(19)
(11)EP 3 267 606 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 17180287.9

(22)Date of filing:  07.07.2017
(51)Int. Cl.: 
H04J 14/02  (2006.01)
G02B 6/30  (2006.01)
H04B 10/2581  (2013.01)
H04J 14/04  (2006.01)
H04L 29/06  (2006.01)
H04B 10/43  (2013.01)
G02B 6/12  (2006.01)
G02B 6/42  (2006.01)
G02B 6/40  (2006.01)
H04B 10/80  (2013.01)
H04B 10/40  (2013.01)

(54)

METHOD AND SYSTEM FOR SELECTABLE PARALLEL OPTICAL FIBER AND WAVELENGTH DIVISION MULTIPLEXED OPERATION

VERFAHREN UND SYSTEM FÜR AUSWÄHLBARE PARALLELE GLASFASER UND WELLENLÄNGENMULTIPLEXOPERATION

PROCÉDÉ ET SYSTÈME DE FIBRES OPTIQUES PARALLÈLES SÉLECTIONNABLES ET OPÉRATION MULTIPLEXÉE PAR RÉPARTITION EN LONGUEUR D'ONDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.07.2016 US 201662359408 P

(43)Date of publication of application:
10.01.2018 Bulletin 2018/02

(73)Proprietor: Luxtera Inc.
Carlsbad, CA 92011-1504 (US)

(72)Inventors:
  • DE DOBBELAERE, Peter
    San Diego, California 92122 (US)
  • YOUNG, Greg
    Irvine, California 92603 (US)

(74)Representative: Kuhnen & Wacker Patent- und Rechtsanwaltsbüro PartG mbB 
Prinz-Ludwig-Straße 40A
85354 Freising
85354 Freising (DE)


(56)References cited: : 
US-A1- 2011 013 911
US-A1- 2016 036 550
  
  • BRIAN WELCH: "An Economic Comparison of PSM4, PAM, and LR4 ; welch_01b_0113_optx", IEEE DRAFT; WELCH_01B_0113_OPTX, IEEE-SA, PISCATAWAY, NJ USA, vol. 802.3bm;802.3.100GNGOPTX, 22 May 2013 (2013-05-22), pages 1-28, XP068057538, [retrieved on 2013-05-22]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD



[0001] Certain embodiments of the disclosure relate to semiconductor photonics. More specifically, certain embodiments of the disclosure relate to a method and system for selectable parallel optical fiber and wavelength division multiplexing (WDM) operation.

BACKGROUND



[0002] As data networks scale to meet ever-increasing bandwidth requirements, the shortcomings of copper data channels are becoming apparent. Signal attenuation and crosstalk due to radiated electromagnetic energy are the main impediments encountered by designers of such systems. They can be mitigated to some extent with equalization, coding, and shielding, but these techniques require considerable power, complexity, and cable bulk penalties while offering only modest improvements in reach and very limited scalability. Free of such channel limitations, optical communication has been recognized as the successor to copper links.

[0003] Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with the present disclosure as set forth in the remainder of the present application with reference to the drawings.

[0004] In his publication "An Economic Comparison of PSM4, PAM, and LR4", IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task force, Jan 2013, Brian Welch provides some economic differences of these components.

[0005] US 2016{/036550 A1 discloses a method and a system for a polarization immune wavelength division multiplexing demultiplexer. An optoelectronic transceiver may have an input coupler, a demultiplexer, and an amplitude scrambler: receiving input optical signals of different polarization via the input coupler. The method includes communicating the input optical signals to the amplitude scrambler via waveguides, configuring the average optical power in each of the waveguides utilizing the amplitude scrambler, and demultiplexing the optical signals utilizing the demultiplexer. The amplitude scrambler may include phase modulators and a coupling section. The phase modulators may include sections of P-N junctions in the two waveguides. The demultiplexer may include a Mach-Zehnder Interferometer. The demultiplexed signals may be received utilizing photodetectors. The input coupler may include a polarization splitting grating coupler. The average optical power may be configured above which demultiplexer control circuitry is able to control the demultiplexer to process incoming optical signals.

[0006] US 2011/013911 A1 provides high-speed wavelength division multiplexing (WDM) transponders that receive one or more optical signals and convert and/or remodulate the received optical signals onto a newly generated optical channel along with overhead processing/addition, forward error correction, and the like. In general, the transponders of the present invention include a client-side and a line-side, each with bi-directional optical transmission. The transponders provide an effective mechanism to support WDM networks that are transparent to the client-side.

BRIEF SUMMARY



[0007] A system and/or method for selectable parallel optical fiber and WDM operationin accordance with the present invention is provided by claims 1, 9 and 17. Further improvements are subject to the dependent claims.

[0008] Various advantages, aspects and novel features of the present disclosure, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS



[0009] 

FIG. 1A is a block diagram of a photonically-enabled integrated circuit with selectable parallel optical fiber and WDM operation, in accordance with an example embodiment of the disclosure.

FIG. 1B is a diagram illustrating an exemplary photonically-enabled die, in accordance with an example embodiment of the disclosure.

FIG. 1C is a diagram illustrating a photonically-enabled integrated circuit with an optical fiber cable, in accordance with an example embodiment of the disclosure.

FIG. 2 illustrates an optical transceiver with optical paths in parallel optical fiber mode, in accordance with an example embodiment of the disclosure.

FIG. 3 illustrates an optical transceiver with optical paths in WDM mode, in accordance with an example embodiment of the disclosure.

FIG. 4 illustrates a dynamically configurable mode optical transceiver, in accordance with an example embodiment of the disclosure.


DETAILED DESCRIPTION



[0010] As utilized herein the terms "circuits" and "circuitry" refer to physical electronic components (i.e. hardware) and any software and/or firmware ("code") which may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware. As used herein, for example, a particular processor and memory may comprise a first "circuit" when executing a first one or more lines of code and may comprise a second "circuit" when executing a second one or more lines of code. As utilized herein, "and/or" means any one or more of the items in the list joined by "and/or". As an example, "x and/or y" means any element of the three-element set {(x), (y), (x, y)}. In other words, "x and/or y" means "one or both of x and y". As another example, "x, y, and/or z" means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. In other words, "x, y and/or z" means "one or more of x, y and z". As utilized herein, the term "exemplary" means serving as a non-limiting example, instance, or illustration. As utilized herein, the terms "e.g.," and "for example" set off lists of one or more non-limiting examples, instances, or illustrations. As utilized herein, circuitry or a device is "operable" to perform a function whenever the circuitry or device comprises the necessary hardware and code (if any is necessary) to perform the function, regardless of whether performance of the function is disabled or not enabled (e.g., by a user-configurable setting, factory trim, etc.).

[0011] FIG. 1A is a block diagram of a photonically-enabled integrated circuit with selectable parallel optical fiber and WDM operation, in accordance with an example embodiment of the disclosure. Referring to FIG. 1A, there is shown optoelectronic devices on a photonic circuit 100 comprising optical modulators 105A-105D, photodiodes 111A-111D, monitor photodiodes 113A-113H, and optical devices comprising input couplers 103, and input/output couplers 117. There are also shown electrical devices and circuits comprising amplifiers 107A-107D, analog and digital control circuits 109, and control sections 112A-112D. The amplifiers 107A-107D may comprise transimpedance and limiting amplifiers (TIA/LAs), for example.

[0012] In an example scenario, the photonic circuit 100 comprises a CMOS photonics die and one or more electronics die coupled to the photonics die, with an optical source assembly 101 coupled to the top surface of the photonic IC 100 or remotely from the photonics and electronics die. The optical source assembly 101 may comprise one or more semiconductor lasers with isolators, lenses, and/or polarization rotators for directing one or more CW optical signals to the couplers 103. In an example scenario, the optical source assembly may be located remotely from the photonic and electronics die and optical fibers may communicate the optical signals to the couplers 103. In this scenario, optical and optoelectronics functions may be performed on the photonics die and electronics functions may be performed on the electronics die. In another example scenario, the photonically enabled integrated circuit 100 may comprise a single chip.

[0013] Optical signals are communicated between optical and optoelectronic devices via optical waveguides 110 fabricated in the photonic circuit 100. Single-mode or multi-mode waveguides may be used in photonic integrated circuits. Single-mode operation enables direct connection to optical signal processing and networking elements. The term "single-mode" may be used for waveguides that support a single mode for each of the two polarizations, transverse-electric (TE) and transverse-magnetic (TM), or for waveguides that are truly single mode and only support one mode whose polarization is TE, which comprises an electric field parallel to the substrate supporting the waveguides. Two typical waveguide cross-sections that are utilized comprise strip waveguides and rib waveguides. Strip waveguides typically comprise a rectangular cross-section, whereas rib waveguides comprise a rib section on top of a waveguide slab. Of course, other waveguide cross section types are also contemplated and within the scope of the disclosure.

[0014] In an example scenario, the couplers 103 may comprise grating couplers, for top surface coupling or end facets for edge coupling, for receiving input optical signals from the laser assembly 101. Each of the pairs of couplers 103 that receive optical source signals from the laser assembly 101 may be utilized for a different optical communication standard, such as parallel optical fiber (e.g., PSM-4) and WDM, which may include coarse WDM and dense WDM, such that each modulator input is for sourcing a different standard or protocol. Therefore, by aligning the laser assembly 101 to a particular set of couplers 103, the protocol or standard communicated via the transceivers of the photonic integrated circuit 130 may be configured and a different chip is not needed for different protocols.

[0015] The optical modulators 105A-105D comprise Mach-Zehnder or ring modulators, for example, and enable the modulation of the continuous-wave (CW) laser input signals. The optical modulators 105A-105D may comprise high-speed and low-speed phase modulation sections and are controlled by the control sections 112A-112D. The high-speed phase modulation section of the optical modulators 105A-105D may modulate a CW light source signal with a data signal. The low-speed phase modulation section of the optical modulators 105A-105D may compensate for slowly varying phase factors such as those induced by mismatch between the waveguides, waveguide temperature, or waveguide stress and is referred to as the passive phase, or the passive biasing of the MZI.

[0016] In an example scenario, the high-speed optical phase modulators may operate based on the free carrier dispersion effect and may demonstrate a high overlap between the free carrier modulation region and the optical mode. High-speed phase modulation of an optical mode propagating in a waveguide is the building block of several types of signal encoding used for high data rate optical communications. Speed in the tens of Gb/s may be required to sustain the high data rates used in modern optical links and can be achieved in integrated Si photonics by modulating the depletion region of a PN junction placed across the waveguide carrying the optical beam. In order to increase the modulation efficiency and minimize the loss, the overlap between the optical mode and the depletion region of the PN junction is optimized.

[0017] The outputs of the optical modulators 105A-105D may be optically coupled via the waveguides 110 to a subset of the optical couplers 117. The couplers 103 at the outputs of the modulators 105A-105D may comprise four-port optical couplers, for example, and may be utilized to sample or split the optical signals generated by the optical modulators 105A-105D, with the sampled signals being measured by the monitor photodiodes 113A-113H. The unused branches of the directional couplers 103 may be terminated by optical terminations, for example, to avoid back reflections of unwanted signals.

[0018] The optical couplers 117 may comprise optical gratings that enable coupling of light into and out of the top surface of the photonic circuit 100 or may comprise end facets for edge coupled optical signals. The optical couplers 117 may be utilized to couple light received from optical fibers 140 into the photonic circuit 100, and the optical couplers 117 may be utilized to couple light from the photonic circuit 100 into optical fibers. The optical couplers 117 may comprise single polarization grating couplers (SPGC) and/or polarization splitting grating couplers (PSGC). In instances where a PSGC is utilized, two input, or output, waveguides may be utilized, such as those coupled to the photodiodes 111A-111D.

[0019] The optical fibers may be bonded by adhesive, for example, to the chip comprising the optical and optoelectronic sections of the photonic integrated circuit 100, and may be aligned at an angle from normal to the surface of the chip to optimize coupling efficiency. In an example embodiment, the optical fibers may comprise single-mode fiber (SMF) and/or polarization-maintaining fiber (PMF).

[0020] In another example embodiment illustrated in FIG. 1B, optical signals may be communicated directly into the surface of a photonics die in the photonic circuit 100 without optical fibers by directing a light source on an optical coupling device in the chip, such as the light source interface 135 and/or the optical fiber interface 139. This may be accomplished with laser sources on another chip flip-chip bonded to the die.

[0021] The photodiodes 111A-111D may convert optical signals received from the optical couplers 117 into electrical signals that are communicated to the amplifiers 107A-107D for processing. In an example scenario, the photodiodes 111A-111D comprise multi-port photodetectors capable of receiving from either of each pair of optical couplers 117 as shown. In this manner, different standard or communication protocol optical signals may be communicated via the optical fibers 149 into the optical couplers 117, where each grating coupler in a pair of couplers may be configured for a particular communications protocol or standard, such as WDM and parallel optical fiber, for example. For example, one of each pair of optical couplers 117 may be configured to receive 1310 nm optical signals for PSM-4, while the other of each pair may be configured for a different WDM wavelength, such as 1270, 1290, 1310, and 1330 nm, for use with CWDM, or more fine wavelength spacing for DWDM. Other wavelengths are also possible, such as in the range of 1550 nm, for example, depending on the communication standard, type of fiber, and optical sources.

[0022] In accordance with an example embodiment of the disclosure, in a receiver subsystem implemented in a silicon chip, light is often coupled into a photodetector via a polarization-splitting grating coupler that supports coupling all polarization states of the fiber mode efficiently. The incoming signal is split by the PSGC into two separate waveguides in a polarization-diversity scheme, and therefore both inputs to the waveguide photodetectors are used. If two different PSGCs are used to couple into the same photodetector, then the PD has four separate waveguide ports.

[0023] The analog and digital control circuits 109 may control gain levels or other parameters in the operation of the amplifiers 107A-107D, which may then communicate electrical signals off the photonic circuit 100. The control sections 112A-112D comprise electronic circuitry that enable modulation of the CW laser signal received from the splitters 103. The optical modulators 105A-105D may require high-speed electrical signals to modulate the refractive index in respective branches of a Mach-Zehnder interferometer (MZI), for example.

[0024] In operation, the photonic circuit 100 may be operable to transmit and/or receive and process optical signals. Optical signals may be received from optical fibers by the optical couplers 117A-117D and converted to electrical signals by the photodetectors 111A-111D. The electrical signals may be amplified by transimpedance amplifiers in the amplifiers 107A-107D, for example, and subsequently communicated to other electronic circuitry, not shown, in the photonic circuit 100.

[0025] Integrated photonics platforms allow the full functionality of an optical transceiver to be integrated on a single chip or optical/optoelectronics functionality on a photonics die and electronics functionality on an electronics die, with the die directly bonded for high speed operation. An optical transceiver chip contains optoelectronic circuits that create and process the optical/electrical signals on the transmitter (Tx) and the receiver (Rx) sides, as well as optical interfaces that couple the optical signals to and from a fiber. The signal processing functionality may include modulating the optical carrier, detecting the optical signal, splitting or combining data streams, and multiplexing or demultiplexing data on carriers with different wavelengths, and equalizing signals for reducing and/or eliminating inter-symbol interference (ISI), which may be a common impairment in optical communication systems.

[0026] The photonic circuit 100 may comprise a single electronics/photonics CMOS die/chip or may comprise separate CMOS die for the photonics and electronics functions. The photonic circuit 100 may support both parallel optical fiber (such as PSM-4) and wavelength-division multiplexed (such as CWDM) operation. Selection between the two modes of operation may be enabled by the alignment of the fiber interfaces for both the external light source, the optical source assembly 101, and an external MUX/DEMUX/optical fibers 140, with the MUX/DEMUX operation configured at the firmware level, such as in the control circuits 109. Four-port high-speed photodetectors may enable the dual operation of the photonic circuit 100.

[0027] FIG. 1B is a diagram illustrating an exemplary photonically-enabled die, in accordance with an example embodiment of the disclosure. Referring to FIG. 1B, there is shown the photonically-enabled die 120 comprising an electronic die interface 131, optical and optoelectronic devices 133, light source interfaces 135A and 135B, a chip front surface 137, an optical fiber interface 139, and CMOS guard ring 141.

[0028] In one embodiment, the light source interface 135A and the optical fiber interface 139 comprise grating couplers, for example, that enable coupling of light signals via the CMOS chip surface 137, as opposed to the edges of the chip as with conventional edge-emitting/receiving devices. However, end facets may be used to couple optical signals into the edges of the photonics die 120, as in indicated by the light source interface 135B comprising an end facet on the side of the photonics die 120. Coupling light signals via the chip surface 137 enables the use of the CMOS guard ring 141 which protects the chip mechanically and prevents the entry of contaminants via the chip edge. However, the disclosure is not limited to surface coupling, as edge couplers, such as light source 135B comprising end facets may be utilized to communicate signals into and out of the photonics IC 130.

[0029] The electronics die interface 131 may comprise electrical contacts, such as bond pads and bumps or pillars for coupling to one or more electronics die. The optical and optoelectronic devices 133 comprise devices such as the couplers 103, optical couplers 117A, optical modulators 105A-105D, high-speed heterojunction photodiodes 111A-111D, and monitor photodiodes 113A-113I.

[0030] FIG. 1C is a diagram illustrating a photonically-enabled integrated circuit coupled to an optical fiber cable, in accordance with an example embodiment of the disclosure. Referring to FIG. 1C, there is shown the photonic circuit 100 comprising an electronics die 130 coupled to the photonics die 120. There is also shown a fiber-to-chip coupler 145, an optical fiber cable 149, and an optical source assembly 147. In an example scenario, the optical source assembly 147 may be remote from the photonics die 120 with optical signals coupled to the optical couplers via optical fibers. The light source assembly 147 may then couple optical signals into the top surface 137 via light source interface 135A or into the edge of the photonics die 120 via light source interface 135B comprising an end facet, as indicated by the dashed optical fiber 151. Furthermore, the electronics die 130 may be coupled to the photonics IC 120 to perform some or all of the electronic functions of the photonic circuit 100[[in]].

[0031] The electronics die 120 may comprise circuitry such as the amplifiers 107A-107D and the analog and digital control circuits 109 described with respect to FIG. 1A, for example.

[0032] The photonic circuit 100 comprises the optical and optoelectronic devices 133, the light source interfaces 135A and 135B, the chip surface 137, and the CMOS guard ring 141 may be as described with respect to FIG. 1B. The optical source assembly 147 may comprise a plurality of lasers, with 1310 nm wavelength and wavelengths ranging from 1270 nm to 1330 to support both PSM-4 and CWDM operation, for example, although other WDM and parallel fiber channel wavelengths may be used.

[0033] In an example embodiment, the optical fiber cable 149 may be affixed, via epoxy for example, to the CMOS chip surface 137. The fiber chip coupler 145 enables the physical coupling of the optical fiber cable 149 to the photonics die 120. In another example scenario, the photonic circuit 100 may comprise photonic devices on one die, such as a photonics interposer, and electrical devices on one or more electronics die, both of which may comprise CMOS die.

[0034] FIG. 2 illustrates an optical transceiver with optical paths in PSM-4 mode, in accordance with an example embodiment of the disclosure. Referring to FIG. 2, there is shown an optical transceiver 200 comprising four MZI modulators 205A-205D, a fiber array optical interface 201, an external optical source array 203, grating couplers 209A-209C, optical waveguides 211, and 4-port high-speed photodiodes 207A-207D. Multi-port photodiodes are described in detail in U.S. Patent Application Serial No. 15/592,774 filed on May 11, 2017. The optical and optoelectronic devices shown in FIG. 2 may be integrated on a photonics chip, such as a silicon photonics interposer, for example, upon which other structures, such as electronics die, fiber arrays, and light source assemblies, may be bonded.

[0035] The grating couplers 209A-209C may comprise single-polarization grating couplers, such as grating couplers 209A-209B, or polarization-splitting grating couplers (PSGCs) 209C, where two optical signals may be communicated to different inputs of the photodiodes 207A-207D.

[0036] The external optical source array 203 may comprise an array of lasers in a light source assembly with a plurality of output ports that may be aligned to desired grating couplers 209B on the photonics die, depending on the mode of operation, parallel optical fiber (e.g., PSM-4) or WDM (e.g., CWDM), for example. In an example scenario, the external optical source array 203 may comprise a fiber array that communicates optical signals from an array of source lasers external to the photonics die that may be aligned to desired grating couplers 209B on the photonics die. For example, grating couplers 209A-209C labeled A may be utilized for PSM-4 wavelengths, and grating couplers 209A-209C labeled 1- 4 may be for different CWDM wavelengths.

[0037] The fiber array optical interface 201 may couple optical fibers to desired grating couplers 209A and PSGCs 209C on the photonics chip, depending on the desired mode of operation. In an example scenario, the optical interface may comprise a fiber for each coupler/PSGC on the die, with MUX/DEMUX, as shown further with respect to FIG. 4. The MUX/DEMUX may be integrated on a planar lightwave circuit (PLC), for example, in the fiber array optical interface 201, and may be utilized to select which fiber is used to couple optical signals to and from the die. Planar lightwave circuits are described in more detail in U.S. Patent 7,366,380. In this manner, the optical interface 201 and optical source array 203 may be shifted laterally with respect to the grating couplers 209A-209C to switch to CWDM mode.

[0038] FIG. 2 illustrates a parallel optical fiber mode of the optical transceiver 200, where 1310 nm CW optical signals, for PSM-4, for example, are communicated to the die via the external optical source array 203. Accordingly, the output ports of the external light source fiber array that are coupled to A (e.g., 1310 nm) grating couplers may be selected by a MUX or other switching apparatus. The CW signals may then be modulated using the MZI modulators 205A-205D and communicated out of the chip via the associated grating couplers 209A coupled to the fiber array optical interface 201.

[0039] Similarly, modulated 1310 nm signals may be received from the fiber array optical interface 201 via the PSGCs 209C and communicated to the 4-port high-speed photodiodes 207A-207D, where electrical signals may be generated that represent the data modulated in the received optical signals. In another example scenario, the transceiver may be configured in PSM-4 mode by fixing the fiber array optical interface 201 and external optical source array 203 to be coupled to appropriate grating couplers 209A and 209B and PSGCs 209C without further switching of mode. The modulation/demodulation scheme would then be set for PSM-4 operation upon manufacture, for example.

[0040] FIG. 3 illustrates an optical transceiver with optical paths in WDM mode, in accordance with an example embodiment of the disclosure. Referring to FIG. 3, there is shown the optical transceiver 300 in WDM mode, as compared to the parallel optical fiber mode of FIG. 2. As stated above, the transceiver 300 comprises four MZI modulators 205A-205D, a fiber array optical interface 201, an external optical source array 203, grating couplers 209A-209C, and 4-port high-speed photodiodes 207A-207D. Although four channels are shown in FIG. 3, the disclosure is not so limited, as any number of channels may be utilized.

[0041] The external optical source array 203 may comprise an array of lasers in a light source assembly with a plurality of output ports that may be aligned to desired grating couplers on the photonics die for WDM mode. Accordingly, laser sources of different WDM wavelengths, such as CWDM wavelengths ranging from 1270 nm to 1330 nm, for example, may be coupled to appropriate grating couplers 209B labeled 1- 4 on the photonics die.

[0042] The fiber array optical interface 201 may couple optical fibers to desired grating couplers 209A and 209B and PSGCs 209C on the photonics chip, depending on the desired mode of operation. In an example scenario, the optical interface 201 may comprise a fiber for each coupler/PSGC on the die, where a MUX/DEMUX may be utilized to select which fiber is used to couple optical signals to and from the die, shown further with respect to FIG. 4. Alternatively, a more fixed configuration of the standard/protocol configuration comprises fixing the output ports of the fiber array optical interface 201 and optical source assembly 203 to the desired grating couplers 209A-209C, where the fiber array optical interface 201 and optical source assembly 203 have half the total amount of couplers 209A-209C on the die.

[0043] FIG. 3 illustrates a WDM mode of the optical transceiver 300, where 1270 nm to 1330 nm CW optical signals may be communicated to the die via the external light source fiber array 203. Accordingly, the output ports of the external light source fiber array 203 that are coupled to desired wavelength grating couplers may be selected by a DEMUX or other switching apparatus that route optical signals to desired grating couplers. Alternatively, output ports of the external light source fiber array 203 may be affixed to the grating couplers 209B for the desired protocol/standard. The CW signals may then be modulated using the MZI modulators 205A-205D and communicated out of the chip via the associated grating couplers 209A coupled to the fiber array optical interface 201.

[0044] Similarly, modulated 1- 4 wavelength, e.g., 1270 nm to 1330 nm signals, may be received from the fiber array optical interface 201 via corresponding wavelength PSGCs 209B and communicated to the 4-port high-speed photodiodes 207A-207D where electrical signals may be generated that represent the data modulated in the received optical signals. In another example scenario, the transceiver may be configured in WDM mode by fixing the fiber array optical interface 201 and external light source fiber array 203 to appropriate grating couplers 209A-209C without further switching of mode. The modulation/demodulation scheme would then be set for CWDM operation upon manufacture, for example.

[0045] FIG. 4 illustrates a dynamically configurable mode optical transceiver, in accordance with an example embodiment of the disclosure. Referring to FIG. 4, there is shown optical transceiver 400 with configurable mode, where the interface 201, source, 203, MZIs 205A-205D, photodetectors 207A-207D, and grating couplers 209A-209C are substantially similar to these elements from FIGS. 2 and 3.

[0046] In addition, FIG. 4 illustrates Mux/Demux 201A and 203A in the fiber array optical interface 201A and optical source fiber array 203, respectively. The Mux/Demux 201A and 203A may comprise optical switching capability using directional couplers and optical switches, for example, for receiving optical signals from input ports and routing them to desired output ports. The Mux/Demux 201A and 203A may be integrated in PLCs, for example, in the fiber array optical interface 201A and optical source fiber array 203, respectively.

[0047] In operation, the Mux/Demux 201A and 203A may be configured to couple optical signals between optical fibers in the fiber array optical interface 201A and optical source fiber array 203 to desired couplers 209A-209C, such that the optical transceiver 400 may operate in a desired mode, such as WDM or parallel optical fiber, for example. For example, for WDM mode such as CWDM, the Mux/Demux 203A may be configured to couple optical source signals from lasers emitting at wavelengths 1- 4 to the grating couplers 209B labeled 1- 4. Similarly, the Mux/Demux 201A may be configured to receive optical source signals from the grating couplers 209A labeled 1- 4 and also to couple modulated optical signals at wavelengths 1- 4 to the grating couplers 209C labeled 1- 4.

[0048] In an example embodiment, a method and system are disclosed for selectable parallel optical fiber and WDM operation. In this regard, aspects of the disclosure may comprise an optoelectronic transceiver integrated in a silicon photonics die, where the optoelectronic transceiver comprises optical modulators, photodetectors, grating couplers, an optical source module coupled to the photonics die, and a fiber interface coupled to the photonics die. The optoelectronic transceiver is operable to, in a first communication mode, communicate continuous wave (CW) optical signals from the optical source module to a first subset of the grating couplers for processing signals in the optical modulators in accordance with a first communications protocol, and in a second communication mode, communicate CW optical signals from the optical source module to a second subset of the grating couplers for processing signals in the optical modulators in accordance with a second communications protocol.

[0049] The processed signals may be transmitted out of the photonics die utilizing a third subset of the grating couplers. Optical signals modulated in accordance with the first communications protocol may be received from the fiber interface coupled to a fourth subset of the grating couplers or optical signals modulated in accordance with the second communications protocol may be received from the fiber interface coupled to a fifth subset of the grating couplers. Electrical signals may be generated from the received modulated optical signals utilizing the photodetectors.

[0050] The first communications protocol may be wavelength division multiplexing (WDM) and the second communications protocol may be parallel optical fiber. The fourth and fifth subset of grating couplers may be polarization splitting grating couplers and the photodetectors may be multi-port photodiodes. One of the fourth subset of grating couplers and one of the fifth subset of grating couplers may be coupled to each multi-port photodiode. The CW optical signals may be dynamically coupled to the first subset of grating couplers or the second subset of grating couplers using a multiplexer/demultiplexer in the optical source module. The optical source module may include a plurality of semiconductor lasers, a first subset of which emits at particular wavelength for the first communications protocol and a second subset of which emits at a particular wavelength for the second communications protocol. The optical modulators may be Mach-Zehnder Interferometers.

[0051] While the disclosure has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from its scope. Therefore, it is intended that the present disclosure not be limited to the particular embodiments disclosed, but that the present disclosure will include all embodiments falling within the scope of the appended claims.


Claims

1. A method for communication, the method comprising:
in an optoelectronic transceiver (100, 200, 300, 400) integrated in a silicon photonics die (120), the optoelectronic transceiver (100, 200, 300, 400) comprising optical modulators (105A-105D, 205A-205D), photodetectors (111A-111D, 207A-207D), optical couplers (103, 117, 209A-209C), an optical source module (203) coupled to the photonics die (120), and a fiber chip coupler (145) coupled to the photonics die (120):

characterized by

communicating continuous wave (CW) optical signals from the optical source module (203) to a first subset (209B λA) of the optical couplers (103, 117, 209A-209C) for processing signals in the optical modulators in accordance with a first communications protocol or to a second subset (209B λ1, λ2, λ3, λ4) of the optical couplers (103, 117, 209A-209C) for processing signals in the optical modulators in accordance with a second communications protocol;

transmitting processed signals out of the photonics die (120) utilizing a third subset (209A) of the optical couplers (103, 117, 209A-209C);

in a first communication mode, receiving optical signals modulated in accordance with the first communications protocol from the fiber chip coupler (145)coupled to a fourth subset (209B λA) of the optical couplers (103, 117, 209A-209C);

in a second communication mode, receiving optical signals modulated in accordance with the second communications protocol from the fiber chip coupler (145)coupled to a fifth subset (209B λ1, λ2, λ3, λ4) of the optical couplers (103, 117, 209A-209C); and

generating electrical signals from the received modulated optical signals utilizing the photodetectors (111A-111D, 207A-207D).


 
2. The method according to claim 1, wherein the first communications protocol comprises coarse wavelength division multiplexing (CWDM).
 
3. The method according claim 1 or 2, wherein the second communications protocol comprises parallel single mode 4-channel (PSM-4).
 
4. The method according to any one of claims 1 to 3, wherein the fourth subset (209B λA) and fifth subset (209B λ1, λ2, λ3, λ4) of optical couplers (103, 117, 209A-209C) comprise polarization splitting grating couplers (117, 209C).
 
5. The method according to any one of claims 1 to 4, wherein the photodetectors (111A-111D, 207A-207D) comprise multi-port photodiodes (207A-207D), especially wherein one of the fourth subset (209B λA) of optical couplers (103, 117, 209A-209C) and one of the fifth subset (209B λ1, λ2, λ3, λ4) of optical couplers (103, 117, 209A-209C) is coupled to each multi-port photodiode (207A-207D).
 
6. The method according to any one of claims 1 to 5, comprising dynamically coupling the CW optical signals to the first subset (209B λA) of optical couplers (103, 117, 209A-209C) or the second subset (209B λ1, λ2, λ3, λ4) of optical couplers (103, 117, 209A-209C) using a multiplexer/demultiplexer (203A) in the optical source module (203).
 
7. The method according to any one of claims 1 to 6, wherein the optical source module (203) comprises a plurality of semiconductor lasers, a first subset (209B λA) of which emits at wavelengths for the first communications protocol and a second subset (209B λ1, λ2, λ3, λ4) of which emits at a wavelength for the second communications protocol.
 
8. The method according to any one of claims 1 to 7, wherein the optical couplers (103, 117, 209A-209C) comprise grating couplers (117, 209C), and/or wherein the optical couplers (103, 117, 209A-209C)comprise end facets of the photonics die (120).
 
9. A system for communication, the system comprising:
an optoelectronic transceiver (100, 200, 300, 400) integrated in a silicon photonics die (120), the optoelectronic transceiver (100, 200, 300, 400) comprising optical modulators, photodetectors (111A-111D, 207A-207D), optical couplers (103, 117, 209A-209C), an optical source module (203) coupled to the photonics die (120), and a fiber chip coupler (145)coupled to the photonics die (120), the optoelectronic transceiver (100, 200, 300, 400) characterized by being adapted to:

communicate continuous wave (CW) optical signals from the optical source module (203) to a first subset (209B λA) of the optical couplers (103, 117, 209A-209C) for processing signals in the optical modulators in accordance with a first communications protocol or to a second subset of the optical couplers (103, 117, 209A-209C) for processing signals in the optical modulators in accordance with a second communications protocol;

transmit processed signals out of the photonics die (120) utilizing a third subset (209A) of the optical couplers (103, 117, 209A-209C);

in a first communication mode, receive optical signals modulated in accordance with the first communications protocol from the fiber chip coupler (145)coupled to a fourth subset (209B λ1, λ2, λ3, λ4) of the optical couplers (103, 117, 209A-209C);

in a second communication mode, receive optical signals modulated in accordance with the second communications protocol from the fiber chip coupler (145)coupled to a fifth subset (209B λA) of the optical couplers (103, 117, 209A-209C); and

generate electrical signals from the received modulated optical signals utilizing the photodetectors (111A-111D, 207A-207D).


 
10. The system according to claim 9, wherein the first communications protocol comprises coarse wavelength division multiplexing (CWDM).
 
11. The system according to claim 9 or 10, wherein the second communications protocol comprises parallel single mode 4-channel (PSM-4).
 
12. The system according to any one of claims 9 to 11, wherein the optical couplers (103,117, 209A-209C) comprise end facets on the photonics die (120).
 
13. The system according to any one of claims 9 to 12, wherein the photodetectors (111A-111D, 207A-207D) comprise multi-port photodiodes (207A-207D), especially wherein one of the fourth subset (209B λA) of optical couplers (103, 117, 209A-209C) and one of the fifth subset (209B λ1, λ2, λ3, λ4) of optical couplers (103, 117, 209A-209C) is coupled to each multi-port photodiode (207A-207D).
 
14. The system according to any one of claims 9 to 13, wherein the optoelectronic transceiver (100, 200, 300, 400) is operable to dynamically couple the CW optical signals to the first subset (209B λA) of optical couplers (103, 117, 209A-209C) or the second subset (209B λ1, λ2, λ3, λ4) of optical couplers (103, 117, 209A-209C) using a multiplexer/demultiplexer (203A) in the optical source module (203).
 
15. The system according to any one of claims 9 to 14, wherein the optical source module (203) comprises a plurality of semiconductor lasers, a first subset (209B λA) of which emits at wavelengths for the first communications protocol and a second subset (209B λ1, λ2, λ3, λ4) of which emits at a wavelength for the second communications protocol.
 
16. The system according to any one of claims 9 to 15, wherein the optical couplers (103, 117, 209A-209C) comprise grating couplers (117, 209C) and the fourth subset (209B λA) and fifth subset (209B λ1, λ2, λ3, λ4) of optical couplers (103, 117, 209A-209C) comprise polarization splitting grating couplers (117, 209C).
 
17. A system for communication, the system comprising:
an optoelectronic transceiver (100, 200, 300, 400) integrated in a silicon photonics die (120), the optoelectronic transceiver (100, 200, 300, 400) comprising optical modulators, photodetectors (111A-111D, 207A-207D), grating couplers (117, 209C), an optical source module (203) coupled to the photonics die (120), and a fiber chip coupler (145)coupled to the photonics die (120), the optoelectronic transceiver (100, 200, 300, 400) characterized by being adapted to:

in a first communication mode, communicate continuous wave (CW) optical signals from the optical source module (203) to a first subset (209B λA) of the grating couplers (117, 209C) for processing coarse wavelength division multiplexing (CWDM) signals

in a second communication mode, communicate CW optical signals from the optical source module (203) to a second subset (209B λ1, λ2, λ3, λ4) of the grating couplers (117, 209C) for processing parallel single mode 4-channel (PSM-4) signals in the optical modulators;

transmit processed signals out of the photonics die (120) utilizing a third subset (209A) of the grating couplers (117, 209C);

receive CWDM optical signals from the fiber chip coupler (145)coupled to a fourth subset (209B λA) of the grating couplers (117, 209C) or receive PSM-4 optical signals from the fiber chip coupler (145)coupled to a fifth subset (209B λ1, λ2, λ3, λ4) of the grating couplers (117, 209C); and

generate electrical signals from the received modulated optical signals utilizing the photodetectors (111A-111D, 207A-207D).


 


Ansprüche

1. Verfahren zur Kommunikation, wobei das Verfahren aufweist:

in einem optoelektronischen Sende-Empfänger (100, 200, 300, 400), der in einem Silikon-Photonik-Die (120) eingebaut ist, wobei der optoelektronische Sende-Empfänger (100, 200, 300, 400) optische Modulatoren (105A-105D, 205A-205D), Fotodetektoren (111A-111D, 207A-207D), optische Koppler (103, 117, 209A-209C), ein optisches Quellenmodul (203), das mit dem Photonik-Die (120) gekoppelt ist, und einen Faser-Chip-Koppler (145), der mit dem Photonik-Die (120) gekoppelt ist, aufweist,

gekennzeichnet durch:

kommunizieren einer optischen Continuous Wave (zeitlich konstante abgestrahlte Welle) (CW) vom optischen Quellenmodul (203) an einen ersten Untersatz (209B λA) der optischen Koppler (103, 117, 209A-209C) zur Verarbeitung von Signalen in den optischen Modulatoren in Übereinstimmung mit einem ersten Kommunikationsprotokoll oder an einen zweiten Untersatz (209B, λ1, λ2, λ3, λ4) der optischen Koppler (103, 117, 209A-209C) zur Verarbeitung von Signalen in den optischen Modulatoren in Übereinstimmung mit einem zweiten Kommunikationsprotokoll;

übermitteln der verarbeiteten Signale aus dem Photonik-Die (120) unter Verwendung eines dritten Untersatzes (209A) der optischen Koppler (103, 117, 209A-209C);

in einem ersten Kommunikationsmodus, empfangen der in Übereinstimmung mit dem ersten Kommunikationsprotokoll modulierten optischen Signale vom Faser-Chip-Koppler (145), der mit einem vierten Untersatz (209B λA) der optischen Koppler (103, 117, 209A-209C) gekoppelt ist;

in einem zweiten Kommunikationsmodus, empfangen der in Übereinstimmung mit dem zweiten Kommunikationsprotokoll modulierten optischen Signale vom Faser-Chip-Koppler (145), der mit einem fünften Untersatz (209B λ1, λ2, λ3, λ4) der optischen Koppler (103, 117, 209A-209C) gekoppelt ist; und

erzeugen elektrischer Signale aus den empfangenen modulierten optischen Signalen unter Verwendung der Fotodetektoren (111A-111D, 207A-207D).


 
2. Verfahren nach Anspruch 1, wobei das erste Kommunikationsprotokoll eine Coarse Wavelength Division Multiplexing (CWDM) aufweist.
 
3. Verfahren nach Anspruch 1 oder 2, wobei das zweite Kommunikationsprotokoll einen 4-Kanal-Parallel-Einzelmodus (PSM-4) aufweist.
 
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der vierte Untersatz (209B λA) und der fünfte Untersatz (209B λ1, λ2, λ3, λ4) der optischen Koppler (103, 117, 209A-209C) Polarisationsteilungs-Gitterkoppler (117, 209C) aufweisen.
 
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Fotodetektoren (111A-111D, 207A-207D) Fotodioden mit Mehrfachzugang (207A-207D) aufweisen, wobei insbesondere der vierte Untersatz (209B λA) der optischen Koppler (103, 117, 209A-209C) oder der fünfte Untersatz (209B λ1, λ2, λ3, λ4) der optischen Koppler (103, 117, 209A-209C) mit jeder Fotodiode mit Mehrfachzugang (207A-207D) gekoppelt ist.
 
6. Verfahren nach einem der Ansprüche 1 bis 5, aufweisend dynamisches Koppeln des optischen CW-Signals mit dem ersten Untersatz (209B λA) der optischen Koppler (103, 117, 209A-209C) oder dem zweiten Untersatz (209B λ1, λ2, λ3, λ4) der optischen Koppler (103, 117, 209A-209C) unter Verwendung eines Multiplexer/Demultiplexer (203A) im optischen Quellenmodul (203).
 
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei das optische Quellenmodul (203) eine Mehrzahl an Halbleiterlasern aufweist, von denen ein erster Untersatz (209B λA) bei Wellenlängen für das erste Kommunikationsprotokoll aussendet und von denen ein zweiter Untersatz (209B, λ1, λ2, λ3, λ4) bei einer Wellenlänge für das zweite Kommunikationsprotokoll aussendet.
 
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die optischen Koppler (103, 117, 209A-209C) Gitterkoppler (117, 209C) aufweisen und/oder wobei die optischen Koppler (103, 117, 209A-209C) Endfacetten des Photonik-Dies (120) aufweisen.
 
9. System zur Kommunikation, wobei das System aufweist:
einen optoelektronischen Sende-Empfänger (100, 200, 300, 400), der in einem Silikon-Photonik-Die (120) eingebaut ist, wobei der optoelektronische Sende-Empfänger (100, 200, 300, 400) optische Modulatoren, Fotodetektoren (111A-111D, 207A-207D), optische Koppler (103, 117, 209A-209C), ein optisches Quellenmodul (203), das mit dem Photonik-Die (120) gekoppelt ist, aufweist, wobei der optoelektronische Sende-Empfänger (100, 200, 300, 400) dadurch gekennzeichnet ist, dass er angepasst wird, um:

optische Continuous Waves (zeitlich konstante abgestrahlte Welle) (CW) vom optischen Quellenmodul (203) an einen ersten Untersatz (209B λA) der optischen Koppler (103, 117, 209A-209C) zur Verarbeitung von Signalen in den optischen Modulatoren in Übereinstimmung mit einem ersten Kommunikationsprotokoll oder an einen zweiten Untersatz der optischen Koppler (103, 117, 209A-209C) zur Verarbeitung von Signalen in den optischen Modulatoren in Übereinstimmung mit einem zweiten Kommunikationsprotokoll zu kommunizieren;

die verarbeiteten Signale aus dem Photonik-Die (120) unter Verwendung eines dritten Untersatzes (209A) der optischen Koppler (103, 117, 209A-209C) zu übermitteln;

in einem ersten Kommunikationsmodus in Übereinstimmung mit dem ersten Kommunikationsprotokoll modulierte optische Signale vom Faser-Chip-Koppler (145), der mit einem vierten Untersatz (209B λ1, λ2, λ3, λ4) der optischen Koppler (103, 117, 209A-209C) gekoppelt ist, zu empfangen;

in einem zweiten Kommunikationsmodus in Übereinstimmung mit dem zweiten Kommunikationsprotokoll modulierte optische Signale vom Faser-Chip-Koppler (145), der mit einem fünften Untersatz (209B λA) der optischen Koppler (103, 117, 209A-209C) gekoppelt ist, zu empfangen; und

elektrische Signale aus den empfangenen modulierten optischen Signalen unter Verwendung der Fotodetektoren (111A-111D, 207A-207D) zu erzeugen.


 
10. System nach Anspruch 9, wobei das erste Kommunikationsprotokoll eine Coarse Wavelength Division Multiplexing (CWDM) aufweist.
 
11. System nach Anspruch 9 oder 10, wobei das zweite Kommunikationsprotokoll einen 4-Kanal-Parallel-Einzelmodus (PSM-4) aufweist.
 
12. System nach einem der Ansprüche 9 bis 11, wobei die optischen Koppler (103, 117, 209A-209C) Endfacetten des Photonik-Dies (120) aufweisen.
 
13. System nach einem der Ansprüche 9 bis 12, wobei die Fotodetektoren (111A-111D, 207A-207D) Fotodioden mit Mehrfachzugang (207A-207D) aufweisen, wobei insbesondere der vierte Untersatz (209B λA) der optischen Koppler (103, 117, 209A-209C) oder der fünfte Untersatz (209B λ1, λ2, λ3, λ4) der optischen Koppler (103, 117, 209A-209C) mit jeder Fotodiode mit Mehrfachzugang (207A-207D) gekoppelt ist.
 
14. System nach einem der Ansprüche 9 bis 13, wobei er optoelektronische Sende-Empfänger (100, 200, 300, 400) operable ist, um die optischen CW-Signale mit dem ersten Untersatz (209B λA) der optischen Koppler (103, 117, 209A-209C) oder dem zweiten Untersatz (209B λ1, λ2, λ3, λ4) der optischen Koppler (103, 117, 209A-209C) unter Verwendung eines Multiplexer/Demultiplexer (203A) im optischen Quellenmodul (203) dynamisch zu verbinden.
 
15. System nach einem der Ansprüche 9 bis 14, wobei das optische Quellenmodul (203) eine Mehrzahl an Halbleiterlasern aufweist, von denen ein erster Untersatz (209B λA) bei Wellenlängen für das erste Kommunikationsprotokoll aussendet und von denen ein zweiter Untersatz (209B, λ1, λ2, λ3, λ4) bei einer Wellenlänge für das zweite Kommunikationsprotokoll aussendet.
 
16. System nach einem der Ansprüche 9 bis 15, wobei die optischen Koppler (103, 117, 209A-209C) Gitterkoppler (117, 209C) aufweisen und der vierte Untersatz (209B λ A) und der fünfte Untersatz (209B λ1, λ2, λ3, λ4) der optischen Koppler (103, 117, 209A-209C) Polarisationsteilungs-Gitterkoppler (117, 209C) aufweisen.
 
17. System zur Kommunikation, wobei das System aufweist:
einen optoelektronischen Sende-Empfänger (100, 200, 300, 400), der in einem Silikon-Photonik-Die (120) eingebaut ist, wobei der optoelektronische Sende-Empfänger (100, 200, 300, 400) optische Modulatoren, Fotodetektoren (111A-111D, 207A-207D), Gitterkoppler (117, 209C), ein optisches Quellenmodul (203), das mit dem Photonik-Die (120) gekoppelt ist, und einen Faser-Chip-Koppler (145), der mit dem Photonik-Die (120) gekoppelt ist, aufweist, wobei der optoelektronische Sende-Empfänger (100, 200, 300, 400) dadurch gekennzeichnet ist, dass er angepasst wird, um:

in einem ersten Kommunikationsmodus optische Continuous Waves (zeitlich konstante abgestrahlte Welle) (CW) vom optischen Quellenmodul (203) an einen ersten Untersatz (209B λA) der Gitterkoppler (117, 209C) zur Verarbeitung von Coarse Wavelength Divison Multiplexing-(CWDM)-Signalen zu kommunizieren

in einem zweiten Kommunikationsmodus optische CW-Signale vom optischen Quellenmodul (203) an einen zweiten Untersatz (209B λ1, λ2, λ3, λ4) der Gitterkoppler (117, 209C) zu Verarbeitung von 4-Kanal-Parallel-Einzelmodus-(PSM-4)-Signalen in den optischen Modulatoren zu kommunizieren;

die verarbeiteten Signale aus dem Photonik-Die (120) unter Verwendung eines dritten Untersatzes (209A) der Gitterkoppler (117, 209C) zu übermitteln;

optische CWDM-Signale vom Faser-Chip-Koppler (145), der mit einem vierten Untersatz (209B λA) der Gitterkoppler (117, 209C) gekoppelt ist, zu empfangen oder optische PSM-4-Signale vom Faser-Chip-Koppler (145), der mit einem fünften Untersatz (209B λ1, λ2, λ3, λ4) der Gitterkoppler (117, 209C) gekoppelt ist, zu empfangen; und

elektrische Signale aus den empfangenen modulierten optischen Signalen unter Verwendung der Fotodetektoren (111A-111D, 207A-207D) zu erzeugen.


 


Revendications

1. Procédé de communication, le procédé comprenant :

dans un émetteur-récepteur opto-électronique (100, 200, 300, 400) intégré dans une puce photonique au silicium (120), l'émetteur-récepteur opto-électronique (100, 200, 300, 400) comprenant des modulateurs optiques (105A-105D, 205A-205D), des photodétecteurs (111A-111D, 207A-207D), des coupleurs optiques (103, 117, 209A-209C), un module de source optique (203) couplé à la puce photonique (120) et un coupleur à puce fibreux (145) couplé à la puce photonique (120)

caractérisé par :

la communication de signaux optiques à ondes continues (CW) du module de source optique (203) à un premier sous-ensemble (209B λA) des coupleurs optiques (103, 117, 209A-209C) pour traiter des signaux dans les modulateurs optiques conformément à un premier protocole de communications ou à un deuxième sous-ensemble (209B λ1, λ2, λ3, λ4) des coupleurs optiques (103, 117, 209A-209C) pour traiter des signaux dans les modulateurs optiques conformément à un second protocole de communications ;

la transmission de signaux traités hors de la puce photonique (120) en utilisant un troisième sous-ensemble (209A) des coupleurs optiques (103, 117, 209A-209C) ;

dans un premier mode de communication, la réception de signaux optiques modulés conformément au premier protocole de communications depuis le coupleur à puce fibreux (145) couplé à un quatrième sous-ensemble (209B λA) des coupleurs optiques (103, 117, 209A-209C) ;

dans un second mode de communication, la réception de signaux optiques modulés conformément au second protocole de communications à partir du coupleur à puce fibreux (145) couplé à un cinquième sous-ensemble (209B λ1, λ2, λ3, λ4) des coupleurs optiques (103, 117, 209A-209C) ; et

la génération de signaux électriques depuis les signaux optiques modulés reçus en utilisant les photodétecteurs (111A-111D, 207A-207D).


 
2. Procédé selon la revendication 1, dans lequel le premier protocole de communications comprend un multiplexage par division en longueur d'onde grossier (CWDM).
 
3. Procédé selon la revendication 1 ou 2, dans lequel le second protocole de communications comprend un système parallèle monomode à 4 canaux (PSM-4).
 
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le quatrième sous-ensemble (209B λA) et le cinquième sous-ensemble (209B λ1, λ2, λ3, λ4) des coupleurs optiques (103, 117, 209A-209C) comprennent des coupleurs à grille de scission de polarisation (117, 209C).
 
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel les photodétecteurs (111A-111D, 207A-207D) comprennent des photodiodes à orifices multiples (207A-207D), en particulier dans lequel l'un du quatrième sous-ensemble (209B λA) des coupleurs optiques (103, 117, 209A-209C) et l'un du cinquième sous-ensemble (209B λ1, λ2, λ3, λ4) des coupleurs optiques (103, 117, 209A-209C) sont couplés à chaque photodiode à orifices multiples (207A-207D).
 
6. Procédé selon l'une quelconque des revendications 1 à 5, comprenant le couplage dynamique des signaux optiques CW au premier sous-ensemble (209B λA) de coupleurs optiques (103, 117, 209A-209C) ou au deuxième sous-ensemble (209B λ1, λ2, λ3, λ4) de coupleurs optiques (103, 117, 209A-209C) en utilisant un multiplexeur/démultiplexeur (203A) dans le module de source optique (203).
 
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel le module de source optique (203) comprend une pluralité de lasers à semi-conducteurs, dont un premier sous-ensemble (209B λA) émet à des longueurs d'onde pour le premier protocole de communications et un deuxième sous-ensemble (209B λ1, λ2, λ3, λ4) qui émet à une longueur d'onde pour le second protocole de communications.
 
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel les coupleurs optiques (103, 117, 209A-209C) comprennent des coupleurs à grille (117, 209C) et/ou dans lequel les coupleurs optiques (103, 117, 209A-209C) comprennent des facettes d'extrémité de la puce photonique (120).
 
9. Système de communication, le système comprenant :
un émetteur-récepteur optoélectronique (100, 200, 300, 400) intégré à une puce photonique au silicium (120), l'émetteur-récepteur opto-électronique (100, 200, 300, 400) comprenant des modulateurs optiques, des photodétecteurs (111A-111D, 207A-207D), des coupleurs optiques (103, 117, 209A-209C), un module de source optique (203) couplé à la puce photonique (120) et un coupleur à puce fibreux (145) couplé à la puce photonique (120), l'émetteur-récepteur optoélectronique (100, 200, 300, 400) étant caractérisé en ce qu'il est adapté pour :

communiquer des signaux optiques à ondes continues (CW) du module de source optique (203) à un premier sous-ensemble (209B λA) des coupleurs optiques (103, 117, 209A-209C) pour traiter des signaux dans les modulateurs optiques conformément à un premier protocole de communications ou à un deuxième sous-ensemble des coupleurs optiques (103, 117, 209A-209C) pour traiter des signaux dans les modulateurs optiques conformément à un second protocole de communications ;

transmettre des signaux traités hors de la puce photonique (120) en utilisant un troisième sous-ensemble (209A) des coupleurs optiques (103, 117, 209A-209C) ;

dans un premier mode de communication, recevoir des signaux optiques modulés conformément au premier protocole de communications depuis le coupleur à puce fibreux (145) couplé à un quatrième sous-ensemble (209B λ1, λ2, λ3, λ4) des coupleurs optiques (103, 117, 209A-209C) ;

dans un second mode de communication, recevoir des signaux optiques modulés conformément au second protocole de communications à partir du coupleur à puce fibreux (145) couplé à un cinquième sous-ensemble (209B λA) des coupleurs optiques (103, 117, 209A-209C) ; et

générer des signaux électriques depuis les signaux optiques modulés reçus en utilisant les photodétecteurs (111A-111D, 207A-207D).


 
10. Système selon la revendication 9, dans lequel le premier protocole de communications comprend un multiplexage par division en longueur d'onde grossier (CWDM).
 
11. Système selon la revendication 9 ou 10, dans lequel le second protocole de communications comprend un système parallèle monomode à 4 canaux (PSM-4).
 
12. Système selon l'une quelconque des revendications 9 à 11, dans lequel les coupleurs optiques (103, 117, 209A-209C) comprennent des facettes d'extrémité sur la puce photonique (120).
 
13. Système selon l'une quelconque des revendications 9 à 12, dans lequel les photodétecteurs (111A-111D, 207A-207D) comprennent des photodiodes à ports multiples (207A-207D), en particulier dans lequel l'un du quatrième sous-ensemble (209B λA) de coupleurs optiques (103, 117, 209A-209C) et l'un du cinquième sous-ensemble (209B λ1, λ2, λ3, λ4) de coupleurs optiques (103, 117, 209A-209C) sont couplés à chaque photodiode à ports multiples (207A-207D).
 
14. Système selon l'une quelconque des revendications 9 à 13, dans lequel l'émetteur-récepteur opto-électronique (100, 200, 300, 400) est à même de coupler dynamiquement les signaux optiques CW au premier sous-ensemble (209B λA) de coupleurs optiques (103, 117, 209A-209C) ou au deuxième sous-ensemble (209B λ1, λ2, λ3, λ4) de coupleurs optiques (103, 117, 209A-209C) en utilisant un multiplexeur/démultiplexeur (203A) dans le module de source optique (203).
 
15. Système selon l'une quelconque des revendications 9 à 14, dans lequel le module de source optique (203) comprend une pluralité de lasers à semi-conducteurs, dont un premier sous-ensemble (209B λA) émet à des longueurs d'onde pour le premier protocole de communications et un deuxième sous-ensemble (209B λ1, λ2, λ3, λ4) émet à une longueur d'onde pour le second protocole de communications.
 
16. Système selon l'une quelconque des revendications 9 à 15, dans lequel les coupleurs optiques (103, 117, 209A-209C) comprennent des coupleurs à grille (117, 209C) et le quatrième sous-ensemble (209B λA) et le cinquième sous-ensemble (209B λ1, λ2, λ3, λ4) de coupleurs optiques (103, 117, 209A-209C) comprennent des coupleurs à grille à scission de polarisation (117, 209C).
 
17. Système de communication, le système comprenant :
un émetteur-récepteur opto-électronique (100, 200, 300, 400) intégré à une puce photonique au silicium (120), l'émetteur-récepteur opto-électronique (100, 200, 300, 400) comprenant des modulateurs optiques, des photodétecteurs (111A-111D, 207A-207D), des coupleurs à grille (117, 209C), une module de source optique (203) couplé à la puce photonique (120) et un coupleur à puce fibreux (145) couplé à la puce photonique (120), l'émetteur-récepteur opto-électronique (100, 200, 300, 400) étant caractérisé en ce qu'il est adapté pour :

dans un premier mode de communication, communiquer des signaux optiques à ondes continues (CW) du module de source optique (203) à un premier sous-ensemble (209B λA) des coupleurs à grille (117, 209C) pour traiter des signaux de multiplexage à division à longueur d'onde grossiers (CWDM),

dans un second mode de communication, communiquer des signaux optiques CW du module de source optique (203) à un deuxième sous-ensemble (209B λ1, λ2, λ3, λ4) des coupleurs à grille (117, 209C) pour traiter des signaux parallèles monomode à 4 canaux (PSM-4) dans les modulateurs optiques ;

transmettre des signaux traités hors de la puce photonique (120) en utilisant un troisième sous-ensemble (209A) des coupleurs à grille (117, 209C) ;

recevoir des signaux optiques CWDM du coupleur à puce fibreux (145) couplé à un quatrième sous-ensemble (209B λA) des coupleurs à grille (117, 209C) ou recevoir des signaux optiques PSM-4 à partir du coupleur à puce fibreux (145) couplé à un cinquième sous-ensemble (209B λ1, λ2, λ3, λ4) des coupleurs à grille (117, 209C) ; et

générer des signaux électriques à partir des signaux optiques modulés reçus en utilisant les photodétecteurs (111A-111D, 207A-207D).


 




Drawing





















REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description