(19)
(11)EP 3 268 619 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 16760961.9

(22)Date of filing:  03.03.2016
(51)Int. Cl.: 
G21B 3/00  (2006.01)
F04B 9/10  (2006.01)
F03G 7/00  (2006.01)
F04B 1/00  (2020.01)
F04B 19/22  (2006.01)
(86)International application number:
PCT/CA2016/050230
(87)International publication number:
WO 2016/141464 (15.09.2016 Gazette  2016/37)

(54)

MODULAR COMPRESSION CHAMBER

MODULARE DRUCKKAMMER

CHAMBRE DE COMPRESSION MODULAIRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 11.03.2015 US 201562131630 P

(43)Date of publication of application:
17.01.2018 Bulletin 2018/03

(73)Proprietor: General Fusion, Inc.
Burnaby, British Columbia V3N 4T5 (CA)

(72)Inventors:
  • MCILWRAITH, Lon William
    Delta, British Columbia V4E 2M3 (CA)
  • LABERGE, Michel Georges
    West Vancouver, British Columbia V7W 1W5 (CA)
  • RICHARDSON, Douglas H.
    Anmore, British Columbia V3H 3C8 (CA)

(74)Representative: Barker Brettell LLP 
100 Hagley Road Edgbaston
Birmingham B16 8QQ
Birmingham B16 8QQ (GB)


(56)References cited: : 
US-A- 4 367 130
US-A1- 2010 163 130
US-A1- 2011 085 632
US-A- 4 917 785
US-A1- 2010 163 130
US-B2- 8 746 598
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present disclosure relates generally to a modular compression chamber in a compression system for generating pressure waves in a fluid in the compression chamber.

    Background



    [0002] Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.

    [0003] A type of compression system known in the prior art comprises a plurality of pressure wave generators and a compression chamber that is typically a large cylindrical or spherical vessel made of steel or any other high strength material or combination thereof that is designed as a pressure vessel capable of withstanding continuous high pressure and/or high pressure pulses generated by the pressure wave generators. The compression chamber can be filled with a fluid medium, such as a liquid metal. The plurality of pressure wave generators can be arranged around and secured to the wall of the compression chamber. Each pressure wave generator can include a hammer piston that can be accelerated to impact an anvil that is secured within a corresponding opening formed in the wall of the compression chamber. The impact of the hammer upon the corresponding anvil causes a compression wave to travel through the anvil into the liquid medium thus generating a pressure wave in the liquid medium. The generated pressure wave from each individual pressure wave generator can propagate through the liquid medium forming a collective pressure wave that converges toward the center of the chamber. Examples of systems and methods for generating pressure waves in a compression chamber are described in the U.S. Patent Application Publication No. 2010/0163130.

    [0004] During the operation of the compression system, intermittent internal high pressure pulses can be generated, for example, by reflecting pressure waves inside the compression chamber. The compression chamber should be capable of withstanding such high pressures without fatiguing, and thus should be designed to be robust with relatively few weak points. There are few companies in the world which are capable of manufacturing pressure vessels suitable for use as a compression chamber in this type of compression system, and making such vessels are expensive with long lead times.

    Summary



    [0005] According to the invention, a modular compression chamber for use in a compression system for generating pressure waves in a fluid in the compression chamber is provided according to claim 1. Specific implementations of the invention are defined in claims 2-15.

    [0006] Aspects and embodiments of the invention will become apparent by reference to the drawings and study of the following detailed description.

    Brief Description of the Drawings



    [0007] Throughout the drawings, reference numbers may be re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure. Sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility.

    FIG. 1 is a perspective view of a first embodiment of a modular compression chamber having a plurality of modules joined together to form a spherical chamber;

    FIG.2 is a partial cross-sectional view of the modular compression chamber of FIG. 1;

    FIG. 3 is a top view of a portion of a second embodiment of a modular compression chamber wherein a central module with a hexagonal geometry is shown surrounded by modules with pentagonal geometries locked together by a plurality of double dovetail wedges;

    FIG. 4 is a perspective view of the double dovetail wedge of FIG. 3;

    FIG. 5 is a perspective view of a portion of a third embodiment of a modular compression chamber, wherein a single module is shown comprising a plurality of pressure wave generators in adjacent contact and joined together;

    FIG. 6 is an end view of a pressure wave generator in the module of FIG. 5, wherein the pressure wave generator has a housing with a hexagonal cross-section and comprising a slot formed in each of its sidewalls for receiving a respective connecting means for interlocking the pressure wave generator to adjacent pressure wave generators;

    FIG. 6A is a cross-sectional side view of the pressure wave generator of FIG.6 taken along section line A-A;

    FIG. 6B is a cross-sectional side view of the pressure wave generator of FIG.6 taken along section line B-B.


    Detailed Description of Specific Embodiments



    [0008] The present disclosure describes a compression chamber 10 that is made of plurality of individual modules joined together to form a chamber with a desired size and shape. This compression chamber can contain a fluid such as for example a liquid metal and be used in a compression system that comprises a plurality of pressure wave generators that generate pressure waves in the fluid inside the compression chamber.

    [0009] FIG. 1 shows a first embodiment of the compression chamber 10 that comprises a plurality of hexagonal modules 12 and a plurality of pentagonal modules 14 joined together to form a wall 11 (FIG. 2) of the chamber 10. The wall 11 defines an inner cavity of the chamber 10. Each of the modules 12, 14 has an outer face 5, an inner face 7 and a side wall 9 extending between the outer and inner faces 5, 7. The outer faces 5 of the individual modules 12, 14 when interconnected together define the outer surface of the chamber 10 while the inner faces of the modules 12, 14 define the inner surface of the chamber 10, and the side wall 9 of the individual modules 12, 14 forms the wall 11 of the chamber 10. The modules 12 and/or 14 can have any other suitable shape such as triangular, square or any other polygonal or non-polygonal shape or combination thereof depending on a desired shape of the chamber 10. In the illustrated example, the chamber 10 is made of hexagonal and pentagonal modules interconnected into a soccer-ball configuration making a spherically shaped chamber 10; however the chamber 10 can have any other suitable shape such as cylindrical, ellipse, conical, kidney-shape or any other suitable shape or combination thereof without departing from the scope of the invention. At least some of the modules 12 and 14 can comprise a number of openings 13 in which a pressure wave generator 24 (see FIG. 2) is at least partially inserted and secured therein. The opening 13 extends through the side wall 9 from the inner face 7. As can be seen in FIG. 1, the hexagon modules 12 in this embodiment have one central opening and six additional surrounding openings (total of seven openings 13) into which seven pressure wave generators can be at least partially inserted. The pentagonal modules 14 can have six openings 13 (one central and five surrounding openings) for holding six pressure wave generators. The number of openings 13 and thus the number of pressure wave generators in some of the modules 12 and 14 can be more or less than the illustrated numbers. Such openings/generators can be arranged in different configurations without departing from the scope of the invention. In one implementation, the number, size and distribution of the pressure wave generators is such that an energy density within and/or between modules 12, 14 is uniform.

    [0010] The diameter of each of the openings 13 in the modules 12 and 14 can be the same or alternatively, the diameter of some of the openings 13 can be bigger or smaller than the rest, meaning that the diameter of the corresponding pressure wave generators can be different. The modules 12 and 14 can be made of stainless steel or any other metal alloy or high strength material or combination thereof. In some implementations, the modules 12, 14 can be made of material that has been heat treated or treated using any other known physical or chemical process that can increase the strength and/or durability of such material. The thickness of the side wall 9 of all individual modules 12, 14 (and therefore thickness of the wall 11) can be uniform to create an even and almost smooth inner surface of the wall 11. The thickness of the side wall 9 of each of the modules 12, 14 is chosen so that it can support the respective pressure wave generators and can withstand the internal pressure and/or pressure pulses generated within the chamber 10. For example, the chamber 10 can be shaped as a sphere with an internal radius of about 1.5 m and a wall thickness of about 1.5 m (the thickness of the side wall 9 of each of the modules 12, 14 is about ∼1.5m). This is for illustration purposes only and modules 12, 14 can have thickness bigger or smaller than 1.5 m without departing from the scope of the invention. In case of a spherical chamber 10 each of the modules 12, 14 can have an inwardly tapering configuration along the radius of the chamber (i.e. tapering inwards towards the center of the chamber 10) such that the area of the outer face 5 of the modules 12, 14 is larger than the area of the inner face 7 of the modules 12, 14; however a chamber with other shape (e.g. a rectangular chamber) may require that the modules 12 and 14 have a non-tapered configuration with uniform cross-section along the length.

    [0011] The inner cavity of the chamber 10 can be partially filled with a fluid, such as, for example a liquid medium. The liquid medium can be a molten metal, such as lead, lithium, sodium, or an alloy, combination, or mixture of such metals.

    [0012] Each of the modules 12 and 14 is connected to neighboring modules with a connecting means 15 that keeps the adjacent modules 12/14 firmly together in a substantially gapless and fluid tight fashion. FIG. 2 shows a section of the inner cavity of the chamber 10 with a cross-section of the wall 11 of the chamber 10. As can be noticed the wall 11 is formed from a number of individual modules 12, 14 with the outer face 5, inner face 7 and the side wall 9. The individual modules 12, 14 are firmly joined together with tensioned connecting means (i.e. a fastener) 15. The number of fasteners 15 depends on the number of adjacent/neighboring modules. For example, each of the hexagonal modules 12 can comprise six fasteners 15 to connect with the six neighboring modules while each of the pentagonal modules 14 can comprise five fasteners 15 to connect to the five modules adjacent to each of its sides. The connecting means 15 have a robust and strong structure configured to keep the connected modules 12, 14 closely together in compression. In the illustrated example, the connecting means 15 can comprise a pair of elongated rods (studs) 20 connected together via an arm 22. The studs 20 can be made of solid stainless steel or any other suitable material. Each of the studs 20 is sufficiently long so that it can be embedded deeply into the wall of the modules 12, 14. One stud 20 is embedded in one module while the other stud is embedded into the adjacent module. The arm 22 can be configured to keep the two studs tensioned. For example, the arm 22 can comprise a spring that can pull the studs 20 toward each other. Thus, by connecting the neighboring modules 12, 14 using the tensioned connecting means 15, the modules are joined closely together keeping the integrity of the formed chamber 10. The illustrated configuration of the connecting means 15 can also compensate for any slight movement of the modules 12, 14 due to any pressure pulse generated within the chamber 10 and/or the pressure wave generators 24.

    [0013] In one implementation, the connecting means 15 can be continuous cables (not shown) in tension that can extend around a full circumference of the chamber 10 making a loop and attaching to themselves. The looping cables would mostly apply a normal (inward radial) force to the surface of the chamber 10. The cables can be arranged so that they avoid the pressures wave generators 24, i.e. so that the cables do not come in touch with the pressure wave generators 24, to prevent applying a tangential force therein causing shear to the generators 24 and/or the chamber 10. In other words, the cables each extend around one circumference of the chamber and form a continuous loop in tension, such that a radial force is applied to the wall of the chamber. A person skilled in the art would understand that other suitable connecting means can be used to keep the modules 12, 14 firmly together to form the chamber 10 with a desired shape and size.

    [0014] Some of the modules 12, 14 can comprise a plurality of openings 13 and a corresponding pressure wave generator 24 can be inserted into each of the openings 13. Each of the pressure wave generators comprises an anvil 46 positioned at the end of a cylindrical bore and a hammer piston slideably inserted into the bore. The anvil 46 has a first end (impact side) facing the hammer piston and a second end with a face in direct communication with the medium contained in the chamber 10. Closely spaced openings 13 may introduce weak points requiring local reinforcement to keep the integrity of the compression chamber 10. In addition, inert areas 26 can be formed between the openings 13, the size of the inert areas 26 can depend on the number, size, shape and distribution of the pressure wave generators 24 and the size and the shape of the compression chamber 10. When the hammer piston of the pressure wave generator 24 hits the corresponding anvil 46 to generate a pressure wave in the chamber 10, these inert areas 26 may produce an uneven internal collective pressure wave with gaps between individual waves. In one implementation, the first end of the anvil 46 can be fitted into the bore while the second end can protrude out of the bore and can have a hexagonal and/or pentagonal cross-section (or any other suitable geometry) so that the inner surface of the chamber 10 would be defined entirely by anvils 46 thus avoiding inert areas 26. Each of the modules 12 and 14 is connected to the neighboring modules with the connecting means 15.

    [0015] In one implementation, as illustrated in FIG. 3, the connecting means 15 include a double dovetail wedge 50. Each of the individual modules 12, 14 has at least one dovetail slot (similar to a slot 39 of FIGS. 5 - 6) that extends from the outer face 5 of the module toward its inner face 7. Each individual module has plurality of such slots. For example, the hexagonal modules 12 have at least six such slots, one on each of its sides, while pentagonal modules 14 have at least five of these slots. When the individual modules 12, 14 are adjacent to each other, the dovetail slot of one module is aligned and faces the dovetail slot of an adjacent module thereby forming a double dovetail passage into which the wedge 50 is inserted. The double dovetail wedge 50 is inserted in the passage formed by the two dovetail slots of the two facing modules 12, 14, so that it pulls the two sides of the two neighboring modules closely together.

    [0016] FIG. 4 illustrates one example of the dovetail wedge 50 that is configured to be installed within the slot formed in the sidewall of the modules 12, 14. The wedge 50 comprises a tapered solid body 51 with a double dovetail geometry, a dovetail-shaped face 58 and two flat faces 52. The body 51 is shaped and sized to conform to the size/shape of the slot. The double dovetail wedge 50 can be inserted within the passage formed by the adjacent dovetail slots until the dovetail faces 58 engage the sidewall of the two adjacent slots such that the wedge 50 pulls the neighboring modules together into a gapless fashion. As can be seen in FIG. 6, the slot 39 can have a dovetail cross-section with angled sidewalls 60 to conform to the dovetail faces 58 of the wedge 50. The dovetail slot is tapered to conform to the tapering of the wedge 50. In addition, a locker 53 can be provided to lock the wedge 50 into the slot and prevent dislodging of the wedge 50 out of the slot due to pressure pulses. For example, the locker 53 can be a spring or bolt pushing on a back side 54 of the wedge 50.

    [0017] According to another embodiment a module of the compression chamber is composed entirely of pressure wave generators in adjacent interlocking contact. In one example as shown in FIG. 5, a hexagonal module 12 is formed of seven pressure wave generators 24 interlocked together. This is for illustration purposes only and the pressure wave generators 24 can be shaped and interlocked so that they can form a module with any other shape without departing from the scope of the invention. In FIG. 5, one generator is omitted to more clearly show the connecting means 15 for attaching the adjacent generators. The pressure wave generators 24 themselves are shaped and assembled together in a completely interlocking fashion such that a chamber with a desired geometry and size can be created. The interlocking nature of the generators 24 create an almost continuous inner surface of the chamber 10 (no or minimal number of inert areas 26) from which the pressure waves emanate from, thus providing a smooth internal collective pressure wave. So, the compression chamber formed of modules as the one illustrated in FIG. 5 would be composed only of pressure wave generators 24 (that can be considered on their own as individual, separate modules).

    [0018] The pressure wave generator 24 comprises an elongated housing 40 with a first end 41, second end 43 and a side wall 45 extending between the first and second ends 41, 43 (FIG. 6A). The anvil 46 is inserted at the second end 43 of the housing 40. The anvil 46 is secured to the housing 40, using a retainer 44, so that it cannot be dislodged out of the housing 40 upon the impact with a hammer piston 62. The housing 40 can have different cross-sections depending on the desired shape of the chamber 10. For example, in the embodiment as illustrated in FIG. 5, the housing 40 has either a hexagonal or a pentagonal geometry. In case of a spherically shaped chamber 10, the housing 40 can have a radially tapering configuration, i.e. tapering inwardly from its outer side (the first end 41) toward its inner side (the second end 43). Persons skilled in the art would understand that depending on the desired shape of the chamber 10 the housing 40 can have a uniform diameter along its length without departing from the scope of the invention. In the illustrated example of the module 12 the cross-section/geometry of the housing 40 can be pentagonal or hexagonal; however the housing 40 can have another shape/cross-section without departing from the scope of the invention as long as such pressure wave generators can join together into an interlocking fashion forming one uniform chamber 10 with the desired geometry/shape and size. For example, the desired shape of the chamber 10 can be a sphere with about 1.5 m radius of the inner cavity and a wall thickness of about 1.5 m, thus the length of the housing 40 of each of the generators 24 can be around 1.5 m. Such a chamber 10 can be formed by combination of a number of hexagonal modules 12 and a number of pentagonal modules (see FIG. 1). Some of the hexagonal modules 12 can be created from, for example, seven individual pressure wave generators 24 (one central and six surrounding outer pressure wave generators) where the central generator can have a hexagonal cross-section while the six surrounding outer generators can have pentagonal cross-sections, while some of the pentagonal modules can comprise one central generator with pentagonal geometry and five surrounding outer generators with pentagonal geometry as well. This is for illustration purposes only and person skilled in the art would understand that the pressure wave generators 24 forming the modules and the chamber 10 can have different diameters and geometries without departing from the scope of invention. Details of the pressure wave generators 24 shown in FIG. 5 are illustrated with reference to FIGs. 6, 6A and 6B.

    [0019] The connecting means 15 are used to maintain intimate contact between the side walls of the adjacent pressure wave generators 24, and maintain such contact against forces and reactions inherent to the pressure wave processes occurring within the chamber 10. The connecting means 15 can comprise the double dovetail wedge 50 that can be installed into the passage formed by two facing dovetail slots 39. The dovetail slot 39 is formed at a sidewall of the pressure wave generators 24. The wedge 50 locks each side of the generator 24 to the facing side of the neighboring generator 24. For example, the central generator 24 can have six dovetail slots (one on each sidewall) and six double dovetail wedges 50 are used to lock such central generator to the six neighboring generators. Likewise, the generators with pentagonal geometry use five wedges 50 to connect to the five neighboring generators.

    [0020] FIG. 6 shows the slot 39 with angled sidewalls 60 to conform to the dovetail faces 58 of the wedge 50.

    [0021] FIG. 6A is a cross-section of the generator 24 taken along the section line A-A. The housing 40 has the first end 41 (at the outer side of the pressure wave generator), the second end 43 and a bore 42 formed within the housing 40 that extends between the first end 41 and the second end 43. The hammer piston 62 can be inserted into the bore 42. The hammer piston 62 is sized and shaped so that it can slide within the bore 42. The anvil 46 can be inserted at the second end 43 of the housing 40 and is secured therein by a suitable retaining means 44 so that it cannot be dislodged out of the housing upon the impact with the hammer piston. Each sidewall 45 of the housing 40 can comprise a slot 39 that extends from the first end 41 toward its second end 43. The slot 39 has a first (open) end 39a formed at the first end 41 of the housing 40 and a second (closed) end 39b that is at some distance from the second end 43 of the housing 40. The wedge 50 can be inserted into the slot from its open end 39a. The slot 39 can have a tapering configuration gradually narrowing from the first end 39a toward the second end 39b, so that when the tapered wedge 50 is inserted within the passage formed by the adjacent slots 39 the faces 58 of the wedge 50 engage the respective slots 39 and self-lock therein. The locker 53 (see FIG. 3) can be used to prevent the wedge 50 to come out from the slot 39. For example, the locker 53 can be a spring or bolt pushing on the back 54 of the wedge 50. Persons skilled in the art would understand that any other suitable connecting means can be used to interlock the adjacent pressure wave generators 24 without departing from the scope of the invention.

    [0022] As illustrated in FIGs. 6A and 6B, the anvil 46 comprises a first end 47 with an impact surface (wall) 47a facing the bore 42 and the hammer piston 62 and a second end 48 with an outer surface 48a facing the inner cavity of the chamber 10 and in direct contact with the medium contained therein. The hammer piston 62 can be accelerated toward the anvil 46 so that when it impacts the anvil 46 a pressure wave travels through the anvil 46, from the impact surface 47a to the outer surface 48a, and into the fluid medium. The first end 47 of the anvil 46 can be shaped and sized to fit within the bore 42 (conforming with the size and shape of the bore 42 and the hammer piston 62) while its second end 48 can protrude out of the second end 43 of the housing 40 and can have the same cross-section as the housing 40 (at its second end 43). So, the geometry of the housing 40 can define the geometry of the second end 48 of the anvil 46. For example, an anvil inserted into a housing 40 with a hexagonal geometry can have a second end 48 with a hexagonal cross-section while an anvil inserted into a housing 40 with a pentagonal geometry can have a second end 48 with a pentagonal cross-section. The second end 48 of the anvil 46 has a larger cross-section than the first end 47 forming a shoulder 46a. The shoulder 46a is sized and configured to conform to the second end 43 of the housing 40. So, when the anvil 46 is mounted to the housing 40, the first end 47 is fitted within the bore 42 while the shoulder 46a and the second end 48 protrude out of the housing 40 of the pressure wave generators 24. The inner surface of the chamber 10 would be defined entirely by the anvils 46 of the respective pressure wave generators 24. The anvils 46 can be arrange such that only small gaps can exist between adjacent anvils. Such small gaps can accommodate for any slight movement of the anvils 46 that can happen upon the impact of the anvils 46 with the respective hammers.

    [0023] Alternatively, the housing 40 can be extended so that its second end 43 and the second end 48 of the anvil 46 are aligned. In such case the anvil 46 can be sized to completely fit within the inner bore 42. In one implementation, the outer surface 48a of the anvils 46 can have a concave shape so that a common focus of all radial edges of such anvils can be the center of the spherical chamber thus forming an even and smooth inner surface of such chamber.

    [0024] In addition, the chamber 10 can comprise a number of fluid tight seals to prevent any significant fluid leakage. Such seals can be selected from any or all of the known dynamic or static seals or any other suitable seal or sealing method or combination thereof that are designed to retain fluids under high pressure. FIG. 6B shows an annular cooling channel or channels 49 formed in the housing 40 around the inner bore so that a cooling zone 38 (see FIG. 5) can be created at a periphery of each of the pressure wave generators 24. Such cooling zone 38 can be used to form a sealing between individual pressure wave generators 24. The cooling channel 49 is formed in the housing in proximity to the second end 43, so that any liquid metal that leaks from the inner cavity of the chamber 10 into any small gaps formed between the adjacent anvils 46 and/or the housings 40 of pressure wave generators 24 can be cooled in situ through heat conduction from a cooling fluid that circulates through the cooling channel 49, and such solidified liquid metal forms a seal/plug retaining the liquid metal contained within the chamber 10, and preventing it continuing past such plug. The cooling fluid is injected into the annular channel 49 through one or more inlet passages 49a and is removed out through one or more outlet passages 49b. The temperature of the cooling fluid should be well below a solidification point of the liquid medium in the compression chamber 10. Various fluids can be used as cooling fluid, e.g. water or air that is at temperature well below the solidification point of the liquid medium. Additionally and alternatively, a number of different seals can be arranged in recesses or grooves around the periphery of each pressure wave generator 24 or between the anvil 46 and an inner surface of the housing 40. For example such seals can include gaskets, rings, or any other suitable sealing structure or combination thereof that can be inserted and compressed during the assembly of the pressure wave generators 24 and/or the compression chamber 10. In addition, a plurality of mechanical attachments can be provided between each pressure wave generators 24 and all of the neighboring generators 24 to hold securely such generators in the desired position and keep such generator in such position against all forces that may be applied to the generators during operation of the compression system. Such attachments could be any or all of for example bolted fish-plates, dovetail keys or wedges, etc. Such attachments would be detachable to allow for removal and re-installation of any individual pressure wave generator 24 without disturbing adjacent generators. Additionally and alternatively, a robust external support device can be provided to support the chamber 10 and each pressure wave generator 24 in its correct position and can provide a holding force along the central axis of each generator 24 towards the center of the chamber 10.

    [0025] While particular elements, embodiments and applications of the present disclosure have been shown and described, it will be understood, that the scope of the disclosure is not limited thereto, since modifications can be made without departing from the scope of the invention as defined in the appended claims.


    Claims

    1. A modular compression chamber (10) for use in a compression system for generating pressure waves in a fluid in the compression chamber, the compression chamber (10) comprising:

    a plurality of individual modules (12, 14), each having an outer face (5), an inner face (7), and a side wall (9) between the inner (7) and outer (5) faces, and

    a plurality of connecting means (15) interlocking the individual modules (12, 14) together to form a wall (11) of the chamber (10), wherein the inner faces (7) of the individual modules collectively form an inner surface of the wall (11) of the chamber (10),

    wherein at least one of the individual modules (12, 14) comprises at least one pressure wave generator (24) configured to generate the pressure wave in the fluid,
    characterized in that
    the individual modules (12, 14) have a polygonal shape; or
    at least a first one of the individual modules (12, 14) has a polygonal shape and at least a second one of the individual modules (12, 14) has a non-polygonal shape.


     
    2. The modular compression chamber of claim 1, wherein the at least one of the individual modules (12, 14) comprising at least one pressure wave generator (24) has a body with an opening (13) extending through the side wall (9) from the inner face (7), and the at least one pressure wave generator (24) is inserted into the opening (13).
     
    3. The modular compression chamber of claim 2, wherein the plurality of individual modules (12, 14) each have a geometry selected from a group consisting of a hexagonal geometry and a pentagonal geometry.
     
    4. The modular compression chamber of claim 3, wherein the plurality of individual modules (12, 14) are tapered such that an area of the outer face (5) of each individual module (12, 14) is larger than an area of the inner face (7) of each individual module (12, 14), the tapered plurality of individual modules (12, 14) being interconnected to form a spherical chamber.
     
    5. The modular compression chamber of any preceding claim, wherein the pressure wave generator (24) comprises a body with a housing (40) having a first end (41), a second end (43), an elongated bore (42) extending from the second end (43) into the body, an anvil (46) mounted at the second end (43) of the housing (40) and having a first end (47), a second end (48) and a retainer (44) to secure the anvil (46) to the housing (40) and a piston (62) inserted into the bore (42) and being able to slide between the first end (41) and the second end (43) of the housing (40), a cross-section at the first end (47) of the anvil (46) is smaller than a cross-section at the second end (48) of the anvil (46), wherein the anvil (46) comprises a shoulder (46a) between the first end (47) and the second end (48), and wherein the shoulder (46a) and the second end (48) protrude out of the bore (42) when the anvil (46) is mounted at the second end (43) of the housing (40).
     
    6. The modular compression chamber of claim 5, wherein the at least one of the individual modules (12, 14) comprise a plurality of pressure wave generators (24) in adjacent contact and interlocked together such that the bodies of the pressure wave generators (24) define the side wall (9) of the at least one of the individual modules(12, 14), the first ends of the pressure wave generators (24) define the outer face (5) of the at least one of the individual modules (12, 14), and the faces of the second ends (48) of the anvils (46) define at least a part of the inner face (7) of at the least one of the individual modules(12, 14).
     
    7. The modular compression chamber of claim 6, wherein the plurality of connecting means (15) comprise a dovetail shaped slot (39) formed in a side wall of the body of each of the plurality of pressure wave generators (24), the slot (39) extending from the first end (41) toward the second end (43) of each pressure wave generator body, the slot (39) of one of the plurality of pressure wave generators (24) facing the slot (39) of an adjacent one of the plurality of pressure wave generators (24) thereby forming a double dovetail shaped passage, the plurality of connecting means (15) further comprising a double dovetail wedge (50) mating with the double dovetail passage such that when inserted into the double dovetail passage the adjacent pressure wave generators are interlocked.
     
    8. The modular compression chamber of claim 7, wherein the plurality of connecting means (15) further comprise a locker (53) contacting the double dovetail wedge (50) such that a continuous pushing force is applied to a back side (54) of the double dovetail wedge (50) thereby keeping the wedge within the passage.
     
    9. The modular compression chamber of any of claims 6 to 8, wherein the at least one of the individual modules (12) comprising a plurality of pressure wave generators (24) in adjacent interlocked contact have a hexagonal geometry, each such individual module (12) comprises a central pressure wave generator (24) and six outer pressure wave generators (24) surrounding the central pressure wave generator (24), the central pressure wave generator (24) having an anvil (46) with a second end (48) having a hexagonal face, and the six outer pressure wave generators (24) each having an anvil (46) with a second end (48) having a pentagonal face.
     
    10. The modular compression chamber of any of claims 6 to 8, wherein the at least one of the individual modules (14) comprising a plurality of pressure wave generators (24) in adjacent interlocked contact have a pentagonal cross-section geometry, each such individual module (14) comprises a central pressure wave generator (24) and five outer pressure wave generators (24) surrounding the central pressure wave generator (24), the central and outer pressure wave generators (24) each having an anvil (46) with a second end (48) having a pentagonal face.
     
    11. The modular compression chamber of any of claims 6 to 10, wherein the housing (40) of each of the plurality of pressure wave generators (24) has a tapered configuration narrowing from its first end (41) toward its second end (43), such that an area of the outer face (5) of the individual module (12, 14) is larger area than an area of the inner face (7) of the individual module (12, 14).
     
    12. The modular compression chamber of any preceding claim, wherein the plurality of connecting means (15) comprise at least two elongated studs (20) connected together via a pre-stressed spring (22) to keep the studs tensioned, wherein one stud (20) is inserted into the outside wall (5) of one of the individual modules (12, 14) and another stud (20) is inserted into a neighboring one of the modules (12, 14).
     
    13. The modular compression chamber of any preceding claim, wherein the plurality of connecting means (15) comprise cables each extending around one circumference of the chamber (10) and forming a continuous loop in tension, such that a radial force is applied to the wall (11) of the chamber (10).
     
    14. The modular compression chamber of any preceding claim, wherein the plurality of connecting means (15) comprise at least one dovetail-shaped slot (39) formed in the side wall (9) of each individual module (12, 14), the slot (39) extending from the outer face (5) toward the inner face (7) of the module (12, 14), the at least one dovetail shaped slot (39) of one of the individual modules (12, 14) facing the at least one dovetail shaped slot (39) of an adjacent one of the individual modules (12, 14) and forming a double dovetail shaped passage, the plurality of connecting means (15) further comprising a double dovetail wedge (50) mating with the double dovetail shaped passage such that when inserted into the double dovetail passage the adjacent pressure wave generators (24) are interlocked, and optionally wherein the plurality of connecting means (15) further comprise a locker (53) contacting the double dovetail wedge (50) such that a continuous pushing force is applied to a back side (54) of the double dovetail wedge (50) keeping the wedge within the passage.
     
    15. The modular compression chamber of any preceding claim, further comprising at least one seal positioned between adjacent individual modules (12, 14).
     


    Ansprüche

    1. Modulare Druckkammer (10) zur Verwendung in einem Drucksystem zum Erzeugen von Druckwellen in einem Fluid in der Druckkammer, wobei die Druckkammer (10) Folgendes umfasst:

    mehrere einzelne Module (12, 14), die jeweils eine Außenseite (5), eine Innenseite (7) und eine Seitenwand (9) zwischen der Innen- (7) und Außenseite (5) aufweisen, und

    mehrere Verbindungseinrichtungen (15), die die einzelnen Module (12, 14) miteinander verriegeln, um eine Wand (11) der Kammer (10) auszubilden, wobei die Innenseiten (7) der einzelnen Module zusammen eine Innenfläche der Wand (11) der Kammer (10) ausbilden,

    wobei zumindest eins der einzelnen Module (12, 14) mindestens einen Druckwellenerzeuger (24) umfasst, der dazu ausgelegt ist, die Druckwelle in dem Fluid zu erzeugen,

    dadurch gekennzeichnet, dass

    die einzelnen Module (12, 14) eine vieleckige Form aufweisen; oder

    mindestens ein erstes der einzelnen Module (12, 14) eine vieleckige Form aufweist und mindestens ein zweites der einzelnen Module (12, 14) einen nichtvieleckige Form aufweist.


     
    2. Modulare Druckkammer nach Anspruch 1, wobei das mindestens eine der einzelnen Module (12, 14), das mindestens einen Druckwellenerzeuger (24) umfasst, einen Körper mit einer sich von Innenseite (7) durch die Seitenwand (9) erstreckenden Öffnung (13) aufweist und der mindestens eine Druckwellenerzeuger (24) in die Öffnung (13) eingesetzt ist.
     
    3. Modulare Druckkammer nach Anspruch 2, wobei die mehreren einzelnen Module (12, 14) jeweils eine Geometrie aufweisen, die aus einer Gruppe bestehend aus einer sechseckigen Geometrie und einer fünfeckigen Geometrie ausgewählt ist.
     
    4. Modulare Druckkammer nach Anspruch 3, wobei die mehreren einzelnen Module (12, 14) konisch sind, sodass eine Fläche der Außenseite (5) jedes einzelnen Moduls (12, 14) größer als eine Fläche der Innenseite (7) jedes einzelnen Moduls (12, 14) ist, wobei die konischen mehreren einzelnen Module (12, 14) miteinander verbunden sind, um eine kugelförmige Kammer auszubilden.
     
    5. Modulare Druckkammer nach einem der vorstehenden Ansprüche, wobei der Druckwellenerzeuger (24) einen Körper mit einem Gehäuse (40) umfasst, das ein erstes Ende (41), ein zweites Ende (43), eine längliche Bohrung (42), die sich vom zweiten Ende (43) in den Körper erstreckt, einen am zweiten Ende (43) des Gehäuses (40) montierten Anker (46) aufweist und ein erstes Ende (47), ein zweites Ende (48) und eine Halterung (44), um den Anker (46) am Gehäuse (40) zu befestigen, und einen Kolben (62), der in die Bohrung (42) eingesetzt und zwischen dem ersten Ende (41) und dem zweiten Ende (43) des Gehäuses (40) verschiebbar ist, aufweist, wobei ein Querschnitt am ersten Ende (47) des Ankers (46) kleiner als ein Querschnitt am zweiten Ende (48) des Ankers (46) ist, wobei der Anker (46) eine Schulter (46a) zwischen dem ersten Ende (47) und dem zweiten Ende (48) umfasst und wobei die Schulter (46a) und das zweite Ende (48) aus der Bohrung (42) vorstehen, wenn der Anker (46) am zweiten Ende (43) des Gehäuses (40) montiert ist.
     
    6. Modulare Druckkammer nach Anspruch 5, wobei das mindestens eine der einzelnen Module (12, 14) mehrere Druckwellenerzeuger (24), die aneinander angrenzen und miteinander verriegelt sind, sodass die Körper der Druckwellenerzeuger (24) die Seitenwand (9) des mindestens einen der einzelnen Module (12, 14) definieren, umfasst, wobei die ersten Enden der Druckwellenerzeuger (24) die Außenseite (5) des mindestens einen der einzelnen Module (12, 14) definieren und die Seiten der zweiten Enden (48) der Anker (46) zumindest einen Teil der Innenseite (7) des mindestens einen der einzelnen Module (12, 14) definieren.
     
    7. Modulare Druckkammer nach Anspruch 6, wobei die mehreren Verbindungseinrichtungen (15) einen schwalbenschwanzförmigen Schlitz (39) umfassen, der in einer Seitenwand des Körpers jedes der mehreren Druckwellenerzeuger (24) ausgebildet ist, wobei sich der Schlitz (39) vom ersten Ende (41) zum zweiten Ende (43) jedes Druckwellenerzeugerkörpers erstreckt, wobei der Schlitz (39) eines der mehreren Druckwellenerzeuger (24) dem Schlitz (39) eines angrenzenden der mehreren Druckwellenerzeuger (24) zugewandt ist, wodurch ein doppelschwalbenschwanzförmiger Durchgang ausgebildet wird, wobei die mehreren Verbindungseinrichtungen (15) ferner einen Doppelschwalbenschwanzkeil (50) umfassen, der sich mit dem Doppelschwalbenschwanzdurchgang verbindet, sodass, wenn er in den Doppelschwalbenschwanzdurchgang eingesetzt wird, die angrenzenden Druckwellenerzeuger miteinander verriegelt werden.
     
    8. Modulare Druckkammer nach Anspruch 7, wobei die mehreren Verbindungseinrichtungen (15) ferner eine Sperre (53) umfassen, die den Doppelschwalbenschwanzkeil (50) berührt, sodass eine durchgehende Schubkraft auf eine Rückseite (54) des Doppelschwalbenschwanzkeils (50) aufgebracht wird, um dadurch den Keil innerhalb des Durchgangs zu halten.
     
    9. Modulare Druckkammer nach einem der Ansprüche 6 bis 8, wobei das mindestens eine der einzelnen Module (12), das mehrere Druckwellenerzeuger (24) in angrenzendem, verriegeltem Kontakt umfasst, eine sechseckige Geometrie aufweist, wobei jedes derartige einzelne Modul (12) einen mittigen Druckwellenerzeuger (24) und sechs äußere Druckwellenerzeuger (24), die den mittigen Druckwellenerzeuger (24) umgeben, umfasst, wobei der mittige Druckwellenerzeuger (24) einen Anker (46) aufweist, dessen zweites Ende (48) eine sechseckige Seite aufweist, und wobei die sechs äußeren Druckwellenerzeuger (24) jeweils einen Anker (46) aufweisen, dessen zweites Ende (48) eine fünfeckige Seite aufweist.
     
    10. Modulare Druckkammer nach einem der Ansprüche 6 bis 8, wobei das mindestens eine der einzelnen Module (14), das mehrere Druckwellenerzeuger (24) in angrenzendem, verriegeltem Kontakt umfasst, eine fünfeckige Querschnittsgeometrie aufweist, wobei jedes derartige einzelne Modul (14) einen mittigen Druckwellenerzeuger (24) und fünf äußere Druckwellenerzeuger (24), die den mittigen Druckwellenerzeuger (24) umgeben, umfasst, wobei der mittige und die äußeren Druckwellenerzeuger (24) jeweils einen Anker (46) aufweisen, dessen zweites Ende (48) eine fünfeckige Seite aufweist.
     
    11. Modulare Druckkammer nach einem der Ansprüche 6 bis 10, wobei das Gehäuse (40) jedes der mehreren Druckwellenerzeuger (24) eine konische Auslegung aufweist, die sich vom ersten Ende (41) zum zweiten Ende (43) verengt, sodass eine Fläche der Außenseite (5) des einzelnen Moduls (12, 14) größer als eine Fläche der Innenseite (7) des einzelnen Moduls (12, 14) ist.
     
    12. Modulare Druckkammer nach einem der vorstehenden Ansprüche, wobei die mehreren Verbindungseinrichtungen (15) mindestens zwei längliche Bolzen (20) umfassen, die über eine vorgespannte Feder (22) miteinander verbunden sind, um die Bolzen gespannt zu halten, wobei ein Bolzen (20) in die Außenwand (5) eines der einzelnen Module (12, 14) eingesetzt ist und ein anderer Bolzen (20) in ein benachbartes Modul (12, 14) eingesetzt ist.
     
    13. Modulare Druckkammer nach einem der vorstehenden Ansprüche, wobei die mehreren Verbindungseinrichtungen (15) Seile umfassen, die sich jeweils um einen Umfang der Kammer (10) erstrecken und einen durchgehenden Spannungsring ausbilden, sodass eine Radialkraft auf die Wand (11) der Kammer (10) ausgeübt wird.
     
    14. Modulare Druckkammer nach einem der vorstehenden Ansprüche, wobei die mehreren Verbindungseinrichtungen (15) mindestens einen in der Seitenwand (9) jedes einzelnen Moduls (12, 14) ausgebildeten schwalbenschwanzförmigen Schlitz (39) umfassen, wobei sich der Schlitz (39) von der Außenseite (5) zur Innenseite (7) des Moduls (12, 14) erstreckt, wobei der mindestens eine schwalbenschwanzförmige Schlitz (39) eines der einzelnen Module (12, 14) dem mindestens einen schwalbenschwanzförmigen Schlitz (39) eines angrenzenden der einzelnen Module (12, 14) zugewandt ist und einen doppelschwalbenschwanzförmigen Durchgang ausbildet, wobei die mehreren Verbindungseinrichtungen (15) ferner einen Doppelschwalbenschwanzkeil (50) umfassen, der sich mit dem Doppelschwalbenschwanzdurchgang verbindet, sodass, wenn er in den Doppelschwalbenschwanzdurchgang eingesetzt wird, die angrenzenden Druckwellenerzeuger (24) miteinander verriegelt werden, und optional wobei die mehreren Verbindungseinrichtungen (15) ferner eine Sperre (53) umfassen, die den Doppelschwalbenschwanzkeil (50) berührt, sodass eine durchgehende Schubkraft auf eine Rückseite (54) des Doppelschwalbenschwanzkeils (50) aufgebracht wird, um dadurch den Keil innerhalb des Durchgangs zu halten.
     
    15. Modulare Druckkammer nach einem der vorstehenden Ansprüche, ferner mindestens eine Dichtung, die zwischen angrenzenden einzelnen Modulen (12, 14) angeordnet ist, umfassend.
     


    Revendications

    1. Chambre de compression modulaire (10) destinée à être utilisée dans un système de compression pour générer des ondes de pression dans un fluide dans la chambre de compression, la chambre de compression (10) comprenant :

    une pluralité de modules individuels (12, 14), ayant chacun une face extérieure (5), une face intérieure (7) et une paroi latérale (9) entre les faces intérieure (7) et extérieure (5), et

    une pluralité de moyens de liaison (15) imbriquant les modules individuels (12, 14) ensemble pour former une paroi (11) de la chambre (10), les faces intérieures (7) des modules individuels formant collectivement une surface intérieure de la paroi (11) de la chambre (10),

    au moins un module individuel (12, 14) comprenant au moins un générateur d'ondes de pression (24) conçu pour générer l'onde de pression dans le fluide,

    caractérisé en ce que

    les modules individuels (12, 14) ont une forme polygonale ; ou

    au moins un premier des modules individuels (12, 14) a une forme polygonale et au moins un second des modules individuels (12, 14) a une forme non polygonale.


     
    2. Chambre de compression modulaire selon la revendication 1, l'au moins un module individuel (12, 14) comprenant au moins un générateur d'ondes de pression (24) ayant un corps avec une ouverture (13) s'étendant à travers la paroi latérale (9) depuis la face intérieure (7), et l'au moins un générateur d'ondes de pression (24) étant inséré dans l'ouverture (13) .
     
    3. Chambre de compression modulaire selon la revendication 2, la pluralité de modules individuels (12, 14) ayant chacun une géométrie choisie dans un groupe constitué d'une géométrie hexagonale et d'une géométrie pentagonale.
     
    4. Chambre de compression modulaire selon la revendication 3, la pluralité de modules individuels (12, 14) étant coniques de sorte qu'une zone de la face extérieure (5) de chaque module individuel (12, 14) soit plus grande qu'une zone de la face intérieure (7) de chaque module individuel (12, 14), la pluralité conique de modules individuels (12, 14) étant interconnectée pour former une chambre sphérique.
     
    5. Chambre de compression modulaire selon l'une quelconque des revendications précédentes, le générateur d'ondes de pression (24) comprenant un corps avec un boîtier (40) ayant une première extrémité (41), une seconde extrémité (43), un alésage allongé (42) s'étendant depuis la seconde extrémité (43) dans le corps, une enclume (46) montée au niveau de la seconde extrémité (43) du boîtier (40) et ayant une première extrémité (47), une seconde extrémité (48) et un dispositif de retenue (44) pour fixer l'enclume (46) au boîtier (40) et un piston (62) inséré dans l'alésage (42) et pouvant coulisser entre la première extrémité (41) et la seconde extrémité (43) du boîtier (40), une section transversale au niveau de la première extrémité (47) de l'enclume (46) étant plus petite qu'une section transversale au niveau de la seconde extrémité (48) de l'enclume (46), l'enclume (46) comprenant un épaulement (46a) entre la première extrémité (47) et la seconde extrémité (48), et l'épaulement (46a) et la seconde extrémité (48) faisant saillie hors de l'alésage (42) lorsque l'enclume (46) est montée au niveau de la seconde extrémité (43) du boîtier (40).
     
    6. Chambre de compression modulaire selon la revendication 5, l'au moins un module individuel (12, 14) comprenant une pluralité de générateurs d'ondes de pression (24) en contact adjacent et imbriqués ensemble de sorte que les corps des générateurs d'ondes de pression (24) définissent la paroi latérale (9) de l'au moins un module individuel (12, 14), les premières extrémités des générateurs d'ondes de pression (24) définissant la face extérieure (5) de l'au moins un module individuel (12, 14), et les faces des secondes extrémités (48) des enclumes (46) définissant au moins une partie de la face intérieure (7) de l'au moins un module individuel (12, 14).
     
    7. Chambre de compression modulaire selon la revendication 6, la pluralité de moyens de liaison (15) comprenant une fente en forme de queue-d'aronde (39) formée dans une paroi latérale du corps de chacun de la pluralité de générateurs d'ondes de pression (24), la fente (39) s'étendant de la première extrémité (41) vers la seconde extrémité (43) de chaque corps de générateur d'ondes de pression, la fente (39) de l'un de la pluralité de générateurs d'ondes de pression (24) faisant face à la fente (39) d'un générateur adjacent de la pluralité de générateurs d'ondes de pression (24), formant ainsi un passage en forme de double queue-d'aronde, la pluralité de moyens de liaison (15) comprenant en outre un coin à double queue-d'aronde (50) correspondant au passage à double queue-d'aronde de sorte que lorsqu'ils sont insérés dans le passage à double queue-d'aronde, les générateurs d'ondes de pression adjacents soient imbriqués.
     
    8. Chambre de compression modulaire selon la revendication 7, la pluralité de moyens de liaison (15) comprenant en outre un élément de verrouillage (53) en contact avec le coin à double queue-d'aronde (50) de sorte qu'une force de poussée continue soit appliquée sur un côté arrière (54) du coin à double queue-d'aronde (50), maintenant ainsi le coin dans le passage.
     
    9. Chambre de compression modulaire selon l'une quelconque des revendications 6 à 8, l'au moins un module individuel (12) comprenant une pluralité de générateurs d'ondes de pression (24) en contact adjacent imbriqué ayant une géométrie hexagonale, chacun de ces modules individuels (12) comprenant un générateur d'ondes de pression (24) central et six générateurs d'ondes de pression (24) extérieurs entourant le générateur d'ondes de pression central (24), le générateur d'ondes de pression central (24) ayant une enclume (46) avec une seconde extrémité (48) ayant une face hexagonale, et les six générateurs d'ondes de pression (24) extérieurs ayant chacun une enclume (46) avec une seconde extrémité (48) ayant une face pentagonale.
     
    10. Chambre de compression modulaire selon l'une quelconque des revendications 6 à 8, l'au moins un module individuel (14) comprenant une pluralité de générateurs d'ondes de pression (24) en contact adjacent imbriqué ayant une géométrie de section transversale pentagonale, chacun de ces modules individuels (14) comprenant un générateur d'ondes de pression central (24) et cinq générateurs d'ondes de pression (24) extérieurs entourant le générateur d'ondes de pression central (24), les générateurs d'ondes de pression (24) central et extérieur ayant chacun une enclume (46) avec une seconde extrémité (48) ayant une face pentagonale.
     
    11. Chambre de compression modulaire selon l'une quelconque des revendications 6 à 10, le boîtier (40) de chacun de la pluralité de générateurs d'ondes de pression (24) ayant une configuration conique se rétrécissant de sa première extrémité (41) vers sa seconde extrémité (43), de sorte qu'une zone de la face extérieure (5) du module individuel (12, 14) soit plus grande qu'une zone de la face intérieure (7) du module individuel (12, 14).
     
    12. Chambre de compression modulaire selon l'une quelconque des revendications précédentes, la pluralité de moyens de liaison (15) comprenant au moins deux goujons allongés (20) reliés ensemble par un ressort précontraint (22) pour maintenir les goujons sous tension, un goujon (20) étant inséré dans la paroi extérieure (5) de l'un des modules individuels (12, 14) et un autre goujon (20) étant inséré dans un module (12, 14) voisin.
     
    13. Chambre de compression modulaire selon l'une quelconque des revendications précédentes, la pluralité de moyens de liaison (15) comprenant des câbles s'étendant chacun autour d'une circonférence de la chambre (10) et formant une boucle continue en tension, de sorte qu'une force radiale est appliquée à la paroi (11) de la chambre (10).
     
    14. Chambre de compression modulaire selon l'une quelconque des revendications précédentes, la pluralité de moyens de liaison (15) comprenant au moins une fente en forme de queue-d'aronde (39) formée dans la paroi latérale (9) de chaque module individuel (12, 14), la fente (39) s'étendant de la face extérieure (5) vers la face intérieure (7) du module (12, 14), l'au moins une fente en forme de queue-d'aronde (39) de l'un des modules individuels (12, 14) faisant face à l'au moins une fente en forme de queue-d'aronde (39) d'un module individuel (12, 14) adjacent et formant un passage en forme de double queue-d'aronde, la pluralité de moyens de liaison (15) comprenant en outre un coin à double queue-d'aronde (50) correspondant au passage en forme de double queue-d'aronde de sorte que lorsqu'ils sont insérés dans le passage à double queue-d'aronde, les générateurs d'ondes de pression (24) adjacents soient imbriqués, et éventuellement la pluralité de moyens de liaison (15) comprenant en outre un élément de verrouillage (53) en contact avec le coin à double queue-d'aronde (50) de sorte qu'une force de poussée continue soit appliquée sur un côté arrière (54) du coin à double queue-d'aronde (50) maintenant le coin dans le passage.
     
    15. Chambre de compression modulaire selon l'une quelconque des revendications précédentes, comprenant en outre au moins un joint d'étanchéité placé entre des modules individuels (12, 14) adjacents.
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description