(19)
(11)EP 3 264 687 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
24.02.2021 Bulletin 2021/08

(21)Application number: 17178825.0

(22)Date of filing:  29.06.2017
(51)International Patent Classification (IPC): 
H04L 12/40(2006.01)
H04L 12/46(2006.01)
H02G 3/00(2006.01)

(54)

METHODOLOGY FOR SIMPLIFICATION OF AIRCRAFT HARNESSING IN MULTI-REDUNDANT CONTROL SYSTEMS

VERFAHREN ZUR VEREINFACHUNG DER FLUGZEUGVERDRAHTUNG IN MEHRFACH REDUNDANTEN STEUERUNGSSYSTEMEN

MÉTHODOLOGIE DE SIMPLIFICATION DE CAPTAGE D'AÉRONEF DANS DES SYSTÈMES DE COMMANDE MULTIREDONDANTS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.06.2016 US 201615197139

(43)Date of publication of application:
03.01.2018 Bulletin 2018/01

(73)Proprietor: Hamilton Sundstrand Corporation
Charlotte, NC 28217-4578 (US)

(72)Inventors:
  • ELDRIDGE, Jeffrey A.
    Ellington, Connecticut CT 06029 (US)
  • AVRITCH, Steven A.
    Bristol, Connecticut CT 06010 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
US-A1- 2007 230 330
US-A1- 2016 028 835
US-A1- 2008 205 416
US-A1- 2016 134 899
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The subject matter disclosed herein generally relates to aircraft harnessing and, more particularly, to aircraft harnessing in multi-redundant control systems.

    [0002] In one or more aircrafts, multiple wiring harnesses are included to connect different components that can provide power and/or signal transfer capabilities for controlling and/or transferring data between the components. Further, in multi-redundant control systems that consist of multiple Line-Replaceable Units (LRU) that instantiate the redundant lanes of control, there are typically a variety of signals that must be routed to/from each redundant lane to all other redundant lanes. The crisscrossing of these inter-channel signals significantly increases the complexity of the aircraft harnessing and makes shielding of the cables bundles very difficult due to the harness bifurcations that are required to route wires.

    [0003] Accordingly, there is a need to provide a system and method for improving the wire harnessing in an aircraft.

    [0004] US 2008/0205416 discloses flight control computers with Ethernet based cross channel data links. US 2007/0320330 discloses a system and method for redundant switched communications.

    BRIEF DESCRIPTION



    [0005] According to one embodiment, a control system with aircraft harnessing for an aircraft is provided as claimed in claim 1. Further embodiments are given in the appended dependent claims.

    [0006] The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, that the following description and drawings are intended to be illustrative and explanatory in nature and non-limiting.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] The foregoing and other features, and advantages of the present disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

    FIG. 1 depicts aircraft harnessing in a multi-redundant control system;

    FIG. 2 depicts aircraft harnessing in a multi-redundant control system in accordance with one or more embodiments of the present disclosure;

    FIG. 3 depicts aircraft harnessing in a multi-redundant control system in accordance with one or more embodiments of the present disclosure; and

    FIG. 4 a flowchart of a method of implementing aircraft harnessing in a multi-redundant control system in accordance with one or more embodiments of the present disclosure.


    DETAILED DESCRIPTION



    [0008] As shown and described herein, various features of the disclosure will be presented. Various embodiments may have the same or similar features and thus the same or similar features may be labeled with the same reference numeral, but preceded by a different first number indicating the figure to which the feature is shown. Thus, for example, element "a" that is shown in FIG. X may be labeled "Xa" and a similar feature in FIG. Z may be labeled "Za." Although similar reference numbers may be used in a generic sense, various embodiments will be described and various features may include changes, alterations, modifications, etc. as will be appreciated by those of skill in the art, whether explicitly described or otherwise would be appreciated by those of skill in the art.

    [0009] One or more embodiments are directed toward aircraft harnessing in a multi-redundant control system. One or more embodiments as disclosed are applicable to a multi-redundant control system with any multiple of LRUs requiring interconnecting signals. Particularly, providing harnessing within an effector Line-Replaceable Units (LRU) that connects a plurality of control LRUs. The effector LRU can be an actuator and the control LRUs can be, for example, digital controllers, electronics of an actuator, an actuated control unit, a linear electric motor configured to control the actuator and aircraft hydraulics.

    [0010] In accordance with one or more embodiments as disclosed herein, the control system can facilitate a simplified aircraft harness scheme by crisscrossing the inter-lane signals in a remote LRU instead of within the harnessing itself. For example, in an aircraft installation where there are three independent control LRUs (such as the flight control computers) and a single effector LRU (such as an actuator), crisscrossing of the inter-lane signaling within the actuator dramatically simplifies the aircraft harnesses that are run through the aircraft. Also, one or more embodiments as disclosed herein may also reduce the quantity of uniquely keyed connectors by making the LRU Lane IDs independent of the wire harness connections.

    [0011] Turning now to the figures, FIG. 1 depicts aircraft harnessing in a multi-redundant control system 100. As shown, previous systems include providing an "octopus" style harnessing whereby each control LRU 110, 120, and 130 are each connected to each other as well as the effector LRU 140 by independent harnessing 111, 121, 131,112, 113, and 123. Specifically, the first control LRU 110 is connected to the effector LRU 140 using a first harnessing 111. The first control LRU 110 is also connected to the second control LRU 120 through a second harnessing 112. The first control LRU 110 is further connected to the third control LRU 130 using a third harnessing 113. The second control LRU 120 is connected to the effector LRU 140 using a fourth harnessing 121 and is connected to the third control LRU 130 using a fifth harnessing 123. The third control LRU 130 is connected to the effector LRU 140 using a sixth harnessing 131. Thus, for each control LRU a number of harnessing are needed to independently connect to all of the other devices in the system some of which can be located at a different end of the aircraft thereby requiring not only a plurality but also long harnesses to connect all the elements.

    [0012] FIG. 2 depicts aircraft harnessing in a multi-redundant control system 200 in accordance with one or more embodiments of the present disclosure. As shown the multi-redundant control system 200 includes a plurality of control LRUs 210, 220, and 230. The control LRUs 210, 220, and 230 can be redundant controllers for controlling an effector LRU 240. For example the control LRUs 210, 220, and 230 can be a flight control computer or other control circuitry that controls the LRU 240. The effector LRU 240 can be an actuator. For example, the effector LRU 240 can be an actuator that is configured to drive one or more hydraulics in the aircraft.

    [0013] The effector LRU 240 includes internal harnessing 212, 213, and 223 that provides connections between every connection port provided on the effector LRU 240. The internal harnessing can also be referred to a first interconnect wire 212, a second interconnect wire 213, and a third interconnect wire 223. Specifically, as shown the effector LRU 240 has three connection ports 241, 242, and 243 where the three control LRUs 210, 220, and 230 respectively are connected to the effector LRU 240. The internal harnessing 212, also called the first interconnect wire 212, provides a connection between the first connection port 241 and the second connection port 242. The internal harnessing 223, also called the third interconnect wire 223, provides a connection between the second connection port 242 and the third connection port 243. The internal harnessing 213, also called the second interconnect wire 213, provides a connection between the first connection port 241 and the third connection port 243. Accordingly, the effector LRU 240, which may be an actuator, provides internal connections 212, 213, and 223 between all connection ports 241, 242, and 243. Accordingly, is another embodiment that includes more connection ports, additional internal harnessing is provided such that each connection port is directly connected to all other connection ports.

    [0014] Accordingly, the multi-redundant control system 200 is able to provide a single harnessing for connection any of the control LRUs to the effector LRU 240. Specifically, as shown in FIG. 2, the first control LRU 210 is connected to the effector LRU 240 using a fist harnessing 211, the second control LRU 220 is connected to the effector LRU 240 using a second harnessing 221, and the third control LRU 230 is connected to the effector LRU 240 using a third harnessing 231. Each of the control LRUs 210, 220, and 230 is still able to communicate with any of the other control LRUs through the internal harnessing provided within the effector LRU 240. For example, the first control LRU 210 is able to directly communicate with the second control LRU 220 by transmitting and receiving signals through harnessing 211, then through harnessing 212 and finally through harnessing 221. The communication path for the first control LRU 210 to communicate with the third control LRU 230 includes harnessing 211, 213, and 231.

    [0015] FIG. 3 depicts aircraft harnessing in a multi-redundant control system 300 in accordance with one or more embodiments of the present disclosure. Specifically, FIG.3 depicts an example showing the particular wires included as well as the wire arrangement within each harnessing portion in accordance with one or more embodiments. The multi-redundant control system 300 includes an effector LRU 340, which may be an actuator, a first control LRU 310, a second control LRU 320, and a third control LRU 330. The first control LRU 310 is connected using a collection of wires 311 as shown that make up the first harnessing 311. Similarly, the second LRU 320 and the third LRU 330 are connected with similar wire bundles 321 and 331 that make up the second harnessing 321 and the third harnessing 331. Further, the effector LRU 340, which may be an actuator, includes internal wiring that connected each communication wire to a corresponding point.

    [0016] Specifically, FIG. 3 shows a first harnessing 311 that includes at least seven wires. A first wire (Motor Drive (4)) is a motor drive wire that provides electric power. The second wire (LVDT (5)) a linear variable differential transformer (LVDT) wire that transmits signals that are configured to provide position information. The third wire (RTD) is a resistance temperature detector (RTD) wire that transmits a signal that is configured to provide temperature information. The fourth wire (CLDL Rx Left - meaning Cross Lane Data Link Receive Left) is a wire configured to receive a data signal from another control LRU 330 that is wired to the "left" as well as a fifth wire (CLDL Tx Left-meaning Cross Lane Data Link Transmit Left) that is configured to transmit a data signal to the third control LRU 330. Further, a sixth and seventh wires (CLDL Rx Right and CLDL Tx Right) are provided that provided transmit and receive capabilities between the first control LRU 310 and the second control LRU 320 which is connected to the "right" of the first control LRU 310.

    [0017] The "left" and "right" terminology is used as a relative indicator and does not indicate that the LRUs are physically arranged in such a manner. For example, according to one or more examples, the first control LRU 310 may be located above, in front of, behind, to the left, or could in-fact be placed to the right of the second control LRU 320. The second control LRU 320 and the third control LRU 330 are connected to the effector LRU 340 using identical harnessing that includes the seven wires as discussed above.

    [0018] Accordingly, the effector LRU 340 includes the discussed internal wires that provides connection between each connected control LRU 310, 320, and 330 while allowing each of the connected control LRU 310, 320, and 330 to only use a single harnessing made up a number of wires for connection with the effector LRU 340 which then provides communication paths internally for each of the connected LRUs to be able to communicate with other connected LRUs.

    [0019] FIG. 4 a flowchart of a method 400 of implementing aircraft harnessing in a multi-redundant control system in accordance with one or more embodiments of the present disclosure. The method 400 includes providing an effector Line-Replaceable Unit (LRU) (operation 405).

    [0020] The method 400 includes connecting a first connection port of the effector LRU to a second connection port of the LRU internally using a first interconnect wire (operation 410). The method 400 also includes connecting the first connection port to a third connection port of the LRU internally using a second interconnect wire (operation 415). Further, the method 400 includes connecting the second connection port and the third connection port using a third interconnect wire (operation 420). The method 400 includes providing a first control LRU, a second control LRU, and a third control LRU that are connected to the first connection port, the second connection port, and the third connection port respectively (operation 425). Also, the method 400 includes transmitting signals between the first control LRU, the second control LRU, and the third control LRU using the first interconnect wire, the second interconnect wire, and the third interconnect wire (operation 430).

    [0021] According to one or more embodiments, a control system with aircraft harnessing for an aircraft is provided. The control system includes an effector Line-Replaceable Unit (LRU) including a first connection port J1, a second connection port J2, and a first interconnect wire internally connecting the first connection port J1 and the second connection port J2. The control system also includes a first control LRU connected using a first harnessing 311 to the effector LRU, and a second control LRU connected using a second harnessing 321 to the effector LRU. The first control LRU and the second control LRU are configured to communicate using the first interconnect wire in the effector LRU.

    [0022] According to another embodiment, the system further includes a third control LRU 330 connecting using a third harnessing 331 to the effector LRU, wherein the effector LRU further includes a third connection port J3, a second interconnect wire internally connecting the first connection port J1 and the third connection port, and a third interconnect wire internally connecting the second connection port J2 and the third connection port J3. The first control LRU, the second control LRU, and the third control LRU are configured to communicate with each other using the first interconnect wire, the second interconnect wire, and the third interconnect wire in the effector LRU.

    [0023] According to another embodiment, the first harnessing 311 includes a communication cable configured to transmit data signals between the first control LRU and the effector LRU. The communication cable includes a first receive wire CLDL Rx Right and a first transmit wire CLDL Tx Right that are configured to receive and transmit data signals with the second control LRU.

    [0024] Further, according to another embodiment, the first harnessing 311 includes a communication cable that includes a first receive wire CLDL Rx Right and a first transmit wire CLDL Tx Right that are configured to receive and transmit data signals with the second control LRU, and a second receive wire CLDL Rx Left and a second transmit wire CLDL Rx Left that are configured to receive and transmit data signals with the third control LRU.

    [0025] According to another embodiment the first harnessing can further include a motor drive wire (Motor Drive) that provides electric power, a linear variable differential transformer (LVDT) wire that transmits signals that are configured to provide position information, and a resistance temperature detector (RTD) wire that transmits a signal that is configured to provide temperature information. According to other embodiments, there can be any number of information sources in the Effector. Therefore, sources of data in the Effector can evolve from any type of sensor or information source such as, but not limited to, LVDT, RVDT, Resolver, Voltage Sensor, Current Sensor, Thermistor, pressure sensor, etc.

    [0026] According to one or more embodiments, the effector LRU can be an actuator and/or the first control LRU and the second control LRU are redundant controllers configured to control the effector LRU. Further, according to an embodiment, the first control LRU is a flight control computer. Further, the third control LRU is a redundant controller configured to control the effector LRU along with the first control LRU and the second control LRU.

    [0027] According to another embodiment, the control system further includes a plurality of control LRUs that are each connected to each other using a plurality of interconnect wires disposed within the effector LRU.

    [0028] According to one or more embodiments, an effector Line-Replaceable Unit (LRU) can be provided. The effector LRU includes a first connection port configured to connect to a first control LRU using a first harnessing that includes a first communication cable, a second connection port configured to connect to a second control LRU using a second harnessing that includes a second communication cable, and a third connection port configured to connect to a third control LRU using a third harnessing that includes a third communication cable. The effector LRU further includes a first interconnect wire internally connecting the first connection port and the second connection port, a second interconnect wire internally connecting the first connection port and the third connection port, and a third interconnect wire internally connecting the second connection port and the third connection port. The first control LRU, the second control LRU, and the third control LRU are configured to communicate with each other using the first interconnect wire, the second interconnect wire, and the third interconnect wire in the effector LRU.

    [0029] According to another embodiment,, the first communication cable includes a first receive wire and a first transmit wire that are configured to receive and transmit data signals with the second control LRU, and a second receive wire and a second transmit wire that are configured to receive and transmit data signals with the third control LRU.

    [0030] According to another embodiment, the first harnessing further includes a motor drive wire that provides electric power, a linear variable differential transformer (LVDT) wire that transmits signals that are configured to provide position information, and a resistance temperature detector (RTD) wire that transmits a signal that is configured to provide temperature information.

    [0031] One or more embodiments as shown address a triplex redundancy were three control LRUs are provided and connected using internal wires in the effector LRU. According to other embodiments, additional levels of redundancy are also covered such as dual, triplex, quad, etc. Particularly, the design can scale by providing the effector LRU with additional connections ports and internal wiring that connects each port to the others allowing any number of control LRUs to connect by using a single harnessing while maintaining the ability to talk to all other control LRUs.

    [0032] One or more embodiments as disclosed herein may help avoid the routing of inter-lane signals as traditionally performed in the aircraft harness itself helping avoid a complex "octopus" style harnesses. Further, one or more embodiments can help avoid including such harnessing that can be material intensive helping avoid concerns that include expense, weight, and difficulty shielding, and susceptibility to electromagnetic interference. Further, another advantage of one or more embodiments includes the ability relocate a controller LRU and one harness that connects to that LRU instead of the plurality of harnesses that would normally connect the controller LRU to all the other controller LRUs and effector LRU. Further, by having a single harnessing connecting each controller LRU to the effector LRU another benefit provided is a reduction in exposure to environmental damage susceptibility. Also, another embodiment includes flexibility in placement and reduced internal footprint providing more flexibility in placement to address ballistic concerns.

    [0033] While the present disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present disclosure is not limited to such disclosed embodiments. Rather, the present disclosure can be modified to incorporate any number of variations, alterations, substitutions, combinations, sub-combinations, or equivalent arrangements not heretofore described, but which are commensurate with the scope of the present disclosure. Additionally, while various embodiments of the present disclosure have been described, it is to be understood that aspects of the present disclosure may include only some of the described embodiments.

    [0034] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

    [0035] The descriptions of the various embodiments have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.

    [0036] Accordingly, the present disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.


    Claims

    1. A control system with aircraft harnessing for an aircraft, the control system comprising:

    a single effector Line-Replaceable Unit LRU, (240) comprising a first connection port (241, 242, 243), a second connection port (241, 242, 243), a third connection port (241, 242, 243), and characterised by comprising a first interconnect wire (212, 213, 223) disposed internal to the effector LRU (240) and internally connecting only the first connection port (241, 242, 243) with only the second connection port (241, 242, 243), a second interconnect wire (212, 213, 223) disposed internal to the effector LRU (240) and internally connecting only the first connection port (241, 242, 243) with only the third connection port (241, 242, 243), and a third interconnect wire (212, 213, 223) disposed internal to the effector LRU (240) and internally connecting only the second connection port (241, 242, 243) with only the third connection port (241, 242, 243);

    a first control LRU (210, 220, 230) connected using a first harnessing (211, 221, 231) to the effector LRU (240);

    a second control LRU (210, 220, 230) connected using a second harnessing (211, 221, 231) to the effector LRU (240); and

    a third control LRU (210, 220, 230) connected using a third harnessing (211, 221, 231) to the effector LRU (240),

    wherein the first control LRU (210, 220, 230) and the second control LRU (210, 220, 230) are configured to communicate using the first harnessing and the second harnessing and using only the first interconnect wire (212, 213, 223) internal to the effector LRU (240), the first control LRU (210, 220, 230) and the third control LRU (210, 220, 230) are configured to communicate using the first harnessing and the third harnessing and using only the second interconnect wire (212, 213, 223) internal to the effector LRU (240), and the second control LRU (210, 220, 230) and the third control LRU (210, 220, 230) are configured to communicate using the second harnessing and the third harnessing and using only the third interconnect wire (212, 213, 223) internal to the effector LRU (240),.


     
    2. The control system of claim 1, wherein the first harnessing comprises:
    a communication cable configured to transmit data signals between the first control LRU and the effector LRU.
     
    3. The control system of claim 2, wherein the communication cable comprises:
    a first receive wire and a first transmit wire that are configured to receive and transmit data signals with the second control LRU.
     
    4. The control system of claim 1, wherein the first harnessing comprises:
    a communication cable that comprises:

    a first receive wire and a first transmit wire that are configured to receive and transmit data signals with the second control LRU; and

    a second receive wire and a second transmit wire that are configured to receive and transmit data signals with the third control LRU.


     
    5. The control system of any preceding claim, wherein the first harnessing further comprises:

    a motor drive wire that provides electric power;

    a linear variable differential transformer, LVDT, wire that transmits signals that are configured to provide position information; and

    a resistance temperature detector, RTD, wire that transmits a signal that is configured to provide temperature information.


     
    6. The control system of any preceding claim, wherein the effector LRU is an actuator.
     
    7. The control system of any preceding claim, wherein the first control LRU and the second control LRU are redundant controllers configured to control the effector LRU.
     
    8. The control system of any preceding claim, wherein the first control LRU is a flight control computer.
     
    9. The control system of claim 1 or 4, wherein the third control LRU is a redundant controller configured to control the effector LRU along with the first control LRU and the second control LRU.
     
    10. The control system of any preceding claim, further comprising a plurality of control LRUs that are each connected to each other using a plurality of interconnect wires disposed within the effector LRU.
     


    Ansprüche

    1. Steuerungssystem mit Flugzeugverdrahtung für ein Flugzeug, wobei das Steuerungssystem Folgendes umfasst:

    eine Einzeleffektor-Line-Replaceable-Unit LRU (240), umfassend einen ersten Verbindungsanschluss (241, 242, 243), einen zweiten Verbindungsanschluss (241, 242, 243), einen dritten Verbindungsanschluss (241, 242, 243), und dadurch gekennzeichnet, dass sie Folgendes umfasst: einen ersten Verbindungsdraht (212, 213, 223), der in der Effektor-LRU (240) angeordnet ist und nur den ersten Verbindungsanschluss (241, 242, 243) nur mit dem zweiten Verbindungsanschluss (241, 242, 243) intern verbindet, einen zweiten Verbindungsdraht (212, 213, 223), der in der Effektor-LRU (240) angeordnet ist und nur den ersten Verbindungsanschluss (241, 242, 243) nur mit dem dritten Verbindungsanschluss (241, 242, 243) intern verbindet, und einen dritten Verbindungsdraht (212, 213, 223), der in der Effektor-LRU (240) angeordnet ist und nur den zweiten Verbindungsanschluss (241, 242, 243) nur mit dem dritten Verbindungsanschluss (241, 242, 243) intern verbindet;

    eine erste Steuerungs-LRU (210, 220, 230), die unter Verwendung einer ersten Verdrahtung (211, 221, 231) mit der Effektor-LRU (240) verbunden ist;

    eine zweite Steuerungs-LRU (210, 220, 230), die unter Verwendung einer zweiten Verdrahtung (211, 221, 231) mit der Effektor-LRU (240) verbunden ist; und

    eine dritte Steuerungs-LRU (210, 220, 230), die unter Verwendung einer dritten Verdrahtung (211, 221, 231) mit der Effektor-LRU (240) verbunden ist,

    wobei die erste Steuerungs-LRU (210, 220, 230) und die zweite Steuerungs-LRU (210, 220, 230) konfiguriert sind, um unter Verwendung der ersten Verdrahtung und der zweiten Verdrahtung und nur unter Verwendung des ersten Verbindungsdrahts (212, 213, 223) in der Effektor-LRU (240) zu kommunizieren, die erste Steuerungs-LRU (210, 220, 230) und die dritte Steuerungs-LRU (210, 220, 230) konfiguriert sind, um unter Verwendung der ersten Verdrahtung und der dritten Verdrahtung und nur unter Verwendung des zweiten Verbindungsdrahts (212, 213, 223) in der Effektor-LRU (240) zu kommunizieren, und die zweite Steuerungs-LRU (210, 220, 230) und die dritte Steuerungs-LRU (210, 220, 230) konfiguriert sind, um unter Verwendung der zweiten Verdrahtung und der dritten Verdrahtung und nur unter Verwendung des dritten Verbindungsdrahts (212, 213, 223) in der Effektor-LRU (240) zu kommunizieren.


     
    2. Steuerungssystem nach Anspruch 1, wobei die erste Verdrahtung Folgendes umfasst:
    ein Kommunikationskabel, das konfiguriert ist, um Datensignale zwischen der ersten Steuerungs-LRU und der Effektor-LRU zu übertragen.
     
    3. Steuerungssystem nach Anspruch 2, wobei das Kommunikationskabel Folgendes umfasst:
    einen ersten Empfangsdraht und einen ersten Übertragungsdraht, die konfiguriert sind, um Datensignale mit der zweiten Steuerungs-LRU zu empfangen und zu übertragen.
     
    4. Steuerungssystem nach Anspruch 1, wobei die erste Verdrahtung Folgendes umfasst:
    ein Kommunikationskabel, das Folgendes umfasst:

    einen ersten Empfangsdraht und einen ersten Übertragungsdraht, die konfiguriert sind, um Datensignale mit der zweiten Steuerungs-LRU zu empfangen und zu übertragen; und

    einen zweiten Empfangsdraht und einen zweiten Übertragungsdraht, die konfiguriert sind, um Datensignale mit der dritten Steuerungs-LRU zu empfangen und zu übertragen.


     
    5. Steuerungssystem nach einem der vorhergehenden Ansprüche, wobei die erste Verdrahtung ferner Folgendes umfasst:

    einen Motorantriebsdraht, der elektrische Leistung bereitstellt;

    einen Draht eines Linear Variable Differential Transformer, LVDT, der Signale überträgt, die konfiguriert sind, um Positionsinformationen bereitzustellen; und

    einen Draht eines Widerstandstemperaturdetektors, RTD, der ein Signal überträgt, das konfiguriert ist, um Temperaturinformationen bereitzustellen.


     
    6. Steuerungssystem nach einem der vorhergehenden Ansprüche, wobei die Effektor-LRU ein Aktor ist.
     
    7. Steuerungssystem nach einem der vorhergehenden Ansprüche, wobei die erste Steuerungs-LRU und die zweite Steuerungs-LRU redundante Steuerungen sind, die konfiguriert sind, um die Effektor-LRU zu steuern.
     
    8. Steuerungssystem nach einem der vorhergehenden Ansprüche, wobei die erste Steuerungs-LRU ein Flugsteuerungscomputer ist.
     
    9. Steuerungssystem nach Anspruch 1 oder 4, wobei die dritte Steuerungs-LRU eine redundante Steuerung ist, die konfiguriert ist, um die Effektor-LRU zusammen mit der ersten Steuerungs-LRU und der zweiten Steuerungs-LRU zu steuern.
     
    10. Steuerungssystem nach einem der vorhergehenden Ansprüche, ferner umfassend eine Vielzahl von Steuerungs-LRUs, die jeweils unter Verwendung einer Vielzahl von Verbindungsdrähten miteinander verbunden sind, die in der Effektor-LRU angeordnet sind.
     


    Revendications

    1. Système de commande avec captage d'aéronef pour un aéronef, le système de commande comprenant :

    un élément remplaçable en escale LRU d'effecteur unique (240) comprenant un premier orifice de raccordement (241, 242, 243), un deuxième orifice de raccordement (241, 242, 243), un troisième orifice de raccordement (241, 242, 243), et caractérisé par le fait de comprendre un premier fil d'interconnexion (212, 213, 223) disposé à l'intérieur du LRU d'effecteur (240) et reliant de manière interne uniquement le premier orifice de raccordement (241, 242, 243) avec uniquement le deuxième orifice de raccordement (241, 242, 243), un deuxième fil d'interconnexion (212, 213, 223) disposé à l'intérieur du LRU d'effecteur (240) et reliant de manière interne uniquement le premier orifice de raccordement (241, 242, 243) avec uniquement le troisième orifice de raccordement (241, 242, 243), et un troisième fil d'interconnexion (212, 213, 223) disposé à l'intérieur du LRU d'effecteur (240) et reliant de manière interne uniquement le deuxième orifice de raccordement (241, 242, 243) avec uniquement le troisième orifice de raccordement (241, 242, 243) ;

    un premier LRU de commande (210, 220, 230) relié à l'aide d'un premier captage (211, 221, 231) au LRU d'effecteur (240) ;

    un deuxième LRU de commande (210, 220, 230) relié à l'aide d'un deuxième captage (211, 221, 231) au LRU d'effecteur (240) ; et

    un troisième LRU de commande (210, 220, 230) relié à l'aide d'un troisième captage (211, 221, 231) au LRU d'effecteur (240) ;

    dans lequel le premier LRU de commande (210, 220, 230) et le deuxième LRU de commande (210, 220, 230) sont conçus pour communiquer à l'aide du premier captage et du deuxième captage et à l'aide uniquement du premier fil d'interconnexion (212, 213, 223) à l'intérieur du LRU d'effecteur (240), le premier LRU de commande (210, 220, 230) et le troisième LRU de commande (210, 220, 230) sont conçus pour communiquer à l'aide du premier captage et du troisième captage et à l'aide uniquement du deuxième fil d'interconnexion (212, 213, 223) à l'intérieur du LRU d'effecteur (240), et le deuxième LRU de commande (210, 220, 230) et le troisième LRU de commande (210, 220, 230) sont conçus pour communiquer à l'aide du deuxième captage et du troisième captage et à l'aide uniquement du troisième fil d'interconnexion (212, 213, 223) à l'intérieur du LRU d'effecteur (240).


     
    2. Système de commande selon la revendication 1, dans lequel le premier captage comprend :
    un câble de communication conçu pour transmettre des signaux de données entre le premier LRU de commande et le LRU d'effecteur.
     
    3. Système de commande selon la revendication 2, dans lequel le câble de communication comprend :
    un premier fil de réception et un premier fil d'émission qui sont conçus pour recevoir et émettre des signaux de données avec le deuxième LRU de commande.
     
    4. Système de commande selon la revendication 1, dans lequel le premier captage comprend :
    un câble de communication qui comprend :

    un premier fil de réception et un premier fil d'émission qui sont conçus pour recevoir et émettre des signaux de données avec le deuxième LRU de commande ; et

    un deuxième fil de réception et un deuxième fil d'émission qui sont conçus pour recevoir et émettre des signaux de données avec le troisième LRU de commande.


     
    5. Système de commande selon une quelconque revendication précédente, dans lequel le premier captage comprend en outre :

    un fil d'entraînement de moteur qui fournit une énergie électrique ;

    un fil de transformateur différentiel variable linéaire, LVDT, qui émet des signaux qui sont conçus pour fournir des informations de position ; et

    un fil de détecteur de température à résistance, RTD, qui émet un signal qui est conçu pour fournir des informations de température.


     
    6. Système de commande selon une quelconque revendication précédente, dans lequel le LRU d'effecteur est un actionneur.
     
    7. Système de commande selon une quelconque revendication précédente, dans lequel le premier LRU de commande et le deuxième LRU de commande sont des dispositifs de commande redondants conçus pour commander le LRU d'effecteur.
     
    8. Système de commande selon une quelconque revendication précédente, dans lequel le premier LRU de commande est un ordinateur de commande de vol.
     
    9. Système de commande selon la revendication 1 ou 4, dans lequel le troisième LRU de commande est un dispositif de commande redondant conçu pour commander le LRU d'effecteur ainsi que le premier LRU de commande et le deuxième LRU de commande.
     
    10. Système de commande selon une quelconque revendication précédente, comprenant en outre une pluralité de LRU de commande qui sont reliés les uns aux autres à l'aide d'une pluralité de fils d'interconnexion disposés à l'intérieur du LRU d'effecteur.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description