(19)
(11)EP 3 264 824 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.11.2020 Bulletin 2020/48

(21)Application number: 16869594.8

(22)Date of filing:  16.06.2016
(51)International Patent Classification (IPC): 
H04W 40/10(2009.01)
H04W 40/30(2009.01)
H04W 84/18(2009.01)
H04W 40/24(2009.01)
H04L 12/721(2013.01)
(86)International application number:
PCT/CN2016/086032
(87)International publication number:
WO 2017/092281 (08.06.2017 Gazette  2017/23)

(54)

ROUTE SELECTION METHOD AND APPARATUS

VERFAHREN UND VORRICHTUNG ZUR ROUTENAUSWAHL

PROCÉDÉ ET APPAREIL DE SÉLECTION DE ROUTE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.11.2015 CN 201510859437

(43)Date of publication of application:
03.01.2018 Bulletin 2018/01

(73)Proprietor: Huawei Technologies Co., Ltd.
Longgang District Shenzhen, Guangdong 518129 (CN)

(72)Inventors:
  • CHEN, Qiulin
    Shenzhen Guangdong 518129 (CN)
  • TONG, Lei
    Shenzhen Guangdong 518129 (CN)
  • LI, Guohuai
    Shenzhen Guangdong 518129 (CN)

(74)Representative: Maiwald Patent- und Rechtsanwaltsgesellschaft mbH 
Elisenhof Elisenstraße 3
80335 München
80335 München (DE)


(56)References cited: : 
EP-A1- 2 592 870
CN-A- 104 509 168
US-A1- 2005 195 801
US-A1- 2009 010 189
US-A1- 2014 036 683
CN-A- 101 299 707
CN-A- 105 515 994
US-A1- 2007 204 021
US-A1- 2011 194 472
  
  • DONG-HYUN KIM ET AL: "Traffic Load and Lifetime Deviation Based Power-Aware Routing Protocol for Wireless Ad Hoc Networks", 1 January 2006 (2006-01-01), WIRED/WIRELESS INTERNET COMMUNICATIONS LECTURE NOTES IN COMPUTER SCIENCE;;LNCS, SPRINGER, BERLIN, DE, PAGE(S) 325 - 336, XP019031642, ISBN: 978-3-540-34023-2 * paragraphs [03.1] - [03.2] *
  • ANTONIO M ORTIZ ET AL: "Adaptive routing for multihop IEEE 802.15.6 Wireless Body Area Networks", SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2012 20TH INTERNATIONAL CONFERENCE ON, IEEE, 11 September 2012 (2012-09-11), pages 1-5, XP032470594, ISBN: 978-1-4673-2710-7
  • CHEN, WANLI: 'THE RESEARCH OF ULTRA-LOW POWER ROUTING ALGORITHM BASED ON WMN' ENGINEERING MASTER'S DISSERTATION OF ZHENGZHOU UNIVERSITY 15 February 2015, XP009502630
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to the field of network technologies, and in particular, to a route selection method and apparatus.

BACKGROUND



[0002] A mesh network has advantages of a wide coverage area, low deployment costs, easy access, and the like, and therefore has an extremely broad application prospect. For example, a mesh network technology is commonly used in the Internet of Things.

[0003] Each mesh node that is to select a route in the mesh network selects a route based on signal strength of a mesh node that can provide a route. For example, a client generally accesses a access point (AP) with a relatively strong signal. However, each mesh node in the mesh network selects a route based on signal strength, which may cause an energy use imbalance in the mesh network, and reduce an available time of the mesh network. For example, currently there are four clients and two APs. The four clients are respectively c1, c2, c3, and c4, and the two APs are respectively AP 1 and AP 2. For the c1 and the c2, signal strength of the AP 1 is greater than that of the AP 2, and for the c3 and the c4, signal strength of the AP 1 is approximately the same as that of the AP 2, but the signal strength of the AP 1 is slightly greater than that of the AP 2. Therefore, if a solution of selecting a route based on signal strength is used, the c1, the c2, the c3, and the c4 access the AP 1, load of the AP 1 is significantly greater than that of the AP 2, and energy consumption of the AP 1 is accelerated, while the AP 2 consumes no energy. This causes an energy consumption imbalance. When the AP 1 runs out of energy, the c1 and the c2 need to access the AP 2 that is at a farther distance, which consumes more energy than accessing the AP 1. Therefore, overall power consumption of the mesh network is increased, and the available time of the mesh network is reduce.
US 2014/036683A1 indicates a method of mesh communication in the case of multiple mobile devices located within a communication area.
A paper named "Traffic Load and Lifetime Deviation Based Power-Aware Routing Protocol for Wireless Ad Hoc Networks" proposes a new power-aware routing protocol, TDPR(Traffic load and lifetime Deviation based Power-aware Routing protocol).
US 2011/194472A1 describes a method for determining a routing-metric for a mesh-network and routing messages sent in wireless mesh networks or mobile ad-hoc-networks.
A paper named "Adaptive Routing for Multihop IEEE 802.15.6 Wireless Body Area Networks" proposes the Adaptive Multihop tree-based Routing (AMR) protocol in a real testbed deployment.

SUMMARY



[0004] Embodiments of the present invention provide a route selection method and apparatus as defined by the independent claims 1 and 4, so as to prolong an available time of a mesh network.

[0005] Herein described is, a route selection method is provided, where a first mesh node that is to select a route obtains energy consumption information of a second mesh node that can provide a route for the first mesh node. This embodiment of the present invention is mainly for a case in which there is more than one second mesh node that provides a route for the first mesh node. Therefore, the first mesh node needs to obtain energy consumption information of at least two second mesh nodes, so as to select a route. The first mesh node obtains the energy consumption information of the second mesh nodes, and then may select a route according to the energy consumption information of the at least two second mesh nodes. According to the present invention, energy consumption information of a mesh node that can provide a route may be comprehensively considered when a route is selected, and the mesh node can maintain data exchange for as a longer time as possible, so that an available time of a mesh network can be prolonged.

[0006] Herein described is, the first mesh node and the second mesh node may be mesh nodes of any type, that is, any one of a client, an AP, an MP, an MAP, or an MPP.

[0007] Herein described is, to enable the mesh node to select a route with reference to the energy consumption information, in a possible design, each mesh node in the mesh network may transmit energy consumption information of the mesh node by using a data exchange process, and certainly may also transmit energy consumption information of another mesh node. Therefore, in this embodiment of the present invention, the first mesh node may obtain the energy consumption information of the at least two second mesh nodes in at least one of the following manners, including: obtaining, by the first mesh node, the energy consumption information of the second mesh node by using the second mesh node; or obtaining, by the first mesh node, the energy consumption information of the second mesh node by using a third mesh node, where the third mesh node is a mesh node that is in the mesh network and that can obtain the energy consumption information of the second mesh node. In another possible design, in this embodiment of the present invention, each mesh node with a data exchange process may actively transmit obtained energy consumption information of another mesh node at a specific time frequency, such as once a day, so as to actively trigger transmission of the energy consumption information, and accelerate transmission of the energy consumption information. Optionally, in this embodiment of the present invention, a mesh node that is in the mesh network and that is associated with more other mesh nodes may be preferentially selected to actively transmit the obtained energy consumption information of the another mesh node, so that the energy consumption information is transmitted more quickly and in a larger scale. In other words, in this embodiment of the present invention, a mesh node that is in the mesh network and that is associated with at least two mesh nodes may be used to transmit the energy consumption information, for example, a mesh node that is associated with most mesh nodes may be selected to transmit the energy consumption information, that is, the third mesh node may be the mesh node that is in the mesh network and that is associated with at least two mesh nodes.

[0008] Herein described is, the first mesh node may obtain energy consumption information that is of a fourth mesh node and that is transmitted by the second mesh node, where the fourth mesh node is a mesh node that is different from the second mesh node, and forward the energy consumption information of the second mesh node and the energy consumption information of the fourth mesh node to another mesh node that is different from the first mesh node.

[0009] Herein described is, the energy consumption information of the second mesh node includes a power supply manner for the second mesh node and a time that can be maintained by remaining power of the second mesh node; and the selecting, by the first mesh node, a route according to the energy consumption information of the at least two second mesh nodes includes: determining, by the first mesh node, a power supply manner for each of the second mesh nodes; and if the power supply manners for the at least two second mesh nodes are different, selecting a route in a sequence that a priority of non-battery power supply is higher than a priority of battery power supply, so as to prolong the available time of the mesh network; or if the power supply manners for the at least two second mesh nodes are the same, selecting a route according to a time that can be maintained by remaining power and signal strength of the at least two second mesh nodes, so as to balance energy consumption of mesh nodes in the mesh network.

[0010] Herein described is, the selecting a route according to a time that can be maintained by remaining power and signal strength of the at least two second mesh nodes includes: determining a signal strength range of signal strength of each of the second mesh nodes; selecting, according to the determined signal strength range, a preset manner for determining a comprehensive and preferred index, and determining a comprehensive and preferred index of each of the second mesh nodes according to the determined manner for determining a comprehensive and preferred index, where the comprehensive and preferred index is a value obtained after a mathematical operation is performed, according to different weight ratios, on the time that can be maintained by the remaining power and the signal strength, and the comprehensive and preferred index is determined in different manners in different signal strength ranges; and sorting the comprehensive and preferred indexes, and selecting a route in descending order of the comprehensive and preferred indexes.

[0011] Herein described is, to enable a service capability provided by the mesh node to last for a longer time, the mesh node may disable a data forwarding function according to a length of a time that can be maintained by remaining power of the mesh node, and send a data forwarding function disabling notification message to another mesh node, so that a mesh node that is associated with the mesh node tries to associate another mesh node.

[0012] Herein described is, when the remaining power of the mesh node that sends the data forwarding function disabling notification message recovers, for example, a battery is replaced manually, or the remaining power is higher than a preset threshold, the mesh node may re-enable the data forwarding function, and send a data forwarding function enabling notification message, so that a mesh node that needs to select a route in the network selects a more appropriate mesh node as a route node.

[0013] Herein described is, the first mesh node receives a data forwarding function disabling notification message sent by a selected second mesh node, and a data forwarding function enabling notification message sent by an unselected second mesh node.

[0014] Herein described is, a route selection apparatus is provided, including an obtaining unit and a routing unit, where the obtaining unit is configured to obtain energy consumption information of at least two mesh nodes, and the routing unit is configured to select a route according to the energy consumption information of the at least two mesh nodes.

[0015] Herein described is, energy consumption information of a mesh node that can provide a route may be comprehensively considered when a route is selected, and the mesh node can maintain data exchange for as a longer time as possible, so that an available time of a mesh network can be prolonged.

[0016] Herein described is, the obtaining unit obtains the energy consumption information of the at least two mesh nodes in at least one of the following manners, including:
obtaining the energy consumption information of the mesh node by using the mesh node; or obtaining the energy consumption information of the mesh node by using another mesh node that can obtain the energy consumption information of the mesh node.

[0017] Herein described is, a another mesh node is a mesh node that is in the mesh network and that is associated with at least two mesh nodes.

[0018] Herein described is the obtaining unit is further configured to obtain other energy consumption information that is transmitted by the mesh node and that is different from the energy consumption information of the mesh node.

[0019] The apparatus further includes a sending unit, where the sending unit is configured to forward the energy consumption information of the mesh node and the energy consumption information of another mesh node, so that the energy consumption information of the mesh nodes is transmitted in a larger scale, and each mesh node in the mesh network may obtain energy consumption information of another mesh node.

[0020] Herein described is, the energy consumption information includes a power supply manner for the mesh node and a time that can be maintained by remaining power of the mesh node.

[0021] The routing unit is specifically configured to select a route according to the energy consumption information of the at least two mesh nodes in the following manner, including: determining a power supply manner for each of the mesh nodes; and if the power supply manners for the at least two mesh nodes are different, selecting a route in a sequence that a priority of non-battery power supply is higher than a priority of battery power supply; or if the power supply manners for the at least two mesh nodes are the same, selecting a route according to a time that can be maintained by remaining power and signal strength of the at least two mesh nodes.

[0022] Herein described is, the routing unit is specifically configured to select a route according to the time that can be maintained by remaining power and the signal strength of the at least two mesh nodes in the following manner, including: determining a signal strength range of signal strength of each of the mesh nodes; selecting, according to the determined signal strength range, a preset manner for determining a comprehensive and preferred index, and determining a comprehensive and preferred index of each of the mesh nodes according to the determined manner for determining a comprehensive and preferred index, where the comprehensive and preferred index is a value obtained after a mathematical operation is performed, according to different weight ratios, on the time that can be maintained by the remaining power and the signal strength, and the comprehensive and preferred index is determined in different manners in different signal strength ranges; and sorting the comprehensive and preferred indexes, and selecting a route in descending order of the comprehensive and preferred indexes.

[0023] Herein described is, the obtaining unit is further configured to receive a data forwarding function disabling notification message sent by the mesh node, so that the mesh node can maintain data exchange for a longer time, to prolong an available time of the mesh network.

[0024] Herein described is, a route selection apparatus is provided, where the route selection apparatus includes a memory and a processor, the memory stores a computer-readable program, and the processor performs, by running the program in the memory, the route selection method involved in the first aspect of the embodiments of the present invention.

[0025] Herein described is, a computer storage medium is provided and is configured to store a computer software instruction used by the foregoing route selection apparatus, where the computer software instruction includes an involved program that is used to perform the foregoing route selection method involved in the first aspect.

BRIEF DESCRIPTION OF DRAWINGS



[0026] 

FIG. 1 is a mesh network system architecture used in a route selection method according to an embodiment of the present invention;

FIG. 2 is a flowchart of implementation of a route selection method according to an embodiment of the present invention;

FIG. 3 is a schematic diagram of processing of data forwarding function disabling according to an embodiment of the present invention;

FIG. 4 is a schematic diagram of processing of data forwarding function enabling according to an embodiment of the present invention;

FIG. 5A to FIG. 5B are schematic diagrams of composition of a route selection apparatus according to an embodiment of the present invention; and

FIG. 6 is another schematic diagram of composition of a route selection apparatus according to an embodiment of the present invention.


DESCRIPTION OF EMBODIMENTS



[0027] The following clearly describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention.

[0028] A route selection method provided in the embodiments of the present invention may be used in a mesh network shown in FIG. 1. In the mesh network shown in FIG. 1, data may be exchanged between mesh nodes such as a client (Client), a access point (Access Point, AP), a mesh point (mesh Point, MP), a mesh access point (mesh Access Point, MAP) and a mesh point portal (mesh Point Portal, MPP), and each mesh node may select a different route to exchange data. Selecting a route refers to accessing a mesh node and exchanging data by using the accessed mesh node. Energy consumption information of mesh nodes is different, and energy consumption information in the embodiments of the present invention mainly refers to a power supply manner for a mesh node and a time that can be maintained by remaining power. Therefore, if the mesh node selects different routes, overall power consumption of the mesh network may be different, and an available time for providing a mesh service by the entire mesh network is also different.

[0029] The embodiments of the present invention provide a route selection method that is based on energy consumption information of a mesh node, so as to prolong an available time of a mesh network.

[0030] The route selection method provided in the embodiments of the present invention may be performed by any mesh node that needs to select a route in the mesh network. For ease of description, in the following, a mesh node that needs to select a route is referred to as a first mesh node, and a mesh node that can provide a route for the first mesh node is referred to as a second mesh node.

[0031] It should be noted that the first mesh node and the second mesh node in the embodiments of the present invention may be mesh nodes of any type, that is, any one of a client, an AP, an MP, an MAP, or an MPP.

[0032] FIG. 2 is a flowchart of implementation of a route selection method according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps.

[0033] S101. A first mesh node that is to select a route obtains energy consumption information of at least two second mesh nodes.

[0034] Specifically, if there is one second mesh node that provides a route for the first mesh node, the first mesh node selects the only second mesh node to exchange data. This embodiment of the present invention is mainly for a case in which there is more than one second mesh node that provides a route for the first mesh node.

[0035] It may be understood that the energy consumption information of the second mesh node mainly refers to a power supply manner for the second mesh node and a time that can be maintained by remaining power. The power supply manner mainly refers to whether power is supplied by a battery, and the time that can be maintained by the remaining power mainly refers to a time of normal data exchange that can be maintained by the remaining power of the second mesh node.

[0036] S102. The first mesh node selects a route according to the energy consumption information of the at least two second mesh nodes.

[0037] Specifically, in this embodiment of the present invention, when selecting a route, the first mesh node may preferentially select, from the obtained at least two second mesh nodes, a mesh node whose power is not supplied by a battery and whose remaining power can maintain a relatively long time, to exchange data, so that a time of data exchange that can be maintained by the second mesh node can be prolonged, and further, an available time of a mesh network can be prolonged.

[0038] In this embodiment of the present invention, the following describes a specific implementation process of the foregoing steps in detail.

[0039] First, how the first mesh node obtains the energy consumption information of the second mesh node is described.

[0040] In this embodiment of the present invention, data is exchanged between mesh nodes. Therefore, respective energy consumption information may be transmitted by using a data exchange process. In this embodiment of the present invention, the respective energy consumption information is transmitted between the mesh nodes by using the data exchange process, so that each mesh node obtains energy consumption information of a mesh node that exchanges data with the mesh node. If when transmitting the energy consumption information, the mesh node not only transmits the energy consumption information of the mesh node, but also transmits obtained energy consumption information of another mesh node, some mesh nodes in the mesh network can obtain energy consumption information of other mesh nodes than mesh nodes that exchange data with the some mesh nodes.

[0041] Therefore, in this embodiment of the present invention, the first mesh node may obtain the energy consumption information of the second mesh node by using the second mesh node, or may obtain the energy consumption information of the second mesh node by using a third mesh node, where the third mesh node is a mesh node that is in the mesh network and that can obtain the energy consumption information of the second mesh node.

[0042] It may be understood that, in this embodiment of the present invention, in a process of obtaining the energy consumption information of the second mesh node, the first mesh node may further obtain energy consumption information of another mesh node than the second mesh node. For ease of description in this embodiment of the present invention, the another mesh node is referred to as a fourth mesh node. To accelerate transmission of energy consumption information, the first mesh node may forward the energy consumption information of the second mesh node and the energy consumption information of the fourth mesh node to another mesh node that is different from the first mesh node.

[0043] In this embodiment of the present invention, to avoid repeated transmission of information and avoid a network storm, a unique identifier may be allocated to a message that is sent by each mesh node and that is used to transmit energy consumption information. The unique identifier is used to distinguish whether the message has been transmitted, and if the message has been transmitted, transmission is not repeated.

[0044] In this embodiment of the present invention, to transmit the energy consumption information in a larger scale, and enable each mesh node in the mesh network to select a route with reference to the energy consumption information, the energy consumption information may further be transmitted in the following several optional manners.

[0045] It may be understood that, in a specific implementation process, one of the following methods may be selected, or multiple methods may be selected and used simultaneously. A purpose is to enable each mesh node in the mesh network to know energy consumption information of another mesh node, so that each mesh node can select a route with reference to the energy consumption information.

[0046] Type 1: Transmit the energy consumption information by using a data exchange process.

[0047] When data is exchanged between mesh nodes, energy consumption information of the mesh nodes is transmitted, and the energy consumption information includes whether power is supplied by a battery and a time that can be maintained by remaining power. For example, when data is exchanged between an AP and a client, energy consumption information of the AP is transmitted at the same time.

[0048] Optionally, when data is exchanged between mesh nodes, energy consumption information of the mesh nodes and energy consumption information of another mesh node that is randomly selected are transmitted. For example, when data is exchanged between an AP and a client, the AP not only transmits an energy consumption information of the AP, but may also randomly select energy consumption information of a specific quantity of other mesh nodes, and transmit the energy consumption information of the specific quantity of other mesh nodes to the client. Certainly, the client may also randomly select energy consumption information of a specific quantity of other mesh nodes, and transmit the energy consumption information of the specific quantity of other mesh nodes to the AP.

[0049] Type 2: An ordinary node activelyinitiates transmission of the energy consumption information.

[0050] Specifically, each mesh node with a data exchange process may actively transmit obtained energy consumption information of another mesh node at a specific time frequency, such as once a day, so as to accelerate transmission of the energy consumption information.

[0051] Optionally, when transmitting the energy consumption information of the another mesh node, the mesh node may randomly select and transmit energy consumption information of some nodes, or may transmit obtained energy consumption information of all other mesh nodes.

[0052] Type 3: A seed node initiates transmission of the energy consumption information.

[0053] Specifically, in this embodiment of the present invention, a mesh node that is in the mesh network and that is associated with more other mesh nodes may be selected to transmit the energy consumption information in a broadcasting manner, so as to accelerate transmission of the energy consumption information. For example, an MPP may be selected, or a mesh node connected to most other mesh nodes may be selected to transmit the energy consumption information. In this embodiment of the present invention, the mesh node connected to the most other mesh nodes is preferentially selected as the seed node. For ease of description in this embodiment of the present invention, a mesh node that is associated with at least two mesh nodes is referred to as the seed node. Any mesh node that receives energy consumption information transmitted by the seed node in a broadcasting manner may forward the received energy consumption information, so that each mesh node in the mesh network may obtain energy consumption information of another mesh node.

[0054] Optionally, in this embodiment of the present invention, a specified quantity of seed nodes in the mesh network may be selected according to an actual need to transmit the energy consumption information, and all mesh nodes with a seed node function do not need to be used as seed nodes.

[0055] Further, in this embodiment of the present invention, a selected seed node may transmit the energy consumption information at a specific time frequency, such as once a day.

[0056] In a specific implementation process, a specific method for transmitting the energy consumption information is not limited in this embodiment of the present invention, and the foregoing methods are merely examples for description.

[0057] It may be understood that, in this embodiment of the present invention, if the energy consumption information of the second mesh node is transmitted by using the seed node, and the third mesh node involved in this embodiment of the present invention may be the seed node, the first mesh node may obtain the energy consumption information of the second mesh node by using the seed node.

[0058] Second, a process of selecting a route by a mesh node based on energy consumption information is described.

[0059] The first mesh node may determine a power supply manner for each of the second mesh nodes that can provide a route. If power supply manners for the at least two second mesh nodes are different, a route is selected in a sequence that a priority of non-battery power supply is higher than a priority of battery power supply, so as to prolong an available time of the mesh network.

[0060] Further, the first mesh node that selects a route may obtain signal strength and the energy consumption information of each of the second mesh nodes that can provide a route for the first mesh node. Therefore, if the power supply manners for the at least two second mesh nodes are the same, a route may be selected according to a time that can be maintained by remaining power and signal strength of the at least two second mesh nodes, so that energy consumption of the mesh nodes in the mesh network is more balanced.

[0061] Specifically, in this embodiment of the present invention, to balance the energy consumption of the mesh nodes in the mesh network, a current manner of selecting a mesh node merely according to signal strength of mesh nodes and load states of mesh nodes may be changed, and a mesh node may be selected by comprehensively considering signal strength of mesh nodes, load states of mesh nodes, and a time that can be maintained by remaining power of mesh nodes. For example, in this embodiment of the present invention, different weight ratios may be set for the energy consumption information according to the signal strength of the mesh node and the time that can be maintained by the remaining power of the mesh node, and a mathematical operation is performed, to obtain a value that can reflect impact on the energy consumption information by the signal strength of the mesh node and the time that can be maintained by the remaining power of the mesh node, and select a mesh node according to the value. For ease of description in this embodiment of the present invention, a comprehensive and preferred index is used to represent the value obtained after the mathematical operation is performed, according to the different weight ratios, on the time that can be maintained by the remaining power and the signal strength.

[0062] In this embodiment of the present invention, the comprehensive and preferred index may be determined in multiple manners. For example, the comprehensive and preferred index may be determined in the following manners:

A first manner:

A second manner:

where w1 + 2 = 1, and m and n are positive integers.

A third manner:

where m and n are positive integers.



[0063] In this embodiment of the present invention, the comprehensive and preferred index is determined in different manners in different signal strength ranges.

[0064] Specifically, the first mesh node may select a route according to the time that can be maintained by remaining power and the signal strength of the at least two second mesh nodes in the following manner, including:
determining, by the first mesh node, a signal strength range of signal strength of each of the second mesh nodes; selecting, according to the determined signal strength range, a preset manner for determining a comprehensive and preferred index, and determining a comprehensive and preferred index of each of the second mesh nodes according to the determined manner for determining a comprehensive and preferred index; and sorting the obtained comprehensive and preferred indexes of the second mesh nodes, and selecting a route in descending order of the comprehensive and preferred indexes.

[0065] For example, the manner for determining a comprehensive and preferred index is set as follows:
  1. A: When the signal strength range is in (0.9, 1], the comprehensive and preferred index is determined according to Comprehensive and preferred index = Time that can be maintained by remaining power × 0.5 + Signal strength × 0.5.
    Optionally, when the signal strength is in a range of (0.9, 1], a signal has already been extremely strong, and there is no essential difference between a signal strength of 0.92 and a signal strength of 0.95. Therefore, "signal strength" may be collectively considered as 1, and Comprehensive and preferred index = 1 × 0.5 + Time that can be maintained by remaining power × 0.5.
  2. B: When the signal strength is in a range of (0.8, 0.9], the comprehensive and preferred index is determined according to Comprehensive and preferred index = Time that can be maintained by remaining power × 0.5 + Signal strength × 0.5.
  3. C: When the signal strength is in a range of (0.1, 0.8], the comprehensive and preferred index is determined according to Comprehensive and preferred index = Signal strength × 0.7 + Time that can be maintained by remaining power × 0.3.


[0066] It is assumed that a mesh node A needs to select one mesh node from a mesh node B, a mesh node C, or a mesh node D as a route, and in this case,
signal strength of the mesh node B is 0.95, and a time that can be maintained by remaining power is 0.5;
signal strength of the mesh node C is 0.85, and a time that can be maintained by remaining power is 0.9; and
signal strength of the mesh node D is 0.5, and a time that can be maintained by remaining power is 0.5.

[0067] For A, comprehensive and preferred indexes of the mesh node B, the mesh node C, and the mesh node D are:



and



[0068] Therefore, when selecting a route, the mesh node A may preferentially select the mesh node C as a route node.

[0069] It should be noted that, in this embodiment of the present invention, the foregoing process of determining the comprehensive and preferred index is merely exemplary description. A specific calculation formula, a threshold, and a weight may be adjusted according to actual application.

[0070] It should be further noted that, in this embodiment of the present invention, in the foregoing route selection process, signal strength and energy consumption information are comprehensively considered, but load of the mesh node is not considered. However, in actual application, a route may be selected by comprehensively considering information such as signal strength, energy consumption information, and a load state.

[0071] Further, in this embodiment of the present invention, when a mesh node is in power shortage, the mesh node may actively disable a data forwarding function. In this way, a service capability provided by the mesh node may last for a longer time, and an overall service-available time of the mesh network is prolonged. A detailed description is as follows:

[0072] The mesh node may disable the data forwarding function according to a length of a time that can be maintained by remaining power of the mesh node, and send a data forwarding function disabling notification message to another mesh node, so that a mesh node that is associated with the mesh node tries to associate another mesh node. For example, in a mesh network shown in FIG. 3, if a time that can be maintained by remaining power of an AP 2 is insufficient, the AP 2 sends a data forwarding function disabling notification message to an AP 1, an AP 3, a client 2, and a client 3 that are associated with the AP 2, so that the AP 1, the AP 3, the client 2, and the client 3 try to associate other mesh nodes. For example, the client 2 is associated with the AP 1, the client 3 is associated with the AP 3, and the AP 1 and the AP 3 are associated with an MP.

[0073] Optionally, the mesh node may send the data forwarding function disabling notification message to another mesh node when remaining power is lower than a preset threshold. The mesh node that sends the data forwarding function disabling notification message may further send the time that can be maintained by the remaining power to the another mesh node based on a current busy degree.

[0074] Optionally, a mesh node that receives the data forwarding function disabling notification message may feed back, to the mesh node that sends the data forwarding function disabling notification message, whether to agree with disabling of the data forwarding function. For example, if a more appropriate mesh node is found, the mesh node that sends the data forwarding function disabling notification message is notified of agreement with disabling of the data forwarding function. If a more appropriate mesh node is not found, the mesh node that sends the data forwarding function disabling notification message is notified of disagreement with disabling of the data forwarding function, and the mesh node that sends the data forwarding function disabling notification message determines whether to disable the data forwarding function.

[0075] According to the foregoing implementation manner of disabling the data forwarding function, in this embodiment of the present invention, the second mesh node that can provide a route may disable a data forwarding function according to a length of a time that can be maintained by remaining power, and send a data forwarding function disabling notification message to the first mesh node that selects the second mesh node as the route node, so that the first mesh node tries to select another second mesh node, and an available time of the mesh network is prolonged.

[0076] Still further, in this embodiment of the present invention, when the remaining power of the mesh node that sends the data forwarding function disabling notification message recovers, for example, a battery is replaced manually, or the remaining power is higher than a preset threshold, the mesh node may re-enable the data forwarding function, and send a data forwarding function enabling notification message. The mesh node that sends the data forwarding function enabling notification message may further send the time that can be maintained by the remaining power to another mesh node based on a current busy degree.

[0077] Optionally, a mesh node that receives the data forwarding function enabling notification message may reselect a route after comparing energy consumption information of a currently selected mesh node and energy consumption information of the mesh node that sends the data forwarding function enabling notification message, so as to select a more appropriate mesh node. As shown in FIG. 4, power of an AP 2 recovers, and the AP 2 sends a data forwarding function enabling notification message to an AP 1, an AP 1, an AP 3, a client 2, and a client 3. The AP 1, the AP 3, the client 2, and the client 3 reselect routes. The client 2 and the client 3 reselect the AP 2 as route nodes, and the AP 1 and the AP 3 reselect an MP and the AP 2 as route nodes.

[0078] Optionally, in this embodiment of the present invention, in a process of transmitting energy consumption information by each mesh node, an active parameter of the mesh node may also be transmitted, and the active parameter is used to represent a time difference between a time at which the mesh node recently sends a message and a current time. If the active parameter exceeds a specific threshold, it indicates that the mesh node has lost contact, and a reason of losing contact is that the mesh node runs out of power or a battery runs out of power due to a fault. Therefore, the mesh node may determine, by obtaining an active parameter of another mesh node, the mesh node that has lost contact, so as to report information about the mesh node that has lost contact.

[0079] Based on the route selection method provided in the foregoing embodiment, an embodiment of the present invention further provides a route selection apparatus 100. FIG. 5A is a schematic diagram of composition of the route selection apparatus 100 according to this embodiment of the present invention. As shown in FIG. 5A, the route selection apparatus 100 includes an obtaining unit 101 and a routing unit 102. The obtaining unit 101 is configured to obtain energy consumption information of at least two mesh nodes, and the routing unit 102 is configured to select a route according to the energy consumption information of the at least two mesh nodes that is obtained by the obtaining unit 101.

[0080] Specifically, the obtaining unit 101 obtains the energy consumption information of the at least two mesh nodes in at least one of the following manners, including:
obtaining the energy consumption information of the mesh node by using the mesh node; or obtaining the energy consumption information of the mesh node by using another mesh node that can obtain the energy consumption information of the mesh node.

[0081] Optionally, a another mesh node is a mesh node that is in the mesh network and that is associated with at least two mesh nodes.

[0082] Optionally, the obtaining unit 101 is further configured to obtain other energy consumption information that is transmitted by the mesh node and that is different from the energy consumption information of the mesh node.

[0083] In this embodiment of the present invention, the route selection apparatus 100 further includes a sending unit 103. As shown in FIG. 5B, the sending unit 103 is configured to forward the energy consumption information that is of the mesh node and that is obtained by the obtaining unit 101 and the other energy consumption information that is different from the energy consumption information of the mesh node, so that energy consumption information of each mesh node is transmitted in a larger scale, and each mesh node in the mesh network can obtain energy consumption information of another mesh node.

[0084] In this embodiment of the present invention, the energy consumption information includes a power supply manner for the mesh node and a time that can be maintained by remaining power of the mesh node. The routing unit 102 is specifically configured to select a route according to the energy consumption information of the at least two mesh nodes in the following manner, including: determining a power supply manner for each of the mesh nodes; and if the power supply manners for the at least two mesh nodes are different, selecting a route in a sequence that a priority of non-battery power supply is higher than a priority of battery power supply; or if the power supply manners for the at least two mesh nodes are the same, selecting a route according to a time that can be maintained by remaining power and signal strength of the at least two mesh nodes.

[0085] Specifically, the routing unit 102 is specifically configured to select a route according to the time that can be maintained by remaining power and the signal strength of the at least two mesh nodes in the following manner, including: determining a signal strength range of signal strength of each of the mesh nodes; selecting, according to the determined signal strength range, a preset manner for determining a comprehensive and preferred index, and determining a comprehensive and preferred index of each of the mesh nodes according to the determined manner for determining a comprehensive and preferred index, where the comprehensive and preferred index is a value obtained after a mathematical operation is performed, according to different weight ratios, on the time that can be maintained by the remaining power and the signal strength, and the comprehensive and preferred index is determined in different manners in different signal strength ranges; and sorting the comprehensive and preferred indexes, and selecting a route in descending order of the comprehensive and preferred indexes.

[0086] Optionally, the obtaining unit 101 is further configured to receive a data forwarding function disabling notification message sent by a selected mesh node, so that the selected mesh node can maintain data exchange for a longer time, to prolong an available time of the mesh network. The obtaining unit 101 may further obtain a data forwarding function enabling notification message sent by an unselected mesh node, so that the mesh node that needs to select a route can select a more appropriate mesh node.

[0087] According to the present invention, energy consumption information of a mesh node that can provide a route may be comprehensively considered when a route is selected, and the mesh node can maintain data exchange for as a longer time as possible, so that an available time of a mesh network can be prolonged.

[0088] It should be noted that the route selection apparatus 100 provided in this embodiment of the present invention may be configured to implement the route selection method involved in the foregoing embodiment. Therefore, for parts of the route selection apparatus 100 that are not described in enough detail, reference may be made to descriptions of the related method embodiment, and details are not described herein again.

[0089] An embodiment of the present invention further provides a route selection apparatus that is used by each mesh node in a mesh network to select a route. FIG. 6 is a schematic diagram of composition of a route selection apparatus 200 according to another embodiment of the present invention. A general-purpose computer system structure including a bus, a processor 201, a memory 202, and a communications interface 203 is used for the route selection apparatus 200. Program code that is used to execute the solution in the present invention is stored in the memory 202, and execution is controlled by the processor 201.

[0090] The bus may include a channel for conveying information between parts of a computer.

[0091] The processor 201 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit application-specific integrated circuit (ASIC), or one or more integrated circuits used to control program execution of the solution in the present invention. One or more memories included in the computer system may be a read-only memory read-only memory (ROM) or a static storage device of another type that is capable of storing static information and a static instruction, a random access memory random access memory (RAM) or a dynamic storage device of another type that is capable of storing information and an instruction, and may also be a magnetic disk memory. The memories are connected to the processor by the bus.

[0092] The communications interface 203 may be an apparatus of a transceiver type, so as to communicate with another device or communications network, such as an Ethernet, a radio access network (RAN), or a wireless local area network (WLAN).

[0093] The memory 202, such as RAM, stores an operating system and a program that is used to execute the solution in the present invention. The operating system is a program that is used to control running of another program and manage a system resource.

[0094] The program stored in the memory 202 is used to instruct the processor 201 to perform a route selection method that includes: obtaining energy consumption information of at least two mesh nodes, and selecting a route according to the energy consumption information of the at least two mesh nodes.

[0095] It may be understood that the route selection apparatus 200 in this embodiment may be configured to implement all functions involved in the foregoing method embodiment. For a specific implementation process, reference may be made to related descriptions of the foregoing method embodiment, and details are not described herein again.

[0096] An embodiment of the present invention further provides a computer storage medium that is configured to store a computer software instruction used by the route selection apparatus in FIG. 5A, FIG. 5B, or FIG. 6, and the computer software instruction includes the involved program that is used to perform the foregoing method embodiment.

[0097] Although the present invention is described with reference to the embodiments, in a process of implementing the present invention that claims protection, persons skilled in the art may understand and implement another variation of the disclosed embodiments by viewing the accompanying drawings, disclosed content, and the accompanying claims. In the claims, "comprising" (comprising) does not exclude another component or another step, and "a" or "one" does not exclude a case of multiple. A single processor or another unit may implement several functions enumerated in the claims. Some measures are recorded in dependent claims that are different from each other, but this does not mean that these measures cannot be combined to produce a better effect.

[0098] Persons skilled in the art should understand that the embodiments of the present invention may be provided as a method, an apparatus (device), or a computer program product. Therefore, the present invention may use a form of hardware only embodiments, software only embodiments, or embodiments with a combination of software and hardware. Moreover, the present invention may use a form of a computer program product that is implemented on one or more computer-usable storage media (including but not limited to a disk memory, a CD-ROM, an optical memory, and the like) that include computer-usable program code. The computer program is stored/distributed in a proper medium and is provided as or used as a part of the hardware together with another hardware, or may also use another allocation form, such as by using the Internet or another wired or wireless telecommunications system.

[0099] The present invention is described with reference to the flowcharts and/or block diagrams of the method, the apparatus (device), and the computer program product according to the embodiments of the present invention. It should be understood that computer program instructions may be used to implement each process and/or each block in the flowcharts and/or the block diagrams and a combination of a process and/or a block in the flowcharts and/or the block diagrams. These computer program instructions may be provided for a general-purpose computer, a dedicated computer, an embedded processor, or a processor of any other programmable data processing device to generate a machine, so that the instructions executed by a computer or a processor of any other programmable data processing device generate an apparatus for implementing a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.

[0100] These computer program instructions may also be stored in a computer readable memory that can instruct the computer or any other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory generate an artifact that includes an instruction apparatus. The instruction apparatus implements a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.

[0101] These computer program instructions may also be loaded onto a computer or another programmable data processing device, so that a series of operations and steps are performed on the computer or the another programmable device, thereby generating computer-implemented processing. Therefore, the instructions executed on the computer or the another programmable device provide steps for implementing a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.

[0102] Although the present invention is described with reference to specific features and the embodiments thereof, obviously, various modifications and combinations may be made to them without departing from scope of the present invention. Correspondingly, the specification and accompanying drawings are merely exemplary description of the present invention defined by the accompanying claims, and is considered as any of or all modifications, variations or combinations that cover the scope of the present invention.

[0103] Obviously, persons skilled in the art can make various modifications and variations to the present invention without departing from scope of the present invention. The present invention is intended to cover these modifications and variations provided that they fall within the scope of protection defined by the following claims.


Claims

1. A route selection method, comprising:

obtaining (S101), by a first mesh node that is to select a route, energy consumption information of at least two second mesh nodes, wherein the at least two second mesh nodes are mesh nodes each providing a route for the first mesh node; and

selecting (S102), by the first mesh node, a route according to the energy consumption information of the at least two second mesh nodes;

wherein the energy consumption information of a second mesh node comprises a power supply manner for the second mesh node and a time that can be maintained for normal data exchange by remaining power of the second mesh node; and

the selecting, by the first mesh node, a route according to the energy consumption information of the at least two second mesh nodes comprises:

determining, by the first mesh node, a power supply manner for each of the second mesh nodes; and

if the power supply manners for the at least two second mesh nodes are different, selecting a route in a sequence that a priority of non-battery power supply is higher than a priority of battery power supply; and if the power supply manners for the at least two second mesh nodes are the same, selecting a route according to the time that can be maintained by remaining power and signal strength of the at least two second mesh nodes;

wherein the first mesh node obtaining the energy consumption information of the at least two second mesh nodes comprises:

obtaining, by the first mesh node, the energy consumption information from each of the second mesh nodes;

wherein the selecting a route according to a time that can be maintained by remaining power and signal strength of the at least two second mesh nodes comprises:

determining a signal strength range of signal strength of each of the second mesh nodes;

selecting, according to the determined signal strength range, a preset manner for determining a comprehensive and preferred index, and determining a comprehensive and preferred index of each of the second mesh nodes according to the selected preset manner for determining a comprehensive and preferred index, wherein the comprehensive and preferred index is a value obtained after a mathematical operation is performed, according to different weight ratios per preset manner, on the time that can be maintained by the remaining power and the signal strength; and

sorting the comprehensive and preferred indexes, and selecting a route in descending order of the comprehensive and preferred indexes.


 
2. The method according to claim 1, wherein the method further comprises:

obtaining, by the first mesh node, energy consumption information that is of a fourth mesh node and that is transmitted by the second mesh node, wherein the fourth mesh node is a mesh node that is different from the second mesh node; and

forwarding, by the first mesh node, the energy consumption information of the second mesh node and the energy consumption information of the fourth mesh node to another mesh node that is different from the first mesh node.


 
3. The method according to any one of claims 1 to 2, wherein after the selecting, by the first mesh node, the route according to the energy consumption information of the at least two second mesh nodes, the method further comprises:
receiving, by the first mesh node, a data forwarding function disabling notification message sent by a selected second mesh node, and a data forwarding function enabling notification message sent by an unselected second mesh node.
 
4. A route selection apparatus (100) comprising:

an obtaining unit (101), configured to obtain energy consumption information of at least two mesh nodes; and

a routing unit (102), configured to select a route according to the energy consumption information of the at least two mesh nodes, wherein the energy consumption information comprises a power supply manner for the mesh node and a time that can be maintained for normal data exchange by remaining power of the mesh node; and

the routing unit is specifically configured to select a route according to the energy consumption information of the at least two mesh nodes in the following manner, comprising:

determining a power supply manner for each of the mesh nodes; and

if the power supply manners for the at least two mesh nodes are different, selecting a route in a sequence that a priority of non-battery power supply is higher than a priority of battery power supply; and if the power supply manners for the at least two mesh nodes are the same, selecting a route according to the time that can be maintained by remaining power and signal strength of the at least two mesh nodes, wherein the obtaining unit is configured to obtain the energy consumption information of the at least two mesh nodes, comprising:
to obtain the energy consumption information of a mesh node from said mesh node.
wherein the routing unit is specifically configured to select a route according to the time that can be maintained by remaining power and the signal strength of the at least two mesh nodes in the following manner, comprising:

to determine a signal strength range of signal strength of each of the mesh nodes;

to select, according to the determined signal strength range, a preset manner for determining a comprehensive and preferred index, and to determine a comprehensive and

preferred index of each of the mesh nodes according to the selected preset manner to determine a comprehensive and preferred index, wherein

the comprehensive and preferred index is a value obtained after a mathematical operation is performed, according to different weight ratios per preset manner, on the time that can be maintained by the remaining power and the signal strength; and

to sort the comprehensive and preferred indexes, and to select a route in descending order of the comprehensive and preferred indexes.


 
5. The apparatus according to claim 4, wherein
the obtaining unit is further configured to obtain other energy consumption information that is transmitted by the mesh node and that is different from the energy consumption information of the mesh node; and
the apparatus further comprises a sending unit, wherein the sending unit is configured to forward the energy consumption information of the mesh node and the other energy consumption information that is different from the energy consumption information of the mesh node.
 
6. The apparatus according to any one of claims 4 to 5, wherein the obtaining unit is further configured to:
receive a data forwarding function disabling notification message sent by a selected mesh node, and a data forwarding function enabling notification message sent by an unselected mesh node.
 
7. A computer-readable storage medium comprising instructions which, when executed by a computer, cause the computer to carry out the method of any one of claims 1 to3.
 
8. The route selection apparatus of claim 4, wherein the route selection apparatus is either a mesh node, an access point, a client or a mesh point portal.
 
9. A computer program product comprising computer program instructions that when executed by a processing apparatus cause the processing apparatus to perform the method according to any of the preceding claims 1 to 3.
 


Ansprüche

1. Routenauswahlverfahren, das Folgendes umfasst:

Erhalten (S101), durch einen ersten Maschenknoten, der eine Route auswählen soll, von Energieverbrauchsinformationen von mindestens zwei zweiten Maschenknoten, wobei die mindestens zwei zweiten Maschenknoten Maschenknoten sind, die jeweils eine Route für den ersten Maschenknoten bereitstellen; und

Auswählen (S102), durch den ersten Maschenknoten, einer Route gemäß den Energieverbrauchsinformationen der mindestens zwei zweiten Maschenknoten;

wobei die Energieverbrauchsinformationen eines zweiten Maschenknotens eine Stromversorgungsweise für den zweiten Maschenknoten und eine Zeit, die für normalen Datenaustausch durch den verbliebenen Strom des zweiten Maschenknotens aufrechterhalten werden kann, umfassen; und

das Auswählen, durch den ersten Maschenknoten, einer Route gemäß den Energieverbrauchsinformationen der mindestens zwei zweiten Maschenknoten Folgendes umfasst:

Bestimmen, durch den ersten Maschenknoten, einer Stromversorgungsweise für jeden der zweiten Maschenknoten; und

falls sich die Stromversorgungsweisen für die mindestens zwei zweiten Maschenknoten unterscheiden, Auswählen einer Route in einer Abfolge, dass eine Priorität einer Nicht-Batteriestromversorgung höher als eine Priorität von Batteriestromversorgung ist, und falls die Stromversorgungsweisen für die mindestens zwei zweiten Maschenknoten die gleichen sind, Auswählen einer Route gemäß der Zeit, die durch den verbliebenen Strom aufrechterhalten werden kann, und einer Signalstärke der mindestens zwei zweiten Maschenknoten;

wobei der erste Maschenknoten, der die Energieverbrauchsinformationen der mindestens zwei zweiten Maschenknoten erhält, Folgendes umfasst:

Erhalten, durch den ersten Maschenknoten, der Energieverbrauchsinformationen von jedem der zweiten Maschenknoten;

wobei das Auswählen einer Route gemäß einer Zeit, die durch den verbliebenen Strom aufrechterhalten werden kann, und einer Signalstärke der mindestens zwei zweiten Maschenknoten, Folgendes umfasst:

Bestimmen eines Signalstärkenbereichs von Signalstärke von jedem der zweiten Maschenknoten;

Auswählen, gemäß dem bestimmten Signalstärkenbereich, einer voreingestellten Weise für Bestimmen eines allumfassenden und bevorzugten Indexes und Bestimmen eines allumfassenden und bevorzugten Indexes von jedem der zweiten Maschenknoten gemäß der ausgewählten voreingestellten Weise für Bestimmen eines allumfassenden und bevorzugten Indexes, wobei

der allumfassende und bevorzugte Index ein Wert ist, der erhalten wird, nachdem gemäß verschiedenen Gewichtsverhältnissen pro voreingestellte Weise eine mathematische Operation an der Zeit, die durch den verbliebenen Strom aufrechterhalten werden kann, und der Signalstärke durchgeführt wurde; und

Sortieren der allumfassenden und bevorzugten Indices und Auswählen einer Route in abfallender Reihenfolge der allumfassenden und bevorzugten Indices.


 
2. Verfahren nach Anspruch 1, wobei das Verfahren ferner Folgendes umfasst:

Erhalten, durch den ersten Maschenknoten, von Energieverbrauchsinformationen, die von einem vierten Maschenknoten stammen und die durch den zweiten Maschenknoten übermittelt wurden, wobei der vierte Maschenknoten ein Maschenknoten ist, der sich von dem zweiten Maschenknoten unterscheidet; und

Weiterleiten, durch den ersten Maschenknoten, der Energieverbrauchsinformationen des zweiten Maschenknotens und der Energieverbrauchsinformationen des vierten Maschenknotens an einen anderen Maschenknoten, der sich von dem ersten Maschenknoten unterscheidet.


 
3. Verfahren nach einem der Ansprüche 1 bis 2, wobei das Verfahren, nach dem Auswählen, durch den ersten Maschenknoten, der Route gemäß den Energieverbrauchsinformationen der mindestens zwei zweiten Maschenknoten, ferner Folgendes umfasst:
Empfangen, durch den ersten Maschenknoten, einer Datenweiterleitungsfunktionsblockierung-Benachrichtigungsnachricht, gesendet durch einen ausgewählten zweiten Maschenknoten, und einer Datenweiterleitungsfunktionsfreigabe-Benachrichtigungsnachricht, gesendet durch einen nicht ausgewählten zweiten Maschenknoten.
 
4. Routenauswahlvorrichtung (100), die Folgendes umfasst:

eine Erhalteeinheit (101), ausgelegt zum Erhalten von Energieverbrauchsinformationen von mindestens zwei Maschenknoten; und

eine Routingeinheit (102), ausgelegt zum Auswählen einer Route gemäß den Energieverbrauchsinformationen der mindestens zwei Maschenknoten, wobei die Energieverbrauchsinformationen eine Stromversorgungsweise für den Maschenknoten und eine Zeit, die für normalen Datenaustausch durch den verbliebenen Strom des Maschenknotens aufrechterhalten werden kann, umfassen; und

die Routingeinheit insbesondere ausgelegt ist zum Auswählen einer Route gemäß den Energieverbrauchsinformationen der mindestens zwei Maschenknoten auf die folgende Weise, umfassend:

Bestimmen einer Stromversorgungsweise für jeden der Maschenknoten; und

falls sich die Stromversorgungsweisen für die mindestens zwei Maschenknoten unterscheiden, Auswählen einer Route in einer Abfolge, dass eine Priorität einer Nicht-Batteriestromversorgung höher als eine Priorität von Batteriestromversorgung ist; und falls die Stromversorgungsweisen für die mindestens zwei Maschenknoten die gleichen sind, Auswählen einer Route gemäß der Zeit, die durch den verbliebenen Strom aufrechterhalten werden kann, und einer Signalstärke der mindestens zwei Maschenknoten, wobei die Erhalteeinheit ausgelegt ist zum Erhalten der Energieverbrauchsinformationen der mindestens zwei Maschenknoten, was Folgendes umfasst:

Erhalten der Energieverbrauchsinformationen eines Maschenknotens von dem Maschenknoten,

wobei die Routingeinheit insbesondere ausgelegt ist zum Auswählen einer Route gemäß der Zeit, die durch den verbliebenen Strom aufrechterhalten werden kann, und der Signal stärke der mindestens zwei Maschenknoten auf die folgende Weise, umfassend:

Bestimmen eines Signalstärkenbereichs von Signalstärke von jedem der Maschenknoten;

Auswählen, gemäß dem bestimmten Signalstärkenbereich, einer voreingestellten Weise für Bestimmen eines allumfassenden und bevorzugten Indexes und Bestimmen eines allumfassenden und bevorzugten Indexes von jedem der Maschenknoten gemäß der ausgewählten voreingestellten Weise zum Bestimmen eines allumfassenden und bevorzugten Indexes, wobei der allumfassende und bevorzugte Index ein Wert ist, der erhalten wird, nachdem gemäß verschiedenen Gewichtsverhältnissen pro voreingestellte Weise eine mathematische Operation an der Zeit, die durch den verbliebenen Strom aufrechterhalten werden kann, und der Signalstärke durchgeführt wurde; und

Sortieren der allumfassenden und bevorzugten Indices und Auswählen einer Route in abfallender Reihenfolge der allumfassenden und bevorzugten Indices.


 
5. Vorrichtung nach Anspruch 4, wobei
die Erhalteeinheit ferner ausgelegt ist zum Erhalten anderer Energieverbrauchsinformationen, die durch den Maschenknoten übermittelt wurden und die sich von den Energieverbrauchsinformationen des Maschenknotens unterscheiden; und
die Vorrichtung ferner eine Sendeeinheit umfasst, wobei die Sendeeinheit ausgelegt ist zum Weiterleiten der Energieverbrauchsinformationen des Maschenknotens und der anderen Energieverbrauchsinformationen, die sich von den Energieverbrauchsinformationen des Maschenknotens unterscheiden.
 
6. Vorrichtung nach einem der Ansprüche 4 bis 5, wobei die Erhalteeinheit ferner ausgelegt ist zum:

Empfangen einer Datenweiterleitungsfunktionsblockierung-Benachrichtigungsnachricht, gesendet durch einen ausgewählten Maschenknoten,

und einer Datenweiterleitungsfunktionsfreigabe-Benachrichtigungsnachricht, gesendet durch einen nicht ausgewählten Maschenknoten.


 
7. Computerlesbares Speicherungsmedium, das Anweisungen umfasst, die bei Ausführung durch einen Computer den Computer veranlassen zum Ausführen des Verfahrens nach einem der Ansprüche 1 bis 3.
 
8. Routenauswahlvorrichtung nach Anspruch 4, wobei die Routenauswahlvorrichtung entweder ein Maschenknoten oder ein Zugangspunkt oder ein Client oder ein Maschenpunktportal ist.
 
9. Computerprogrammprodukt, das Computerprogrammanweisungen umfasst, die bei Ausführung durch eine Verarbeitungsvorrichtung die Verarbeitungsvorrichtung veranlassen zum Ausführen des Verfahrens nach einem der vorhergehenden Ansprüche 1 bis 3.
 


Revendications

1. Procédé de sélection de route, comprenant :

l'obtention (S101), par un premier nœud maillé devant sélectionner une route, d'informations de consommation d'énergie d'au moins deux seconds nœuds maillés, les au moins deux seconds nœuds maillés étant des nœuds maillés fournissant chacun une route pour le premier nœud maillé ; et

la sélection (S102), par le premier nœud maillé, d'une route en fonction des informations de consommation d'énergie des au moins deux seconds nœuds maillés ;

les informations de consommation d'énergie d'un second nœud maillé comprenant un mode d'alimentation électrique pour le second nœud maillé et un temps qui peut être maintenu pour un échange normal de données par une puissance restante du second nœud maillé ; et

la sélection, par le premier nœud maillé, d'une route en fonction des informations de consommation d'énergie des au moins deux seconds nœuds maillés comprenant :

la détermination, par le premier nœud maillé, d'un mode d'alimentation électrique pour chacun des seconds nœuds maillés, et

si les modes d'alimentation électrique pour les au moins deux seconds nœuds maillés sont différents, la sélection d'une route dans une séquence où une priorité d'alimentation sans batterie est supérieure à une priorité d'alimentation par batterie ;

et si les modes d'alimentation électrique pour les au moins deux seconds nœuds maillés sont identiques, la sélection d'une route en fonction du temps qui peut être maintenu par une puissance restante et une intensité de signal des au moins deux seconds nœuds maillés ;

l'obtention par le premier nœud maillé des informations de consommation d'énergie des au moins deux seconds nœuds maillés comprenant :

l'obtention, par le premier nœud maillé, des informations de consommation d'énergie de chacun des seconds nœuds maillés ;

la sélection d'une route en fonction d'un temps qui peut être maintenu par une puissance restante et une intensité de signal des au moins deux seconds nœuds maillés comprenant :

la détermination d'une plage d'intensité de signal de chacun des seconds nœuds maillés ;

la sélection, en fonction de la plage d'intensité de signal déterminée, d'un mode prédéfini pour la détermination d'un index complet et préféré, et la détermination d'un index complet et préféré de chacun des seconds nœuds maillés en fonction du mode prédéfini sélectionné pour la détermination d'un index complet et préféré, l'index complet et préféré étant une valeur obtenue après qu'une opération mathématique a été réalisée, en fonction de différents rapports de pondération par mode prédéfini, sur le temps qui peut être maintenu par la puissance restante et l'intensité de signal ;

et

le tri des index complets et préférés, et la sélection d'une route par ordre décroissant des index complets et préférés.


 
2. Procédé selon la revendication 1, le procédé comprenant en outre :

l'obtention, par le premier nœud maillé, d'informations de consommation d'énergie qui sont d'un quatrième nœud maillé et qui sont transmises par le second nœud maillé, le quatrième nœud maillé étant un nœud maillé qui est différent du second nœud maillé ; et

le transfert, par le premier nœud maillé, des informations de consommation d'énergie du second nœud maillé et des informations de consommation d'énergie du quatrième nœud maillé à un autre nœud maillé qui est différent du premier nœud maillé.


 
3. Procédé selon l'une quelconque des revendications 1 à 2, le procédé comprenant en outre, après la sélection, par le premier nœud maillé, de la route en fonction des informations de consommation d'énergie des au moins deux seconds nœuds maillés : la réception, par le premier nœud maillé, d'une fonction de transfert de données désactivant le message de notification envoyé par un second nœud maillé sélectionné, et d'une fonction de transfert de données activant le message de notification envoyé par un second nœud maillé non sélectionné.
 
4. Appareil de sélection de route (100) comprenant :

une unité d'obtention (101), configurée pour obtenir des informations de consommation d'énergie d'au moins deux nœuds maillés ; et

une unité de routage (102), configurée pour sélectionner une route en fonction des informations de consommation d'énergie des au moins deux nœuds maillés, les informations de consommation d'énergie comprenant un mode d'alimentation électrique pour le nœud maillé et un temps qui peut être maintenu pour un échange normal de données par une puissance restante du nœud maillé ; et

l'unité de routage étant spécifiquement configurée pour sélectionner une route en fonction des informations de consommation d'énergie des au moins deux nœuds maillés dans le mode suivant, comprenant :

la détermination d'un mode d'alimentation électrique pour chacun des nœuds maillés ; et

si les modes d'alimentation électrique pour les au moins deux nœuds maillés sont différents, la sélection d'une route dans une séquence où une priorité d'alimentation sans batterie est supérieure à une priorité d'alimentation par batterie ; et si les modes d'alimentation électrique pour les au moins deux nœuds maillés sont identiques, la sélection d'une route en fonction du temps qui peut être maintenu par une puissance restante et une intensité de signal des au moins deux nœuds maillés, l'unité d'obtention étant configurée pour obtenir les informations de consommation d'énergie des au moins deux nœuds maillés, comprenant :

l'obtention des informations de consommation d'énergie d'un nœud maillé à partir dudit nœud maillé,

l'unité de routage étant spécifiquement configurée pour sélectionner une route en fonction du temps qui peut être maintenu par une puissance restante et l'intensité de signal des au moins deux nœuds maillés dans le mode suivant, comprenant :

la détermination d'une plage d'intensité de signal de chacun des nœuds maillés ;

la sélection, en fonction de la plage d'intensité de signal déterminée, d'un mode prédéfini pour la détermination d'un index complet et préféré, et la détermination d'un index complet et préféré de chacun des nœuds maillés en fonction du mode prédéfini sélectionné pour déterminer un index complet et préféré,

l'index complet et préféré étant une valeur obtenue après qu'une opération mathématique a été réalisée, en fonction de différents rapports de pondération par mode prédéfini, sur le temps qui peut être maintenu par la puissance restante et l'intensité de signal ; et

le tri des index complets et préférés, et la sélection d'une route par ordre décroissant des index complets et préférés.


 
5. Appareil selon la revendication 4, l'unité d'obtention étant en outre configurée pour obtenir d'autres informations de consommation d'énergie qui sont transmises par le nœud maillé et qui sont différentes des informations de consommation d'énergie du nœud maillé ; et
l'appareil comprenant en outre une unité d'envoi, l'unité d'envoi étant configurée pour transférer les informations de consommation d'énergie du nœud maillé et les autres informations de consommation d'énergie qui sont différentes des informations de consommation d'énergie du nœud maillé.
 
6. Appareil selon l'une quelconque des revendications 4 à 5, l'unité d'obtention étant en outre configurée pour :
recevoir un message de notification de désactivation de la fonction de transfert de données, envoyé par un nœud maillé sélectionné, et un message de notification d'activation de la fonction de transfert de données, envoyé par un nœud maillé non sélectionné.
 
7. Support de stockage lisible par ordinateur comprenant des instructions qui, lorsqu'elles sont exécutées par un ordinateur, amènent l'ordinateur à réaliser le procédé selon l'une quelconque des revendications 1 à 3.
 
8. Appareil de sélection de route selon la revendication 4, l'appareil de sélection de route étant un nœud maillé, un point d'accès, un client ou un portail de point de maillage.
 
9. Produit de programme informatique comprenant des instructions de programme informatique qui, lorsqu'elles sont exécutées par un appareil de traitement, amènent l'appareil de traitement à réaliser le procédé selon l'une quelconque des revendications précédentes 1 à 3.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description