(19)
(11)EP 3 270 100 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 17179189.0

(22)Date of filing:  30.06.2017
(51)International Patent Classification (IPC): 
G01B 11/02(2006.01)
G01B 11/06(2006.01)
B23K 9/127(2006.01)
G01B 11/22(2006.01)

(54)

VISUAL DEPTH MEASUREMENT GAGE

MESSGERÄT ZUR VISUELLEN TIEFENMESSUNG

SONDE DE MESURE DE PROFONDEUR VISUELLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.07.2016 US 201615210576

(43)Date of publication of application:
17.01.2018 Bulletin 2018/03

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • TAFFET, Steven
    South Windsor, CT Connecticut 06074 (US)
  • BANKS, Anton
    Manchester, CT Connecticut 06040 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 0 922 199
US-A1- 2016 097 635
US-A- 5 612 785
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] This disclosure relates generally to inspection systems, and more particularly to a depth measurement system for a part, such as an airfoil for a turbine engine.

    BACKGROUND



    [0002] Engine members, such as turbine airfoils, typically include complex internal features. Some of these features, such as a brazed joint, may benefit from visual inspection. However, inspection of these features may be difficult due to various conditions, such as limited access to the feature.

    [0003] EP 0922199 A1 discloses a prior art depth measurement device as set forth in the preamble of claim 1.

    [0004] US 5 612 785 A and US 2016/097635 A1 disclose other prior art systems.

    SUMMARY



    [0005] Systems and methods for depth measurement are described herein, in accordance with various embodiments.

    [0006] According to the present invention, there is provided a depth measurement device according to claim 1. The depth measuring device comprises inter alia a first light source configured to direct a first beam of light, a second light source configured to direct a second beam of light, and a mirror for viewing at least one of the first beam of light and the second beam of light.

    [0007] In various embodiments, the second beam of light may be oriented at an acute angle with respect to the first beam of light. The desired distance may correspond to a distance between the housing and an internal feature. At least one of the internal feature, the first beam of light, or the second beam of light may be viewable through the eyepiece via the mirror. The depth measurement device may be configured to indicate that the internal feature is located at the desired distance in response to the first beam of light and the second beam of light coinciding at the internal feature. The depth measurement device may further comprise a third light source for illuminating at least the internal feature.

    [0008] There is further provided a depth measurement device according to claim 7.

    [0009] In various embodiments, the first beam of light and the second beam of light may be configured to intersect at a desired dimension of the internal feature. The location of the internal feature may be indicated in response to the relative location of the first beam of light with respect to the second beam of light. The depth measurement device may further comprise a housing. At least one of the first light source, the second light source, and the mirror may be coupled to the housing. The depth measurement device may further comprise an eyepiece for viewing the mirror. The housing may comprise a transparent surface comprising a visible marking for indicating a relative location of the first beam of light with respect to the second beam of light. The first beam of light and the second beam of light may pass through the transparent surface. The first light source may comprise a laser source. The second light source may comprise a laser source.

    [0010] The invention also provides a method of measuring an internal feature of a member as set forth in claim 14.

    [0011] In various embodiments, the method may further comprise determining if the first beam of light and the second beam of light intersect at the internal feature.

    [0012] The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, the following description and drawings are intended to be exemplary in nature and non-limiting.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] 

    Figures 1A-1B illustrate a measuring device placed over an internal feature, in accordance with various embodiments;

    Figure 1C illustrates the mirror of the measuring device of FIGs. 1A-1B, in accordance with various embodiments;

    Figure 2A illustrates a schematic view of the measuring device of FIG. 1B being placed over a member having a feature which is not located at its desired dimension, in accordance with various embodiments;

    Figure 2B illustrates the mirror of the measuring device of FIG. 2A with a first beam of light and a second beam of light forming discrete points on the mirror, in accordance with various embodiments; and

    Figure 3 illustrates a method for measuring an internal feature of a member, in accordance with various embodiments.


    DETAILED DESCRIPTION



    [0014] The detailed description of exemplary embodiments herein makes reference to the accompanying drawings, which show exemplary embodiments by way of illustration. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that logical changes and adaptations in design and construction may be made in accordance with this disclosure and the teachings herein. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. The scope of the disclosure is defined by the appended claims. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. Surface shading lines may be used throughout the figures to denote different parts but not necessarily to denote the same or different materials. In some cases, reference coordinates may be specific to each figure.

    [0015] Engine members, such as turbine airfoils, typically include complex internal features. Some of these features, such as a braze or brazed joint for example, may be visible. However, inspection of these features may be difficult due to various conditions, such as limited access to the feature. For example, the internal feature may not be reachable via a measurement tool, such as a caliper.

    [0016] A visual depth measurement device is provided herein which uses two or more beams of light, such as laser beams for example, to determine if an internal feature comprises a desired dimension. The beams of light may be calibrated before performing the measurement. In this regard, the visual depth measurement device may be tuned to perform measurements on internal features having known desired dimensions. The visual depth measurement device operates by directing beams of light towards the internal feature. In response to the internal feature being located at its desired dimension, the beams of light intersect at the internal feature. In response to the internal feature being at a location which is less than or greater than the desired dimension, the beams of light do not intersect at the internal feature. A mirror is provided for viewing the internal feature, and the beams of light, through an eyepiece of the measurement device. Thus, a user or optical sensor determines if an internal feature is located at its respective desired dimension by determining if the beams of light intersect at the internal feature.

    [0017] With reference to FIG. 1A and FIG. 1B, a schematic view of a visual depth measurement device (also referred to as a measurement device) 100 is illustrated, in accordance with various embodiments. Xyz-axes are provided for ease of illustration. Measurement device 100 comprises a housing 110, an eyepiece 112, a first light source 120, a second light source 124, and a mirror 130. Measurement device 100 is for measuring a desired dimension of an internal feature of a device. FIG. 1A and FIG. 1B illustrate measurement device placed over an opening 104 of a member 102. In various embodiments, member 102 may comprise an airfoil, such as a turbine engine blade or turbine engine vane, for example. In various embodiments, member 102 may comprise any device having an internal feature. In various embodiments, opening 104 may comprise a bore, slot, slit, trench, cavity, or any other type of opening. An internal feature (also referred to as a feature) 140 may be located within opening 104. In various embodiments, feature 140 may comprise a braze (or braze filler), a brazed joint, a weld, or a solder. In various embodiments, feature 140 may comprise any portion of member 102.

    [0018] Feature 140 may have a desired dimension (dimension) (also referred to herein as a desired distance) 192. Although illustrated as the distance between outer surface 108 of member 102 and feature 140, dimension 192 may comprise any distance corresponding to feature 140. In various embodiments, dimension 192 may comprise a distance between housing 110 and feature 140. In various embodiments, dimension 192 may comprise a distance between a portion of housing 110 and feature 140. In various embodiments, measurement device 100 may aid in determining if dimension 192 of feature 140 varies within a single member 102. In various embodiments, measurement device 100 may aid in determining if dimension 192 of feature 140 varies between various members 102. In this regard, measuring device 100 may aid in quality control of member 102, in accordance with various embodiments.

    [0019] With measurement device 100 placed over opening 104, as illustrated in FIG. 1A and FIG. 1B, a user may look through eyepiece 112 and see at least a portion of feature 140 via mirror 130. In this regard, imaginary line 113 may represent the line-of-sight of said user. It should be appreciated that eyepiece 112 may aid in maintaining consistent alignment of the line-of-sight, as represented by imaginary line 113, with respect to feature 140.

    [0020] In various embodiments, an optical sensor may view mirror 130. In this regard, imaginary line 113 may represent the line-of-sight of said optical sensor. Said optical sensor may generate an image of mirror 130 and said image may be sent to a controller for determining the position of feature 140. In various embodiments, eyepiece 112 may comprise said optical sensor. However, said optical sensor may be located in any location capable of sensing feature 140 via mirror 130.

    [0021] With reference to FIG. 1A and FIG. 1B, first light source 120 generates first beam of light 122. Second light source 124 generates second beam of light 126. First beam of light 122 and second beam of light 126 are directed towards feature 140. In various embodiments, first beam of light 122 and second beam of light 126 may be directed towards an outer portion 142 of feature 140.

    [0022] First light source 120 and second light source 124 comprise devices for directing beams of light (i.e., first beam of light 122 and second beam of light 126). In various embodiments, first light source 120 and second light source 124 may comprise laser sources or sources configured to generate laser beams. In this regard, first beam of light 122 and second beam of light 126 may comprise laser beams.

    [0023] In various embodiments, with continued reference to FIG. 1A and FIG. 1B, although illustrated as being directly projected from first light source 120 to feature 140, it should be appreciated that first beam of light 122 may projected from first light source 120 to feature 140 via one or more mirrors or reflective surfaces.

    [0024] In various embodiments, with additional reference to FIG. 1C, first beam of light 122 and second beam of light 126 may intersect at feature 140. FIG. 1C illustrates an exemplary embodiment of mirror 130 in response to first beam of light 122 and second beam of light 126 intersecting at feature 140. In this regard, first beam of light 122 and second beam of light 126 may coincide. Stated another way, first beam of light 122 and second beam of light 126 may overlap as viewed from mirror 130. Mirror 130 comprises a visible marker 132. Visible marker 132 is disposed on mirror 130 to provide a reference of the relative locations of first beam of light 122 and second beam of light 126. In this regard, mirror 130 may be configured to reflect an image of the first beam of light 122, the second beam of light 126, and/or the feature 140. As illustrated in FIG. 1C, visible marker 132 may comprise linear graduations. However, as illustrated in FIG. 2B, a visible marker may comprise zones or any other suitable markings to indicate to a user a relative distance between first beam of light 122 and second beam of light 126.

    [0025] With reference to FIG. 1A, measuring device 100 may further comprise a third light source 150. In various embodiments, third light source 150 may be coupled to an outer surface of housing 110. In various embodiments, third light source 150 may be coupled to an inner surface of housing 110. In various embodiments, third light source 150 may be separate from housing 110. In various embodiments, third light source 150 may comprise an illuminating device such as light emitting diodes (LED), incandescent bulbs, fluorescent bulbs, ambient lighting, or any other light source for illuminating at least a portion of measuring device 100. Third light source 150 may illuminate opening 104. Third light source 150 may illuminate feature 140. In various embodiments, eyepiece 112 may comprise a focal lens 114.

    [0026] With reference to FIG. 1B, first light source 120 and/or second light source 124 may be rotatable (about the x-axis in FIG. 1B). In various embodiments, first light source 120 and/or second light source 124 may be configured to be manually rotated, for example by a knob or lever. In various embodiments, the rotation of first light source 120 and/or second light source 124 may be automated, for example by an electromechanical motor. First beam of light 122 and second beam of light 126 may be oriented at angle α. Angle α may comprise an acute angle. In various embodiments, angle α may be determined by the desired dimension 192 of the feature 140 to be measured. For example, FIG. 1B illustrates first light source 120 and second light source 124 being configured to, or tuned to, determine if a feature is located at desired dimension 192. However, first light source 120 and second light source 124 may be rotated away from each other, such that angle α decreases, in order to be tuned to determine if a feature is located at a dimension which is greater than desired dimension 192. Conversely, first light source 120 and second light source 124 may be rotated towards each other, such that angle α increases, in order to be tuned to determine if a feature is located at a dimension which is less than desired dimension 192. In this regard, measuring device 100 may be tuned to measure a first feature having a first desired dimension at a first time, and then re-tuned to measure a second feature having a second desired dimension at a second time.

    [0027] In various embodiments, although first light source 120 and second light source 124 are positioned side-by-side in the z-direction, in various embodiments, first light source 120 and second light source 124 may be positioned side-by-side in the x-direction. In this regard, with momentary reference to FIG. 2B, the BAD-OK-BAD zones may be oriented vertically, as opposed to horizontally as illustrated in FIG. 2B (i.e., rotated ninety degrees from the orientation illustrated in FIG. 2B). In this regard, it should be appreciated that first light source 120 and second light source 124 may be positioned in any location such that first light source 120 and second light source 124 are configured to intersect on, or in close proximity to, feature 140.

    [0028] With reference to FIG. 1A and FIG. 1B, mirror 130 and eyepiece 112 may be located in close proximity to surface 116, in accordance with various embodiments. It should be appreciated that positioning eyepiece 112 and mirror 130 in close proximity to surface 116, and thus closer to feature 140, may allow the line-of-sight, as illustrated by imaginary line 113, to be oriented as normal an orientation as possible, wherein a normal orientation in this regard may refer to the x-z plane. Positioning eyepiece 112 and mirror 130 in this manner may aid in generating more accurate measurements. In this regard, eyepiece 112 and mirror 130 may be positioned such that the line-of-sight, as illustrated by imaginary line 113, is as parallel to surface 116 as possible, while still maintaining feature 140 in the line-of-sight.

    [0029] With respect to FIG. 2A, elements with like element numbering, as depicted in FIG. 1A and FIG. 1B, are intended to be the same and will not necessarily be repeated for the sake of clarity.

    [0030] FIG. 2A illustrates the measuring device of FIG. 1A and FIG. 1B having been placed over a member 202 with an opening 204. Internal feature 240 is located within opening 204. In various embodiments, member 202, opening 204, and internal feature 240 may be similar to member 102, opening 104, and feature 140. Unlike feature 140 of FIG. 1A and FIG. 1B, internal feature 240 may be located at a distance 293 from outer surface 208. However, internal feature 240 may comprise the desired dimension 192. Stated another way, it may be desired for internal feature 240 to be located at a distance from outer surface 208 of member 202 equivalent to the desired dimension. In response to measuring device 100 being tuned to desired dimension 192, and internal feature 240 being located at distance 293, which is less than desired dimension 192, first beam of light 122 and second beam of light 126 may not intersect at internal feature 240. In this regard, with additional reference to FIG. 2B, first beam of light 122 and second beam of light 126 may form discrete points on mirror 130, which may indicate to a user that internal feature 240 is not located at desired dimension 192. Although illustrated as having visible marker 132 in FIG. 1C, in various embodiments, mirror 130 may comprise visible marker 232. Visible marker 232 may be similar to visible marker 132. Visible marker 232 may define zones, such as an "OK" zone which indicates to a user that internal feature 240 is located within a threshold value of the desired dimension 192. Conversely, visible marker 232 may define zones, such as "BAD" zones which indicate to a user that internal feature 240 is not located within a threshold value of the desired dimension 192.

    [0031] With reference to FIGs. 1A-1C, although having described visible marker 132 as being disposed on mirror 130, in various examples falling outside the scope of the claims the visible marker 132 may be disposed on surface 116 of housing 110, wherein the visible marker 132 is located in the line-of-sight, as illustrated by imaginary line 113. In this regard, surface 116 may comprise a transparent surface. Furthermore, first beam of light 122 and second beam of light 126 may be directed through surface 116. Stated another way, first beam of light 122 and second beam of light 126 may pass through surface 116. In various embodiments, surface 116 may comprise an aperture through which first beam of light 122 and second beam of light 126 may pass. In this regard, feature 140 may be viewable through said aperture.

    [0032] With reference to FIG. 3, a method 300 for measuring an internal feature of a member is illustrated, in accordance with various embodiments. Method 300 includes placing a visual depth measurement device over an opening of a component (step 302). Method 300 includes directing a first beam of light towards an internal feature (step 304). Method 300 includes directing a second beam of light towards the internal feature (step 306). Method 300 includes reflecting at least a portion of the first beam of light and the second beam of light (step 308). Method 300 may include determining if the first beam of light and the second beam of light intersect at the internal feature (step 310).

    [0033] With additional reference to FIG. 1A and FIG. 1B, step 302 includes placing measurement device 100 over opening 104 of member 102. Step 304 includes directing first beam of light 122 towards internal feature 140. Step 306 includes directing second beam of light 126 towards internal feature 140. In various embodiments, the directing may be in response to the placing. Step 308 includes reflecting, by mirror 130, at least a portion of first beam of light 122 and at least a portion of second beam of light 126. Step 310 may include determining if the first beam of light 122 and the second beam of light 126 intersect at the internal feature 140.

    [0034] Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure. The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean "one and only one" unless explicitly so stated, but rather "one or more." Moreover, where a phrase similar to "at least one of A, B, or C" is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C. Systems, methods and apparatus are provided herein. In the detailed description herein, references to "one embodiment", "an embodiment", "various embodiments", etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.

    [0035] As used herein, the terms "comprises", "comprising", or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.


    Claims

    1. A depth measurement device (100) comprising:

    a first light source (120) configured to direct a first beam of light (122);

    a second light source (124) configured to direct a second beam of light (126);

    a mirror (130) for viewing at least one of the first beam of light (122) and the second beam of light (126);

    a housing (110); and

    an eyepiece (112) coupled to the housing (110), wherein the first beam of light (122) and the second beam of light (126) are configured to intersect at a desired distance (192) from the housing (110);

    characterised in that:

    the depth measurement device (100) is configured to indicate whether an internal feature (140; 240) is at the desired distance (192) based upon a distance between the locations at which the first and second beams of light (122, 126) intersect the internal feature (140; 240); and

    the mirror (130) comprises a visible marking (132) for indicating a relative location of the first beam of light (122) with respect to the second beam of light (126).


     
    2. The depth measurement device (100) of claim 1, wherein the second beam of light (126) is oriented at an acute angle (α) with respect to the first beam of light (122).
     
    3. The depth measurement device (100) of claim 1 or 2, wherein the desired distance (192) corresponds to a distance between the housing (110) and the internal feature (140).
     
    4. The depth measurement device (100) of claim 3, wherein at least one of the internal feature (140), the first beam of light (122), or the second beam of light (126) are viewable through the eyepiece (112) via the mirror (130).
     
    5. The depth measurement device (100) of claim 3 or 4, wherein the depth measurement device (100) further comprises a third light source (150) for illuminating at least the internal feature (140).
     
    6. The depth measurement device (100) of claim 3, 4 or 5, wherein the depth measurement device (100) is configured to indicate that the internal feature (140) is located at the desired distance (192) in response to the first beam of light (122) and the second beam of light (126) coinciding at the internal feature (140).
     
    7. The depth measurement device (100) of any preceding claim, wherein the first light source (120) is configured to direct the first beam of light (122) towards the internal feature (140; 240), the second light source (124) is configured to direct the second beam of light (126) towards the internal feature (140; 240), and the mirror (130) is for viewing at least a portion of the first beam of light (122) and the second beam of light (126).
     
    8. The depth measurement device (100) of any preceding claim, wherein the first beam of light (122) and the second beam of light (126) are configured to intersect at a desired dimension (192) of the internal feature (240).
     
    9. The depth measurement device (100) of any preceding claim, wherein the location of the internal feature (240) is indicated in response to the relative location of the first beam of light (122) with respect to the second beam of light (126).
     
    10. The depth measurement device (100) of any preceding claim, wherein at least one of the first light source (120), the second light source (124), and the mirror (130) is coupled to the housing (110).
     
    11. The depth measurement device (100) of any preceding claim, wherein the eyepiece (112) is for viewing the mirror (130).
     
    12. The depth measurement device (100) of any preceding claim, wherein the housing (110) comprises a transparent surface (116) comprising a or the visible marking (132) for indicating a or the relative location of the first beam of light (122) with respect to the second beam of light (126), wherein, optionally, the first beam of light (122) and the second beam of light (126) pass through the transparent surface (116).
     
    13. The depth measurement device (100) of any preceding claim, wherein at least one of the first light source (120) and the second light source (124) comprise a laser source.
     
    14. A method of measuring an internal feature (140; 240) of a member (102; 202) comprising:

    placing a depth measurement device (100) comprising a housing (110) and an eyepiece (112) coupled to the housing (110) over an opening (104; 204) of the member (102; 202), the internal feature (140; 240) being visible via the opening (104; 204);

    directing a first beam of light (122) towards an internal feature (140; 240), the first beam of light (122) being generated by a first light source (120) coupled to the depth measurement device (100);

    directing a second beam of light (126) towards the internal feature (140; 240), the second beam of light (126) being generated by a second light source (124) coupled to the depth measurement device (100), wherein the first beam of light (122) and the second beam of light (126) are configured to intersect at a desired distance (192) from the housing (110); and

    reflecting, by a mirror (130), at least a portion of the first beam of light (122) and the second beam of light (126);

    characterised by:
    indicating whether the internal feature (140; 240) is at the desired distance (192) based upon a distance between the locations at which the first and second beams of light (122, 126) intersect the internal feature (140; 240), wherein the mirror (130) comprises a visible marking (132) for indicating a relative location of the first beam of light (122) with respect to the second beam of light (126).


     
    15. The method of claim 14, further comprising:
    determining if the first beam of light (122) and the second beam of light (126) intersect at the internal feature (140; 240).
     


    Ansprüche

    1. Tiefenmessungsvorrichtung (100), umfassend:

    eine erste Lichtquelle (120), die konfiguriert ist, um einen ersten Lichtstrahl (122) zu lenken;

    eine zweite Lichtquelle (124), die konfiguriert ist, um einen zweiten Lichtstrahl (126) zu lenken;

    einen Spiegel (130) zum Betrachten von zumindest einem von dem ersten Lichtstrahl (122) und dem zweiten Lichtstrahl (126) ;

    ein Gehäuse (110); und

    ein Okular (112), das an das Gehäuse (110) gekoppelt ist, wobei der erste Lichtstrahl (122) und der zweite Lichtstrahl (126) konfiguriert sind, um sich in einem gewünschten Abstand (192) zu dem Gehäuse (110) zu schneiden;

    dadurch gekennzeichnet, dass:

    die Tiefenmessungsvorrichtung (100) konfiguriert ist, um anzugeben, ob sich ein internes Merkmal (140; 240) in dem gewünschten Abstand (192) befindet, basierend auf einem Abstand zwischen den Stellen, an denen der erste und der zweite Lichtstrahl (122, 126) das interne Merkmal (140; 240) schneiden; und

    der Spiegel (130) eine sichtbare Markierung (132) umfasst, um eine relative Stelle des ersten Lichtstrahls (122) in Bezug auf den zweiten Lichtstrahl (126) anzugeben.


     
    2. Tiefenmessungsvorrichtung (100) nach Anspruch 1, wobei der zweite Lichtstrahl (126) in einem spitzen Winkel (α) in Bezug auf den ersten Lichtstrahl (122) ausgerichtet ist.
     
    3. Tiefenmessungsvorrichtung (100) nach Anspruch 1 oder 2, wobei der gewünschte Abstand (192) einem Abstand zwischen dem Gehäuse (110) und dem internen Merkmal (140) entspricht.
     
    4. Tiefenmessungsvorrichtung (100) nach Anspruch 3, wobei zumindest eines von dem internen Merkmal (140), dem ersten Lichtstrahl (122) oder dem zweiten Lichtstrahl (126) über den Spiegel (130) durch das Okular (112) betrachtbar ist.
     
    5. Tiefenmessungsvorrichtung (100) nach Anspruch 3 oder 4, wobei die Tiefenmessungsvorrichtung (100) ferner eine dritte Lichtquelle (150) umfasst, um zumindest das interne Merkmal (140) zu beleuchten.
     
    6. Tiefenmessungsvorrichtung (100) nach Anspruch 3, 4 oder 5, wobei die Tiefenmessungsvorrichtung (100) konfiguriert ist, um als Reaktion darauf, dass der erste Lichtstrahl (122) und der zweite Lichtstrahl (126) an dem internen Merkmal (140) zusammenfallen, anzugeben, dass sich das interne Merkmal (140) in dem gewünschten Abstand (192) befindet.
     
    7. Tiefenmessungsvorrichtung (100) nach einem vorhergehenden Anspruch, wobei die erste Lichtquelle (120) konfiguriert ist, um den ersten Lichtstrahl (122) in Richtung des internen Merkmals (140; 240) zu lenken, die zweite Lichtquelle (124) konfiguriert ist, um den zweiten Lichtstrahl (126) in Richtung des internen Merkmals (140; 240) zu lenken und der Spiegel (130) dem Betrachten von zumindest einem Teil des ersten Lichtstrahls (122) und des zweiten Lichtstrahls (126) dient.
     
    8. Tiefenmessungsvorrichtung (100) nach einem vorhergehenden Anspruch, wobei der erste Lichtstrahl (122) und der zweite Lichtstrahl (126) konfiguriert sind, um sich an einer gewünschten Abmessung (192) des internen Merkmals (240) zu schneiden.
     
    9. Tiefenmessungsvorrichtung (100) nach einem vorhergehenden Anspruch, wobei die Stelle des internen Merkmals (240) als Reaktion auf die relative Stelle des ersten Lichtstrahls (122) in Bezug auf den zweiten Lichtstrahl (126) angegeben wird.
     
    10. Tiefenmessungsvorrichtung (100) nach einem vorhergehenden Anspruch, wobei zumindest eines von der ersten Lichtquelle (120), der zweiten Lichtquelle (124) und dem Spiegel (130) an das Gehäuse (110) gekoppelt ist.
     
    11. Tiefenmessungsvorrichtung (100) nach einem vorhergehenden Anspruch, wobei das Okular (112) dem Betrachten des Spiegels (130) dient.
     
    12. Tiefenmessungsvorrichtung (100) nach einem vorhergehenden Anspruch, wobei das Gehäuse (110) eine transparente Fläche (116) umfasst, die eine oder die sichtbare Markierung (132) umfasst, um eine oder die relative Stelle des ersten Lichtstrahls (122) in Bezug auf den zweiten Lichtstrahl (126) anzugeben, wobei optional der erste Lichtstrahl (122) und der zweite Lichtstrahl (126) die transparente Fläche (116) durchlaufen.
     
    13. Tiefenmessungsvorrichtung (100) nach einem vorhergehenden Anspruch, wobei zumindest eine von der ersten Lichtquelle (120) und der zweiten Lichtquelle (124) eine Laserquelle umfasst.
     
    14. Verfahren zum Messen eines internen Merkmals (140; 240) eines Elements (102; 202), umfassend:

    Platzieren einer Tiefenmessungsvorrichtung (100), die ein Gehäuse (110) und ein Okular (112) umfasst, das an das Gehäuse (110) gekoppelt ist, über einer Öffnung (104; 204) des Elements (102; 202), wobei das interne Merkmal (140; 240) über die Öffnung (104; 204) sichtbar ist;

    Lenken eines ersten Lichtstrahls (122) in Richtung eines internen Merkmals (140; 240), wobei der erste Lichtstrahl (122) durch eine erste Lichtquelle (120) erzeugt wird, die an die Tiefenmessungsvorrichtung (100) gekoppelt ist;

    Lenken eines zweiten Lichtstrahls (126) in Richtung des internen Merkmals (140; 240), wobei der zweite Lichtstrahl (126) durch eine zweite Lichtquelle (124) erzeugt wird, die an die Tiefenmessungsvorrichtung (100) gekoppelt ist, wobei der erste Lichtstrahl (122) und der zweite Lichtstrahl (126) konfiguriert sind, um sich in einem gewünschten Abstand (192) zu dem Gehäuse (110) zu schneiden; und

    Reflektieren, durch einen Spiegel (130), von zumindest einem Teil des ersten Lichtstrahls (122) und des zweiten Lichtstrahls (126);

    gekennzeichnet durch:
    Angeben, ob sich das interne Merkmal (140; 240) in dem gewünschten Abstand (192) befindet, basierend auf einem Abstand zwischen den Stellen, an denen der erste und der zweite Lichtstrahl (122, 126) das interne Merkmal (140; 240) schneiden, wobei der Spiegel (130) eine sichtbare Markierung (132) umfasst, um eine relative Stelle des ersten Lichtstrahls (122) in Bezug auf den zweiten Lichtstrahl (126) anzugeben.


     
    15. Verfahren nach Anspruch 14, ferner umfassend:
    Bestimmen, ob sich der erste Lichtstrahl (122) und der zweite Lichtstrahl (126) an dem internen Merkmal (140; 240) schneiden.
     


    Revendications

    1. Dispositif de mesure de profondeur (100) comprenant :

    une première source de lumière (120) configurée pour diriger un premier faisceau de lumière (122) ;

    une deuxième source de lumière (124) configurée pour diriger un second faisceau de lumière (126) ;

    un miroir (130) pour observer au moins l'un du premier faisceau de lumière (122) et du second faisceau de lumière (126) ;

    un boîtier (110) ; et

    un oculaire (112) couplé au boîtier (110), dans lequel le premier faisceau de lumière (122) et le second faisceau de lumière (126) sont configurés pour se croiser à une distance souhaitée (192) du boîtier (110) ;

    caractérisé en ce que :

    le dispositif de mesure de profondeur (100) est configuré pour indiquer si un élément interne (140 ; 240) se trouve à la distance souhaitée (192) sur la base d'une distance entre les emplacements auxquels les premier et second faisceaux de lumière (122, 126) croisent l'élément interne (140 ; 240) ; et

    le miroir (130) comprend un marquage visible (132) pour indiquer un emplacement relatif du premier faisceau de lumière (122) par rapport au second faisceau de lumière (126).


     
    2. Dispositif de mesure de profondeur (100) selon la revendication 1, dans lequel le second faisceau de lumière (126) est orienté selon un angle aigu (α) par rapport au premier faisceau de lumière (122).
     
    3. Dispositif de mesure de profondeur (100) selon la revendication 1 ou 2, dans lequel la distance souhaitée (192) correspond à une distance entre le boîtier (110) et l'élément interne (140).
     
    4. Dispositif de mesure de profondeur (100) selon la revendication 3, dans lequel au moins l'un de l'élément interne (140), du premier faisceau de lumière (122) ou du second faisceau de lumière (126) est visible à travers l'oculaire (112) par l'intermédiaire du miroir (130).
     
    5. Dispositif de mesure de profondeur (100) selon la revendication 3 ou 4, dans lequel le dispositif de mesure de profondeur (100) comprend en outre une troisième source de lumière (150) pour éclairer au moins l'élément interne (140).
     
    6. Dispositif de mesure de profondeur (100) selon la revendication 3, 4 ou 5, dans lequel le dispositif de mesure de profondeur (100) est configuré pour indiquer que l'élément interne (140) est situé à la distance souhaitée (192) en réponse au premier faisceau de lumière (122) et au second faisceau de lumière (126) coïncidant au niveau de l'élément interne (140).
     
    7. Dispositif de mesure de profondeur (100) selon une quelconque revendication précédente, dans lequel la première source de lumière (120) est configurée pour diriger le premier faisceau de lumière (122) vers l'élément interne (140 ; 240), la deuxième source de lumière (124) est configurée pour diriger le second faisceau de lumière (126) vers l'élément interne (140 ; 240), et le miroir (130) permet d'observer au moins une partie du premier faisceau de lumière (122) et du second faisceau de lumière (126) .
     
    8. Dispositif de mesure de profondeur (100) selon une quelconque revendication précédente, dans lequel le premier faisceau de lumière (122) et le second faisceau de lumière (126) sont configurés pour se croiser à une dimension souhaitée (192) de l'élément interne (240).
     
    9. Dispositif de mesure de profondeur (100) selon une quelconque revendication précédente, dans lequel l'emplacement de l'élément interne (240) est indiqué en réponse à l'emplacement relatif du premier faisceau de lumière (122) par rapport au second faisceau de lumière (126).
     
    10. Dispositif de mesure de profondeur (100) selon une quelconque revendication précédente, dans lequel au moins l'un de la première source de lumière (120), de la deuxième source de lumière (124) et du miroir (130) est couplé au boîtier (110).
     
    11. Dispositif de mesure de profondeur (100) selon une quelconque revendication précédente, dans lequel l'oculaire (112) permet d'observer le miroir (130).
     
    12. Dispositif de mesure de profondeur (100) selon une quelconque revendication précédente, dans lequel le boîtier (110) comprend une surface transparente (116) comprenant un ou le marquage visible (132) pour indiquer un ou l' emplacement relatif du premier faisceau de lumière (122) par rapport au second faisceau de lumière (126), dans lequel, éventuellement, le premier faisceau de lumière (122) et le second faisceau de lumière (126) traversent la surface transparente (116).
     
    13. Dispositif de mesure de profondeur (100) selon une quelconque revendication précédente, dans lequel au moins l'une de la première source de lumière (120) et de la deuxième source de lumière (124) comprend une source laser.
     
    14. Procédé de mesure d'un élément interne (140 ; 240) d'un élément (102; 202) comprenant :

    le placement d'un dispositif de mesure de profondeur (100) comprenant un boîtier (110) et un oculaire (112) couplé au boîtier (110) sur une ouverture (104 ; 204) de l'élément (102 ; 202), l'élément interne (140 ; 240) étant visible par l'intermédiaire de l'ouverture (104 ; 204) ;

    la direction d'un premier faisceau de lumière (122) vers un élément interne (140 ; 240), le premier faisceau de lumière (122) étant généré par une première source de lumière (120) couplée au dispositif de mesure de profondeur (100) ;

    la direction d'un second faisceau de lumière (126) vers l'élément interne (140 ; 240), le second faisceau de lumière (126) étant généré par une deuxième source de lumière (124) couplée au dispositif de mesure de profondeur (100), dans lequel le premier faisceau de lumière (122) et le second faisceau de lumière (126) sont configurés pour se croiser à une distance souhaitée (192) du boîtier (110) ; et

    la réflexion, par un miroir (130), d'au moins une partie du premier faisceau de lumière (122) et du second faisceau de lumière (126) ;

    caractérisé par :
    le fait d'indiquer si l'élément interne (140 ; 240) se trouve à la distance souhaitée (192) sur la base d'une distance entre les emplacements auxquels les premier et second faisceaux de lumière (122, 126) croisent l'élément interne (140 ; 240), dans lequel le miroir (130) comprend un marquage visible (132) pour indiquer un emplacement relatif du premier faisceau de lumière (122) par rapport au second faisceau de lumière (126).


     
    15. Procédé selon la revendication 14, comprenant en outre :
    le fait de déterminer si le premier faisceau de lumière (122) et le second faisceau de lumière (126) se croisent au niveau de l'élément interne (140 ; 240).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description