ρavg', determined from measurements of the resonant frequency of the electromagnetic field as described with reference to steps 102 - 112 of Figure 3, the controller 36 may determine an average GVF value, GVFavg, from the measured gamma absorption at step 101 and compare GVFavg at step 116 with an estimated average GVF value, GVFavg', determined from measurements of the resonant frequency of the electromagnetic field as described with reference to steps 202 - 212 of Figure 7.

[0055] Conversely, although the method described with reference to Figure 7 was based upon measuring an average GVF value using the acoustic measurement arrangement 122 and comparing the measured average GVF value with an estimated average GVF value determined from measurements of the resonant frequency of the electromagnetic field, the method may instead comprise measuring an average density using the acoustic measurement arrangement 122 and comparing the measured average density with an estimated average density determined from measurements of the resonant frequency of the electromagnetic field. More specifically, rather than determining an average GVF value, GVFavg, from the measured acoustic transmission at step 201 of Figure 7 and comparing GVFavg at step 216 with an estimated average GVF value, GVFavg', determined from measurements of the resonant frequency of the electromagnetic field as described with reference to steps 202 - 212 of Figure 7, the controller 36 may determine an average density value, ρavg, from the measured acoustic transmission at step 201 and compare ρavg at step 216 with an estimated average density value, ρavg', determined from measurements of the resonant frequency of the electromagnetic field as described with reference to steps 102 - 112 of Figure 3.

[0056] The fluid conduit 12 may be oriented vertically during calibration and measurement. As discussed above, this may result in a more symmetrical distribution of the different fluid components in the fluid flow path 18. The resulting measured temporal variation in the resonant frequency of the electromagnetic field is plotted in red in Figure 4. Although the resulting temporal variation in the resonant frequency of the electromagnetic field has recurring local minima, these are less pronounced than the recurring local minima in the temporal variation in the resonant frequency of the electromagnetic field when the fluid conduit 12 is oriented horizontally as shown in blue in Figure 4. Put another way, when the fluid conduit 12 is oriented vertically, although the fluid may flow through the fluid flow path in fluid slugs during the measurement time period with successive fluid slugs separated by an intervening pocket of fluid, each fluid slug may comprise a mixture of liquid and gas, and each intervening pocket of fluid may comprise a mixture of liquid and gas, wherein the proportion of liquid is greater in each fluid slug compared with the proportion of liquid in each intervening pocket of fluid. This may be the consequence of bubbles such as Taylor bubbles or voids moving upwardly through the liquid in the fluid flow path 18.

[0057] The confinement arrangement may comprise an electrically conductive layer or an electrically conductive member of any kind. For example, the confinement arrangement may be formed of metal. The confinement arrangement may be at least partially embedded within the wall 14 of the fluid conduit 12. The confinement arrangement may be integrally formed with the wall 14 of the fluid conduit 12. The confinement arrangement may be formed on or around the wall 14 of the fluid conduit 12.

[0058] The gamma radiation source 40 and the gamma radiation detector 42 may be at least partially embedded within the wall 14 of the fluid conduit 12.

[0059] The wall 14 of the fluid conduit 12 may comprise different axial sections, wherein different axial sections have different diameters.

[0060] The confinement arrangement 23 may comprise different axial sections, wherein different axial sections have different diameters.

[0061] The confinement arrangement 23 may have different carbon fibre orientations to those described above.

[0062] The controller may be arranged to determine other characteristics of the fluid such as bubble size, bubble count, fluid flow velocity and/or the like from the additional energy transmitted through the fluid. For example, the controller may be arranged to determine such other characteristics of the fluid from a measurement of absorption of gamma radiation in the fluid and/or from a measurement of transmission of acoustic energy through the fluid.

[0063] The apparatus may comprise at least one of a pressure sensor and a temperature sensor. The controller may be configured to correct at least one of a measured RF resonance frequency, measured gamma radiation absorption and measured acoustic transmission according to a pressure measured by the pressure sensor and/or a temperature measured by the temperature sensor.


Claims

1. A method for use in measuring a composition of a multiphase fluid, the method comprising:

flowing a multiphase fluid through a fluid flow path defined by a wall of a fluid conduit, the wall comprising an electrically non-conductive material;

establishing an electromagnetic field which extends through the electrically non-conductive material of the wall of the fluid conduit into the fluid;

measuring a property of the electromagnetic field over a measurement time period so as to provide a measured temporal variation in the property of the electromagnetic field;

transmitting additional energy through the fluid over the measurement time period independently of the electromagnetic field; and

measuring the additional energy transmitted through the fluid over the measurement time period; and
comprising confining the electromagnetic field in a resonant cavity through which the fluid flow path extends,
wherein the electromagnetic field comprises a radio frequency (RF) electromagnetic field and wherein the property of the electromagnetic field comprises a resonant frequency of the electromagnetic field, wherein the fluid conduit has a transverse cross-section in a plane transverse to the fluid flow path, which transverse cross-section is symmetrical about one or more lines of symmetry, and the method additionally comprises:
transmitting a beam of the additional energy across the fluid conduit from a source positioned on one side of the fluid conduit to a detector positioned on the other side of the fluid conduit so that the only area in the transverse plane within the wall which is exposed to the beam of the additional energy is generally defined by one of the lines of symmetry and the wall, and wherein the exposed area constitutes between 40% and 60% of a total area defined by the wall in the transverse plane.
 
2. A method according to claim 1, comprising establishing the electromagnetic field across the fluid flow path.
 
3. A method according to claim 1 or 2, wherein the resonant cavity includes the electrically non-conductive material of the wall of the fluid conduit.
 
4. A method according to any preceding claim, wherein the additional energy transmitted through the fluid comprises electromagnetic energy of a different frequency to the electromagnetic field.
 
5. A method according to any preceding claim, wherein the additional energy transmitted through the fluid comprises at least one of gamma radiation, gamma-rays, X-ray radiation and X-rays.
 
6. A method according to any preceding claim, wherein the additional energy transmitted through the fluid is of a different type to any energy coupled between the electromagnetic field and the fluid.
 
7. A method according to any preceding claim, wherein the additional energy transmitted through the fluid comprises acoustic energy.
 
8. A method according to any preceding claim, comprising:

transmitting the additional energy through the electrically non-conductive material of the wall of the fluid conduit; and

measuring the additional energy transmitted through the fluid and the electrically non-conductive material of the wall of the fluid conduit over the measurement time period.


 
9. A method according to any preceding claim, wherein measuring the additional energy transmitted through the fluid over the measurement time period comprises measuring additional energy transmitted into the fluid and measuring additional energy received from the fluid over the measurement time period.
 
10. A method according to any preceding claim, wherein the additional energy received from the fluid comprises energy scattered from the fluid.
 
11. A method according to any preceding claim, wherein the exposed area constitutes between 45% and 55%, between 49% and 51%, substantially equal to 50%, or 50% of the total area.
 
12. A method according to any preceding claim, comprising transmitting the beam of the additional energy from the source to the detector along a beam axis from the source to the detector along a beam axis which is parallel to, but offset from, the line of symmetry in the transverse plane.
 
13. A method according to any preceding claim, comprising:

using the measured temporal variation in the property of the electromagnetic field and calibration data to estimate a temporal variation of the composition of the fluid; and

using the estimated temporal variation of the composition of the fluid to estimate an average value of a characteristic of the fluid over the measurement time period.


 
14. A method according to claim 13, wherein the characteristic of the fluid comprises a property of the fluid.
 
15. A method according to claim 13 or 14, wherein the characteristic of the fluid comprises a density of the fluid.
 
16. A method according to any one of claims 13 to 15, wherein the characteristic of the fluid comprises a gas void fraction of the fluid.
 
17. A method according to any one of claims 13 to 16, wherein the characteristic of the fluid comprises at least one of bubble size, bubble count, and fluid flow velocity.
 
18. A method according to any one of claims 13 to 17, comprising using the measured additional energy transmitted through the fluid over the measurement time period to determine an independently measured average value of the characteristic of the fluid over the measurement time period.
 
19. A method according to claim 18, comprising determining a value of a goal function from the estimated average value of the characteristic of the fluid and the independently measured average value of the characteristic of the fluid.
 
20. A method according to claim 19, wherein the goal function value comprises a difference between the estimated average value of the characteristic of the fluid and the independently measured average value of the characteristic of the fluid.
 
21. A method according to claim 19 or 20, comprising comparing a magnitude of the goal function value with a predetermined threshold value.
 
22. A method according to claim 21, comprising selectively outputting the estimated temporal variation of the composition of the fluid over the measurement time period according to a result of the comparison between the magnitude of the goal function value and the predetermined threshold value.
 
23. A method according to claim 21 or 22, comprising:

(i) using the measured temporal variation in the property of the electromagnetic field and the calibration data to re-estimate the temporal variation of the composition of the fluid;

(ii) using the re-estimated temporal variation of the composition of the fluid to re-estimate the average value of the characteristic of the fluid over the measurement time period;

(iii) re-determining a value of a goal function from the estimated average value of the characteristic of the fluid and the independently measured average value of the characteristic of the fluid;

(iv) comparing the magnitude of the goal function value with the predetermined threshold value; and

(v) repeating steps (i) to (iv) until the magnitude of the goal function value is less than the predetermined threshold value.


 
24. A method according to any one of claims 13 to 23, wherein the calibration data comprising values of the property of the electromagnetic field as a function of gas void fraction and liquid composition over a calibration time period.
 
25. A method according to claim 24, wherein a duration of the calibration time period is equal to a duration of the measurement time period.
 
26. A method according to any one of claims 13 to 25, wherein the fluid comprises water and oil.
 
27. A method according to claim 26, wherein the liquid composition comprises, or is expressed as, a water-cut value.
 
28. A method according to any one of claims 13 to 27, comprising:

identifying a recurring feature in the measured temporal variation of the property of the electromagnetic field; and

determining a nominal value of the property of the electromagnetic field associated with the recurring feature.


 
29. An apparatus for use in measuring a composition of a multiphase fluid, the apparatus comprising:

a fluid conduit having a wall defining a fluid flow path for a multiphase fluid, the wall comprising an electrically non-conductive material;

an electromagnetic measurement arrangement for establishing an electromagnetic field which extends through the electrically non-conductive material of the wall of the fluid conduit into the fluid and for measuring a property of the electromagnetic field over a measurement time period; and
a fluid measurement arrangement for transmitting additional energy through the fluid over the measurement time period independently of the electromagnetic field and measuring the additional energy transmitted through the fluid over the measurement time period, wherein the electromagnetic field comprises a radio frequency (RF) electromagnetic field, wherein the property of the electromagnetic field comprises a resonant frequency of the electromagnetic field, wherein the electromagnetic measurement arrangement comprises a confinement arrangement for at least partially confining the electromagnetic field, wherein the confinement arrangement is configured to establish the electromagnetic field across the fluid flow path and wherein the confinement arrangement defines a resonant cavity for the electromagnetic field through which the fluid flow path extends, wherein the fluid conduit has a transverse cross-section in a plane transverse to the fluid flow path, which transverse cross-section is symmetrical about one or more lines of symmetry and wherein the fluid measurement arrangement comprises:

a source of a beam of the additional energy positioned on one side of the fluid conduit; and

a detector of the beam of the additional energy positioned on the other side of the fluid conduit,

wherein the source and the detector are arranged relative to the fluid conduit for the transmission of the beam of the additional energy across the fluid conduit from the source to the detector so that the only area in the transverse plane within the wall which is exposed to the beam of the additional energy is generally defined by one of the lines of symmetry and the wall, and wherein the exposed area constitutes between 40% and 60% of a total area defined by the wall in the transverse plane.
 
30. An apparatus as claimed in claim 29, wherein the additional energy transmitted through the fluid comprises electromagnetic energy of a different frequency to the electromagnetic field.
 
31. An apparatus as claimed in claim 29 or 30, wherein the additional energy transmitted through the fluid comprises at least one of gamma radiation, gamma-rays, X-ray radiation and X-rays.
 
32. An apparatus as claimed in any one of claims 29 to 31, wherein the additional energy transmitted through the fluid is of a different type to any energy coupled between the electromagnetic field and the fluid.
 
33. An apparatus as claimed in any one of claims 29 to 32, wherein the additional energy transmitted through the fluid comprises acoustic energy.
 
34. An apparatus as claimed in any one of claims 29 to 33, wherein the fluid conduit comprises a plurality of sections which are attached together to define the fluid flow path, the electromagnetic field extends through the electrically non-conductive material of the wall of one section into the fluid, and the additional energy is transmitted through fluid flowing through a portion of the fluid flow path defined by a wall of a different section of the fluid conduit.
 
35. An apparatus according to any one of claims 29 to 34, wherein the wall of the fluid conduit comprises or is formed from a polymer material, and preferably comprises or is formed from a polyether ether ketone (PEEK) material.
 
36. An apparatus according to any one of claims 29 to 35, wherein the resonant cavity includes the electrically non-conductive material of the wall of the fluid conduit.
 
37. An apparatus according to any of claims 29 to 36, wherein the exposed area constitutes between 45% and 55%, between 49% and 51%, substantially equal to 50%, or 50% of the total area.
 


Ansprüche

1. Verfahren zur Verwendung beim Messen einer Zusammensetzung eines Mehrphsenfluids, wobei das Verfahren umfasst:

Fließen lassen eines Mehrphasenfluids durch einen Fluidflusspfad hindurch, der durch eine Wand von einer Fluidrohrleitung definiert ist, wobei die Wand ein elektrisch nicht-leitfähiges Material umfasst;

Aufbauen eines elektromagnetischen Feldes, welches sich durch das elektrisch nicht-leitfähige Material der Wand der Fluidrohrleitung hindurch in das Fluid hinein erstreckt;

Messen einer Eigenschaft des elektromagnetischen Feldes über eine Messzeitperiode, um so eine gemessene zeitliche Variation der Eigenschaft des elektromagnetischen Feldes bereitzustellen;

Übertragen von zusätzlicher Energie durch das Fluid hindurch über die Messzeitperiode unabhängig von dem elektromagnetischen Feld; und

Messen der zusätzlichen Energie, die durch das Fluid hindurch über die Messzeitperiode übertragen wurde; und
umfassend örtliches Eingrenzen des elektromagnetischen Feldes in einem Resonanzhohlraum, durch den hindurch sich der Fluidflusspfad erstreckt,
wobei das elektromagnetische Feld ein elektromagnetisches Hochfrequenz- (HF)-Feld umfasst, und wobei die Eigenschaft des elektromagnetischen Feldes eine Resonanzfrequenz des elektromagnetischen Feldes umfasst, wobei die Fluidrohrleitung einen quer verlaufenden Querschnitt in einer Ebene quer zu dem Fluidflusspfad aufweist, wobei der quer verlaufende Querschnitt um eine oder mehrere Symmetrielinien herum symmetrisch ist, und wobei das Verfahren zusätzlich umfasst:
Übertragen eines Strahls der zusätzlichen Energie über die Fluidrohrleitung aus einer Quelle, die auf einer Seite der Fluidrohrleitung positioniert ist, zu einem Detektor, der auf der anderen Seite der Fluidrohrleitung positioniert ist, so dass der einzige Bereich in der Querebene innerhalb der Wand, der dem Strahl der zusätzlichen Energie ausgesetzt ist, allgemein durch eine der Symmetrielinien und die Wand definiert ist, und wobei der ausgesetzte Bereich zwischen 40 % und 60 % eines Gesamtbereichs stellt, der durch die Wand in der Querebene definiert wird.
 
2. Verfahren nach Anspruch 1, umfassend Aufbauen des elektromagnetischen Felds über dem Fluidflusspfad.
 
3. Verfahren nach Anspruch 1 oder 2, wobei der Resonanzhohlraum das elektrisch nicht-leitfähige Material der Wand der Fluidrohrleitung einschließt.
 
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die zusätzliche Energie, die durch das Fluid hindurch übertragen wird, elektromagnetische Energie mit einer anderen Frequenz als derjenigen des elektromagnetischen Feldes umfasst.
 
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die zusätzliche Energie, die durch das Fluid hindurch übertragen wird, mindestens eine von gamma-Strahlung, gamma-Strahlen, Röntgenstrahlung und Röntgenstrahlen umfasst.
 
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die zusätzliche Energie, die durch das Fluid hindurch übertragen wird, ein Energietyp ist, der von jeglicher Energie verschieden ist, die zwischen dem elektromagnetischen Feld und dem Fluid gekoppelt ist.
 
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die zusätzliche Energie, die durch das Fluid hindurch übertragen wird, akustische Energie umfasst.
 
8. Verfahren nach einem der vorhergehenden Ansprüche, umfassend:

Übertragen der zusätzlichen Energie durch das elektrisch nicht-leitfähige Material der Fluidrohrleitung hindurch; und

Messen der durch das Fluid und das elektrisch nicht-leitfähige Material der Wand der Fluidrohrleitung hindurch über die Messzeitperiode übertragenen zusätzlichen Energie.


 
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei Messen der zusätzlichen Energie, die durch das Fluid hindurch über die Messzeitperiode übertragen wurde, umfasst, dass zusätzliche Energie gemessen wird, die in das Fluid hinein übertragen wird, und zusätzliche Energie gemessen wird, die von dem Fluid über die Messzeitperiode empfangen wurde.
 
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die zusätzliche Energie, die von dem Fluid empfangen wird, Energie umfasst, die von dem Fluid gestreut wurde.
 
11. Verfahren nach einem der vorhergehenden Ansprüche, wobei der ausgesetzte Bereich zwischen 45 % und 55 %, zwischen 49 % und 51 %, im Wesentlichen gleich 50 %, oder 50 % des Gesamtbereichs stellt.
 
12. Verfahren nach einem der vorhergehenden Ansprüche, umfassend Übertragen des Strahls der zusätzlichen Energie von der Quelle an den Detektor entlang einer Strahlachse aus der Quelle zu dem Detektor entlang einer Strahlachse, die parallel zu der Symmetrielinie in der Querebene, jedoch versetzt zu dieser ist.
 
13. Verfahren nach einem der vorhergehenden Ansprüche, umfassend:

Verwenden der gemessenen zeitlichen Variation in der Eigenschaft des elektromagnetischen Feldes und der Kalibrierungsdaten zum Schätzen einer zeitlichen Variation der Zusammensetzung des Fluids; und

Verwenden der geschätzten zeitlichen Variation der Zusammensetzung des Fluids zum Schätzen eines Durchschnittswerts eines Charakteristikum des Fluids über die Messzeitperiode.


 
14. Verfahren nach Anspruch 13, wobei das Charakteristikum des Fluids eine Eigenschaft des Fluids umfasst.
 
15. Verfahren nach Anspruch 13 oder 14, wobei das Charakteristikum des Fluids eine Dichte des Fluids umfasst.
 
16. Verfahren nach einem der Ansprüche 13 bis 15, wobei das Charakteristikum des Fluids eine Gasleerraumfraktion des Fluids umfasst.
 
17. Verfahren nach einem der Ansprüche 13 bis 16, wobei das Charakteristikum des Fluids mindestens eines von Blasengröße, Blasenzahl und Fluidflussgeschwindigkeit umfasst.
 
18. Verfahren nach einem der Ansprüche 13 bis 17, umfassend Verwenden der gemessenen zusätzlichen Energie, die durch das Fluid hindurch über die Messzeitperiode übertragen wurde, um einen unabhängig gemessenen Durchschnittswert des Fluids über die Messzeitperiode zu ermitteln.
 
19. Verfahren nach Anspruch 18, umfassend Ermitteln eines Werts einer Zielfunktion aus dem geschätzten Durchschnittswert des Charakteristikums des Fluids und des unabhängig gemessenen Durchschnittswerts des Charakteristikums des Fluids.
 
20. Verfahren nach Anspruch 19, wobei der Wert der Zielfunktion eine Differenz zwischen dem geschätzten Durchschnittswert des Charakteristikums des Fluids und dem unabhängig gemessenen Durchschnittswert des Charakteristikums des Fluids umfasst.
 
21. Verfahren nach Anspruch 19 oder 20, umfassend Vergleichen eine Größe des Wertes der Zielfunktion mit einem vorgegebenen Schwellenwert.
 
22. Verfahren nach Anspruch 21, umfassend selektives Ausgeben der geschätzten zeitlichen Variation der Zusammensetzung des Fluids über die Messzeitperiode gemäß einem Ergebnis des Vergleichs zwischen der Größe des Wertes der Zielfunktion und dem vorgegebenen Schwellenwert.
 
23. Verfahren nach Anspruch 21 oder 22, umfassend:

(i) Verwenden der gemessenen zeitlichen Variation in der Eigenschaft des elektromagnetischen Feldes und der Kalibrierungsdaten zum erneuten Schätzen der zeitlichen Variation der Zusammensetzung des Fluids;

(ii) Verwenden der erneut geschätzten zeitlichen Variation der Zusammensetzung des Fluids zum erneuten Schätzen des Durchschnittswerts eines Charakteristikum des Fluids über die Messzeitperiode;

(iii) erneutes Ermitteln eines Werts einer Zielfunktion aus dem geschätzten Durchschnittswert des Charakteristikums des Fluids und dem unabhängig gemessenen Durchschnittswert des Charakteristikums des Fluids;

(iv) Vergleichen der Größe des Wertes der Zielfunktion mit dem vorgegebenen Schwellenwert; und

(v) Wiederholen der Schritte (i) bis (iv), bis die Größe des Wertes der Zielfunktion kleiner als der vorgegebene Schwellenwert ist.


 
24. Verfahren nach einem der Ansprüche 13 bis 23, wobei die Kalibrierungsdaten Werte der Eigenschaft des elektromagnetischen Feldes als Funktion der Gasleerraumfraktion und Flüssigkeitszusammensetzung über eine Kalibrierungszeitperiode umfassen.
 
25. Verfahren nach Anspruch 24, wobei eine Dauer der Kalibrierungszeitperiode gleich einer Dauer der Messzeitperiode ist.
 
26. Verfahren nach einem der Ansprüche 13 bis 25, wobei das Fluid Wasser und Öl umfasst.
 
27. Verfahren nach Anspruch 26, wobei die Flüssigkeitszusammensetzung einen Wasseranteilwert umfasst oder als solcher ausgedrückt wird.
 
28. Verfahren nach einem der Ansprüche 13 bis 27, das umfasst:

Identifizieren eines sich wiederholenden Merkmals in der gemessenen zeitlichen Variation der Eigenschaft des elektromagnetischen Feldes; und

Ermitteln eines nominellen Werts der Eigenschaft des elektromagnetischen Feldes, die mit dem sich wiederholenden Merkmal verknüpft ist.


 
29. Vorrichtung zur Verwendung beim Messen einer Zusammensetzung eines Mehrphasenfluids, wobei die Vorrichtung umfasst:

eine Fluidrohrleitung mit einer Wand, die einen Fluidflusspfad für ein Mehrphasenfluid definiert, wobei die Wand ein elektrisch nicht-leitfähiges Material umfasst;

eine elektromagnetische Messanordnung zum Aufbauen eines elektromagnetischen Feldes, das sich durch das elektrisch nicht-leitfähige Material der Wand der Fluidrohrleitung hindurch in das Fluid hinein erstreckt, und zum Messen einer Eigenschaft des elektromagnetischen Feldes über eine Messzeitperiode; und
eine Fluidmessanordnung zum Übertragen von zusätzlicher Energie durch das Fluid hindurch über die Messzeitperiode unabhängig von dem elektromagnetischen Feld, und Messen der zusätzlichen Energie, die durch das Fluid hindurch über die Messzeitperiode übertragen wurde, wobei das elektromagnetische Feld ein elektromagnetisches Hochfrequenz- (HF)-Feld umfasst, wobei die Eigenschaft des elektromagnetischen Feldes eine Resonanzfrequenz des elektromagnetischen Feldes umfasst, wobei die elektromagnetische Messanordnung eine örtliche Eingrenzungsanordnung umfasst, um das elektromagnetische Feld mindestens teilweise örtlich einzugrenzen, wobei die örtliche Eingrenzungsanordnung ausgestaltet ist, um das elektromagnetische Feld über dem Fluidflusspfad aufzubauen, und wobei die örtliche Eingrenzungsanordnung einen Resonanzhohlraum für das elektromagnetische Feld definiert, durch das hindurch sich der Fluidflusspfad erstreckt, wobei die Fluidrohrleitung einen quer verlaufenden Querschnitt in einer Ebene quer zu dem Fluidflusspfad aufweist, wobei der quer verlaufende Querschnitt um eine oder mehrere Symmetrielinien herum symmetrisch ist, und wobei die Fluidmessanordnung umfasst:

eine Quelle eines Strahls der zusätzlichen Energie, die auf einer Seite der Fluidrohrleitung positioniert worden ist; und

einen Detektor des Strahls der zusätzlichen Energie, der auf der anderen Seite der Fluidrohrleitung positioniert ist,

wobei die Quelle und der Detektor relativ zu der Fluidrohrleitung zur Übertragung des Strahls der zusätzlichen Energie über die Fluidrohrleitung aus der Quelle zu dem Detektor so angeordnet sind, dass der einzige Bereich in der Querebene innerhalb der Wand, der dem Strahl der zusätzlichen Energie ausgesetzt ist, allgemein durch eine der Symmetrielinien und die Wand definiert ist, und wobei der ausgesetzte Bereich zwischen 40 % und 60 % eines Gesamtbereichs stellt, der durch die Wand in der Querebene definiert wird.
 
30. Vorrichtung nach Anspruch 29, wobei die zusätzliche Energie, die durch das Fluid hindurch übertragen wird, elektromagnetische Energie mit einer anderen Frequenz als derjenigen des elektromagnetischen Feldes umfasst.
 
31. Vorrichtung nach Anspruch 29 oder 30, wobei die zusätzliche Energie, die durch das Fluid hindurch übertragen wird, mindestens eine von gamma-Strahlung, gamma-Strahlen, Röntgenstrahlung und Röntgenstrahlen umfasst.
 
32. Vorrichtung nach einem der Ansprüche 29 bis 31, wobei die zusätzliche Energie, die durch das Fluid hindurch übertragen wird, ein Energietyp ist, der von jeglicher Energie verschieden ist, die zwischen dem elektromagnetischen Feld und dem Fluid gekoppelt ist.
 
33. Vorrichtung nach einem der Ansprüche 29 bis 32, wobei die zusätzliche Energie, die durch das Fluid hindurch übertragen wird, akustische Energie umfasst.
 
34. Vorrichtung nach einem der Ansprüche 29 bis 33, wobei die Fluidrohrleitung eine Vielzahl von Segmenten umfasst, die aneinander befestigt sind, um den Fluidflusspfad zu definieren, wobei sich das elektromagnetische Feld durch das elektrisch nicht-leitfähige Material der Wand von einem Segment hindurch in das Fluid hinein erstreckt, und die zusätzliche Energie durch Fluid hindurch übertragen wird, das durch einen Abschnitt des Fluidflusspfads fließt, der durch eine Wand eines anderen Segments der Fluidrohrleitung definiert ist.
 
35. Vorrichtung nach einem der Ansprüche 29 bis 34, wobei die Wand der Fluidrohrleitung ein Polymermaterial umfasst oder daraus gebildet ist, und vorzugsweise ein Polyetheretherketon- (PEEK)-Material umfasst oder daraus gebildet ist.
 
36. Vorrichtung nach einem der Ansprüche 29 bis 35, wobei der Resonanzhohlraum das elektrisch nicht-leitfähige Material der Wand der Fluidrohrleitung einschließt.
 
37. Vorrichtung nach einem der Ansprüche 29 bis 36, wobei der ausgesetzte Bereich zwischen 45 % und 55 %, zwischen 49 % und 51 %, im Wesentlichen gleich 50 %, oder 50 % des Gesamtbereichs stellt.
 


Revendications

1. Procédé à utiliser pour mesurer une composition d'un fluide multiphasique, le procédé comprenant :

l'écoulement d'un fluide multiphasique dans un chemin d'écoulement de fluide délimité par une paroi d'un conduit de fluide, la paroi comprenant un matériau non électroconducteur ;

l'établissement d'un champ électromagnétique qui s'étend dans le matériau non électroconducteur de la paroi du conduit de fluide jusqu'à travers le fluide ;

la mesure d'une propriété du champ électromagnétique sur une période de mesure de manière à fournir une variation temporelle mesurée dans la propriété du champ électromagnétique ;

la transmission d'énergie supplémentaire à travers le fluide sur la période de mesure indépendamment du champ électromagnétique ; et

la mesure de l'énergie supplémentaire transmise à travers le fluide sur la période de mesure ; et
le confinement du champ électromagnétique dans une cavité de résonance dans laquelle le chemin d'écoulement de fluide s'étend,
dans lequel le champ électromagnétique comprend un champ électromagnétique à radiofréquence (RF) et dans lequel la propriété du champ électromagnétique comprend une fréquence de résonance du champ électromagnétique, dans lequel le conduit de fluide a une section transversale dans un plan transversal au chemin d'écoulement de fluide, laquelle section transversale est symétrique autour d'une ou plusieurs lignes de symétrie, et le procédé comprend en outre :
la transmission d'un faisceau de l'énergie supplémentaire dans le conduit de fluide depuis une source positionnée sur un côté du conduit de fluide vers un détecteur positionné sur l'autre côté du conduit de fluide de sorte que la seule surface dans le plan transversal à l'intérieur de la paroi qui est exposée au faisceau d'énergie supplémentaire est généralement délimitée par une des lignes de symétrie et la paroi, et dans lequel la surface exposée constitue entre 40 % et 60 % d'une surface totale délimitée par la paroi dans le plan transversal.
 
2. Procédé selon la revendication 1, comprenant l'établissement du champ électromagnétique dans le chemin d'écoulement de fluide.
 
3. Procédé selon la revendication 1 ou 2, dans lequel la cavité de résonance comprend le matériau non électroconducteur de la paroi du conduit de fluide.
 
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'énergie supplémentaire transmise à travers le fluide comprend une énergie électromagnétique d'une fréquence différente de celle du champ électromagnétique.
 
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'énergie supplémentaire transmise à travers le fluide comprend au moins un parmi un rayonnement gamma, des rayons gamma, un rayonnement de rayons X et des rayons X.
 
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'énergie supplémentaire transmise à travers le fluide est d'un type différent de toute énergie couplée entre le champ électromagnétique et le fluide.
 
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'énergie supplémentaire transmise à travers le fluide comprend une énergie acoustique.
 
8. Procédé selon l'une quelconque des revendications précédentes, comprenant :

la transmission de l'énergie supplémentaire dans le matériau non électroconducteur de la paroi du conduit de fluide ; et

la mesure de l'énergie supplémentaire transmise à travers le fluide et le matériau non électroconducteur de la paroi du conduit de fluide sur la période de mesure.


 
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la mesure de l'énergie supplémentaire transmise à travers le fluide sur la période de mesure comprend la mesure de l'énergie supplémentaire transmise à travers le fluide et la mesure de l'énergie supplémentaire reçue du fluide sur la période de mesure.
 
10. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'énergie supplémentaire reçue du fluide comprend une énergie diffusée du fluide.
 
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel la surface exposée constitue entre 45 % et 55 %, entre 49 % et 51 %, ou 50 % ou sensiblement égale à 50 % de la surface totale.
 
12. Procédé selon l'une quelconque des revendications précédentes, comprenant la transmission du faisceau d'énergie supplémentaire de la source au détecteur le long d'un axe de faisceau de la source au détecteur le long d'un axe de faisceau qui est parallèle à, mais décalé de, la ligne de symétrie dans le plan transversal.
 
13. Procédé selon l'une quelconque des revendications précédentes, comprenant :

l'utilisation d'une variation temporelle mesurée dans la propriété du champ électromagnétique et de données d'étalonnage pour estimer une variation temporelle de la composition du fluide ; et

l'utilisation de la variation temporelle estimée de la composition du fluide pour estimer une valeur moyenne d'une caractéristique du fluide sur la période de mesure.


 
14. Procédé selon la revendication 13, dans lequel la caractéristique du fluide comprend une propriété du fluide.
 
15. Procédé selon la revendication 13 ou 14, dans lequel la caractéristique du fluide comprend une densité du fluide.
 
16. Procédé selon l'une quelconque des revendications 13 à 15, dans lequel la caractéristique du fluide comprend une fraction de vide gazeux du fluide.
 
17. Procédé selon l'une quelconque des revendications 13 à 16, dans lequel la caractéristique du fluide comprend au moins un parmi une dimension de bulles, un compte de bulles et une vélocité d'écoulement de fluide.
 
18. Procédé selon l'une quelconque des revendications 13 à 17, comprenant l'utilisation de l'énergie supplémentaire mesurée transmise à travers le fluide sur la période de mesure pour déterminer une valeur moyenne mesurée indépendamment de la caractéristique du fluide sur la période de mesure.
 
19. Procédé selon la revendication 18, comprenant la détermination d'une valeur d'une fonction de l'objectif de la valeur moyenne estimée de la caractéristique du fluide et la valeur moyenne mesurée indépendamment de la caractéristique du fluide.
 
20. Procédé selon la revendication 19, dans lequel la valeur de la fonction de l'objectif comprend une différence entre la valeur moyenne estimée de la caractéristique du fluide et la valeur moyenne mesurée indépendamment de la caractéristique du fluide.
 
21. Procédé selon la revendication 19 ou 20, comprenant la comparaison d'une ampleur de la valeur de la fonction de l'objectif avec une valeur seuil prédéterminée.
 
22. Procédé selon la revendication 21, comprenant la production sélective de la variation temporelle estimée de la composition du fluide sur la période de mesure selon un résultat de la comparaison entre l'ampleur de la valeur de la fonction de l'objectif et la valeur seuil prédéterminée.
 
23. Procédé selon la revendication 21 ou 22, comprenant :

(i) l'utilisation de la variation temporelle mesurée dans la propriété du champ électromagnétique et de données d'étalonnage pour estimer de nouveau la variation temporelle de la composition du fluide ;

(ii) l'utilisation de la variation temporelle estimée de nouveau de la composition du fluide pour estimer de nouveau la valeur moyenne de la caractéristique du fluide sur la période de mesure ;

(iii) une nouvelle détermination d'une valeur d'une fonction de l'objectif de la valeur moyenne estimée de la caractéristique du fluide et la valeur moyenne mesurée indépendamment de la caractéristique du fluide ;

(iv) la comparaison de l'ampleur de la valeur de la fonction de l'objectif avec la valeur seuil prédéterminée ; et

(v) la répétition des étapes (i) à (iv) jusqu'à ce que l'ampleur de la valeur de la fonction de l'objectif soit inférieure à celle de la valeur seuil prédéterminée.


 
24. Procédé selon l'une quelconque des revendications 13 à 23, dans lequel les données d'étalonnage comprennent des valeurs de la propriété du champ électromagnétique comme une fonction de la fraction de vide gazeux et de la composition liquide sur une période d'étalonnage.
 
25. Procédé selon la revendication 24, dans lequel une durée de la période d'étalonnage est égale à une durée de période de mesure.
 
26. Procédé selon l'une quelconque des revendications 13 à 25, dans lequel le fluide comprend de l'eau et de l'huile.
 
27. Procédé selon la revendication 26, dans lequel la composition liquide comprend, ou est exprimée comme, une valeur de teneur en eau.
 
28. Procédé selon l'une quelconque des revendications 13 à 27, comprenant :

l'identification d'une caractéristique récurrente dans la variation temporelle mesurée de la propriété du champ électromagnétique ; et

la détermination d'une valeur nominale de la propriété du champ électromagnétique associée à la caractéristique récurrente.


 
29. Appareil pour utilisation dans la mesure d'une composition d'un fluide multiphasique, l'appareil comprenant :

un conduit de fluide ayant une paroi délimitant un chemin d'écoulement de fluide pour un fluide multiphasique, la paroi comprenant un matériau non électroconducteur ;

un système de mesure électromagnétique pour établir un champ électromagnétique qui s'étend dans le matériau non électroconducteur de la paroi du conduit de fluide à travers le fluide et pour mesurer une propriété du champ électromagnétique sur une période de mesure ; et
un système de mesure de fluide pour transmettre une énergie supplémentaire à travers le fluide sur la période de mesure indépendamment du champ électromagnétique et mesurer l'énergie supplémentaire transmise à travers le fluide sur la période de mesure, dans lequel le champ électromagnétique comprend un champ électromagnétique à radiofréquence (RF), dans lequel la propriété du champ électromagnétique comprend une fréquence de résonance du champ électromagnétique, dans lequel le système de mesure électromagnétique comprend un système de confinement pour au moins partiellement confiner le champ électromagnétique, dans lequel le système de confinement est conçu pour établir le champ électromagnétique dans le chemin d'écoulement de fluide et dans lequel le système de confinement délimite une cavité de résonance pour le champ électromagnétique dans lequel le chemin d'écoulement de fluide s'étend, dans lequel le conduit de fluide a une section transversale dans un plan transversal au chemin d'écoulement de fluide, laquelle section transversale est symétrique autour d'une ou plusieurs lignes de symétrie et dans lequel le système de mesure de fluide comprend :

une source d'un faisceau de l'énergie supplémentaire positionnée sur un côté du conduit de fluide ; et

un détecteur du faisceau de l'énergie supplémentaire positionné sur l'autre côté du conduit de fluide,

dans lequel la source et le détecteur sont placés par rapport au conduit de fluide pour la transmission du faisceau de l'énergie supplémentaire dans le conduit de fluide de la source au détecteur de sorte que la seule surface dans le plan transversal à l'intérieur de la paroi qui est exposée au faisceau de l'énergie supplémentaire est généralement délimitée par une des lignes de symétrie et la paroi, et dans lequel la surface exposée constitue entre 40 % et 60 % d'une surface totale délimitée par la paroi dans le plan transversal.
 
30. Appareil selon la revendication 29, dans lequel l'énergie supplémentaire transmise à travers le fluide comprend une énergie électromagnétique d'une fréquence différente de celle du champ électromagnétique.
 
31. Appareil selon la revendication 29 ou 30, dans lequel l'énergie supplémentaire transmise à travers le fluide comprend au moins un parmi un rayonnement gamma, des rayons gamma, un rayonnement de rayons X et des rayons X.
 
32. Appareil selon l'une quelconque des revendications 29 à 31, dans lequel l'énergie supplémentaire transmise à travers le fluide est d'un type différent de toute énergie couplée entre le champ électromagnétique et le fluide.
 
33. Appareil selon l'une quelconque des revendications 29 à 32, dans lequel l'énergie supplémentaire transmise à travers le fluide comprend une énergie acoustique.
 
34. Appareil selon l'une quelconque des revendications 29 à 33, dans lequel le conduit de fluide comprend une pluralité de sections qui sont attachées ensemble pour délimiter le chemin d'écoulement de fluide, le champ électromagnétique s'étend dans le matériel non électroconducteur de la paroi d'une section à travers le fluide, et l'énergie supplémentaire est transmise à travers le fluide s'écoulant dans une partie du chemin d'écoulement de fluide délimité par une paroi d'une section différente du conduit de fluide.
 
35. Appareil selon l'une quelconque des revendications 29 à 34, dans lequel la paroi du conduit de fluide comprend un matériau polymère ou est formée à partir de celui-ci, et comprend de préférence un matériau de polyaryléther cétone (PEEK) ou est formée à partir de celui-ci.
 
36. Appareil selon l'une quelconque des revendications 29 à 35, dans lequel la cavité de résonance comprend le matériau non électroconducteur de la paroi du conduit de fluide.
 
37. Appareil selon l'une quelconque des revendications 29 à 36, dans lequel la surface exposée constitue entre 45 % et 55 %, entre 49 % et 51 %, ou 50 % ou sensiblement égale à 50 % de la surface totale.
 




Drawing



























REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description