(19)
(11)EP 3 268 237 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.10.2018 Bulletin 2018/40

(21)Application number: 16707000.2

(22)Date of filing:  16.02.2016
(51)International Patent Classification (IPC): 
B44B 5/02(2006.01)
C08J 7/00(2006.01)
C11D 3/12(2006.01)
C09D 5/00(2006.01)
B05D 5/06(2006.01)
(86)International application number:
PCT/EP2016/053262
(87)International publication number:
WO 2016/142131 (15.09.2016 Gazette  2016/37)

(54)

A PROCESS FOR SURFACE MODIFICATION OF MATERIALS

VERFAHREN ZUR OBERFLÄCHENMODIFIZIERUNG VON MATERIALIEN

PROCÉDÉ DE MODIFICATION DE SURFACE DE MATÉRIAUX


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.03.2015 EP 15158164

(43)Date of publication of application:
17.01.2018 Bulletin 2018/03

(73)Proprietors:
  • Unilever NV
    3013 AL Rotterdam (NL)
    Designated Contracting States:
    AL AT BE BG CH CZ DE DK EE ES FI FR GR HR HU IS IT LI LT LU LV MC MK NL NO PL PT RO RS SE SI SK SM TR 
  • Unilever PLC
    London, Greater London EC4Y 0DY (GB)
    Designated Contracting States:
    CY GB IE MT 

(72)Inventors:
  • DAS, Somnath
    Bangalore 560066 (IN)
  • MURALIDHARAN, Girish
    Bangalore 560066 (IN)
  • PRAMANIK, Amitava
    Bangalore 560066 (IN)

(74)Representative: Warner, Guy Jonathan 
Unilever N.V. Unilever Patent Group Olivier van Noortlaan 120
3133 AT Vlaardingen
3133 AT Vlaardingen (NL)


(56)References cited: : 
WO-A1-2014/038701
WO-A2-2012/118805
JP-A- 2005 350 502
WO-A1-2014/108892
DE-A1- 10 106 213
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The present invention relates to surface modification of materials. In particular the invention relates to a process for surface modification of deformable materials such as polymeric materials to make the surface non-sticking in order to reduce the ability of materials such as viscous food or personal care and hygiene compositions to stick on it and thus provide an easy flow.

    Background of the invention



    [0002] Non-stick surface involves substrate modification and/or treatment so as to reduce the ability of materials to stick on it. Various compositions that generally have high viscosity like food preparations e.g tomato ketchup to personal care preparations like shampoo, liquid soap, moisturising lotions etc., are packaged in containers. The material wastage due to sticking of materials or contents in a container to its walls is enormous.

    [0003] One of the most commonly employed and commercially practiced approach for fabricating non-stick surfaces is the use of polytetrafluoroethylene (PTFE or Teflon) coating. However, this process is expensive and poses both environmental and health concerns.

    [0004] US20110069361 (Jun Hyun-Woo et al.) discloses different ways to create pattern or imprint through either etching or injection moulding or hot embossing for making superhydrophobic surface. This has limited application as the contact angle obtained would not be very high since the process will form only micropillars, consequently the hydrophobicity imparted by such treatment would be lower.

    [0005] Use of hydrophobic particles of one or more sizes and their combinations have been disclosed in WO12138992 (Trustees of Univ. of Pennsylvania), to create transparent hydrophobic surfaces. Use of combination of particles with different particles sizes results in enhanced roughness, which in turn enhances the hydrophobic properties. However, these particles do not strongly bind to the surfaces, hence they cannot withstand damage to the surface, and subsequently the water repellence property is lost.

    [0006] To circumvent this problem, use of binders (US2012107581, US Dept. of Energy) or coupling agents (WO14038701, Toppan Printing Co. Ltd) have been proposed. US2012107581 discloses a composition for producing an optically clear, well bonded superhydrophobic coating which includes hydrophobic particles, a binder and a solvent. They use ethyl cyanoacrylate, polyacrylic acid, polytetrafluoroethylene, polyurethane as the binder. In such cases, low concentrations of binders are typically mixed with the particles and multiple dip cycles are required to achieve superhydrophobicity. Alternatively, use of coupling agents has been disclosed in WO14038701 but they do not generate micropillars and the process employed is different.

    [0007] US2001/0051273 A1 (Veerasamy) discloses a substrate coated with a hydrophobic layer(s) that includes e.g., highly tetrahedral amorphous carbon that is a form of diamond-like carbon (DLC), or any other suitable material. The exterior surface of the resulting coated article exhibits a surface roughness sufficient so that the article has an initial contact angle of at least about 100 degrees. In certain embodiments, the layer has a surface energy of no more than about 20.2 mN/m and/or an average hardness of at least about 10 GPa.

    [0008] WO2012/118805 also discloses methods of preparing a super hydrophobic surfaces which involve an embossing of the surface of an object with an embosser comprising micropillars, the surface including particules with particule size distribution d50 in the range 0,1 to 1 microns.

    [0009] The problem with the above mentioned methods for making surfaces hydrophobic is that either the surfaces cannot withstand damage even by mild abrasion and subsequently the water repellence property is lost or the resulting contact angle is relatively low. This is mainly due to dislodging of the hydrophobic particles from the surface. The present inventors have been able to select adhesives that allow strong adherence of particles to the surface to provide good and stable hydrophobic properties. It is a challenge to obtain stable super hydrophobic surfaces and the present inventors have been able to achieve this by a specific process and by a combination of creating micropillars along with the use of specific adhesives and hydrophobic particles.

    [0010] It is an object of the present invention to provide a process to modify the surface of an object to make the surface non-sticking and thus provide an easy flow for viscous materials.

    [0011] It is another object of the present invention to provide a process to modify the surface of an object to provide super hydrophobic surfaces by creating micropillars and depositing hydrophobic particles using an adhesive layer.

    [0012] It is another object of the present invention to provide a process to modify the surface of an object to make the surface hydrophobic and to retain this property even when the surface is subjected to damage by mild abrasion.

    Summary of the invention



    [0013] According to claim 1 of the present invention there is provided a process for surface modification of materials comprising:
    1. (i) embossing the surface of an object with an embosser comprising micropillars with an equivalent circular diameter, height and pitch each in the range 10-200 microns;
    2. (ii) applying 0.1 to 5 mg/cm2 of adhesive on the embossed surface resulting from step (i);
    3. (iii) depositing 0.2 to 1.2 mg/cm2 of hydrophobic particles resulting from step (ii);
    wherein the hydrophobic particles have a particle size with d50 in the range 0.1 to 10 microns.

    [0014] The present invention also relates to an object, according to claim 10, comprising an embossed surface obtainable by said process.

    Detailed description of the invention



    [0015] The present invention relates to a process for surface modification of materials comprising:
    1. (i) embossing the surface of an object with an embosser comprising micropillars with an equivalent circular diameter, height and pitch each in the range 10-200 microns;
    2. (ii) applying 0.1 to 5 mg/cm2 of adhesive on the embossed surface resulting from step (i);
    3. (iii) depositing 0.2 to 1.2 mg/cm2 of hydrophobic particles on the surface resulting from step (ii);
    wherein the hydrophobic particles have a particle size with d50 in the range 0.1 to 10 microns.

    [0016] The surface modification of the materials by the process according to the invention make the surface of materials hydrophobic and preferably enable them to retain this property even when the surface is subjected to damage by mild abrasion which preferably is rubbing the surface with a plastic cleaning mop operated under a load of 5 kg for 2 minutes.

    Embossing:



    [0017] The object selected for the modification of the surface is preferably any deformable material and more preferably polymeric materials as these are generally employed for packaging of viscous food or personal care and hygiene compositions. The polymeric materials are preferably selected from high density polyethylene (HDPE), low density polyethylene (LDPE), polyethylene terephthalate (PET), polypropylene (PP) or polystyrene (PS) or their derivatives.

    [0018] The embossing of the surface of an object to create a pattern on their surface is done by using preferably an embosser which is a metal mesh and more preferably a stainless steel mesh having different shapes which may preferably be circle, square, rectangular or polygonal prismatic with an equivalent circular diameter, height and pitch each in the range 10-200 microns and preferably 30-100 microns. Equivalent circular diameter refers to the diameter of a circle with area equal to that of the 2 dimensional projections of other shapes. The embossing of the surface of an object is suitably achieved either through hot pressing or soft-lithography techniques at a temperature which may range from ambient room temperature to high temperature. It is preferred to use hot pressing for embossing the surface of the object. In the hot embossing process, the mesh is preferably heated to a temperature of 70°C to 120°C and more preferably 80°C to 100°C and preferably pressed on the surface of the object. The object is preferably cooled after removing the metal mesh.

    Application of the adhesive:



    [0019] The adhesive is preferably selected from those that have a shear elastic modulus < 0.3 MPa at frequencies ∼ 1 Hz and more preferably 0.1 to 0.2 MPa at frequencies ∼ 1 Hz. The shear elastic modulus of the adhesive is preferably as per Dahlquist Criterion. The adhesive is applied on to the embossed surface of the object by preferably spray or dip coating. The adhesive is preferably comprises acrylics, styrene block copolymers, natural rubber and silicone formulations, having shear elastic modulus < 0.3 MPa at frequencies ∼ 1 Hz.

    [0020] The application of the adhesive is to provide 0.1 to 5 mg/cm2 of adhesive on the embossed surface and more preferably 0.3 to 2 mg/cm2.

    Hydrophobic particles:



    [0021] The hydrophobic particles are deposited over the adhesive layer and are preferably selected from water insoluble inorganic materials such as metal or non-metal oxides selected from silica, titania, alumina, zinc oxide, magnesium oxide or hydroxide; metal carbonates selected from calcium carbonate, magnesium carbonate, zinc carbonate; metal phosphates selected from calcium phosphate, magnesium phosphate; natural or synthetic silicates selected from clays, zeolites, talc, calcium silicate, magnesium silicate; or crosslinked polymers selected from polystyrene, polyethylene, polyvinyl acrylates. The hydrophobic particles are preferably selected from water insoluble inorganic materials that have a particle size with d50 in the range 0.1 to 10 microns, preferably 0.2 to 8 microns and more preferably 0.2 to 1 micron. The d50 for the hydrophobic particles is preferably determined by standard light scattering experiments. The hydrophobic particles are preferably a mixture of two different sizes of particles and more preferably the smaller particles are in the range 2-8 times smaller than the larger particles. It is preferable that the d50 of the smaller hydrophobic particles is in the range 0.2 to 2 microns and more preferably 0.2 to 0.5 micron and the d50 of the larger hydrophobic particles is in the range 0.8 to 8 microns and more preferably 0.8 to 1 micron.

    [0022] The hydrophobic particles are preferably deposited to provide 0.2 to 1.2 mg/cm2 of hydrophobic particles on the surface and more preferably 0.25 to 0.5 mg/cm2 on the surface. The hydrophobic particles can be deposited on the surface of the deformable material through various routes such as spray coating, dip coating, spin coating and mixing in the raw material feed during plastic making and more preferably deposited on the surface of the deformable material by applying a solvent with a vapour pressure greater than 50 mm Hg at 25°C comprising the particles. The solvent is preferably selected from methanol, ethanol, isopropanol, hexane, chloroform, benzene, xylene or toluene. The hydrophobic particles are insoluble in water and also in solvents with a vapour pressure greater than 50 mm Hg at 25°C.

    Hydrophobically modified object:



    [0023] An object with an embossed surface prepared according to the process of the present invention is preferably a deformable material and more preferably a polymeric material. The polymeric materials are preferably selected from high density polyethylene (HDPE), low density polyethylene (LDPE), polyethylene terephthalate (PET), polypropylene (PP) or polystyrene (PS) or their derivatives.

    [0024] The embossed surface of the object comprise of micropillars having different shapes which may preferably be circle, square, rectangular or polygonal prismatic with an equivalent circular diameter, height and pitch each in the range 10-200 microns and preferably 30-100 microns, with the hydrophobic particles adhering on the micropillars by an adhesive layer.

    [0025] The embossed surface of the object prepared according to the present invention will preferably have a water contact angle greater than 120° and the surfaces will also show a liquid roll off at tilt angles of ≤ 10°, for liquids having viscosities above 100 cP and also preferably enable them to retain this property even when the surface is subjected to damage by mild abrasion which preferably is rubbing the surface with a plastic cleaning mop operated under a load of 5 kg for 2 minutes.

    [0026] The contact angle is measured by placing a 10 µL droplet of water and holding the test samples horizontally and capturing the images for contact angle determination. The contact angle was estimated using ImageJ© software through the help of DropSnake plug-in.

    [0027] Viscous liquid roll off is determined by placing 50 µL droplet of a viscous liquid on the test sample and then tilting it at 10° inclination to see whether the liquid rolls off or not.

    Examples


    (1) Preparation of hydrophobically surface modified materials


    (a) Method of embossing the surface:



    [0028] A deformable material, high density polyethylene (HDPE) of size 2 cm x 2 cm was embossed using stainless steel mesh of 80 µm pitch at 90°C by pressing the stainless steel mesh on the deformable material for 1 minute. The material was cooled after removing the stainless steel mesh to obtain the embossed deformable material.

    (b) Method of applying the adhesive:



    [0029] Two types of adhesives were used based on the shear elastic modulus of the adhesive. Adhesive 1 had a shear elastic modulus greater than 0.3 MPa while adhesive 2 had a shear elastic modulus below 0.3 MPa at frequencies ∼ 1Hz. The adhesives were separately spray coated on two embossed materials to get a coverage of 1.5 mg/cm2. In the current study, commercially available Fevikwik® [ex-Pidilite Industries Ltd, India], which is based on cyanoacrylate, was used as adhesive 1 while repositionable 75 spray adhesive® [ex-3M] was used as adhesive 2. For comparison purposes, a set comprising the embossed material without any adhesive was also studied.

    (c) Method of depositing the hydrophobic particles:



    [0030] 
    1. (i) Hydrophobic particles were deposited on the surface of the embossed deformable material after spraying of the adhesives mentioned above.
    2. (ii) Control sample as mentioned in the prior art process where the adhesive and the hydrophobic particles were mixed together and applied on the surface of the embossed deformable material.
    3. (iii) Another set of control sample was where the hydrophobic particles were deposited on the surface of the embossed deformable material which was not spray coated with the adhesive.


    [0031] 0.16 ml of 1% hydrophobic silica particles [Sipernat d10 ex-Evonik Corp] dispersed in chloroform was sprayed on the surface of the embossed deformable material to obtain 0.40 mg of silica per cm2 of the embossed deformable material and dried at room temperature for 30 minutes. In the set where the hydrophobic silica was mixed with the adhesives and sprayed, the amount of hydrophobic silica on the embossed surface was maintained at 0.40 mg of silica per cm2 of the embossed deformable material.

    [0032] The various materials prepared by the above process are defined as Examples in Table 1.
    Table1: Surface modification of deformable materials
    ExampleEmbossingHydrophobic particleAdhesiveAdhesive typeSpraying of particle and adhesive
    1 Yes No No - -
    2 Yes Yes No - -
    3 Yes Yes Yes 1 Sequential
    4 Yes Yes Yes 2 Sequential
    5 Yes Yes Yes 1 Simultaneous
    6 Yes Yes Yes 2 Simultaneous

    2. Quantification of superhydrophobicity and viscous liquid roll off and the stability of the hydrophobic particle binding:



    [0033] The contact angle was measured for samples as in Table 1 by placing a 10 µL droplet of water and holding the samples horizontally and capturing the images for contact angle determination. The contact angle was estimated using ImageJ© software through the help of DropSnake plug-in.

    [0034] Typically, viscous liquids are those which have viscosities above 100 cP. In this study, viscous liquid roll off was tested using a model liquid which contains 0.5% xanthum gum aqueous solution, which is equivalent to the amount typically used in products such as ketchup. The viscosity of 0.5% aqueous xanthum gum solution is found to be 600 cP at a shear rate of 3 s-1. 50 µL droplet of viscous liquid was placed on the surfaces as mentioned in Table 1 horizontally and then tilted at 10° inclination to see whether the liquid rolls off or not.

    [0035] The contact angle and viscous liquid roll off was measured for the materials prepared as per Examples 1-6. The measurements were again repeated after subjecting the embossed and particle-coated surface to rubbing with a plastic cleaning mop operated under a load of 5 kg for 2 minutes in order to check the stability of such coatings after treatments equivalent to washing or cleaning of such surfaces.

    [0036] The data are presented in Table 2.
    Table 2: Effect of nature of adhesive on particle binding and superhydrophobicity
    ExampleBefore rubbingAfter rubbing
    Contact angle (°)Viscous liquid roll offContact angle (°)Viscous liquid roll off
    Example 1 90 No 90 No
    Example 2 150 Yes 103 No
    Example 3 <60 No < 60 No
    Example 4 150 Yes 146 Yes
    Example 5 < 60 No < 60 No
    Example 6 83 No < 60 No


    [0037] Data presented in Table 2 show that for the embossed deformable material sprayed with hydrophobic particles, the contact angle increases from 90° to 150° (Example 2). However, in the absence of adhesive, the particle binding is not stable, thereby resulting in lowering of the contact angle to 103° when the surface of the material is subjected to rubbing as described above (Example 2).

    [0038] Materials prepared according to the invention, i.e., by using adhesive 2, had a good hydrophobic surface with a high contact angle and even after rubbing they retained hydrophobicity as observed from the contact angle of 146° (Example 4) while similar study using adhesive 1 did not result in a good hydrophobic surface and on rubbing of the surface, further lowering of contact angle to below 60° was observed (Example 3). It was also observed that sequential application of the hydrophobic particles after the spray coating of the adhesive 2 (shear elastic modulus <0.3 MPa) was significantly superior compared to the prior art process where the hydrophobic particles were deposited along with the spray coated adhesive on the embossed surface. This effect was observed before and after subjected to rubbing of the surface.

    [0039] It was observed that the good viscous roll off property was seen and this effect was maintained even after rubbing of the surface only when the hydrophobic surface was prepared according to the invention.

    3. Effect of extent of deposition of hydrophobic particles on roll off of viscous liquid



    [0040] A deformable material, high density polyethylene (HDPE) of size 2 cm x 2 cm was embossed and spray coated with adhesive 2 to obtain a coverage of 1.5 mg/cm2 as described above. Various levels of the hydrophobic silica as shown in Table 3 was deposited after the spray coating of the adhesive in a sequential manner as per the invention. Contact angle was measured with and without rubbing of the hydrophobic surface as per procedure described above.
    Table 3: Effect of levels of particle deposition on water contact angle
    ExampleParticle (mg/cm2)Contact angle (before rubbing)Contact angle (after rubbing)
    Example 1 0 90 90
    Example 7 0.18 122 111
    Example 8 0.25 136 121
    Example 4 0.40 150 146
    Example 9 0.57 136 129
    Example 10 1.55 129 116


    [0041] The data show that deposition of hydrophobic silica in the range according to the invention 0.2 to 1.2 mg/cm2 has good contact angle before and after rubbing of the surface but when the level of deposition is beyond this range, the contact angle drops significantly resulting in poor hydrophobicity.


    Claims

    1. A process for surface modification of materials comprising:

    (i) embossing the surface of an object with an embosser comprising micropillars with an equivalent circular diameter, height and pitch each in the range of 10-200 microns;

    (ii) applying 0.1 to 5 mg/cm2 of adhesive on the embossed surface resulting from step (i);

    (iii) depositing 0.2 to 1.2 mg/cm2 of hydrophobic particles on the surface resulting from step (ii);

    wherein the hydrophobic particles have a particle size with d50 in the range 0.1 to 10 microns.
     
    2. A process for surface modification of materials as claimed in claim 1 wherein the adhesive has a shear elastic modulus < 0.3 MPa at frequency ∼ 1 Hz.
     
    3. A process surface modification of materials as claimed in claim 1 or 2 wherein the application of the adhesive is by spray coating or dip coating.
     
    4. A process for surface modification of materials as claimed in claims 1 to 3 wherein the hydrophobic particles are a mixture of two different sizes of particles wherein the smaller particles are in the range 2-8 times smaller than the larger particles.
     
    5. A process for surface modification of materials as claimed in claims 1 to 4 wherein the d50 of the smaller hydrophobic particles is in the range 0.2 to 2 microns and the d50 of the larger hydrophobic particles is in the range 0.8 to 8 microns.
     
    6. A process for surface modification of materials as claimed in claims 1 to 5 wherein the d50 of the smaller hydrophobic particles is in the range 0.2 to 0.5 microns and the d50 of the larger hydrophobic particles is in the range 0.8 to 1 microns.
     
    7. A process for surface modification of materials as claimed in claims 1 to 6 wherein the hydrophobic particles are selected from water insoluble inorganic materials such as metal or non-metal oxides; metal carbonates; metal phosphates; natural or synthetic silicates; or crosslinked polymers such as polystyrene, polyethylene, polyvinyl acrylates.
     
    8. A process for surface modification of materials as claimed in claims 1 to 7 wherein the hydrophobic particles are deposited by applying a solvent with a vapour pressure greater than 50 mm Hg at 25°C comprising the particles.
     
    9. A process for surface modification of materials as claimed in claim 8 wherein solvent is selected from methanol, ethanol, isopropanol, hexane, chloroform, benzene, xylene or toluene.
     
    10. An object comprising an embossed surface obtainable by the process as claimed in claims 1 to 9 wherein the embossed surface comprises micropillars with an equivalent circular diameter, height and pitch each in the range of 10-200 microns, characterized in that the micropillars are surface coated with 0.1 to 5 mg/cm2 of an adhesive and 0.2 to 1.2 mg/cm2 of hydrophobic particles wherein the hydrophobic particles have a particle size with d50 in the range 0.1 to 10 microns,
     
    11. An object as claimed in claim 10 comprising a hydrophobically modified embossed surface.
     
    12. An object as claimed in claims 10 or 11 wherein the object is a polymeric material selected from high density polyethylene (HDPE), low density polyethylene (LDPE), polyethylene terephthalate (PET), polypropylene (PP) or polystyrene (PS) or their derivatives.
     
    13. An object as claimed in claim 10, 11 or 12 wherein the hydrophobically modified surface has a water contact angle greater than 120° and a liquid roll off at tilt angles of ≤ 10°, for liquids having viscosities above 100 cP.
     


    Ansprüche

    1. Verfahren für eine Oberflächenveränderung von Materialien, das Folgendes umfasst:

    (i) Prägen der Oberfläche eines Gegenstandes mit einer Prägevorrichtung, die Mikrosäulen mit einem äquivalenten Kreisdurchmesser, einer Höhe und einer Steigung, die jeweils im Bereich von 10 bis 200 Mikrometer liegen, aufweist;

    (ii) Aufbringen von Klebstoff im Bereich von 0,1 bis 5 mg/cm2 auf die geprägte Oberfläche, die aus Schritt (i) entsteht;

    (iii) Ablagern von hydrophoben Partikeln im Bereich von 0,2 bis 1,2 mg/cm2 auf der Oberfläche, die aus Schritt (ii) entsteht;

    wobei die hydrophoben Partikel eine Partikelgröße besitzen, bei der d50 im Bereich von 0,1 bis 10 Mikrometer liegt.
     
    2. Verfahren für eine Oberflächenveränderung von Materialien nach Anspruch 1, wobei der Klebstoff bei einer Frequenz ∼1 Hz einen Scherelastizitätsmodul < 0,3 MPa besitzt.
     
    3. Verfahren für eine Oberflächenveränderung von Materialien nach Anspruch 1 oder 2, wobei das Aufbringen des Klebstoffs durch Sprühbeschichtung oder Tauchbeschichtung erfolgt.
     
    4. Verfahren für eine Oberflächenveränderung von Materialien nach einem der Ansprüche 1 bis 3, wobei die hydrophoben Partikel eine Mischung von zwei verschiedenen Größen von Partikeln sind, wobei die kleineren Partikel um einen Faktor im Bereich von zwei bis acht kleiner als die größeren Partikel sind.
     
    5. Verfahren für eine Oberflächenveränderung von Materialien nach einem der Ansprüche 1 bis 4, wobei der d50 der kleineren hydrophoben Partikel im Bereich von 0,2 bis 2 Mikrometer liegt und der d50 der größeren hydrophoben Partikel im Bereich von 0,8 bis 8 Mikrometer liegt.
     
    6. Verfahren für eine Oberflächenveränderung von Materialien nach einem der Ansprüche 1 bis 5, wobei der d50 der kleineren hydrophoben Partikel im Bereich von 0,2 bis 0,5 Mikrometer liegt und der d50 der größeren hydrophoben Partikel im Bereich von 0,8 bis 1 Mikrometer liegt.
     
    7. Verfahren für eine Oberflächenveränderung von Materialien nach einem der Ansprüche 1 bis 6, wobei die hydrophoben Partikel aus wasserunlöslichen anorganischen Materialien wie z. B. Metall oder nichtmetallischen Oxiden; Metallkarbonaten; Metallphosphaten; natürlichen oder synthetischen Silikaten oder vernetzten Polymeren wie z.B. Polystyrol, Polyethylen und Polyvinylacrylaten ausgewählt sind.
     
    8. Verfahren für eine Oberflächenveränderung von Materialien nach einem der Ansprüche 1 bis 7, wobei die hydrophoben Partikel durch Aufbringen eines Lösungsmittels mit einem Dampfdruck größer als 50 mm Hg bei 25 °C, das die Partikel umfasst, abgelagert werden.
     
    9. Verfahren für eine Oberflächenveränderung von Materialien nach Anspruch 8, wobei das Lösungsmittel aus Methanol, Ethanol, Isopropanol, Hexan, Chloroform, Benzol, Xylol oder Toluol ausgewählt ist.
     
    10. Gegenstand, der eine geprägte Oberfläche umfasst, die durch das Verfahren nach einem der Ansprüche 1 bis 9 erhalten werden kann, wobei die geprägte Oberfläche Mikrosäulen mit einem äquivalenten Kreisdurchmesser, einer Höhe und einer Steigung, die jeweils im Bereich von 10 bis 200 Mikrometer liegen, umfasst, dadurch gekennzeichnet, dass die Mikrosäulen mit einem Klebstoff im Bereich von 0,1 bis 5 mg/cm2 und mit hydrophoben Partikeln im Bereich von 0,2 bis 1,2 mg/cm2 oberflächenbeschichtet sind, wobei die hydrophoben Partikel eine Partikelgröße besitzen, bei der d50 im Bereich von 0,1 bis 10 Mikrometer liegt.
     
    11. Gegenstand nach Anspruch 10, der eine hydrophob veränderte geprägte Oberfläche umfasst.
     
    12. Gegenstand nach Anspruch 10 oder 11, wobei der Gegenstand ein Polymermaterial ist, das aus Polyethylen mit hoher Dichte (HDPE), Polyethylen mit niedriger Dichte (LDPE), Polyethylene-Terephthalat (PET), Polypropylen (PP) oder Polystyrol (PS) oder deren Derivaten gewählt ist.
     
    13. Gegenstand nach Anspruch 10, 11 oder 12, wobei die hydrophob veränderte Oberfläche für Flüssigkeiten, die Viskositäten über 100 cP besitzen, einen Wasserkontaktwinkel größer als 120° und ein Flüssigkeitsabrollen bei Neigungswinkeln ≤ 10° besitzt.
     


    Revendications

    1. Procédé pour modification de surface de matériaux comprenant :

    (i) le gaufrage d'une surface d'un objet avec un agent de gaufrage comprenant des micropiliers avec un diamètre circulaire, hauteur et pas équivalent chacun dans l'intervalle de 10-200 microns ;

    (ii) l'application de 0,1 à 5 mg/cm2 d'adhésif sur la surface gaufrée résultant de l'étape (i) ;

    (iii) le dépôt de 0,2 à 1,2 mg/cm2 de particules hydrophobes sur la surface résultant de l'étape (ii) ;

    dans lequel les particules hydrophobes présentent une taille de particule avec d50 dans l'intervalle de 0,1 à 10 microns.
     
    2. Procédé pour modification de surface de matériaux selon la revendication 1, dans lequel l'adhésif présente un module élastique de cisaillement < 0,3 MPa à une fréquence ∼1 Hz.
     
    3. Procédé pour modification de surface de matériaux selon la revendication 1 ou 2, dans lequel l'application de l'adhésif se fait par revêtement par pulvérisation ou revêtement par immersion.
     
    4. Procédé pour modification de surface de matériaux selon les revendications 1 à 3, dans lequel les particules hydrophobes sont un mélange de deux tailles différentes de particules dans lequel les particules plus petites se trouvent dans l'intervalle de 2-8 fois inférieur aux particules plus larges.
     
    5. Procédé pour modification de surface de matériaux selon les revendications 1 à 4, dans lequel le d50 des particules hydrophobes plus petites se trouve dans l'intervalle de 0,2 à 2 microns et le d50 des particules hydrophobes plus larges se trouve dans l'intervalle de 0,8 à 8 microns.
     
    6. Procédé pour modification de surface de matériaux selon les revendications 1 à 5, dans lequel le d50 des particules hydrophobes plus petites se trouve dans l'intervalle de 0,2 à 0,5 micron et le d50 des particules hydrophobes plus larges se trouve dans l'intervalle de 0,8 à 1 micron.
     
    7. Procédé pour modification de surface de matériaux selon les revendications 1 à 6, dans lequel les particules hydrophobes sont choisies parmi des matériaux inorganiques insolubles dans l'eau, tels que des oxydes de métaux ou de non-métaux ; des carbonates de métaux ; des phosphates de métaux ; des silicates naturels ou synthétiques ; ou des polymères réticulés, tels que polystyrène, polyéthylène, poly(acrylates de vinyle).
     
    8. Procédé pour modification de surface de matériaux selon les revendications 1 à 7, dans lequel les particules hydrophobes sont déposées par application d'un solvant avec une pression de vapeur supérieure à 50 mm Hg à 25°C comprenant les particules.
     
    9. Procédé pour modification de surface de matériaux selon la revendication 8, dans lequel le solvant est choisi parmi le méthanol, l'éthanol, l'isopropanol, l'hexane, le chloroforme, le benzène, le xylène ou le toluène.
     
    10. Objet comprenant une surface gaufrée pouvant être obtenue par le procédé selon les revendications 1 à 9, dans lequel la surface gaufrée comprend des micropiliers avec un diamètre circulaire, hauteur et pas équivalent chacun dans l'intervalle de 10-200 microns, caractérisé en ce que les micropiliers sont revêtus en surface avec de 0,1 à 5 mg/cm2 d'un adhésif et de 0,2 à 1,2 mg/cm2 de particules hydrophobes dans lequel les particules hydrophobes présentent une taille de particule avec d50 dans l'intervalle de 0,1 à 10 microns.
     
    11. Objet selon la revendication 10 comprenant une surface gaufrée hydrophobiquement modifiée.
     
    12. Objet selon les revendications 10 ou 11, dans lequel l'objet est un matériau polymère choisi parmi du polyéthylène haute densité (HDPE), polyéthylène basse densité (LDPE), poly(éthylène téréphthalate) (PET), polypropylène (PP) ou polystyrène (PS) ou leurs dérivés.
     
    13. Objet selon la revendication 10, 11 ou 12, dans lequel la surface hydrophobiquement modifiée présente un angle de contact avec l'eau supérieur à 120° et un détachement par roulement de liquide aux angles d'inclinaison de ≤ 10°, pour des liquides ayant des viscosités supérieures à 100 cP.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description