(19)
(11)EP 3 273 617 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.12.2021 Bulletin 2021/48

(21)Application number: 15885155.0

(22)Date of filing:  14.08.2015
(51)International Patent Classification (IPC): 
H04B 7/08(2006.01)
H04L 25/02(2006.01)
H04W 4/02(2018.01)
H04W 88/02(2009.01)
H04L 27/26(2006.01)
H04W 84/00(2009.01)
(52)Cooperative Patent Classification (CPC):
H04L 25/02; H04L 27/2655; H04W 88/02; H04B 7/08; H04L 27/2685; H04W 4/027; H04L 27/2695; H04L 25/0222
(86)International application number:
PCT/CN2015/086962
(87)International publication number:
WO 2016/145778 (22.09.2016 Gazette  2016/38)

(54)

DATA DEMODULATION METHOD, USER EQUIPMENT, BASE STATION AND SYSTEM

DATENDEMODULATIONSVERFAHREN, BENUTZERVORRICHTUNG, BASISSTATION UND SYSTEM

PROCÉDÉ DE DÉMODULATION DE DONNÉES, ÉQUIPEMENT UTILISATEUR, STATION DE BASE ET SYSTÈME


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 17.03.2015 WO PCT/CN2015/074420

(43)Date of publication of application:
24.01.2018 Bulletin 2018/04

(73)Proprietor: HUAWEI TECHNOLOGIES CO., LTD.
Shenzhen, Guangdong 518129 (CN)

(72)Inventors:
  • LI, Qiming
    Shenzhen Guangdong 518129 (CN)
  • LIU, Jiadi
    Shenzhen Guangdong 518129 (CN)
  • HAN, Jing
    Shenzhen Guangdong 518129 (CN)
  • LI, Anjian
    Shenzhen Guangdong 518129 (CN)

(74)Representative: Epping - Hermann - Fischer 
Patentanwaltsgesellschaft mbH Schloßschmidstraße 5
80639 München
80639 München (DE)


(56)References cited: : 
CN-A- 103 269 259
JP-A- 2007 235 305
US-B1- 8 149 905
CN-A- 104 160 644
US-A1- 2004 218 702
  
  • HUAWEI ET AL: "New channel mode for SFN deployment", 3GPP DRAFT; R4-150122, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE , vol. RAN WG4, no. Athens, Greece; 20150209 - 20150213 8 February 2015 (2015-02-08), XP050937622, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/Meetings_3GPP_ SYNC/RAN4/Docs/ [retrieved on 2015-02-08]
  • ERICSSON: "Correction to handling of parameters when entering CELL_DCH", 3GPP DRAFT; 25331_CRYYYY_(REL-12)_R2-144832 CORRECTION TO RAN ASSISTANCE PARAMETER HANDLING WHEN ENTERING CELL_DCH, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES , vol. RAN WG2, no. San Francisco, USA; 20141117 - 20141121 17 November 2014 (2014-11-17), XP050876905, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/Meetings_3GPP_ SYNC/RAN2/Docs/ [retrieved on 2014-11-17]
  • YI-HSIN YU ET AL: "A joint scheme of decision-directed channel estimation and weighted-average phase error tracking for OFDM WLAN systems", CIRCUITS AND SYSTEMS, 2004. PROCEEDINGS. THE 2004 IEEE ASIA-PACIFIC CO NFERENCE ON TAINAN, TAIWAN DEC. 6-9, 2004, PISCATAWAY, NJ, USA,IEEE, vol. 2, 6 December 2004 (2004-12-06), pages 985-988, XP010783396, DOI: 10.1109/APCCAS.2004.1413046 ISBN: 978-0-7803-8660-0
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to the mobile communications field, and in particular, to a data demodulation method, user equipment, a base station, and a system.

BACKGROUND



[0002] With development of technologies, users have more requirements for communication in a high-speed scenario. For example, users perform communication on a running high-speed train.

[0003] When user equipment (UE) is in a high-speed moving state, for received downlink data, a relatively large Doppler frequency shift may occur, resulting in a low downlink data throughput of the UE.

[0004] In the prior art, to increase a downlink data throughput of UE in a high-speed moving state, when downlink data received by the UE is demodulated, a Doppler frequency shift is usually first estimated according to a common reference signal (CRS). When a demodulation reference signal (DMRS) is demodulated, compensation is performed by using the estimated frequency shift to improve demodulation performance of the DMRS, so as to increase the downlink data throughput of the UE.

[0005] The Doppler frequency shift is relatively large in the high-speed scenario, and a conventional frequency shift estimation method cannot achieve an expected effect and has low precision. Therefore, using the prior-art data demodulation method cannot effectively increase the downlink data throughput of the UE in the high-speed moving state, and the downlink data throughput of the UE in the high-speed moving state is still relatively low.

[0006] HUAWEI ET AL, "New channel mode for SFN deployment", vol. RAN WG4, no. Athens, Greece; 20150209 - 20150213, (20150208), 3GPP DRAFT; R4-150122, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, discloses a SNF (single-frequency network) channel model for high speed train scenario. Two kinds of channel models are proposed for demodulation performance.

[0007] US 2004/218702 A1 A discloses a method for calculation of filtered channel estimation values dk in radio systems. A sequence of unfiltered channel estimation values xk is determined. A specific set of filter coefficients is selected from two or more filter coefficient sets, with the filter coefficients being calculated on the basis of the MMSE optimality criterion for a predetermined recursive digital filter (F). The sequence of unfiltered channel estimation values is then filtered by means of this recursive digital filter (F) using the selected filter coefficients.

[0008] US 8 149 905 B1 discloses a method and apparatus in a multiple sub-carrier digital communication receiver estimating a Doppler frequency bandwidth. The Doppler frequency bandwidth is estimated by comparing a first set of channel estimates to a second set of channel estimates generated by Wiener filter interpolation of the first set of channel estimates. The Wiener interpolation filter coefficients are generated for various Doppler frequency bandwidths. Pre-determined transmit pilot symbols may be used to generate the first set of channel estimates in an OFDM communication system. A set of Wiener filter interpolation errors may be generated at one or more sub-carrier frequencies, for each of the different Doppler frequency bandwidths, and averaged across time and/or frequency. The Doppler frequency estimation method and apparatus may select a Doppler frequency estimate based on the set of Wiener filter interpolation errors.

SUMMARY



[0009] Embodiments of the present invention provide a data demodulation method, user equipment, a base station, and a system, so as to effectively improve a downlink data throughput of UE.

[0010] The invention is defined by the independent claims. Advantageous embodiments of the invention are given in the sub-claims.

BRIEF DESCRIPTION OF DRAWINGS



[0011] 

FIG. 1 is a schematic diagram of an application scenario of a data demodulation method according to an embodiment of the present invention;

FIG. 2 is a flowchart of a data demodulation method according to Embodiment 1 of the present invention;

FIG. 3 is a flowchart of a data demodulation method according to Embodiment 2 of the present invention;

FIG. 4 is a schematic diagram of a specific application scenario of a data demodulation method according to an embodiment of the present invention;

FIG. 5 is a schematic diagram of another specific application scenario of a data demodulation method according to an embodiment of the present invention;

FIG. 6 is a signaling flowchart of a data demodulation method according to Embodiment 3 of the present invention;

FIG. 7 is a schematic diagram of another specific application scenario of a data demodulation method according to an embodiment of the present invention;

FIG. 8 is a signaling flowchart of a data demodulation method according to Embodiment 4 of the present invention;

FIG. 9 is a schematic diagram of another specific application scenario of a data demodulation method according to an embodiment of the present invention;

FIG. 10 is a signaling flowchart of a data demodulation method according to Embodiment 5 of the present invention;

FIG. 11 is a structural diagram of a data demodulation apparatus according to Embodiment 6 of the present invention;

FIG. 12 is a structural diagram of a data demodulation apparatus according to Embodiment 7 of the present invention;

FIG. 13 is a structural diagram of a data demodulation apparatus according to Embodiment 8 of the present invention;

FIG. 14 is a structural diagram of UE according to Embodiment 9 of the present invention;

FIG. 15 is a structural diagram of a base station according to Embodiment 10 of the present invention; and

FIG. 16 is a structural diagram of a data demodulation system according to Embodiment 11 of the present invention.


DESCRIPTION OF EMBODIMENTS



[0012] To make the objectives, technical solutions, and advantages of the embodiments of the present invention clearer, the following describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Apparently, the described embodiments are a part rather than all of the embodiments of the present invention. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention, which is defined by the appended claims.

[0013] A data demodulation method according to the embodiments of the present invention may be applied to various high-speed scenarios, for example, mobile communication on a high-speed railway, mobile communication on an aircraft, or the like. For ease of description, the mobile communication on the high-speed railway is used as an example for description.

[0014] FIG. 1 is a schematic diagram of an application scenario of a data demodulation method according to an embodiment of the present invention. The data demodulation method may be applied to a 3rd Generation Mobile Communication (3rd-Generation, 3G) network, or may be applied to a Long Term Evolution (Long Term Evolution, LTE) network. For ease of description, the LTE network is used as example for description. In an evolved-universal terrestrial radio access network (Evolved-Universal Terrestrial Radio Access Network, E-UTRAN) communications system 100 in the LTE network, referring to FIG. 1, the E-UTRAN communications system 100 includes several base stations 110 and another network entity to support communication between several UEs 120. Some UEs 120 are on a running high-speed train (High Speed Train, HST). For these UEs 120, the data demodulation method according to this embodiment of the present invention may be used to demodulate downlink data received from the base stations 110.

[0015] The base station 110 may be an evolved NodeB (evolved NodeB, eNB) in the LTE. One base station 110 may support/manage one or more cells. When the UE 120 needs to communicate with a network, it selects a cell to initiate access.

[0016] The UE 120 may also be referred to as a mobile terminal (Mobile Terminal, MT), a mobile station (Mobile Station, MS), or the like, and may communicate with one or more core networks by using a radio access network (Radio Access Network, RAN).

[0017] A core network device 130 is connected to one or more base stations 110, and the core network device 130 includes a mobility management entity (Mobility Management Entity, MME).

[0018] The data demodulation method according to this embodiment of the present invention may be applied to different communications systems. Specific base station devices vary with different communications systems, and specifically, may be a base station controller (Base Station Controller, BSC), a radio network controller (Radio Network Controller, RNC), an evolved NodeB (eNB), or a Node B (Node B).

[0019] FIG. 2 is a flowchart of a data demodulation method according to Embodiment 1 of the present invention. The method is executed by UE. Referring to FIG. 2, the method includes the following steps.

[0020] Step 201: The UE obtains, from a base station, notification information indicating that the UE is in a high-speed moving state.

[0021] There are multiple scenarios in which the UE is in the high-speed moving state. One typical application scenario is that the UE is on a running high-speed train. In this case, the UE is covered by a high-speed railway dedicated network. This scenario is called as a high-speed railway dedicated network coverage scenario. After the UE enters the high-speed railway dedicated network coverage scenario, if the UE is in an idle state, the UE may learn, by reading a system message, that the UE is in the high-speed moving state; and if the UE is in a connected state, the UE may learn, by reading a system message or by reading network dedicated signaling, that the UE is in the high-speed moving state.

[0022] In this embodiment of the present invention, the base station may also indicate, by using an implicit manner, that the UE is in the high-speed moving state. For example, a cell identifier of a high-speed railway dedicated network cell is carried in a system message. After receiving the system message, the UE may determine, by comparing a current cell identifier with the cell identifier of the high-speed railway dedicated network cell, that the UE is in the high-speed railway dedicated network cell and that the UE is in the high-speed moving state.

[0023] In this embodiment of the present invention, the UE may obtain a radio resource control (Radio Resource Control, RRC) connection reconfiguration message from the base station, where a first indicator bit in the RRC connection reconfiguration message is used to indicate that the UE is in the high-speed moving state; or the UE may obtain a system message from the base station, where a second indicator bit in the system message is used to indicate that the UE is in the high-speed moving state; or the UE obtains a system message from the base station, where the system message carries a cell identifier of a high-speed railway dedicated network cell. The first indicator bit is one bit of the RRC connection reconfiguration message. The first indicator bit may be predetermined as 0, representing the high-speed state; or the first indicator bit may be predetermined as 1, representing the high-speed state. The second indicator bit is one bit of the system message. The second indicator bit may be predetermined as 0, representing the high-speed state; or the second indicator bit may be predetermined as 1, representing the high-speed state. The UE may directly obtain, from the base station, notification information indicating that the UE is in the high-speed moving state; or the UE may obtain, from the base station, other notification information that may be used to determine that the UE is in the high-speed moving state, and the UE determines, according to the other notification information obtained from the base station that may be used to determine that the UE is in the high-speed moving state, that the UE is in the high-speed moving state.

[0024] In one possible implementation of this embodiment of the present invention, the UE obtains, from the base station, notification information indicating that the UE is in a high-speed railway dedicated network, and determines, according to the notification information, that the UE is in the high-speed moving state.

[0025] In another possible implementation of this embodiment of the present invention, the UE obtains a speed stage of the UE from the base station, and determines, when the speed stage of the UE satisfies a preset condition, that the UE is in the high-speed moving state.

[0026] The speed stage of the UE means a range of a speed of the UE. The base station may add an information element (Information Element, IE) into the RRC dedicated signaling or the system message sent to the UE, to indicate the speed stage of the UE by using the added IE. A variable name and a variable type of the IE are not limited. For example, the speed stage of the UE is indicated by using an enumerated variable. For example,

normal: represents a speed of the UE: speed<100km/h

medium: represents a speed of UE: 100km/h<speed<200km/h

high: represents a speed of the UE: 200km/h<speed<300km/h

very high: represents a speed of the UE: speed>300km/h



[0027] After obtaining the speed stage of the UE, the UE may determine, according to the preset condition, whether the UE is in the high-speed moving state. For example, when the speed stage of the UE is high, if the preset condition is that it is considered that the UE is in the high-speed moving state when the speed of the UE exceeds 200km/h, then the UE determines that the UE is in the high-speed moving state; and if the preset condition is that it is considered that the UE is in the high-speed moving state only when the speed of the UE exceeds 300km/h, then the UE determines that the UE is in a non-high-speed moving state.

[0028] The speed stages are not limited to the foregoing specific numeral values. The base station may determine a speed stage of the UE according to a location determined on a network side, or by using another method. No limitation is imposed in the present invention.

[0029] In another possible implementation of this embodiment of the present invention, the UE obtains a cell identifier list of high-speed railway dedicated network cells from the base station, and determines, when a cell identifier of a cell in which the UE is currently located exists in the cell identifier list, that the UE is in the high-speed moving state.

[0030] The base station may add an IE into the system message to indicate the cell identifier list of the high-speed railway dedicated network cell by using the IE. In this embodiment of the present invention, the system message added with the IE may be delivered by either a base station in the high-speed railway dedicated network or a base station in a public network, so that the UE can obtain the cell identifier list of high-speed railway dedicated network cells before entering a high-speed railway dedicated network cell.

[0031] In addition, the UE may send capability indication information to the base station before obtaining, from the base station, the notification information indicating that the UE is in a high-speed moving state. The capability indication information is used to indicate that the UE supports time-frequency synchronization processing in a high-speed scenario and demodulation processing in the high-speed scenario.

[0032] Step 202: Perform time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data.

[0033] An adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE is in the non-high-speed moving state.

[0034] The first downlink data may be original downlink data received by the UE.

[0035] A purpose of fast convergence of a time shift and a frequency shift may be achieved by speeding up the adjustment frequency in time-frequency synchronization and by using a larger adjustment coefficient in the loop filtering. A specific numeral value of the adjustment frequency may be obtained by means of commissioning, and the commissioning is performed on different chips or different UEs.

[0036] In this embodiment of present invention, the UE uses a larger adjustment coefficient in loop filtering when performing the time-frequency synchronization processing on the downlink data. Configuration of this parameter may affect frequency tracking performance. Dynamic performance and static performance are a pair of contradictory. A larger adjustment coefficient may bring better dynamic tracking performance at the expense of stability of the static performance.

[0037] Step 203: Perform demodulation processing on the second downlink data to obtained third downlink data.

[0038] In the demodulation processing, inter- transmission time intervals (Transmission Time Interval, TTI) filtering for a channel estimation is not performed in a non-claimed embodiment or a filtering coefficient as a weight of a current TTI of a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation.

[0039] After the time-frequency synchronization processing is performed on the first downlink data to obtain the second downlink data, the demodulation processing is then performed on the second downlink data to obtain the third downlink data.

[0040] During channel estimation in the demodulation processing, the speed of the UE may be staged. Each speed stage is corresponding to a different Wiener filtering coefficient. After the notification information indicating that the UE is in a high-speed moving state is obtained, a Wiener filtering coefficient applicable to the high-speed scenario is used. In addition, a current TTI and a previous TTI may be used when channel estimation is performed. In the high-speed scenario, channels change rapidly, and channel correlation with a history TTI is lower than that in a common scenario. A weight of the current TTI may be increased by modifying weighting coefficients for different TTIs.

[0041] For example, when a frequency shift is estimated, a weight of a historical frequency shift in the frequency shift estimation and a filtering coefficient of a current residual frequency shift need to be adjusted:



[0042] In a low-speed scenario, to obtain relatively stable frequency shift estimation, weighted averaging need to be performed on frequency shift values in a time period. A time window is generally tens of milliseconds based on different implementations, that is, a value of m in the foregoing formula. αi represents a weighting coefficient of a frequency shift at each historical time point, and in a cumulative average algorithm, a value of αi is

. When the UE is in the high-speed scenario, timeliness of the frequency shift tracking is obtained at the expense of a certain extent of stability in the frequency shift estimation. On one hand, a filtering window can be shortened to decrease the value of m. On the other hand, αi can be adjusted to reduce a coefficient of a weighted item at a longer distance and increase a coefficient of a weighted item at a smaller distance. In addition, β , a filtering coefficient of a current residual frequency shift, also needs to be increased to increase a weight of the current residual frequency shift in ƒd(k), and so on.

[0043] This embodiment of the present invention provides a data demodulation method. The method includes: first obtaining notification information indicating that UE is in a high-speed moving state; then performing time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data, where an adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE is in the non-high-speed moving state; and then performing demodulation processing on the second downlink data to obtain third downlink data, where in the demodulation processing, inter-TTIs filtering for a channel estimation is not performed in a non-claimed embodiment, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation. Downlink data received by the UE in a high-speed scenario has a different characteristic from that in a conventional scenario, and a frequency shift of the downlink data received by the UE in the high-speed scenario changes rapidly. After that the UE is in the high-speed moving state is learnt by obtaining the notification information, a method for increasing some parameters speeds up adjustment of the frequency shift estimation, so that the UE obtains good downlink demodulation performance and improves a downlink data throughput of the UE.

[0044] FIG. 3 is a flowchart of a data demodulation method according to Embodiment 2 of the present invention. The method is executed by a base station. Referring to FIG. 3, the method includes the following steps.

[0045] Step 301: Establish a connection to UE.

[0046] When a dedicated network is used for coverage in a high-speed scenario, that is, a specific area is covered by a specific base station, after establishing the connection to the UE, the base station may send, to the UE, notification information that the UE is in the high-speed moving state.

[0047] Application scenarios of this embodiment of the present invention not only include a high-speed railway dedicated network coverage scenario, but also include a public network coverage scenario. In the high-speed railway dedicated network coverage scenario, the UE may be in the high-speed moving state or a non-high-speed moving state. In the public network coverage scenario, the UE may also be in the high-speed moving state or a non-high-speed moving state. To avoid sending, to the UE in the non-high-speed moving state, the notification information that the UE is in a high-speed moving state, the base station may first estimate a moving speed of the UE, and when the moving speed is greater than a speed threshold, sends, to the UE, the notification information that the UE is in a high-speed moving state.

[0048] The moving speed of the UE may be estimated by using, but not limited to, the following manners.

[0049] Manner 1: Obtain a moving state reported by the UE by using an IE: When accessing a network, the UE that supports reporting of a moving state may include an IE about the moving state of the UE into a signaling RRC connection establishment completion message sent to the base station. The base station may read a speed stage of the UE from the received message.

[0050] Manner 2: Estimate a moving speed of the UE according to a quantity of UE switching times: Speed stages are divided according to a quantity of UE switching times in unit time. For example, the UE switches the speed for more than five switching times within one minute, and this is defined as a high-speed.

[0051] Manner 3: Perform Doppler estimation: The base station determines a speed stage of the UE according to a Doppler frequency shift of an uplink signal of the UE. For example, for more than 1000Hz, a high speed is determined.

[0052] Manner 4: Locate the UE on a network side: The base station may obtain location information of the UE by using a positioning method such as ECID and OTDOA. The network side may obtain UE speed information according to UE location change information, so as to divide the UE speed into speed stages, for example, a speed greater than 200km/h is a high speed.

[0053] Manner 5: Obtain application layer data: The base station obtains UE speed data information from the application layer including speed information.

[0054] Step 302: Send, to the UE, notification information that the UE is in a high-speed moving state, so that the UE performs time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data, where an adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE is in the non-high-speed moving state; and performs demodulation processing on the second downlink data to obtain third downlink data, where in the demodulation processing, inter-TTIs filtering for a channel estimation is not performed, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation.

[0055] In this embodiment of the present invention, the notification information may be information specifically used to indicate that the UE is in the high-speed moving state, or may be existing information. One bit used to indicate that the UE is in the high-speed moving state is added into the existing information. Preferably, the base station may send an RRC connection reconfiguration message to the UE, where a first indicator bit in the RRC connection reconfiguration message is used to indicate that the UE is in the high-speed moving state; or the base station may send a system message to the UE, where a second indicator bit in the system message is used to indicate that the UE is in the high-speed moving state; or sends a system message to the UE, where the system message carries a cell identifier of a high-speed railway dedicated network cell.

[0056] In this embodiment of present invention, the base station may directly send, to the UE, the notification information that the UE is in a high-speed moving state, or may send, to the UE by using an implicit manner, the notification information that the UE is in a high-speed moving state. Specifically, the following manners may be included: sending, to the UE, notification information indicating that the UE is in a high-speed railway dedicated network, so that the UE determines, according to the notification information, that the UE is in the high-speed moving state; or directly sending, to the UE, notification information indicating that the UE is in the high-speed moving state; or sending a speed stage of the UE to the UE, so that the UE determines, when the speed stage satisfies a preset condition, that the UE is in the high-speed moving state.

[0057] Optionally, before sending, to the UE, the notification information that the UE is in a high-speed moving state, the base station may first receive capability indication information sent by the UE. The capability indication information is used to indicate that the UE supports time-frequency synchronization processing in a high-speed scenario and demodulation processing in the high-speed scenario.

[0058] The data demodulation method according to this embodiment of the present invention may be applied to different communications systems. Specific compositions of the base station vary with the different communications systems. The following describes the data demodulation method in details with reference to different communications systems.

[0059] FIG. 4 is a schematic diagram of a specific application scenario of a data demodulation method according to an embodiment of the present invention. Referring to FIG. 4, in a high-speed scenario, a dedicated network is used for coverage. A base station includes a baseband unit (Base band Unit, BBU) 401 and several radio remote units (Radio Remote Unit, RRU) 402. UE 403 on a high-speed train communicates with the BBU 401 by using the several RRUs 402.

[0060] FIG. 5 is a schematic diagram of another specific application scenario of a data demodulation method according to an embodiment of the present invention. Referring to FIG. 5, in a high-speed scenario, a dedicated network is used for coverage and an independent base station is deployed. A repeater (repeater) 501 may be mounted on a high-speed train as needed. The repeater 501 serves as only a power amplifier to enlarge power of downlink data received from the base station 502 and then forward the data to UE 503.

[0061] FIG. 6 is a signaling flowchart of a data demodulation method according to Embodiment 3 of the present invention. The method is based on the specific application scenario shown in FIG. 4 or FIG. 5. Referring to FIG. 6, the method includes the following steps.

[0062] Step 601: Abase station establishes a connection to UE.

[0063] Step 602: The base station sends, to the UE, notification information that the UE is in a high-speed moving state.

[0064] Step 603: The UE performs time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data, where an adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE is in the non-high-speed moving state.

[0065] Step 604: The UE performs demodulation processing on the second downlink data to obtain third downlink data, where in the demodulation processing, inter-TTIs filtering for a channel estimation is not performed in a non-claimed embodiment, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation.

[0066] FIG. 7 is a schematic diagram of another specific application scenario of a data demodulation method according to an embodiment of the present invention. Referring to FIG. 7, in a high-speed scenario, a public network is used for coverage and an independent base station is deployed. A repeater 701 may be mounted on a high-speed train as needed. The repeater 701 servers as only a power amplifier to enlarge power of downlink data received from the base station 702 and forward the data to UE 703.

[0067] FIG. 8 is a signaling flowchart of a data demodulation method according to Embodiment 4 of the present invention. The method is based on the specific application scenario shown in FIG. 7. Referring to FIG. 8, the method includes the following steps.

[0068] Step 801: Abase station establishes a connection to UE.

[0069] Step 802: The base station estimates a moving speed of the UE.

[0070] When the moving speed is greater than a speed threshold, step 803 is performed.

[0071] Step 803: The base station sends, to the UE, notification information that the UE is in a high-speed moving state.

[0072] Step 804: The UE performs time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data, where an adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE is in the non-high-speed moving state.

[0073] Step 805: The UE performs demodulation processing on the second downlink data to obtain third downlink data, where in the demodulation processing, inter-TTIs filtering for a channel estimation is not performed in a non-claimed embodiment, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient of a weight that is at the time when the UE is in the non-high-speed moving state.

[0074] FIG. 9 is a schematic diagram of another specific application scenario of a data demodulation method according to an embodiment of the present invention. Referring to FIG. 9, in the scenario, a relay (relay) node 901 is mounted on a high-speed train. The relay node 901 first demodulates downlink data received from a base station 902, and then sends the data obtained after the demodulation to UE 903. In the scenario, time-frequency synchronization and a demodulation solution are adjusted on a backhaul (backhual) link.

[0075] FIG. 10 is a signaling flowchart of a data demodulation method according to Embodiment 5 of the present invention. The method is based on the specific application scenario shown in FIG. 9. Referring to FIG. 10, the method includes the following steps.

[0076] Step 1001: Abase station establishes a connection to a relay node.

[0077] In a case that in a high-speed scenario, a dedicated network is used for coverage, that is, a specific area is covered by a specific base station, after the base station establishes the connection to the relay node, step 1002 is performed.

[0078] In a case that in a high-speed scenario, a public network is used for coverage, that is, an area covered by a base station includes not only the high-speed scenario but also includes a common scenario, after establishing the connection to the relay node, the base station further estimates a moving speed of the relay node. When the moving speed is greater than a speed threshold, step 1002 is performed.

[0079] Step 1002: The base station sends notification information that the relay node is in a high-speed moving state to the relay node.

[0080] Step 1003: The relay node performs time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data, where an adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE is in the non-high-speed moving state.

[0081] Step 1004: The relay node performs demodulation processing on the second downlink data to obtain third downlink data, where in the demodulation processing, inter-TTIs filtering for a channel estimation is not performed in a non-claimed embodiment, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation.

[0082] Step 1005: The relay node sends the third downlink data to the UE.

[0083] FIG. 11 is a structural diagram of a data demodulation apparatus according to Embodiment 6 of the present invention. The apparatus is disposed in UE. referring to FIG. 11, the apparatus includes:

an obtaining unit 1101, configured to obtain, from a base station, notification information indicating that the UE is in a high-speed moving state;

a time-frequency synchronization processing unit 1102, configured to perform time-frequency synchronization processing on first downlink data according to the notification information obtained by the obtaining unit 1101 to obtain second downlink data, where an adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE is in the non-high-speed moving state; and

a demodulation processing unit 1103, configured to perform demodulation processing on the second downlink data obtained by the time-frequency synchronization processing unit 1102 to obtain third downlink data, where in the demodulation processing, inter-TTIs filtering for a channel estimation is not performed in a non-claimed embodiment, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation.



[0084] Preferably, the obtaining unit 1101 is specifically configured to: obtain an RRC connection reconfiguration message from the base station, where a first indicator bit in the RRC connection reconfiguration message is used to indicate that the UE is in the high-speed moving state; or obtain a system message from the base station, where a second indicator bit in the system message is used to indicate that the UE is in the high-speed moving state; or obtain a system message from the base station, where the system message carries a cell identifier of a high-speed railway dedicated network cell.

[0085] Optionally, the obtaining unit 1101 is specifically configured to: obtain notification information indicating that the UE is in a high-speed railway dedicated network from the base station, and determine, according to the notification information, that the UE is in the high-speed moving state; or directly obtain, from the base station, notification information indicating that the UE is in the high-speed moving state; or obtain a speed stage of the UE from the base station, and determine, when the speed stage satisfies a preset condition, that the UE is in the high-speed moving state.

[0086] Optionally, the apparatus further includes:
a sending unit, configured to send capability indication information to the base station before the obtaining unit obtains, from the base station, the notification information indicating that the UE is in a high-speed moving state, where the capability indication information is used to indicate that the UE supports time-frequency synchronization processing in a high-speed scenario and demodulation processing in the high-speed scenario.

[0087] FIG. 12 is a structural diagram of a data demodulation apparatus according to Embodiment 7 of the present invention. The apparatus is disposed in a base station. In a high-speed scenario, a dedicated network is used for coverage, referring to FIG. 12, the apparatus includes:

a connection establishment unit 1201, configured to establish a connection to UE; and

a sending unit 1202, configured to: send, to the UE, notification information that the UE is in a high-speed moving state, so that the UE performs time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data, where an adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE is in the non-high-speed moving state; and performs demodulation processing on the second downlink data to obtain third downlink data, where in the demodulation processing, inter-TTIs filtering for a channel estimation is not performed in a non-claimed embodiment, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation.



[0088] Optionally, the base station further includes:
the speed estimation unit is configured to estimate a moving speed of the UE before the sending unit 1202 sends, to the UE, notification information that the UE is in a high-speed moving state.

[0089] The sending unit 1202 is specifically configured to send, to the UE when the moving speed estimated by the speed estimation unit is greater than a speed threshold, the notification information that the UE is in a high-speed moving state.

[0090] Optionally, the sending unit 1202 is specifically configured to: send an RRC connection reconfiguration message to the UE, where a first indicator bit in the RRC connection reconfiguration message is used to indicate that the UE is in the high-speed moving state; or send a system message to the UE, where a second indicator bit in the system message is used to indicate that the UE is in the high-speed moving state; or send a system message to the UE, where the system message carries a cell identifier of a high-speed railway dedicated network cell.

[0091] Optionally, the sending unit 1202 is specifically configured to: send, to the UE, notification information indicating that the UE is in a high-speed railway dedicated network, so that the UE determines, according to the notification information, that the UE is in the high-speed moving state; or directly send, to the UE, notification information indicating that the UE is in the high-speed moving state; or send a speed stage of the UE to the UE, so that the UE determines, when the speed stage satisfies a preset condition, that the UE is in the high-speed moving state.

[0092] Optionally, the base station further includes:
a receiving unit, configured to receive capability indication information sent by the UE before the sending unit 1202 sends, to the UE, the notification information that the UE is in a high-speed moving state, where the capability indication information is used to indicate that the UE supports time-frequency synchronization processing in a high-speed scenario and demodulation processing in the high-speed scenario.

[0093] FIG. 13 is a structural diagram of a data demodulation apparatus according to Embodiment 8 of the present invention. The apparatus is disposed in a base station. In a case that a high-speed scenario is covered by a public network, referring to FIG. 13, the apparatus includes:

a connection establishment unit 1301, configured to establish a connection to UE;

a speed estimation unit 1302, configured to estimate a moving speed of the UE; and

a sending unit 1303, configured to: when the moving speed estimated by the speed estimation unit 1302 is greater than a speed threshold, send, to the UE, notification information that the UE is in a high-speed moving state, so that the UE performs time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data, where an adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE is in the non-high-speed moving state; and performs demodulation processing on the second downlink data to obtain third downlink data, where in the demodulation processing, inter-TTIs filtering for a channel estimation is not performed in a non-claimed embodiment, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation.



[0094] Preferably, the sending unit 1303 is specifically configured to send an RRC connection reconfiguration message to the UE, where a first indicator bit in the RRC connection reconfiguration message is used to indicate that the UE is in the high-speed moving state; or send a system message to the UE, where a second indicator bit in the system message is used to indicate that the UE is in the high-speed moving state.

[0095] Optionally, the sending unit 1303 is specifically configured to send a speed stage of the UE to the UE, so that the UE determines, when the speed stage satisfies a preset condition, that the UE is in the high-speed moving state.

[0096] Optionally, the sending unit 1303 is specifically configured to send a cell identifier list of a high-speed railway dedicated network cell to the UE, so that the UE determines that the UE is in the high-speed moving state when a cell identifier of a cell in which the UE is currently located exists in the cell identifier list.

[0097] Optionally, the apparatus further includes:
a receiving unit, configured to receive capability indication information sent by the UE before the sending unit sends, to the UE, the notification information that the UE is in a high-speed moving state, where the capability indication information is used to indicate that the UE supports time-frequency synchronization processing in a high-speed scenario and demodulation processing in the high-speed scenario.

[0098] FIG. 14 is a structural diagram of UE according to Embodiment 9 of the present invention.

[0099] Referring to FIG. 14, the UE is configured to execute the data demodulation method according to this embodiment of the present invention, and the UE includes:

a communications interface 1401;

a memory 1402;

a processor 1403; and

an application program physically stored in the memory 1402, where the application program includes an instruction that may be used to enable the processor 1403 and the UE to execute the following process:

obtaining notification information indicating that the UE is in a high-speed moving state;

performing time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data, where an adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE is in the non-high-speed moving state; and

performing demodulation processing on the second downlink data to obtain third downlink data, where in the demodulation processing, inter-TTIs filtering for a channel estimation is not performed in a non-claimed embodiment, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation.



[0100] Preferably, the instruction that is included in the application program and that may be used to enable the processor 1403 and the UE to execute the obtaining notification information indicating that the UE is in a high-speed moving state is:

obtaining an RRC connection reconfiguration message, where a first indicator bit in the RRC connection reconfiguration message is used to indicate that the UE is in the high-speed moving state; or

obtaining a system message, where a second indicator bit in the system message is used to indicate that the UE is in the high-speed moving state.



[0101] FIG. 15 is a structural diagram of a base station according to Embodiment 10 of the present invention. Referring to FIG. 15, the base station is configured to execute the data demodulation method according to this embodiment of the present invention, and the base station includes:

a communications interface 1501;

a memory 1502;

a processor 1503; and

an application program physically stored in the memory 1502, where the application program includes an instruction that may be used to enable the processor 1503 and the base station to execute the following process:

establishing a connection to UE; and

sending, to the UE, notification information that the UE is in a high-speed moving state, so that the UE performs time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data, where an adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE is in the non-high-speed moving state; and performs demodulation processing on the second downlink data to obtain third downlink data, where in the demodulation processing, inter-TTIs filtering for a channel estimation is not performed in a non-claimed embodiment, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation.



[0102] Preferably, the application program further includes an instruction that may be used to enable the processor 1503 and the base station to execute the following process:

estimating a moving speed of the UE before the sending, to the UE, notification information that the UE is in the high-speed moving state; and

performing, when the moving speed is greater than a speed threshold, the step of sending, to the UE, notification information that the UE is in a high-speed moving state.



[0103] Preferably, the instruction that is included in the application program and that may be used to enable the processor 1503 and the base station to execute the sending, to the UE, notification information that the UE is in a high-speed moving state is:

sending an RRC connection reconfiguration message to the UE, where a first indicator bit in the RRC connection reconfiguration message is used to indicate that the UE is in the high-speed moving state; or

sending a system message to the UE, where a second indicator bit in the system message is used to indicate that the UE is in the high-speed moving state.



[0104] FIG. 16 is a structural diagram of a data demodulation system according to Embodiment 11 of the present invention. Referring to FIG. 16, the system is configured to execute the data demodulation method according to this embodiment of the present invention, and the system includes:

a base station 1601, configured to: establish a connection to UE 1602, and send, to the UE 1602, notification information that the UE 1602 is in a high-speed moving state; and

the UE 1602, configured to: obtain notification information indicating that the UE 1602 is in a high-speed moving state; perform time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data, where an adjustment frequency in the time-frequency synchronization processing is greater than an adjustment frequency that is at a time when the UE 1602 is in a non-high-speed moving state, and an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at a time when the UE 1602 is in the non-high-speed moving state; and perform demodulation processing on the second downlink data to obtain third downlink data, where in the demodulation processing, inter-TTIs filtering for a channel estimation is not performed in a non-claimed embodiment, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation.



[0105] Preferably, before the sending, to the UE 1602, notification information that the UE 1602 is in a high-speed moving state, the base station is further configured to:

estimate a moving speed of the UE 1602; and

perform, when the moving speed is greater than a speed threshold, the step of sending, to the UE 1602, notification information that the UE 1602 is in a high-speed moving state.



[0106] Preferably, the sending, to the UE 1602, notification information that the UE 1602 is in a high-speed moving state further includes:

sending an RRC connection reconfiguration message to the UE 1602, where a first indicator bit in the RRC connection reconfiguration message is used to indicate that the UE 1602 is in the high-speed moving state; or

sending a system message to the UE 1602, where a second indicator bit in the system message is used to indicate that the UE 1602 is in the high-speed moving state.



[0107] Preferably, the obtaining notification information indicating that the UE 1602 is in a high-speed moving state includes:

obtaining an RRC connection reconfiguration message, where a first indicator bit in the RRC connection reconfiguration message is used to indicate that the UE is in the high-speed moving state; or

obtaining a system message, where a second indicator bit in the system message is used to indicate that the UE 1602 is in the high-speed moving state.



[0108] A person skilled in the art may be further aware that, in combination with the examples described in the embodiments disclosed in this specification, units and algorithm steps may be implemented by electronic hardware, computer software, or a combination thereof. To clearly describe the interchangeability between the hardware and the software, the foregoing has generally described compositions and steps of each example according to functions. Whether the functions are performed by hardware or software depends on particular applications and design constraint conditions of the technical solutions. A person skilled in the art may use different methods to implement the described functions for each particular application, but it should not be considered that the implementation goes beyond the scope of the present invention.

[0109] A person of ordinary skill in the art may understand that all or a part of the steps in each of the foregoing method of the embodiments may be implemented by a program instructing a processor. The foregoing program may be stored in a computer readable storage medium. The storage medium may be a non-transitory (English: non-transitory) medium, such as a random-access memory, read-only memory, a flash memory, a hard disk, a solid state drive, a magnetic tape (English: magnetic tape), a floppy disk (English: floppy disk), an optical disc (English: optical disc), or any combination thereof.

[0110] The foregoing descriptions are merely examples of embodiments of the present invention, but are not intended to limit the protection scope of the present invention. Any variation or replacement readily figured out by a person skilled in the art within the technical scope disclosed in the present invention shall fall within the protection scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.


Claims

1. A data demodulation method, wherein the method comprises:

obtaining (201), by user equipment, UE (120, 403, 503, 703, 903, 1602), from a base station (110, 502, 702, 902, 1601), notification information indicating that the UE (120, 403, 503, 703, 903, 1602) is in a high-speed moving state;

performing (202) time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data, wherein

a frequency shift is estimated according to the formula:

wherein m represents a number of time steps of a time window, αi represents a weighting coefficient of a frequency shift at each historical time point, and β represents a filtering coefficient of a current residual frequency shift, wherein

αi is adjusted such that a coefficient of a weighted item at a longer distance is smaller than the coefficient of the weighted item at the longer distance at a time when the UE (120, 403, 503, 703, 903, 1602) is in a non-high-speed moving state and a coefficient of a weighted item at a smaller distance is greater than the coefficient of the weighted item at the smaller distance at a time when the UE (120, 403, 503, 703, 903, 1602) is in a non-high-speed moving state; and

β is adjusted such that the filtering coefficient of a current residual frequency shift is greater than the filtering coefficient of a current residual frequency shift at a time when the UE (120, 403, 503, 703, 903, 1602) is in a non-high-speed moving state; and

m is adjusted such that the filtering window is shorter than the filtering window at a time when the UE (120, 403, 503, 703, 903, 1602) is in a non-high-speed moving state; and

an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE (120, 403, 503, 703, 903, 1602) is in the non-high-speed moving state; and

performing (203) demodulation processing on the second downlink data to obtain third downlink data, wherein in the demodulation processing during channel estimation, the speed of the UE is staged, wherein each speed stage is corresponding to a different Wiener filtering coefficient, and after the notification information indicating that the UE is in a high-speed moving state is obtained, a Wiener filtering coefficient applicable to the high-speed scenario is used and in addition, inter- transmission time intervals, TTIs, filtering for a channel estimation is performed, wherein a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE (120, 403, 503, 703, 903, 1602) is in the non-high-speed moving state for a channel estimation.


 
2. The method according to claim 1, wherein the obtaining, by UE (120, 403, 503, 703, 903, 1602) from a base station (110), notification information indicating that the UE (120, 403, 503, 703, 903, 1602) is in a high-speed moving state comprises:

obtaining, by the UE (120, 403, 503, 703, 903, 1602), a radio resource control, RRC, connection reconfiguration message from the base station (110, 502, 702, 902, 1601), wherein a first indicator bit in the RRC connection reconfiguration message is used to indicate that the UE (120, 403, 503, 703, 903, 1602) is in the high-speed moving state; or

obtaining, by the UE (120, 403, 503, 703, 903, 1602), a system message from the base station (110, 502, 702, 902, 1601), wherein a second indicator bit in the system message is used to indicate that the UE (120, 403, 503, 703, 903, 1602) is in the high-speed moving state; or

obtaining, by the UE (120, 403, 503, 703, 903, 1602), a system message from the base station (110, 502, 702, 902, 1601), wherein the system message carries a cell identifier of a high-speed railway dedicated network cell.


 
3. The method according to claim 1, wherein the obtaining, by UE (120, 403, 503, 703, 903, 1602) from a base station (110, 502, 702, 902, 1601), notification information indicating that the UE (120, 403, 503, 703, 903, 1602) is in a high-speed moving state comprises:

obtaining, by the UE (120, 403, 503, 703, 903, 1602) from the base station (110, 502, 702, 902, 1601), notification information indicating that the UE (120, 403, 503, 703, 903, 1602) is in a high-speed railway dedicated network, and determining, according to the notification information, that the UE (120, 403, 503, 703, 903, 1602) is in the high-speed moving state; or

directly obtaining, by the UE (120, 403, 503, 703, 903, 1602) from the base station (110, 502, 702, 902,1 601), notification information indicating that the UE (120, 403, 503, 703, 903, 1602) is in the high-speed moving state; or

obtaining, by the UE (120, 403, 503, 703, 903, 1602), a speed stage of the UE (120, 403, 503, 703, 903, 1602) from the base station (110, 502, 702, 902, 1601), and determining, when the speed stage satisfies a preset condition, that the UE (120, 403, 503, 703, 903, 1602) is in the high-speed moving state.


 
4. The method according to claim 1, wherein before the obtaining, by UE (120, 403, 503, 703, 903, 1602) from a base station (110, 502, 702, 902, 1601), notification information indicating that the UE (120, 403, 503, 703, 903, 1602) is in a high-speed moving state, the method further comprises:
sending, by the UE (120, 403, 503, 703, 903, 1602) to the base station (110, 502, 702, 902, 1601), capability indication information, wherein the capability indication information is used to indicate that the UE (120, 403, 503, 703, 903, 1602) supports time-frequency synchronization processing in a high-speed scenario and demodulation processing in the high-speed scenario.
 
5. User equipment, UE (120, 403, 503, 703, 903, 1602), wherein the UE (120, 403, 503, 703, 903, 1602) comprises:

an obtaining unit (1101), configured to obtain, from a base station (110, 502, 702, 902, 1601), notification information indicating that the UE (120, 403, 503, 703, 903, 1602) is in a high-speed moving state;

a time-frequency synchronization processing unit (1102), configured to perform time-frequency synchronization processing on first downlink data according to the notification information obtained by the obtaining unit (1101) to obtain second downlink data, wherein

a frequency shift is estimated according to the formula:

wherein m represents a number of time steps of a time window, αi represents a weighting coefficient of a frequency shift at each historical time point, and β represents a filtering coefficient of a current residual frequency shift, wherein

αi is adjusted such that a coefficient of a weighted item at a longer distance is smaller than the coefficient of the weighted item at the longer distance at a time when the UE (120, 403, 503, 703, 903, 1602) is in a non-high-speed moving state and a coefficient of a weighted item at a smaller distance is greater than the coefficient of the weighted item at the smaller distance at a time when the UE (120, 403, 503, 703, 903, 1602) is in a non-high-speed moving state; and

β is adjusted such that the filtering coefficient of a current residual frequency shift is greater than the filtering coefficient of a current residual frequency shift at a time when the UE (120, 403, 503, 703, 903, 1602) is in a non-high-speed moving state; and

m is adjusted such that the filtering window is shorter than the filtering window at a time when the UE (120, 403, 503, 703, 903, 1602) is in a non-high-speed moving state; and

an adjustment coefficient used for loop filtering in the time-frequency synchronization processing is greater than an adjustment coefficient that is at the time when the UE (120, 403, 503, 703, 903, 1602) is in the non-high-speed moving state; and

a demodulation processing unit (1103), configured to perform demodulation processing on the second downlink data obtained by the time-frequency synchronization processing unit (1102) to obtain third downlink data, wherein during channel estimation in the demodulation processing, the speed of the UE is staged, wherein each speed stage is corresponding to a different Wiener filtering coefficient, and after the notification information indicating that the UE is in a high-speed moving state is obtained, a Wiener filtering coefficient applicable to the high-speed scenario is used and in addition, inter- transmission time intervals, TTIs, filtering for a channel estimation is performed, wherein a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE (120, 403, 503, 703, 903, 1602) is in the non-high-speed moving state for a channel estimation.


 
6. The UE (120, 403, 503, 703, 903, 1602) according to claim 5, wherein the obtaining unit (1101) is configured to: obtain a radio resource control, RRC, connection reconfiguration message from the base station (110, 502, 702, 902, 1601), wherein a first indicator bit in the RRC connection reconfiguration message is used to indicate that the UE (120, 403, 503, 703, 903, 1602) is in the high-speed moving state; or obtain a system message from the base station (110, 502, 702, 902, 1601), wherein a second indicator bit in the system message is used to indicate that the UE (120, 403, 503, 703, 903, 1602) is in the high-speed moving state; or obtain a system message from the base station (110, 502, 702, 902, 1601), wherein the system message carries a cell identifier of a high-speed railway dedicated network cell.
 
7. The UE (120, 403, 503, 703, 903, 1602) according to claim 5, wherein the obtaining unit (1101) is configured to: obtain, from the base station (110, 502, 702, 902, 1601), notification information indicating that the UE (120, 403, 503, 703, 903, 1602) is in a high-speed railway dedicated network, and determine, according to the notification information, that the UE (120, 403, 503, 703, 903, 1602) is in the high-speed moving state; or directly obtain, from the base station (110, 502, 702, 902, 1601), notification information indicating that the UE (120, 403, 503, 703, 903, 1602) is in the high-speed moving state; or obtain a speed stage of the UE (120, 403, 503, 703, 903, 1602) from the base station (110, 502, 702, 902, 1601), and determine, when the speed stage satisfies a preset condition, that the UE (120, 403, 503, 703, 903, 1602) is in the high-speed moving state.
 
8. The UE (120, 403, 503, 703, 903, 1602) according to claim 5, wherein the UE (120, 403, 503, 703, 903, 1602) further comprises:
a sending unit, configured to send capability indication information to the base station (110, 502, 702, 902, 1601) before the obtaining unit (1101) obtains, from the base station (110, 502, 702, 902,1601), the notification information indicating that the UE (120, 403, 503, 703, 903, 1602) is in a high-speed moving state, wherein the capability indication information is used to indicate that the UE (120, 403, 503, 703, 903, 1602) supports time-frequency synchronization processing in a high-speed scenario and demodulation processing in the high-speed scenario.
 


Ansprüche

1. Datendemodulationsverfahren, wobei das Verfahren Folgendes umfasst:

Erhalten (201), durch ein Benutzergerät (UE) (120, 403, 503, 703, 903, 1602), von einer Basisstation (110, 502, 702, 902, 1601), von Benachrichtigungsinformationen,

die angeben, dass das UE (120, 403, 503, 703, 903, 1602) sich in einem Hochgeschwindigkeits-Bewegungszustand befindet;

Durchführen (202) einer Zeit-Frequenz-Synchronisationsverarbeitung an ersten Downlink-Daten gemäß den Benachrichtigungsinformationen, um zweite Downlink-Daten zu erhalten, wobei eine Frequenzverschiebung gemäß der Formel geschätzt wird:

wobei m eine Anzahl von Zeitschritten eines Zeitfensters repräsentiert, αi einen Gewichtungskoeffizienten einer Frequenzverschiebung zu jedem historischen Zeitpunkt repräsentiert, und β einen Filterkoeffizienten einer aktuellen Restfrequenzverschiebung repräsentiert, wobei

αi so eingestellt ist, dass ein Koeffizient eines gewichteten Elements in einem größeren Abstand kleiner ist als der Koeffizient des gewichteten Elements in dem größeren Abstand zu einem Zeitpunkt, zu dem sich das UE (120, 403, 503, 703, 903, 1602) in einem Nicht-Hochgeschwindigkeits-Bewegungszustand befindet, und ein Koeffizient eines gewichteten Elements in einem kleineren Abstand größer ist als der Koeffizient des gewichteten Elements in dem kleineren Abstand zu einem Zeitpunkt, zu dem sich das UE (120, 403, 503, 703, 903, 1602) in einem Nicht-Hochgeschwindigkeits-Bewegungszustand befindet; und

β so eingestellt ist, dass der Filterkoeffizient einer aktuellen Restfrequenzverschiebung größer ist als der Filterkoeffizient einer aktuellen Restfrequenzverschiebung zu einem Zeitpunkt, zu dem sich das UE (120, 403, 503, 703, 903, 1602) in einem Nicht-Hochgeschwindigkeits-Bewegungszustand befindet; und

m so eingestellt ist, dass das Filterungsfenster kürzer ist als das Filterungsfenster zu einem Zeitpunkt, zu dem sich das UE (120, 403, 503, 703, 903, 1602) in einem Nicht-Hochgeschwindigkeits-Bewegungszustand befindet; und

ein Anpassungskoeffizient, der für die Schleifenfilterung in der Zeit-Frequenz-Synchronisationsverarbeitung verwendet wird, größer ist als ein Anpassungskoeffizient, der zu dem Zeitpunkt existiert, zu dem sich das UE (120, 403, 503, 703, 903, 1602) im Nicht-Hochgeschwindigkeits-Bewegungszustand befindet; und

Durchführen (203) einer Demodulationsverarbeitung an den zweiten Downlink-Daten, um dritte Downlink-Daten zu erhalten, wobei in der Demodulationsverarbeitung während der Kanalschätzung die Geschwindigkeit des UE gestuft wird, wobei jede Geschwindigkeitsstufe einem anderen Wiener-Filterkoeffizienten entspricht, und nachdem die Benachrichtigungsinformationen, die angeben, dass sich das UE in einem Hochgeschwindigkeits-Bewegungszustand befindet, erhalten wurden, ein Wiener-Filterkoeffizient verwendet wird, der für das Hochgeschwindigkeitsszenario anwendbar ist, und außerdem eine Filterung zwischen Übertragungszeitintervallen (TTIs) für eine Kanalschätzung durchgeführt wird, wobei ein Filterkoeffizient als ein Gewicht eines aktuellen TTI für eine Kanalschätzung größer ist als ein Filterkoeffizient als ein Gewicht eines TTI, der zu dem Zeitpunkt existiert, zu dem das UE (120, 403, 503, 703, 903, 1602) sich in dem Nicht-Hochgeschwindigkeits-Bewegungszustand für eine Kanalschätzung befindet.


 
2. Verfahren gemäß Anspruch 1, wobei das Erhalten, durch das UE (120, 403, 503, 703, 903, 1602) von einer Basisstation (110), von Benachrichtigungsinformationen, die angeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in einem Hochgeschwindigkeits-Bewegungszustand befindet, Folgendes umfasst:

Erhalten, durch das UE (120, 403, 503, 703, 903, 1602), einer Verbindungsrekonfigurationsmeldung für eine Funkressourcensteuerung (RRC) von der Basisstation (110, 502, 702, 902, 1601), wobei ein erstes Indikatorbit in der RRC-Verbindungsrekonfigurationsmeldung verwendet wird, um anzugeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in dem Hochgeschwindigkeits-Bewegungszustand befindet; oder

Erhalten, durch das UE (120, 403, 503, 703, 903, 1602), einer Systemmeldung von der Basisstation (110, 502, 702, 902, 1601), wobei ein zweites Indikatorbit in der Systemmeldung verwendet wird, um anzugeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in dem Hochgeschwindigkeits-Bewegungszustand befindet; oder Erhalten, durch das UE (120, 403, 503, 703, 903, 1602), einer Systemmeldung von der Basisstation (110, 502, 702, 902, 1601), wobei die Systemmeldung einen Zellenbezeichner einer dedizierten Hochgeschwindigkeits-Eisenbahnnetzzelle trägt.


 
3. Verfahren gemäß Anspruch 1, wobei das Erhalten, durch das UE (120, 403, 503, 703, 903, 1602) von einer Basisstation (110, 502, 702, 902, 1601), von Benachrichtigungsinformationen, die angeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in einem Hochgeschwindigkeits-Bewegungszustand befindet, Folgendes umfasst:

Erhalten, durch das UE (120, 403, 503, 703, 903, 1602) von der Basisstation (110, 502, 702, 902, 1601), von Benachrichtigungsinformationen, die angeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in einem dedizierten Hochgeschwindigkeits-Eisenbahnnetz befindet, und Bestimmen, gemäß den Benachrichtigungsinformationen, dass sich das UE (120, 403, 503, 703, 903, 1602) in dem Hochgeschwindigkeits-Bewegungszustand befindet; oder

direktes Erhalten, durch das UE (120, 403, 503, 703, 903, 1602) von der Basisstation (110, 502, 702, 902, 1 601), von Benachrichtigungsinformationen, die angeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in dem Hochgeschwindigkeits-Bewegungszustand befindet; oder

Erhalten, durch das UE (120, 403, 503, 703, 903, 1602), einer Geschwindigkeitsstufe des UE (120, 403, 503, 703, 903, 1602) von der Basisstation (110, 502, 702, 902, 1601), und Bestimmen, wenn die Geschwindigkeitsstufe eine voreingestellte Bedingung erfüllt, dass sich das UE (120, 403, 503, 703, 903, 1602) in dem Hochgeschwindigkeits-Bewegungszustand befindet.


 
4. Verfahren gemäß Anspruch 1, wobei vor dem Erhalten, durch das UE (120, 403, 503, 703, 903, 1602) von einer Basisstation (110, 502, 702, 902, 1601), von Benachrichtigungsinformationen, die angeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in einem Hochgeschwindigkeits-Bewegungszustand befindet, das Verfahren ferner Folgendes umfasst:
Senden, durch das UE (120, 403, 503, 703, 903, 1602) an die Basisstation (110, 502, 702, 902, 1601), von Fähigkeitsanzeigeinformationen, wobei die Fähigkeitsanzeigeinformationen verwendet werden, um anzugeben, dass das UE (120, 403, 503, 703, 903, 1602) Zeit-Frequenz-Synchronisationsverarbeitung in einem Hochgeschwindigkeitsszenario und Demodulationsverarbeitung in dem Hochgeschwindigkeitsszenario unterstützt.
 
5. Benutzergerät (UE) (120, 403, 503, 703, 903, 1602), wobei das UE (120, 403, 503, 703, 903, 1602) Folgendes umfasst:

eine Erhaltungseinheit (1101), die dazu ausgebildet ist, von einer Basisstation (110, 502, 702, 902, 1601) Benachrichtigungsinformationen zu erhalten, die angeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in einem Hochgeschwindigkeits-Bewegungszustand befindet;

eine Zeit-Frequenz-Synchronisationsverarbeitungseinheit (1102), die dazu ausgebildet ist, eine Zeit-Frequenz-Synchronisationsverarbeitung an ersten Downlink-Daten gemäß den Benachrichtigungsinformationen durchzuführen, die durch die Erfassungseinheit (1101) erhalten wurden, um zweite Downlink-Daten zu erhalten, wobei eine Frequenzverschiebung gemäß der Formel geschätzt wird:

wobei m eine Anzahl von Zeitschritten eines Zeitfensters repräsentiert, αi einen Gewichtungskoeffizienten einer Frequenzverschiebung zu jedem historischen Zeitpunkt repräsentiert, und β einen Filterkoeffizienten einer aktuellen Restfrequenzverschiebung repräsentiert, wobei

αi so eingestellt ist, dass ein Koeffizient eines gewichteten Elements in einem größeren Abstand kleiner ist als der Koeffizient des gewichteten Elements in dem größeren Abstand zu einem Zeitpunkt, zu dem sich das UE (120, 403, 503, 703, 903, 1602) in einem Nicht-Hochgeschwindigkeits-Bewegungszustand befindet, und ein Koeffizient eines gewichteten Elements in einem kleineren Abstand größer ist als der Koeffizient des gewichteten Elements in dem kleineren Abstand zu einem Zeitpunkt, zu dem sich das UE (120, 403, 503, 703, 903, 1602) in einem Nicht-Hochgeschwindigkeits-Bewegungszustand befindet; und

β so eingestellt ist, dass der Filterkoeffizient einer aktuellen Restfrequenzverschiebung größer ist als der Filterkoeffizient einer aktuellen Restfrequenzverschiebung zu einem Zeitpunkt, zu dem sich das UE (120, 403, 503, 703, 903, 1602) in einem Nicht-Hochgeschwindigkeits-Bewegungszustand befindet; und

m so eingestellt ist, dass das Filterungsfenster kürzer ist als das Filterungsfenster zu einem Zeitpunkt, zu dem sich das UE (120, 403, 503, 703, 903, 1602) in einem Nicht-Hochgeschwindigkeits-Bewegungszustand befindet; und

ein Anpassungskoeffizient, der für die Schleifenfilterung in der Zeit-Frequenz-Synchronisationsverarbeitung verwendet wird, größer ist als ein Anpassungskoeffizient, der zu dem Zeitpunkt existiert, zu dem sich das UE (120, 403, 503, 703, 903, 1602) im Nicht-Hochgeschwindigkeits-Bewegungszustand befindet; und

eine Demodulationsverarbeitungseinheit (1103), die dazu ausgebildet ist, eine Demodulationsverarbeitung an den zweiten Downlink-Daten durchzuführen, die durch die Zeit-Frequenz-Synchronisationsverarbeitungseinheit (1102) erhalten wurden, um dritte Downlink-Daten zu erhalten, wobei während der Kanalschätzung in der Demodulationsverarbeitung die Geschwindigkeit des UE gestuft wird, wobei jede Geschwindigkeitsstufe einem anderen Wiener-Filterkoeffizienten entspricht, und nachdem die Benachrichtigungsinformationen, die angeben, dass sich das UE in einem Hochgeschwindigkeits-Bewegungszustand befindet, erhalten wurden, ein Wiener-Filterkoeffizient verwendet wird, der für das Hochgeschwindigkeits-Szenario anwendbar ist, und außerdem eine Filterung zwischen Übertragungszeitintervallen (TTIs) für eine Kanalschätzung durchgeführt wird, wobei ein Filterkoeffizient als ein Gewicht eines aktuellen TTI für eine Kanalschätzung größer ist als ein Filterkoeffizient für ein Gewicht eines TTI, der zu dem Zeitpunkt existiert, zu dem das UE (120, 403, 503, 703, 903, 1602) sich in dem Nicht-Hochgeschwindigkeits-Bewegungszustand für eine Kanalschätzung befindet.


 
6. UE (120, 403, 503, 703, 903, 1602) gemäß Anspruch 5, wobei die Erhaltungseinheit (1101) für Folgendes ausgebildet ist:

Erhalten einer Verbindungsrekonfigurationsmeldung für Funkressourcensteuerung (RRC) von der Basisstation (110, 502, 702, 902, 1601), wobei ein erstes Indikatorbit in der RRC-Verbindungsrekonfigurationsmeldung verwendet wird, um anzugeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in dem Hochgeschwindigkeits-Bewegungszustand befindet; oder

Erhalten einer Systemmeldung von der Basisstation (110, 502, 702, 902, 1601), wobei ein zweites Indikatorbit in der Systemmeldung verwendet wird, um anzugeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in dem Hochgeschwindigkeits-Bewegungszustand befindet; oder

Erhalten einer Systemmeldung von der Basisstation (110, 502, 702, 902, 1601), wobei die Systemmeldung einen Zellenbezeichner einer dedizierten Hochgeschwindigkeits-Eisenbahnnetzzelle trägt.


 
7. UE (120, 403, 503, 703, 903, 1602) gemäß Anspruch 5, wobei die Erhaltungseinheit (1101) für Folgendes ausgebildet ist:

Erhalten, von der Basisstation (110, 502, 702, 902, 1601), von Benachrichtigungsinformationen, die angeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in einem dedizierten Hochgeschwindigkeits-Eisenbahnnetz befindet, und Bestimmen, gemäß den Benachrichtigungsinformationen, dass sich das UE (120, 403, 503, 703, 903, 1602) in dem Hochgeschwindigkeits-Bewegungszustand befindet; oder

direktes Erhalten, von der Basisstation (110, 502, 702, 902, 1601), von Benachrichtigungsinformationen, die angeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in einem Hochgeschwindigkeits-Bewegungszustand befindet; oder Erhalten einer Geschwindigkeitsstufe des UE (120, 403, 503, 703, 903, 1602) von der Basisstation (110, 502, 702, 902, 1601), und

Bestimmen, wenn die Geschwindigkeitsstufe eine voreingestellte Bedingung erfüllt, dass sich das UE (120, 403, 503, 703, 903, 1602) in dem Hochgeschwindigkeits-Bewegungszustand befindet.


 
8. UE (120, 403, 503, 703, 903, 1602) gemäß Anspruch 5, wobei das UE (120, 403, 503, 703, 903, 1602) ferner Folgendes umfasst:
eine Sendeeinheit, die dazu ausgebildet ist, Fähigkeitsanzeigeinformationen an die Basisstation (110, 502, 702, 902, 1601) zu senden, bevor die Erhaltungseinheit (1101) von der Basisstation (110, 502, 702, 902, 1601) die Benachrichtigungsinformationen erhält, die angeben, dass sich das UE (120, 403, 503, 703, 903, 1602) in einem Hochgeschwindigkeits-Bewegungszustand befindet, wobei die Fähigkeitsanzeigeinformationen verwendet werden, um anzugeben, dass das UE (120, 403, 503, 703, 903, 1602) Zeit-Frequenz-Synchronisationsverarbeitung in einem Hochgeschwindigkeitsszenario und Demodulationsverarbeitung in dem Hochgeschwindigkeitsszenario unterstützt.
 


Revendications

1. Procédé de démodulation de données, le procédé comprenant :

l'obtention (201), par un équipement utilisateur, UE (120, 403, 503, 703, 903, 1602),

à partir d'une station de base (110, 502, 702, 902, 1601), d'informations de notification indiquant que l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement à grande vitesse ;

l'exécution (202) d'un processus de synchronisation temps-fréquence sur des premières données de liaison descendante conformément aux informations de notification pour obtenir des deuxièmes données de liaison descendante, dans lequel un décalage de fréquence est estimé selon la formule :

m représente un nombre de pas temporels d'une fenêtre temporelle, αi représente un coefficient de pondération d'un décalage de fréquence à chaque point temporel historique, et β représente un coefficient de filtrage d'un décalage de fréquence résiduel actuel, dans lequel

αi est ajusté de telle sorte qu'un coefficient d'un élément pondéré à une plus longue distance soit inférieur au coefficient de l'élément pondéré à la plus longue distance à un moment où l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement non à grande vitesse et qu'un coefficient d'un élément pondéré à une plus courte distance soit supérieur au coefficient de l'élément pondéré à la plus courte distance à un moment où l'UE ( 120, 403, 503, 703, 903, 1602) est dans un état de déplacement non à grande vitesse ; et

β est ajusté de telle sorte que le coefficient de filtrage d'un décalage de fréquence résiduel actuel soit supérieur au coefficient de filtrage d'un décalage de fréquence résiduel actuel à un moment où l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement non à grande vitesse ; et

m est ajusté de telle sorte que la fenêtre de filtrage soit plus courte que la fenêtre de filtrage à un moment où l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement non à grande vitesse ; et

un coefficient d'ajustement utilisé pour un filtrage de boucle dans le traitement de synchronisation temps-fréquence est supérieur à un coefficient d'ajustement en vigueur au moment où l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement non à grande vitesse ; et

l'exécution (203) d'un traitement de démodulation sur les deuxièmes données de liaison descendante pour obtenir des troisièmes données de liaison descendante, dans lequel dans le traitement de démodulation pendant l'estimation de canal, la vitesse de l'UE est étagée, chaque étage de vitesse correspondant à un coefficient de filtrage de Wiener différent, et après l'obtention des informations de notification indiquant que l'UE est dans un état de déplacement à grande vitesse, un coefficient de filtrage de Wiener applicable au scénario à grande vitesse est utilisé et, en outre, un filtrage d'intervalles de temps inter-transmission, TTI, pour une estimation de canal est effectué, dans lequel un coefficient de filtrage comme poids d'un TTI actuel pour une estimation de canal est supérieur à un coefficient de filtrage comme poids d'un TTI en vigueur au moment où l'UE (120 , 403, 503, 703, 903, 1602) est dans l'état de déplacement non à grande vitesse pour une estimation de canal.


 
2. Procédé selon la revendication 1, dans lequel l'obtention, par l'UE (120, 403, 503, 703, 903, 1602) à partir d'une station de base (110), d'informations de notification indiquant que l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement à grande vitesse comprend :

l'obtention, par l'UE (120, 403, 503, 703, 903, 1602), d'un message de reconfiguration de connexion de commande de ressources radio, RRC, à partir de la station de base (110, 502, 702, 902, 1601), un premier bit indicateur dans le message de reconfiguration de connexion de RRC servant à indiquer que l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement à grande vitesse ; ou

l'obtention, par l'UE (120, 403, 503, 703, 903, 1602), d'un message de système à partir de la station de base (110, 502, 702, 902, 1601), un deuxième bit indicateur dans le message de système servant à indiquer que l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement à grande vitesse ; ou

l'obtention, par l'UE (120, 403, 503, 703, 903, 1602), d'un message de système à partir de la station de base (110, 502, 702, 902, 1601), le message de système convoyant un identifiant de cellule d'une cellule de réseau ferroviaire à grande vitesse dédié.


 
3. Procédé selon la revendication 1, dans lequel l'obtention, par l'UE (120, 403, 503, 703, 903, 1602) à partir d'une station de base (110, 502, 702, 902, 1601), d'informations de notification indiquant que l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement à grande vitesse comprend :

l'obtention, par l'UE (120, 403, 503, 703, 903, 1602) à partir de la station de base (110, 502, 702, 902, 1601), d'informations de notification indiquant que l'UE (120, 403, 503, 703, 903, 1602) se trouve dans un réseau ferroviaire à grande vitesse dédié, et la détermination, conformément aux informations de notification, que l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement à grande vitesse ; ou

l'obtention directe, par l'UE (120, 403, 503, 703, 903, 1602) à partir de la station de base (110, 502, 702, 902, 1601), d'informations de notification indiquant que l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement à grande vitesse ; ou l'obtention, par l'UE (120, 403, 503, 703, 903, 1602), d'un étage de vitesse de l'UE (120, 403, 503, 703, 903, 1602) à partir de la station de base (110, 502, 702, 902, 1601), et la détermination, lorsque l'étage de vitesse satisfait une condition prédéfinie, que l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement à grande vitesse.


 
4. Procédé selon la revendication 1, le procédé comprenant en outre avant l'obtention, par l'UE (120, 403, 503, 703, 903, 1602) à partir d'une station de base (110, 502, 702, 902, 1601), d'informations de notification indiquant que l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement à grande vitesse :
l'envoi, par l'UE (120, 403, 503, 703, 903, 1602) à la station de base (110, 502, 702, 902, 1601), d'informations d'indication de capacité, les informations d'indication de capacité servant à indiquer que l'UE (120, 403, 503, 703, 903, 1602) prend en charge le traitement de synchronisation temps-fréquence dans un scénario à grande vitesse et le traitement de la démodulation dans le scénario à grande vitesse.
 
5. Equipement utilisateur, UE (120, 403, 503, 703, 903, 1602), l'UE (120, 403, 503, 703, 903, 1602) comprenant :

une unité d'obtention (1101), configurée pour obtenir, à partir d'une station de base (110, 502, 702, 902, 1601), des informations de notification indiquant que l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement à grande vitesse ;

une unité de traitement de synchronisation temps-fréquence (1102), configurée pour effectuer le traitement de synchronisation temps-fréquence sur les premières données de liaison descendante conformément aux informations de notification obtenues par l'unité d'obtention (1101) pour obtenir des deuxièmes données de liaison descendante, dans lequel

un décalage de fréquence est estimé selon la formule :

m représente un nombre de pas temporels d'une fenêtre temporelle, αi représente un coefficient de pondération d'un décalage de fréquence à chaque point temporel historique, et β représente un coefficient de filtrage d'un décalage de fréquence résiduel actuel, dans lequel

αi est ajusté de telle sorte qu'un coefficient d'un élément pondéré à une plus longue distance soit inférieur au coefficient de l'élément pondéré à la plus longue distance à un moment où l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement non à grande vitesse et qu'un coefficient d'un élément pondéré à une plus courte distance soit supérieur au coefficient de l'élément pondéré à la plus courte distance à un moment où l'UE ( 120, 403, 503, 703, 903, 1602) est dans un état de déplacement non à grande vitesse ; et

β est ajusté de telle sorte que le coefficient de filtrage d'un décalage de fréquence résiduel actuel soit supérieur au coefficient de filtrage d'un décalage de fréquence résiduel courant à un moment où l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement non à grande vitesse ; et

m est ajusté de telle sorte que la fenêtre de filtrage soit plus courte que la fenêtre de filtrage à un moment où l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement non à grande vitesse ; et

un coefficient d'ajustement utilisé pour le filtrage de boucle dans le traitement de synchronisation temps-fréquence est supérieur à un coefficient d'ajustement en vigueur au moment où l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement non à grande vitesse ; et

une unité de traitement de démodulation (1103), configurée pour effectuer un traitement de démodulation sur les deuxièmes données de liaison descendante obtenues par l'unité de traitement de synchronisation temps-fréquence (1102) afin d'obtenir des troisièmes données de liaison descendante, dans lequel pendant l'estimation de canal dans le traitement de démodulation, la vitesse de l'UE est étagée, chaque étage de vitesse correspondant à un coefficient de filtrage de Wiener différent, et après l'obtention des informations de notification indiquant que l'UE est dans un état de déplacement à grande vitesse, un coefficient de filtrage de Wiener applicable au scénario à grande vitesse est utilisé et, en outre, un filtrage d'intervalles de temps inter-transmission, TTI, pour une estimation de canal est effectué, dans lequel un coefficient de filtrage comme poids d'un TTI actuel pour une estimation de canal est supérieur à un coefficient de filtrage comme poids d'un TTI en vigueur au moment où l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement non à grande vitesse pour une estimation de canal.


 
6. UE (120, 403, 503, 703, 903, 1602) selon la revendication 5, dans lequel l'unité d'obtention (1101) est configurée pour : obtenir un message de reconfiguration de connexion de commande de ressources radio, RRC, à partir de la station de base (110, 502, 702, 902, 1601), un premier bit indicateur dans le message de reconfiguration de connexion de RRC servant à indiquer que l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement à grande vitesse ; ou obtenir un message de système à partir de la station de base (110, 502, 702, 902, 1601), un deuxième bit indicateur dans le message de système servant à indiquer que l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement à grande vitesse ; ou obtenir un message de système à partir de la station de base (110, 502, 702, 902, 1601), le message de système convoyant un identifiant de cellule d'une cellule de réseau ferroviaire à grande vitesse dédié.
 
7. UE (120, 403, 503, 703, 903, 1602) selon la revendication 5, dans lequel l'unité d'obtention (1101) est configurée pour : obtenir, à partir de la station de base (110, 502, 702, 902, 1601), des informations de notification indiquant que l'UE (120, 403, 503, 703, 903, 1602) se trouve dans un réseau ferroviaire à grande vitesse dédié, et déterminer, conformément aux informations de notification, que l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement à grande vitesse ; ou obtenir directement, à partir de la station de base (110, 502, 702, 902, 1601), des informations de notification indiquant que l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement à grande vitesse ; ou obtenir un étage de vitesse de l'UE (120, 403, 503, 703, 903, 1602) à partir de la station de base (110, 502, 702, 902, 1601), et déterminer, lorsque l'étage de vitesse satisfait une condition prédéfinie, que l'UE (120, 403, 503, 703, 903, 1602) est dans l'état de déplacement à grande vitesse.
 
8. UE (120, 403, 503, 703, 903, 1602) selon la revendication 5, l'UE (120, 403, 503, 703, 903, 1602) comprenant en outre :
une unité d'envoi, configurée pour envoyer des informations d'indication de capacité à la station de base (110, 502, 702, 902, 1601) avant que l'unité d'obtention (1101) n'obtienne, à partir de la station de base (110, 502, 702, 902, 1601), les informations de notification indiquant que l'UE (120, 403, 503, 703, 903, 1602) est dans un état de déplacement à grande vitesse, les informations d'indication de capacité servant à indiquer que l'UE (120, 403, 503, 703, 903, 1602) prend en charge le traitement de synchronisation temps-fréquence dans un scénario à grande vitesse et le traitement de démodulation dans le scénario à grande vitesse.
 




Drawing









































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description