(19)
(11)EP 3 274 579 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 15887373.7

(22)Date of filing:  06.07.2015
(51)International Patent Classification (IPC): 
F02K 9/24(2006.01)
(86)International application number:
PCT/IB2015/055086
(87)International publication number:
WO 2016/156935 (06.10.2016 Gazette  2016/40)

(54)

MANDREL ASSEMBLY AND METHOD OF MANUFACTURING SOLID ROCKET PROPELLANT GRAIN USING THE SAME

DORNANORDNUNG UND VERFAHREN ZUR HERSTELLUNG EINES FESTEN RAKETENTREIBSTOFFKORNS DAMIT

ENSEMBLE MANDRIN ET PROCÉDÉ DE FABRICATION DE GRAINS DE PROPERGOL SOLIDE LE METTANT EN OEUVRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 27.03.2015 IN 858DE2015

(43)Date of publication of application:
31.01.2018 Bulletin 2018/05

(73)Proprietor: Chairman, Defence Research & Development Organisation (DRDO)
New Delhi 110011 (IN)

(72)Inventor:
  • KRISHNAN, Anish, Bala
    Hyderabad Telangana 500058 (IN)

(74)Representative: Wynne-Jones IP Limited 
2nd Floor, 5210 Valiant Court Gloucester Business Park Gloucester
Gloucestershire GL3 4FE
Gloucestershire GL3 4FE (GB)


(56)References cited: : 
EP-A2- 1 522 711
US-A- 3 345 438
US-A- 6 101 948
US-A- 3 193 883
US-A- 4 761 254
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present disclosure primarily relates to solid rocket motors, more particularly, to a dismantleable mandrel assembly for manufacturing propellant grain of solid rocket motors.

    BACKGROUND



    [0002] High performance solid rocket motors mandate high 'volumetric loading fractions' in propellant grain and flexibility in 'thrust profile tailoring' apart from increase in propellant energy levels and lighter and stronger structures. Conventional single-piece casting mandrels limit grain design flexibility in large monolithic solid rocket motors because major transverse dimensions of propellant grain cavities molded using single-piece mandrels cannot be larger than the openings in the monolithic casing. Consequently when required it becomes difficult to avoid increase in burn surface area as the grain web burns beyond the rocket motor case opening diameter. Hence single-piece mandrels in typical monolithic casings reduce overall propulsion system design and performance efficiency. Propellant machining is one way of forming grain cavities larger than casing openings. However, the machining process is slow and hazardous. Therefore, casting of propellant slurry inside the motor casing around a dismantleable mandrel and curing it to the final grain shape, before disassembling the mandrel out of the rocket motor (decoring), is both safe and quick.

    [0003] Conventional mandrel assembly for distributing propellant inside a solid propellant casing as disclosed in EP1522711 A3 (Milleni et al.) comprises a rigid, strip-down plug which is larger transversely than the opening of the casing. The plug is assembled inside the casing after successively inserting the fin molds and a tubular locating body and by releasably locking the fin molds by means of a hydraulic or mechanical device housed partly in the tubular locating body. However, due to the presence of large number of components with critical joints, the chances of propellant slurry leak or ingress into crevices is more. Hence the process of removal of the mandrel assembly (decoring) from the cured propellant grain becomes more hazardous.

    [0004] Another conventional dismountable mechanical core and procedure for implementing it as disclosed in US 5,714,081 (Tilac et al.) comprises a dismountable mechanical core that includes a counterform attached to a central mandrel. The components of the counterform are attached to the central mandrel by rod anchoring devices. During the disassembling process, the anchor rods are dismantled from the central mandrel, the central mandrel is then withdrawn and each counterform component is separated. With large number of components, the process of removal of the mandrel assembly (decoring) from the cured propellant grain becomes more hazardous. Furthermore, conventional casting techniques involve machining of the cured propellant grain especially the counter-bore to obtain the final shape of the propellant grain. However the machining process is hazardous and involves the risk of explosion.

    [0005] Yet another conventional mandrel for shaping solid propellant rocket fuel into a motor casing is disclosed in US3,193,883. The mandrel comprises a unitary rocket motor casing having an aperture substantially smaller than the largest dimension of the casing. A mandrel means comprises a center section and a plurality of two-part discoidal members detachably mounted on the center section of the two-part discoidal members being small enough when disassembled from the center section to pass through. The aperture means is used for attaching the two-part discoidal members to the center section to form the mandrel structure substantially larger than the aperture. The mandrel further includes a means for positioning the mandrel axially within a motor casing. However, the characteristic feature of the conventional mandrel assembly is that the mandrel is meltably removable from the motor casing after curing and solidification of the propellant.

    [0006] Therefore, there is a need for a new mandrel assembly that is simple with less number of parts and joints and a technique for using the mandrel assembly that is safer to manufacture propellant grains with deep cavities and overcome the above mentioned difficulties or problems. Consequently, those skilled in the art will appreciate the present disclosure that provides many advantages and overcomes all the above and other limitations.

    SUMMARY



    [0007] The shortcomings of the prior art are overcome and additional advantages are provided through the present disclosure. Additional features and advantages are realized through the techniques of the present disclosure. Other embodiments and aspects of the disclosure are described in detail herein and are considered a part of the claimed disclosure.

    [0008] Accordingly, the present disclosure relates to a mandrel assembly for manufacturing a solid propellant grain of a rocket motor as defined in claim 1. The assembly comprises a base mandrel, a core mandrel and a plurality of fin molds. The base mandrel is removable connectable to aft-end opening of rocket motor casing and capable of forming an aft-end counter bore in the propellant grain of the rocket motor. The core mandrel is removably connectable to the base mandrel and capable of forming a longitudinal axial cavity in the propellant grain. The plurality of fin molds is removably connectable to the base mandrel. The plurality of fin molds comprises a forward-swept leading edge and a forward-swept trailing edge to form a plurality of forward-swept longitudinal hollow fin molds circular patterned around the axial cavity in the solid propellant grain of the rocket motor.

    [0009] Further, the present disclosure relates to a method of manufacturing a solid propellant grain of a rocket motor as defined in claim 13 using the mandrel assembly by configuring the mandrel assembly inside a casing of the rocket motor. The mandrel assembly is configured into the rocket motor casing by providing a plurality of fin molds followed by a base mandrel into the casing of the rocket motor and manually connecting the plurality of fin molds to the base mandrel. Further, a core mandrel configured to form a longitudinal axial cavity in the propellant grain, is inserted into the base mandrel. Upon assembling the mandrel assembly with proper seals inside the casing, propellant slurry is cast inside the casing through a hopper at its fore-end opening. Upon curing, the mandrel assembly is dismantled and extracted from the rocket motor.

    [0010] The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.

    BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS



    [0011] The features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are therefore, not to be considered limiting of its scope. The disclosure will be described with additional specificity and detail through use of the accompanying drawings.

    Figure 1 illustrates a cut-view of a rocket motor casing showing all components of mandrel assembly in accordance with an embodiment of the present disclosure;

    Figures 2 and 2a respectively illustrate an isometric view and sectional view of base mandrel assembly in accordance with an embodiment of the present disclosure;

    Figures 2b, 2c and 2d illustrate enlarged view of features of the base mandrel assembly as indicated in Figure 2a in accordance with an embodiment of the present disclosure.

    Figure 3 illustrates perspective view of a fin mold of the mandrel assembly of Figure 1 in accordance with an embodiment of the present disclosure;

    Figures 3a and 3b respectively illustrate front view and side view of the fin mold of Figure 3 in accordance with an embodiment of the present disclosure;

    Figures 4 and 4a respectively illustrate a perspective view and sectional view of core mandrel of mandrel assembly of Figure 1 in accordance with an embodiment of the present disclosure;

    Figure 4b illustrates enlarged sectional view of gasket grooves of the core mandrel as indicated in Figure 4a in accordance with an embodiment of the present disclosure;

    Figure 5 illustrates perspective view of the base mandrel of the mandrel assembly of Figure 1 with fin molds stacked around in accordance with an embodiment of the present disclosure;

    Figure 5a illustrates detailed sectional view of the undeformed annular seal of the base mandrel as indicated in Figure 5 in accordance with an embodiment of the present disclosure;

    Figure 6 illustrates the mandrel assembly including the core mandrel in accordance with an embodiment of the present disclosure;

    Figure 6a illustrates the detailed sectional view of deformed annular seal of the base mandrel as indicated in Figure 6 in accordance with an embodiment of the present disclosure;

    Figure 7 illustrates a cut view of the rocket motor casing with base mandrel assembly seated on an assembly stool showing the fin molds stacked or suspended inside the motor casing in accordance with an embodiment of the present disclosure;

    Figure 8 illustrates a cut view of the rocket motor casing with assembled fin molds and spider-hopper assembly mounted at the fore-end opening of the rocket motor casing in accordance with an embodiment of the present disclosure;

    Figure 9 illustrates sectional view of rocket motor casing with mandrel assembly filled with propellant slurry in accordance with an embodiment of the present disclosure;

    Figure 9a illustrates detailed sectional view of joint sealing between the base mandrel and aft-end opening in the rocket motor casing as indicated in Figure 9 in accordance with an embodiment of the present disclosure;

    Figures 10 and 11 illustrate steps of disassembling the mandrel assembly from the rocket motor with cured propellant grain in accordance with an embodiment of the present disclosure;

    Figure 12 illustrates exemplary view of the rocket motor casing during disassembly of fin molds using a fin disassembling tool in accordance with an embodiment of the present disclosure;

    Figure 13 shows the exploded perspective view of the fin disassembling tool in accordance with an embodiment of the present disclosure;

    Figure 14 illustrates an exemplary forward-swept, deep-finocyl propellant grain formed in the rocket motor casing after disassembling the mandrel in accordance with an embodiment of the present disclosure;

    Figure 14a illustrates the sectional view of the motor with deep fins in accordance with an embodiment of the present disclosure;



    [0012] The figures depict embodiments of the disclosure for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the disclosure described herein.

    DETAILED DESCRIPTION



    [0013] While the invention is susceptible to various modifications and alternative forms, specific embodiment thereof has been shown by way of example in the drawings and will be described in detail below. It should be understood, however that it is not intended to limit the invention to the particular forms disclosed, but on the contrary, the invention is to cover all modifications, equivalents, and alternative falling within the scope of the invention.

    [0014] The terms "comprises", "comprising", or any other variations thereof, are intended to cover a non-exclusive inclusion, such that a setup, device or method that comprises a list of components or steps does not include only those components or steps but may include other components or steps not expressly listed or inherent to such setup or device or method. In other words, one or more elements in a system or apparatus proceeded by "comprises... a" does not, without more constraints, preclude the existence of other elements or additional elements in the system or apparatus.

    [0015] In the following detailed description of the embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that changes may be made without departing from the scope of the present invention. The following description is, therefore, not to be taken in a limiting sense. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the figures, can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.

    [0016] The present disclosure relates to a mandrel assembly and a method of manufacturing monolithic, case-bonded solid propellant rocket motor grains using the mandrel assembly. The mandrel assembly comprises a base mandrel, a core mandrel insertable into the base mandrel and a plurality of fin molds attachable onto the base mandrel. Each of the mandrel components help in forming desirable cavities inside the cast and cured propellant grain. The mandrel components can be made of metallic or composite material, the latter is lighter to handle. Since the mandrel components are rigidly fastened to the motor casing issues related to buoyancy of mandrels in conventional casting techniques do not apply here. The base mandrel forms a counter-bore at the aft-end of the rocket motor. The core mandrel forms an axial longitudinal cavity through the grain. The plurality of fin molds forms longitudinal cavities with forward-swept leading and trailing edges circular-patterned about the axial cavity. The mandrel assembly is assembled inside the casing of the rocket motor by first taking the fin molds inside, then attaching the base mandrel to aft-end opening of the casing, attaching the plurality of fin molds onto the base mandrel and finally inserting the core mandrel into the base mandrel. During the casting process, propellant slurry is poured into the casing through a hopper in its fore-end opening. Upon completion of casting and curing of the propellant grain, the mandrel assembly is safely removed from the motor in a specific sequence. Due to minimum number of components, joints and seals in the disclosed mandrel assembly, the decoring of mandrel assembly assures minimum friction and thereby minimizes explosion hazard. The technique of casting of the propellant grain using the disclosed mandrel assembly also avoids or minimizes any machining requirements that are otherwise required post-curing and decoring.

    [0017] Figure 1 illustrates a solid rocket motor casing with mandrel assembly (1) comprising a rocket motor casing (hereinafter referred to as "casing") (2) having a fore-end and an aft-end openings. The casing (2) is an internally insulated casing using any insulating material known in the art. The mandrel assembly is assembled inside the casing (2) before casting the propellant grain in the rocket motor. All exposed surfaces of the mandrel assembly are coated with Teflon or similar non-adhesive material to prevent propellant sticking to the mandrel.

    [0018] In one embodiment, the mandrel assembly comprises at least a base mandrel (3), a core mandrel (4) and a plurality of fin molds (5) attached to the base mandrel (3). The base mandrel (3) is configured to form a counter bore in the propellant grain of the rocket motor. As illustrated in Figure 2, the base mandrel (3) is a hollow axisymmetric structure comprising a counter-bore portion (6) beneath a port portion (7). The port portion (7) is configured with a plurality of guides (8) disposed in a circular pattern on the outer circumference of the base mandrel (3) for radially anchoring the plurality of fin molds (5) onto the base mandrel (3). In one embodiment, the plurality of guides (8) is a dove-tailed linear motion (LM) guides.

    [0019] The external surfaces of the base mandrel (3) are configured so as to form the required profile of the aft-end counter-bore in the propellant grain. As illustrated in Figure 2a, the base mandrel (3) is configured with one or more dimensions (9, 10, 11, and 12). The dimension (12) of the base mandrel (3) corresponds to the diameter of the aft-end opening of the casing (2). In one embodiment, the dimension (12) may be around 50% to 60% of the outer diameter of the casing (2). Dimension (9) may be slightly larger than the diameter of the propellant grain central port. Based on the dimensions of the casing (2) and the propellant grain central port, the dimension (9) of the base mandrel (3) will allow entry of a mandrel assembly fitter's hand or the fitter himself through the hollow interior of the base mandrel (3). Further, the dimension (11) of the base mandrel (3) corresponds to the depth of the propellant grain counter-bore. Furthermore, the dimension (10) i.e., the total height of the base mandrel (3) corresponds to the approximate root length of the plurality of fin molds (5).

    [0020] As shown in Figure 2, the aft-end of the base mandrel (3) is configured with a base mandrel flange (13) for attaching the base mandrel (3) to the aft-end opening of the casing (2). The base mandrel flange (13) includes gasket-grooves (14) (as shown in Figure 2d) for hermitical sealing of the base mandrel with the aft-end opening of casing. Further, the planar surface of the counter-bore portion (6) of the base mandrel (3) is provided with gasket-grooves (15) around through-holes circular-patterned about the mandrel axis (as illustrated in Figure 2, 2a and 2c) beneath the plurality of guides (8) for hermitically sealing the joint and fastening the plurality of fin molds (5) onto the base mandrel (3). Further, the internal surface of the counter-bore portion (6) is configured with number of tapped blind holes (16) for fastening the core mandrel (4) with the base mandrel (3).

    [0021] The fore-end of the base mandrel (3) is provided with an annular seal (17) on its rim for sealing between the base mandrel (3) and the core mandrel (4). The annular seal (17) is provided for eliminating crevices being formed in the mandrel assembly and for preventing potential propellant slurry ingress into the mandrel assembly interfaces. As illustrated in Figure 2b, the annular seal (17) bends and conforms to outer surface of the core mandrel (4) for providing a sealing between the core mandrel (4) and the base mandrel (3) when the core mandrel (4) is inserted into the base mandrel (3). In one example, the annular seal (17) is fastened to the base mandrel (3) with number of round-headed screws (18). Further, the cylindrical portion of the base mandrel (3) is provided with a polished internal mating surface (19) with an entry chamfer for hermitical sealing between the base mandrel (3) and the core mandrel (4) as the core mandrel (4) is provided with shaft seals on the mating outer surface of the core mandrel (4).

    [0022] Figure 3 illustrates perspective view of a fin mold of the mandrel assembly of Figure 1 in accordance with an embodiment of the present disclosure.

    [0023] The mandrel assembly comprises the plurality of fin molds (5) attached to the base mandrel (3). The plurality of fin molds (5) is removably connectable to the base mandrel (3) in a circular pattern about the mandrel axis and comprises a forward-swept leading edge (20) and a forward-swept trailing edge (21) to form a plurality of forward-swept longitudinal hollow fins in the solid propellant grain of the rocket motor (1). The plurality of fin molds (5) is fastened onto the base mandrel (3) through one or more fasteners that are accessible from within the base mandrel (3). The plurality of fin molds (5) comprises a plurality of slots (22) that engages with the plurality of guides (8) of the base mandrel (3) for radially anchoring the plurality of fin molds (5) onto the base mandrel (3). In one example, the plurality of slots (22) may be a linear motion slots. The plurality of fin molds (5) further comprises one or more tapped holes (23) on the planar surface beneath the plurality of slots (22) for longitudinally bolting and hermitically sealing (15) the joint between the base mandrel (3) and the plurality of fin molds (5). In one example, the number of tapped holes (23) may be equal to or multiple of number of the guides (8).

    [0024] The plurality of fin molds (5) is also configured with a contoured inner surface (24) which conforms to the mating outer contours of the base mandrel (3). The plurality of fin molds (5) and the base mandrel (3) have planar surfaces in the transverse plane for hermitical sealing between them with gaskets. The plurality of fin molds (5) is further configured with contoured outer edges (25) having the required dimension like thickness. In one embodiment, the dimensions of the plurality of fin molds (5) include length (26), thickness (27) and breadth (28) as illustrated in Figure 3a & 3b. The angular dimension made by the leading edge (20) and the trailing edge (21) of the plurality of fin molds (5) with the motor axis may be acute. Further, in another embodiment, the angular dimension (29) between the motor axis and leading edge (20) is greater than the angular dimension (30) between the motor axis and the trailing edge (21). This will enable interference-free extraction during decoring. The length (26), thickness (27) and breadth (28) of the plurality of the fin molds (5) circular patterned about the base mandrel (3) axis may vary along the longitudinal and radial directions.

    [0025] Figures 4 and 4a respectively illustrate a perspective view and sectional view of core mandrel of mandrel assembly of Figure 1 in accordance with an embodiment of the present disclosure.

    [0026] In one embodiment, the core mandrel (4) of the mandrel assembly is generally a hollow cylinder with varying outer diameters and tapers. The core mandrel (4) is removably connectable to the base mandrel (3) at its aft-end and configured to form a longitudinal axial cavity in the propellant grain of the rocket motor (1). As illustrated in Figure 4, the core mandrel (4) comprises a core mandrel flange (31) at its aft-end for a bolted joint (16) with the base mandrel (3). The core mandrel (4) further comprises gasket grooves (32) on which shaft seals are disposed so as to provide hermitical sealing between the core mandrel (4) and the base mandrel (3) when assembled. In one example, the gaskets may be O-rings. A detailed sectional view of gasket grooves (32) of the core mandrel (4) is illustrated in Figure 4b.

    [0027] As illustrated in Figure 4a, the core mandrel (4) is a hollow longitudinal axisymmetric structure configured with a slender fore-end head (33) and a stout body (34). The slender fore-end head is outwardly cylindrical or tapered in shape and it begins (35) and ends (36) with conical or ogive sections to enable smooth flow of the propellant slurry without any local accumulation during the casting process. The slender fore-end head (33) of the core mandrel when assembled in the motor casing will be located within the fore-end opening of the casing (2). The lesser diameter of the fore-end head (33) will provide required annular gap between the mandrel assembly and fore-end opening in the casing (2) for enabling required propellant slurry charging rate. The stout body (34) of the core mandrel (4) is a tapered cylinder configured to form the longitudinal axial cavity of the cured propellant grain with the taper assisting in easy decoring.

    [0028] As illustrated in Figures 5 & 6, the mandrel assembly is trial assembled outside the casing (2) on top of a skeletal stool (37). The base mandrel (3) is fastened with the skeletal stool (37) using the base mandrel flange (13). The hollow interior area of the base mandrel (3) is accessed through the sides of the skeletal stool (37). Upon fastening the base mandrel (3), the plurality of fin molds (5) are assembled, as illustrated in Figure 7, around the base mandrel (3) using the plurality of guides (8) and gasketted threaded holes (15) to ensure good fitment between the assembled fin molds (5) and the base mandrel (3).

    [0029] The annular seal (17) is then attached on the fore-end or rim of the base mandrel (3) using fasteners (18) as illustrated in Figure 5a. Upon insertion of the core mandrel (4) into the base mandrel (3), the inner part of the annular seal (17) is bent upward conforming to the outer surface of the mating core mandrel (4) and provides sealing between the core mandrel (4) and the base mandrel (3) as shown in Figure 6a. Further, the shaft seal gaskets (38) provided on the core mandrel (4) presses against the internal surface (19) of the base mandrel (3) to provide the secondary hermitical sealing. The mandrel assembly assembled with the core mandrel (4) and the base mandrel (3) is illustrated in Figure 6.

    [0030] The sequence of assembly of the mandrel components inside the motor casing is illustrated in Figures 7, 8 and 1. The casing (2) is safely handled using fore-end and aft-end bulk heads (40, 41) with appropriate tools. As illustrated in Figure 7, first the plurality of fin molds (5) are taken inside the casing (2) through its bigger aft-end opening (39). The plurality of fin molds (5) are either stacked inside the casing (2) or suspended from the fore-end opening (42) of the casing (2). The base mandrel (3) is mounted on the top of the skeletal stool (37) before the casing with fin molds is lowered onto the base mandrel. The joint between base mandrel flange (13) and motor casing is hermitically sealed with gaskets. The plurality of fin molds (5) is then assembled onto the base mandrel (3) either robotically or manually. In one embodiment, a fitter then enters the casing (2) through beneath the base mandrel (3) for assembling the plurality of fin molds (5) onto the base mandrel (3). One by one all the fin molds (5) are guided onto the LM guides on the base mandrel and bolted from below at the gasketted threaded holes (15) with minimal gaps at the interfaces. A spider (43) and a hopper (44) are then assembled over the fore-end opening (40) of the casing (2) as shown in Figure 8. Upon connecting the plurality of fin molds (5) to the base mandrel (3), filleting of all included-sharp-corner interfaces between base mandrel (3) and fin molds (5) is done with suitable inert material.

    [0031] The entire assembly is now lifted up and lowered over the vertically mounted core mandrel (4) as illustrated in Figure 1. Once the core mandrel (4) is fully inside the casing (2), the annular seal (17) and the gaskets (38) provide crevice-free joint and hermitical sealing respectively between the core mandrel (4) and the base mandrel (3). The core mandrel (4) at its fore-end (33) is supported by and located using the spider (43). At its aft-end flange (31) the core mandrel (4) is fastened to the base mandrel (3) with the tapped blind holes (16) of the base mandrel (3). Figure 9a shows the interface between the base mandrel and the aft-end opening of the casing. Pair of gaskets (47, 48) is used for hermitically sealing the joint. The assembly stool (37) is used for mounting the base mandrel (3) and the internally insulated casing (2). However the base mandrel (3) is only selectively bolted to the skeletal stool - only a few equispaced elongated bolts among the circular patterned bolts in the 'base mandrel - casing' joint are used for fastening to the stool.

    [0032] After the mandrel assembly is completely assembled within the casing (2), and a successful leak check done with appropriate closures on the fore-end opening of the casing, the propellant slurry (46) is poured into the casing (2) through the hopper (45) located at the fore-end opening (41) of the casing (2). The spider (43) provides an annular gap between the hopper (44) and the mandrel assembly for regulating the rate of flow of the propellant slurry (46) inside the casing (2). After the propellant slurry (46) is filled, the entire arrangement of the casing (2) is cured under predetermined temperature and pressure conditions for a predetermined time period to obtain the sufficiently strengthened propellant grain.

    [0033] The orientation of the rocket motor (1) for disassembly process is illustrated in Figure 10. The inverted rocket motor (1) is rested on its fore-end bulkhead (40) and secured radially. Generally as the propellant cures, it shrinks away from the mandrels enabling interference free decoring. First the core mandrel (4) is unfastened from the base mandrel (3) and extracted in vertically upward direction as shown in Figure 10. The base mandrel (3) is then unfastened from all the fin molds and removed vertically up as shown in Figure 11. It is followed by removal of the plurality of fin molds (5) one at a time as illustrated in Figure 12. The plurality of fin molds (5) is removed using a fin decoring tool (49).

    [0034] In one exemplary embodiment, the fin decoring tool (49) as shown in Figure 12 is a mass balancing tool that ensures that the center of gravity of the assembly of the fin mold (5) and the fin decoring tool (49) lies directly below the lifting point. The fin decoring tool (49), as illustrated in Figure 13, comprises a long arm (50) that is configured to provide the counter-mass (51) that stays outside the propellant grain counter-bore (Figure 12) at all times during the removal of the plurality of fin molds (5). The fin decoring tool (49) is fastened to the fin molds (5) using an eye-bolt (52) for lifting the plurality of fin molds (5) out of the propellant grain. The fin decoring tool (49) may further comprise a pair of additional fasteners like bolts (53) disposed along the guides (8) for providing additional safety against unintended detachment during the disassembling process. Using the fin decoring tool (49), the fins molds (5) are extracted in axial and radial directions simultaneously.

    [0035] The rocket motor with forward-swept, deep-finocyl propellant grain formed inside the casing after decoring is illustrated in Figure 14. The propellant grain is a case-bonded propellant grain comprising a longitudinal axial cavity or a central port running along the axis of the rocket motor (1). The propellant grain also comprises a plurality of fins formed around the base of the central port near the aft-end and further comprises a counter-bore (58) at the aft-end to accommodate a submerged nozzle (not shown) of the rocket motor (1). As shown in Figure 14, the longitudinal axial cavity (55) has a reduced diameter (56) at the fore-end for accommodating igniter (not shown) and an increased diameter (57) at the aft-end side to ensure less-restricted flow of hot combustion gases towards the nozzle (not shown) at the aft-end. In another embodiment, the central port with reduced diameter (56) can be enlarged by locally machining the propellant grain. The molded propellant grain also comprises the plurality of discrete fins (59) with forward-swept leading edge (60) and radially deep cavities whose peripheral edges run parallel to the inner profile of the casing (2). As shown in Figure 14a, the plurality of fins (59) has minimum web thickness (61). In one embodiment, the radial depth of the plurality of the fin cavities is greater than the radius of the aft-end opening (39) of the casing (2).

    ADVANTAGES OF THE PRESENT INVENTION



    [0036] In one embodiment, the present disclosure relates to a mandrel assembly for manufacturing case-bonded, forward-swept, deep-finocyl propellant grains in monolithic solid rocket motors. The dismantleable mandrel assembly has minimum number of components.

    [0037] The mandrel components can be made of light weight metals or composite materials without worrying about buoyancy related issues because they are rigidly fastened to the motor casing.

    [0038] With less number of joints and critical seals and with provision for manual application and inspection of interface fillets, the chances of propellant slurry ingress into crevices and hence the quantum of explosive hazard during decoring are minimized.

    [0039] As charging of the propellant slurry is done from the fore-end opening of the motor, and the aft-end counter-bore is fully formed by the base mandrel, minimal or no propellant machining is required post-curing and decoring.

    Reference numerals used in the present invention



    [0040] 
    1. 1- Rocket motor casing with mandrel assembly
    2. 2- Casing
    3. 3- Base mandrel
    4. 4- Core mandrel
    5. 5- Fin molds
    6. 6- Counter-bore portion of base mandrel
    7. 7- Port portion of base mandrel
    8. 8- Guides
    9. 9- Dimension of base mandrel
    10. 10- Dimension of base mandrel
    11. 11- Dimension of base mandrel
    12. 12- Dimension of base mandrel
    13. 13- Base mandrel flange
    14. 14- Gasketted flange
    15. 15- Gasketted through holes
    16. 16- Tapped blind holes
    17. 17- Annular seal
    18. 18- Fasteners on annular seal
    19. 19- Internal mating surface of base mandrel
    20. 20- Forward-swept leading edge
    21. 21- Forward-swept trailing edge
    22. 22- Slots
    23. 23- Tapped hole
    24. 24- Contoured inner mating surface of fins
    25. 25- Outer edges of fins
    26. 26- Length of fin
    27. 27- Thickness of fin
    28. 28- Breadth of fin
    29. 29- Angular dimension between motor axis and fin leading edge
    30. 30- Angular dimension between motor axis and fin trailing edge
    31. 31- Core mandrel flange
    32. 32- Gasket grooves
    33. 33- Slender head of core mandrel
    34. 34- Body of core mandrel
    35. 35- Conical or ogive sections of core mandrel
    36. 36- Conical or ogive sections of core mandrel
    37. 37- Skeletal stool
    38. 38- Gaskets
    39. 39- Aft-end opening of the casing
    40. 40- Fore-end Bulk heads
    41. 41- Aft-end Bulk heads
    42. 42- Fore-end opening of the casing
    43. 43- Spider
    44. 44- Hopper
    45. 45- Internal insulation of casing
    46. 46- Propellant slurry
    47. 47- Gaskets
    48. 48- Gaskets
    49. 49- Fin decoring tool
    50. 50-Long arm of the fin decoring tool
    51. 51- Counter-mass in the fin decoring tool
    52. 52- Eye-bolt
    53. 53- Additional bolts for fin decoring tool
    54. 54- Cured propellant grain
    55. 55-Longitudinal axial cavity
    56. 56- Section of central port having reduced diameter
    57. 57- Section of central port having increased diameter
    58. 58- Counter-bore of cured propellant grain
    59. 59-Forward-swept leading edge of fin
    60. 60- Deep cavities of fin
    61. 61-Minimum thickness of fin web



    Claims

    1. A mandrel assembly (1) for manufacturing a solid propellant grain of a rocket motor, said mandrel assembly comprising:

    a base mandrel (3) removably connectable to aft-end opening (39) of rocket motor casing (2) and capable of forming an aft-end counter bore (58) in the propellant grain of the rocket motor;

    a core mandrel (4) removably connectable to the base mandrel (3), wherein the core mandrel (4) is capable of forming a longitudinal axial cavity in the propellant grain; and

    a plurality of fin molds (5), removably connectable to the base mandrel (3),
    characterized in that:
    the plurality of fin molds (5) comprises a forward-swept leading edge and a forward-swept trailing edge to form a plurality of forward-swept longitudinal hollow fins circular-patterned about the axial cavity in the solid propellant grain of the rocket motor, wherein, the forward-swept leading edge and the forward-swept trailing edge of the plurality of fin molds (5) makes a predetermined acute angle with an axis of the rocket motor such that the difference in acute angles of the forward-swept leading edge and the forward-swept trailing edge, in that order, is greater than zero.


     
    2. The mandrel assembly as claimed in claim 1, wherein the base mandrel (3) is a hollow axisymmetric structure configured with a port portion (7) comprising a plurality of guides (8) disposed in a circular pattern on outer circumference of the base mandrel (3).
     
    3. The mandrel assembly as claimed in claim 1, wherein the plurality of fin molds (5) comprises a plurality of slots (22) configured to engage with the plurality of guides (8) for radially anchoring the plurality of fin molds (5) onto the base mandrel (3).
     
    4. The mandrel assembly as claimed in claim 1, wherein the plurality of fin molds (5) is fastened onto the base mandrel (3) through one or more fasteners that are accessible from within the base mandrel (3).
     
    5. The mandrel assembly as claimed in claim 1, wherein the plurality of fin molds (5) and the base mandrel (3) have planar surfaces in the transverse plane for hermitical sealing between them with gaskets.
     
    6. The mandrel assembly as claimed in claim 1, wherein the base mandrel (3) is provided with a base mandrel flange (13) for attaching the base mandrel (3) with the aft-end opening (39) of the rocket motor casing (2).
     
    7. The mandrel assembly as claimed in claim 1, wherein the base mandrel (3) is provided with a plurality of tapped holes (23) disposed adjacent to the plurality of guides (8) on the planar surface for hermitically sealing the plurality of fin molds (5) with the base mandrel (3).
     
    8. The mandrel assembly as claimed in claim 1, wherein the base mandrel (3) is provided with an annular seal (17) disposed on the rim at the front end of the base mandrel (3) for enabling sealing between the base mandrel (3) and the core mandrel (4).
     
    9. The mandrel assembly as claimed in claim 8, wherein the annular seal (17) bends and conforms to outer surface of the core mandrel (4) for providing a sealing between the core mandrel (4) and the base mandrel (3) when the core mandrel (4) is inserted into the base mandrel (3).
     
    10. The mandrel assembly as claimed in claim 1, wherein the core mandrel is provided with shaft seal gaskets for hermitical sealing with port portion (19) of the base mandrel (3).
     
    11. The mandrel assembly as claimed in claim 1 and 6, wherein the base mandrel (3) is configured a counter-bore portion comprising one or more tapped blind holes (16) on the base mandrel flange (13) for fastening the core mandrel (4) with the base mandrel (3).
     
    12. The mandrel assembly as claimed in claim 1, wherein the plurality of fin molds (5) is provided with rounded outer edges based on the thickness of the fin molds and configured with a contoured inner surface which conforms to the mating outer portion of the base mandrel (3).
     
    13. A method of manufacturing a solid propellant grain of a rocket motor using the mandrel assembly as claimed in claim 1, the method comprising acts of:

    configuring the mandrel assembly into a casing of the rocket motor comprising acts of:

    providing a plurality of fin molds (5) inside the casing of the rocket motor;

    assembling a base mandrel (3) to the aft-end opening of the casing of the rocket motor;

    connecting the plurality of fin molds (5) to the base mandrel (3), wherein the plurality of fin molds (5) comprises a forward-swept leading edge and a forward-swept trailing edge to form a plurality of forward-swept longitudinal hollow fin molds circular patterned about the motor axis in the solid propellant grain of the rocket motor;

    connecting a core mandrel (4) to the base mandrel by inserting into the base mandrel (3);

    casting a propellant slurry inside the casing with assembled mandrel through a hopper (44) on the fore-end opening; and

    decoring the mandrel assembly in sequence from the rocket motor upon curing.


     
    14. The method as claimed in claim 13, wherein decoring the mandrel assembly comprising decoring, in the order of, the core mandrel (4), the base mandrel (3) and the plurality of fin molds (5) from the cast propellant grain with one fin mold (5) at a time.
     
    15. The method as claimed in claim 13, wherein the plurality of fin molds (5) are removed from the cast solid propellant grain using a mass balanced fin decoring tool (49) to ensure center of gravity of an assembly of the plurality of the fin molds (5) and the mass balanced tool (49) lies directly below lifting point.
     
    16. The method as claimed in claim 13, wherein upon connecting the plurality of fin molds (5) to the base mandrel (3), the method comprising the step of filleting all included-sharp-corner interfaces between base mandrel (3) and the plurality of fin molds (5) with a suitable inert material.
     


    Ansprüche

    1. Dornanordnung (1) zum Herstellen eines festen Treibstoffkorns eines Raketenmotors, wobei die Dornanordnung umfasst:

    einen Basisdorn (3), der entfernbar mit der Öffnung (39) am hinteren Ende des Raketenmotorgehäuses (2) verbindbar und der geeignet ist, eine Gegenbohrung (58) am hinteren Ende im Treibstoffkorn des Raketenmotors zu bilden;

    einen Kerndorn (4), der entfernbar mit dem Basisdorn (3) verbindbar ist, wobei der Kerndorn (4) geeignet ist, einen axialen Längshohlraum in dem Treibstoffkorn zu bilden; und

    eine Mehrzahl von Rippenformen (5), die entfernbar mit dem Basisdorn (3) verbindbar sind, dadurch gekennzeichnet, dass:
    die Mehrzahl der Rippenformen (5) eine vorwärts gepfeilte Vorderkante und eine vorwärts gepfeilte Hinterkante umfasst, um eine Mehrzahl von vorwärts gepfeilten Längshohlrippen zu bilden, die kreisförmig um den axialen Hohlraum in dem festen Treibstoffkorn des Raketenmotors strukturiert sind, wobei die vorwärts gepfeilte Vorderkante und die vorwärts gepfeilte Hinterkante der Mehrzahl von Rippenformen (5) einen vorbestimmten spitzen Winkel mit einer Achse des Raketenmotors bilden, so dass die Differenz der spitzen Winkel der vorwärts gepfeilten Vorderkante und der vorwärts gepfeilten Hinterkante in dieser Reihenfolge größer als Null ist.


     
    2. Dornanordnung nach Anspruch 1, wobei der Basisdorn (3) eine hohle achsensymmetrische Struktur ist, die mit einem Anschlussabschnitt (7) konfiguriert ist, der eine Mehrzahl von Führungen (8) umfasst, die in einem kreisförmigen Muster am Außenumfang des Basisdorns (3) angeordnet sind.
     
    3. Dornanordnung nach Anspruch 1, wobei die Mehrzahl von Rippenformen (5) eine Mehrzahl von Schlitzen (22) umfassen, die so konfiguriert sind, dass sie mit der Mehrzahl von Führungen (8) in Eingriff stehen, um die Mehrzahl von Rippenformen (5) radial auf dem Basisdorn (3) zu verankern.
     
    4. Dornanordnung nach Anspruch 1, wobei die Mehrzahl von Rippenformen (5) durch ein oder mehrere Befestigungselemente, die von innerhalb des Basisdorns (3) zugänglich sind, an dem Basisdorn (3) befestigt sind.
     
    5. Dornanordnung nach Anspruch 1, wobei die Mehrzahl von Rippenformen (5) und der Basisdorn (3) ebene Flächen in der Querebene aufweisen, um eine hermitische Abdichtung zwischen ihnen mit Dichtungen herzustellen.
     
    6. Dornanordnung nach Anspruch 1, wobei der Basisdorn (3) mit einem Basisdornflansch (13) zum Befestigen des Basisdorns (3) mit der Öffnung (39) am hinteren Ende des Raketenmotorgehäuses (2) versehen ist.
     
    7. Dornanordnung nach Anspruch 1, wobei der Basisdorn (3) mit einer Mehrzahl von Gewindebohrungen (23) versehen ist, die angrenzend an die Mehrzahl von Führungen (8) auf der ebenen Fläche angeordnet sind, um die Mehrzahl von Rippenformen (5) mit dem Basisdorn (3) hermitisch abzudichten.
     
    8. Dornanordnung nach Anspruch 1, wobei der Basisdorn (3) mit einer ringförmigen Dichtung (17) versehen ist, die an der Umrandung am vorderen Ende des Basisdorns (3) angeordnet ist, um eine Abdichtung zwischen dem Basisdorn (3) und dem Kerndorn (4) zu ermöglichen.
     
    9. Dornanordnung nach Anspruch 8, wobei sich die ringförmige Dichtung (17) biegt und an die Außenfläche des Kerndorns (4) anpasst, um eine Abdichtung zwischen dem Kerndorn (4) und dem Basisdorn (3) bereitzustellen, wenn der Kerndorn (4) in den Basisdorn (3) eingeführt wird.
     
    10. Dornanordnung nach Anspruch 1, wobei der Kerndorn mit Wellendichtungsdichtungen zur hermitischen Abdichtung mit dem Anschlussabschnitt (19) des Basisdorns (3) versehen ist.
     
    11. Dornanordnung nach Anspruch 1 und 6, wobei der Basisdorn (3) als Gegenbohrungsabschnitt konfiguriert ist, der ein oder mehrere Sacklochgewinde (16) auf dem Basisdornflansch (13) zum Befestigen des Kerndorns (4) mit dem Basisdorn (3) umfasst.
     
    12. Dornanordnung nach Anspruch 1, wobei die Mehrzahl von Rippenformen (5) mit abgerundeten Außenkanten versehen sind, die auf der Dicke der Rippenformen basieren und mit einer konturierten Innenfläche konfiguriert sind, die sich an den dazu passenden Außenabschnitt des Basisdorns anpasst (3).
     
    13. Verfahren zum Herstellen eines festen Treibstoffkorns eines Raketenmotors unter Verwendung der Dornanordnung nach Anspruch 1, wobei das Verfahren umfasst:
    Konfigurieren der Dornanordnung in ein Gehäuse des Raketenmotors, folgende Handlungen umfassend:

    Bereitstellen einer Mehrzahl von Rippenformen (5) innerhalb des Gehäuses des Raketenmotors;

    Montieren eines Basisdorns (3) an der Öffnung am hinteren Ende des Gehäuses des Raketenmotors;

    Verbinden der Mehrzahl von Rippenformen (5) mit dem Basisdorn (3), wobei die Mehrzahl von Rippenformen (5) eine vorwärts gepfeilte Vorderkante und eine vorwärts gepfeilte Hinterkante umfassen, um eine Mehrzahl vorwärts gepfeilter Längshohlrippenformen zu bilden, die kreisförmig um die Motorachse im festen Treibstoffkorn des Raketenmotors strukturiert sind;

    Verbinden eines Kerndorns (4) mit dem Basisdorn durch Einsetzen in den Basisdorn (3);

    Gießen einer Treibstoffaufschlämmung in das Gehäuse mit montiertem Dorn durch einen Trichter (44) an der Öffnung am vorderen Ende; und

    Entkernen der Dornanordnung aufeinanderfolgend vom Raketenmotor nach dem Aushärten.


     
    14. Verfahren nach Anspruch 13, wobei das Entkernen der Dornanordnung das Entkernen in der Reihenfolge Kerndorn (4), Basisdorn (3) und der Mehrzahl von Rippenformen (5) aus dem gegossenen Treibstoffkorn bei jeweils einer Rippenform (5) gleichzeitig umfasst.
     
    15. Verfahren nach Anspruch 13, wobei die Mehrzahl von Rippenformen (5) unter Verwendung eines massenausgeglichenen Rippenentkernungswerkzeugs (49) aus dem gegossenen festen Treibstoffkorn entfernt werden, um sicherzustellen, dass der Schwerpunkt einer Anordnung der Mehrzahl von Rippenformen (5) und das massenausgeglichene Werkzeug (49) unmittelbar unter dem Hebepunkt liegen.
     
    16. Verfahren nach Anspruch 13, wobei nach dem Verbinden der Mehrzahl von Rippenformen (5) mit dem Basisdorn (3) das Verfahren den Schritt des Abrundens aller enthaltenen Grenzflächen mit scharfen Ecken zwischen dem Basisdorn (3) und der Mehrzahl von Rippenformen (5) mit einem geeigneten inerten Material umfasst.
     


    Revendications

    1. Ensemble mandrin (1) destiné à la fabrication d'un bloc de poudre de propergol solide d'un moteur-fusée, ledit ensemble mandrin comprenant :

    un mandrin de base (3) pouvant être raccordé de manière amovible à l'ouverture d'extrémité arrière (39) du carter (2) de moteur-fusée et capable de former un contre-alésage d'extrémité arrière (58) dans le bloc de poudre de propergol du moteur-fusée ;

    un mandrin central (4) pouvant être raccordé de manière amovible au mandrin de base (3), le mandrin central (4) étant capable de former une cavité axiale longitudinale dans le bloc de poudre de propergol ; et

    une pluralité de moules à ailettes (5), pouvant être raccordés de manière amovible au mandrin de base (3),
    caractérisé en ce que :
    la pluralité de moules à ailettes (5) comprend un bord d'attaque en flèche inversée et un bord de fuite en flèche inversée pour former une pluralité d'ailettes creuses longitudinales en flèche inversée agencées selon un motif circulaire autour de la cavité axiale dans le bloc de poudre de propergol solide du moteur-fusée, le bord d'attaque en flèche inversée et le bord de fuite en flèche inversée de la pluralité de moules à ailettes (5) formant un angle aigu prédéterminé avec un axe du moteur-fusée de telle sorte que la différence d'angles aigus du bord d'attaque en flèche inversée et du bord de fuite en flèche inversée, dans cet ordre, est supérieure à zéro.


     
    2. Ensemble mandrin selon la revendication 1, dans lequel le mandrin de base (3) est une structure axisymétrique creuse présentant une partie orifice (7) comprenant une pluralité de guides (8) disposés selon un motif circulaire sur la circonférence extérieure du mandrin de base (3).
     
    3. Ensemble mandrin selon la revendication 1, dans lequel la pluralité de moules à ailettes (5) comprend une pluralité de fentes (22) conçues pour entrer en prise avec la pluralité de guides (8) afin d'ancrer radialement la pluralité de moules à ailettes (5) sur le mandrin de base (3).
     
    4. Ensemble mandrin selon la revendication 1, dans lequel la pluralité de moules à ailettes (5) est attachée sur le mandrin de base (3) par le biais d'une ou plusieurs attaches qui sont accessibles depuis l'intérieur du mandrin de base (3).
     
    5. Ensemble mandrin selon la revendication 1, dans lequel la pluralité de moules à ailettes (5) et le mandrin de base (3) ont des surfaces planes dans le plan transversal assurant une étanchéité hermétique entre eux à l'aide de joints.
     
    6. Ensemble mandrin selon la revendication 1, dans lequel le mandrin de base (3) est pourvu d'une bride de mandrin de base (13) servant à fixer le mandrin de base (3) à l'ouverture d'extrémité arrière (39) du carter de moteur-fusée (2).
     
    7. Ensemble mandrin selon la revendication 1, dans lequel le mandrin de base (3) est pourvu d'une pluralité de trous taraudés (23) disposés en contiguïté avec la pluralité de guides (8) sur la surface plane pour assurer une étanchéité hermétique entre la pluralité de moules à ailettes (5) et le mandrin de base (3).
     
    8. Ensemble mandrin selon la revendication 1, dans lequel le mandrin de base (3) est pourvu d'un joint annulaire (17) disposé sur le rebord à l'extrémité avant du mandrin de base (3) pour permettre l'étanchéité entre le mandrin de base (3) et le mandrin central (4).
     
    9. Ensemble mandrin selon la revendication 8, dans lequel le joint annulaire (17) se plie et s'adapte à la surface extérieure du mandrin central (4) pour assurer une étanchéité entre le mandrin central (4) et le mandrin de base (3) lorsque le mandrin central (4) est inséré dans le mandrin de base (3).
     
    10. Ensemble mandrin selon la revendication 1, dans lequel le mandrin central est pourvu de joints d'étanchéité d'arbre pour assurer une étanchéité hermétique avec une partie orifice (19) du mandrin de base (3).
     
    11. Ensemble mandrin selon les revendications 1 et 6, dans lequel le mandrin de base (3) présente une partie de contre-alésage comprenant un ou plusieurs trous borgnes taraudés (16) sur la bride de mandrin de base (13) pour attacher le mandrin central (4) au mandrin de base (3).
     
    12. Ensemble mandrin selon la revendication 1, dans lequel la pluralité de moules à ailettes (5) est pourvue de bords extérieurs arrondis sur la base de l'épaisseur des moules à ailettes et présentant une surface intérieure profilée qui s'adapte à la partie extérieure correspondante du mandrin de base (3).
     
    13. Procédé de fabrication d'un bloc de poudre de propergol solide d'un moteur-fusée à l'aide de l'ensemble mandrin selon la revendication 1, le procédé comprenant les actions consistant à :

    configurer l'ensemble mandrin dans un carter du moteur-fusée, ce qui comprend les actions consistant à :

    fournir une pluralité de moules à ailettes (5) à l'intérieur du carter du moteur-fusée ;

    assembler un mandrin de base (3) à l'ouverture d'extrémité arrière du carter du moteur-fusée ;

    raccorder la pluralité de moules à ailettes (5) au mandrin de base (3), la pluralité de moules à ailettes (5) comprenant un bord d'attaque en flèche inversée et un bord de fuite en flèche inversée pour former une pluralité de moules à ailettes creux longitudinaux en flèche inversée agencés selon un motif circulaire autour de l'axe du moteur dans le bloc de poudre de propergol solide du moteur-fusée ;

    raccorder le mandrin central (4) au mandrin de base par insertion dans le mandrin de base (3) ;

    couler une suspension de propergol à l'intérieur du carter, le mandrin étant assemblé, à travers une trémie (44) sur l'ouverture d'extrémité avant ; et

    débourrer l'ensemble mandrin en séquence hors du moteur-fusée lors du durcissement.


     
    14. Procédé selon la revendication 13, dans lequel le débourrage de l'ensemble mandrin comprend le débourrage, dans l'ordre, du mandrin central (4), du mandrin de base (3) et de la pluralité de moules à ailettes (5) hors du bloc de poudre de propergol coulé avec un moule à ailettes (5) à la fois.
     
    15. Procédé selon la revendication 13, dans lequel la pluralité de moules à ailettes (5) sont retirés du bloc de poudre de propergol solide coulé à l'aide d'un outil de débourrage d'ailettes à masse équilibrée (49) pour s'assurer que le centre de gravité d'un ensemble de la pluralité des moules à ailettes (5) et de l'outil d'équilibrage de masse (49) se trouve immédiatement en dessous du point de levage.
     
    16. Procédé selon la revendication 13, dans lequel lors du raccordement de la pluralité de moules à ailettes (5) au mandrin de base (3), le procédé comprend l'étape consistant à fileter toutes les interfaces à angles vifs inclus entre le mandrin de base (3) et la pluralité de moules à ailettes (5) à l'aide d'un matériau inerte approprié.
     




    Drawing









































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description