(19)
(11)EP 3 274 982 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 16711939.5

(22)Date of filing:  10.03.2016
(51)Int. Cl.: 
G09G 3/00  (2006.01)
G09G 5/02  (2006.01)
(86)International application number:
PCT/US2016/021641
(87)International publication number:
WO 2016/153789 (29.09.2016 Gazette  2016/39)

(54)

TEST PATTERNS FOR MOTION-INDUCED CHROMATIC SHIFT

TESTMUSTER FÜR BEWEGUNGSINDUZIERTE CHROMATISCHE VERSCHIEBUNG

MOTIFS DE TEST POUR UN DÉCALAGE CHROMATIQUE INDUIT PAR UN MOUVEMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.03.2015 US 201514667663

(43)Date of publication of application:
31.01.2018 Bulletin 2018/05

(73)Proprietor: Microsoft Technology Licensing LLC
Redmond, Washington 98052-6399 (US)

(72)Inventors:
  • BRUNNER, Daniel
    Redmond, Washington 98052-6399 (US)
  • ROSEN, Andrew
    Redmond, Washington 98052-6399 (US)
  • GLASS, Andrew
    Redmond, Washington 98052-6399 (US)

(74)Representative: CMS Cameron McKenna Nabarro Olswang LLP 
Cannon Place 78 Cannon Street
London EC4N 6AF
London EC4N 6AF (GB)


(56)References cited: : 
  
  • KAZUHISA YANAKA: "Use of periodic shift and color combinations to enhance illusory motion", ACM SIGGRAPH 2012 POSTERS - ASSOCIATION FOR COMPUTING MACHINERY-DIGITAL LIBRARY, ACM, NEW YORK, NY, 5 August 2012 (2012-08-05), page 1, XP058008155, DOI: 10.1145/2342896.2342923 ISBN: 978-1-4503-1682-8
  • YUEH-YI LAI ET AL: "P-57: Color Shift Evaluation in Motion Image", SID 2007, 2007 SID INTERNATIONAL SYMPOSIUM, SOCIETY FOR INFORMATION DISPLAY, LOS ANGELES, USA, vol. XXXVIII, 20 May 2007 (2007-05-20), pages 403-405, XP007013572, ISSN: 0007-966X
  • Taehee Kim ET AL: "P-65: Evaluation Method for Moving Picture Color Smear", S I D International Symposium. Digest of Technical Papers, vol. 41, no. 1, 1 January 2010 (2010-01-01), page 1494, XP055564022, US ISSN: 0097-966X, DOI: 10.1889/1.3499991
  • Rohnde & Schwarz: "Reproducible Quality Analysis of Deinterlacing and Motion Portrayal for Digital TV Displays - Application Note", , 1 December 2008 (2008-12-01), XP055564199, Retrieved from the Internet: URL:https://scdn.rohde-schwarz.com/ur/pws/ dl_downloads/dl_application/application_no tes/7bm74/7BM74_0E.pdf [retrieved on 2019-03-04]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND



[0001] A test pattern can allow a user to troubleshoot, adjust, or calibrate settings of a display device, such as a television set, computer monitor, video receiver, or other device that visually presents information. In the early days of broadcast television, a test pattern was generated by pointing a camera at a test card, and broadcasting the recorded images of the test card. A user could use the broadcast images of the test card to calibrate a television set. Later, images of test patterns were generated by special equipment and broadcast. More recently, a test pattern can be distributed on digital media and played back on a display device, or be stored in onboard memory of a display device and accessed through a settings menu, or even be downloaded and run in a Web browser.

[0002] Typically, a test pattern depicts a known pattern of shapes and/or colors, or depicts a sequence of such patterns. For some types of test pattern, a setting of a display device can be tuned, calibrated, or otherwise adjusted while viewing the test pattern or after viewing the test pattern. In many cases, a test pattern will not be displayed correctly until a setting of the display device is appropriately adjusted. In other cases, using a test pattern, a user can tune performance of the display device according to personal preferences. For example, some test patterns for a liquid crystal display ("LCD") device can allow a user to calibrate various settings, such as contrast, sharpness, saturation, black level, timing (clock, phase), and gamma.

[0003] For other types of test pattern, a problem with a display device or characteristic of the display device can be diagnosed, but the display device is not adjusted. Thus, in some cases, display of a test pattern may induce some behavior in a display device that illustrates a problem with the display device, so as to help a user or manufacturer identify and diagnose the problem. As another example, certain test patterns for an LCD device can allow a user to assess features such as viewing angle of the LCD device.

[0004] Kazuhisa Yanaka in "Use of Periodic Shift and Color Combinations to Enhance Illusory Motion' ACM SIGGRAPH 2012 POSTERS - ASSOCIATION FOR COMPUTING MACHINERY-DIGITAL LIBRARY, ACM, NEW YORK, NY, (20120805), doi:10.1145/2342896.2342923, ISBN 978-1-4503-1682-8, page 1, XP058008155 [X] refers in the abstract to a new illusory motion which is so strong that almost everyone can easily perceive it has been created by using two techniques. One is to shift the image periodically, and the other is to create a still image which causes the illusion by blending only two primary colors such as red and blue.

[0005] Yueh-Yi Lai et al in "P-57: Color Shift Evaluation in Motion Image", SID 2007, 2007 SID INTERNATIONAL SYMPOSIUM, SOCIETY FOR INFORMATION DISPLAY, LOS ANGELES, USA, (20070520), vol. XXXVIII, ISSN 0007-966X, pages 403 - 405, XP007013572 refers in the abstract to motion color images in LCDs become more and more important topic. In this paper, a color shift evaluation method is examined to judge the quality of captured motion images via a pursuit camera system. Furthermore, fifteen expectative color mixtures of color pairs were compared with results of subjective tests. Experiment results revealed that there exits high correlation between measuring system and the subjective test, and the proposed method was enough to be a quality index to present color shift characteristics for LCD displays.

[0006] Taehee Kim ET AL: "P-65: Evaluation Method for Moving Picture Color Smear", SID International Symposium. Digest of Technical Papers, vol. 41, no. 1, 1 January 2010 (201 0-01-01), page 1494, XP055564022, ISSN: 0097-966X, DOl: 10.1889/1.3499991, disclose measuring moving picture colour smear due to the decay time of red green blue phosphors using a pursuit color CCD camera in a measurement system which is constructed with a video signal generator, a photo-detector, a rotary stage with a mirror, and PC, where the angle of the mirror is rotated using the rotary stage to pursue the moving picture. The decay time of red green blue phosphors is measured using a high-speed luminance meter to clarity the cause of the MPCS.

[0007] Rohnde & Schwarz in "Reproducible Quality Analysis of Deinterlacing and Motion Portrayal for Digital TV Displays - Application Note", 1 December2008 (2008-12-01), XP055564199, Retrieved from the Internet: URL:https://scdn.rohdeschwarz.com/ur/pws/dl_downloads/dl_application/application_notes/7bm 7 4/7BM7 4_0E. pdf [retrieved on 2019-03-04] discloses various test sequences which may be offered by a digital video signal generator to perform quality analysis of deinterlacing and motion portrayal for digital TV displays including the various motion artefacts resulting from liquid crystal LCD, plasma (PDP), and digital micromirror (DMD) technologies to be quantified.

SUMMARY



[0008] The invention is set out in the accompanying claims. In summary, the detailed description presents test patterns for motion-induced chromatic shift. In particular, display of one of the test patterns on a liquid crystal display ("LCD") device can expose a problem with the control logic for the LCD device that causes perceptible shifting in color values away from correct color values. For example, when the LCD device displays a detailed, textured pattern of values that moves slightly from frame to frame, the problem may cause color values to shift towards green, or the problem may cause color values to shift towards pink or magenta. In actual use displaying regular images, such chromatic shifts may be noticeable by a user in areas of grayscale values (e.g., white, light gray, dark gray) that unexpectedly show flickering traces of pink, magenta, or green.

[0009] According to one aspect of the innovations described herein, a test pattern evaluation tool (e.g., in a computer system connected to a display device or onboard the display device) determines a test pattern that is based at least in part on a base pattern of pixels as defined in claim 1.

[0010] For example, the test pattern evaluation tool determines the test pattern by loading the test pattern from a library of multiple predefined test patterns. Each of the pixels in the base pattern includes multiple sub-pixel sample values (e.g., red, green, and blue sample values).

[0011] The test pattern evaluation tool successively renders the test pattern for display on the display device. In doing so, the test pattern evaluation tool offsets the base pattern by a number of pixels (e.g., shifting by one pixel horizontally) between successive rendering operations for the test pattern. The number of pixels can indicate an integer offset (e.g., 1 pixel, 2 pixels, 3 pixels) or fractional offset (e.g., ½ pixel, ¼ pixel). This can facilitate evaluation of whether chromatic shift is induced among at least some sub-pixel display elements of the display device. For example, the offsetting of the base pattern happens at the native refresh rate of the display device. In particular, the base pattern and offsetting can be configured to trigger chromatic shift in response to imbalances introduced by control logic in overdrive adjustments among the sub-pixel display elements. Or, the base pattern and offsetting can be configured to trigger chromatic shift in response to imbalances in transition times among the sub-pixel display elements that are introduced by some other factor.

[0012] The innovations can be implemented as part of a method, as part of a computer system configured to perform the method, or as part of computer-readable media storing computer-executable instructions for causing a processor, when programmed thereby, to perform the method. The computer-readable media do not include carrier waves or signals per se. The various innovations can be used in combination or separately. The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS



[0013] 

FIG. 1 is a diagram illustrating example components of a sub-pixel display element of an LCD device.

FIG. 2 is a chart illustrating examples of changes in levels over time for a sample value and sub-pixel display element of an LCD device.

FIGS. 3a-3c are charts illustrating examples of changes in levels over time for a sample value and sub-pixel display element of an LCD device with different levels of overdrive.

FIG. 4 is a diagram illustrating an example of overdrive control logic in an LCD device.

FIGS. 5a-5d are diagrams illustrating examples of chromatic shift.

FIG. 6 is a flow chart illustrating a generalized technique of using a test pattern for motion-induced chromatic shift.

FIGS. 7a and 7b are diagrams illustrating example base patterns of a test pattern for motion-induced chromatic shift.

FIG. 8, 9a, 9b, and 10 are diagrams illustrating example test patterns for motion-induced chromatic shift.

FIGS. 11a and 11b are a code listing illustrating an approach to generating candidate base patterns for a test pattern for motion-induced chromatic shift, and FIG. 12 is a graphic illustrating a pattern generated according to the code listing.

FIG. 13 is a diagram illustrating an example computer system in which some of the innovations described herein can be implemented.


DETAILED DESCRIPTION



[0014] The detailed description presents test patterns for motion-induced chromatic shift. In particular, display of one of the test patterns on a liquid crystal display ("LCD") device can expose a problem with the control logic for the LCD device, when the problem causes shifting in color values (chromatic shift) away from correct color values. For example, when the LCD device displays a detailed, textured pattern of values that moves slightly from frame to frame, color values may shift towards green, or the color values may shift towards pink or magenta. In actual use displaying regular images, such chromatic shifts may be noticeable by a user in areas of grayscale values (e.g., white, light gray, dark gray) that unexpectedly show flickering traces of pink, magenta, or green.

I. Characteristics of LCD Devices



[0015] This section describes various characteristics of LCD devices.

A. Example Sub-pixel Display Element



[0016] FIG. 1 shows example components of a sub-pixel display element of an LCD device, including two polarized light filters (120, 140), a control element (130), and a color filter (150). For the sake of simplicity, other components such as layers of glass for separation are not shown.

[0017] The backlight (110) is a light source for the LCD device. In practice, an LCD device can include a single backlight or multiple backlights in different sections of the LCD device. The backlight (110) can strobe or be continuous. The first polarized light filter (120) blocks light from the backlight (110) that does not have a particular polarization. For example, the first polarized light filter (120) passes light having 0 degree polarization, but blocks other light.

[0018] The control element (130) includes liquid crystals that react to a voltage applied across the control element (130), selectively changing the polarization of light that has passed through the first polarized light filter (120). The control element (130) can use twisted nematic technology, in-plane switching technology, fringe field switching technology, vertical alignment technology, blue phase mode technology, or another liquid crystal technology. At one extreme (e.g., no voltage), the polarization of the light passing through the control element (130) undergoes a "full" change in polarization (e.g., 90 degrees, 270 degrees). At another extreme (e.g., full voltage), the polarization of the light passing through the control element (130) is unchanged. Between these two extremes, the polarization of the light passing through the control element (130) changes depending on the voltage applied across the control element (130).

[0019] The second polarized light filter (140) blocks light from the control element (130) that does not have a particular polarization. For example, the second polarized light filter (120) passes light having 90 degree polarization, but blocks other light. In the example shown in FIG. 1, light whose polarization is unchanged by the control element (130) is completely blocked by the second polarized light filter (140) (i.e., to produce a black level, no brightness), and light whose polarization is "fully" changed by the control element (130) passes through the second polarized light filter (140) (i.e., to produce a white level, full brightness). Intermediate levels of brightness (i.e., grayscale values between white and black) are produced by controlling the voltage applied to the control element (130). (In other variations of LCD technology, the two polarized light filters pass the same polarization of light, and a black level is produced when a control element "fully" changes the polarization of light. Various other features of LCD technology also change depending on implementation.)

[0020] Finally, a color filter (150) filters certain wavelengths of the light, if any, which has passed through the second polarized light filter (140). For example, the color filter (150) passes red light but blocks other light. Or, the color filter (150) passes green light but blocks other light. Or, the color filter (150) passes blue light but blocks other light. In many LCD devices, a set of sub-pixel display elements for red (R), green (G), and blue (B) provide one pixel. Alternatively, a color filter (150) can pass some other color (e.g., yellow). In any case, aside from the color filter (150), the components of the sub-pixel display elements are usually the same for different colors of sub-pixels. That is, the characteristic that is modulated is the brightness, or gray level, of the light that reaches the color filter (150). Alternatively, the functionality of the color filter (150) is provided by a different component of the sub-pixel display element.

[0021] The ordering and placement of the R, G, and B sub-pixel display elements can change depending on implementation. For example, R, G, and B sub-pixel display elements are repeated one after the other (R, G, B, R, G, B, R, G, B ...) in a row of pixels, row-after-row in an LCD device. One row can include 1024, 1920, or more pixels, and an LCD device can include 768, 1080, or more rows. Alternatively, an LCD device orders R, G, and B sub-pixel display elements in a different way.

B. Transitions Between Levels



[0022] FIG. 2 illustrates examples of changes in levels over time for a sample value and sub-pixel display element of an LCD device. The sample value at a given location can change frequently. In some LCD devices, a new sample value for a sub-pixel display element can be specified 30 times per second, 60 times per second, or some other number of times per second. The refresh rate (sometimes called native refresh rate) of a display device indicates how many times per second the display device can be updated. Common refresh rates include 30 hertz and 60 hertz. Changes in the desired sample value ("target level" of brightness, or gray level) are typically provided by computer hardware or software, which can compute the target levels very rapidly. In contrast, a sub-pixel display element of an LCD device may take much longer to transition between two gray levels, in large part due to limits on how quickly the liquid crystals in the control elements can react to changes in voltage.

[0023] In FIG. 2, the target levels (210, 212, 213, 214) for sample values are shown as changing instantaneously at some boundaries between frames t to t+4. If the frame rate is 60 hertz, for example, a new frame is specified every 16.67 milliseconds. The gray level (220) of a sub-pixel display element changes gradually to reach the appropriate target level for a frame. If the target level is unchanged for several frames, the gray level (220) holds at the target level.

[0024] For example, for frame t, the gray level (220) of the sub-pixel display element transitions towards the target level (210) after the target level (210) is specified. The transition is not especially fast, but is completed before the next frame starts. The gray level (220) remains unchanged through frame t+1. For frame t+2, the gray level (220) of the sub-pixel display element transitions towards the target level (212) after the target level (212) is specified. The transition in frame t+2 is much faster than the transition in frame t. For frame t+3, the gray level (220) of the sub-pixel display element transitions towards the target level (213), but does not complete before the next target level (214) is specified. That is, the target level (213) for frame t+3 is never reached. Instead, for frame t+4, the gray level (220) of the sub-pixel display element transitions towards the target level (214).

[0025] As shown in FIG. 2, the transition time between two gray levels can vary significantly. In practice, fast transitions may take 3-4 milliseconds or less, while slow transitions may take 30-40 milliseconds or more. Some transitions (e.g., white to black, black to white) may happen relatively quickly. Other transitions (e.g., dark gray to light gray) may be much slower, even though the starting and ending gray levels are closer. Times for changes in which voltage is increased for a control element may be faster than times for changes in which voltage is decreased. In general, the transition time for a transition depends on the starting gray level and ending gray level. Slow transition times can cause noticeable degradation in the performance of an LCD device, which may take the form of blurring or "ghosting" artifacts in motion sequences.

C. Overdrive



[0026] An LCD device may use "overdrive" technology to reduce the transition time between two gray levels (e.g., white, light gray, dark gray, black). For overdrive, an LCD device initially applies a voltage to "overshoot" a target level, and thereby approach the target level more quickly, but then changes the voltage to match the voltage for the target level. Overdrive, which can also be called response time compensation, can be used in transitions when increasing voltage or used in transitions when decreasing voltage.

[0027] For the sake of comparison with FIGS. 3b and 3c, FIG. 3a shows examples of changes in levels over time for a sample value and sub-pixel display element of an LCD device with no overdrive. The target level (310) for the first two frames is approached during a transition in gray level (320) of a sub-pixel display element in frame t. The gray level (320) is held in the next frame t+1. In frame t+2, a new target level (312) is specified, and the gray level (320) of the display element transitions to the new target level (312).

[0028] FIG. 3b shows examples of changes with overdrive correctly applied to reduce transition times. The target levels (310, 312) are the same as in FIG. 3a. For frame t, the LCD device sets an overdrive level (330) that is higher than the target level (310). This overdrive level (330) causes a faster transition to the target level (310). (Compare the curve of the gray level (320) for frame t in FIGS. 3a and 3b.) At an appropriate time, the voltage is adjusted so that the gray level (320) smoothly reaches the target level (310). Similarly, for frame t+2, the LCD device sets an overdrive level (332) that is lower than the target level (312). This overdrive level (332) causes a faster transition to the target level (312). (Compare the curve of the gray level (320) for frame t+2 in FIGS. 3a and 3b.) At an appropriate time, the voltage is adjusted so that the gray level (320) smoothly reaches the target level (312).

[0029] Setting the appropriate level of overdrive and controlling the timing of overdrive can be complicated. Just like transition times can depend on the starting gray level and ending gray level for a transition, the appropriate level of overdrive and timing can depend on the starting gray level and ending gray level for a transition. When not enough overdrive is applied, a transition may be too slow. When too much overdrive is applied, the gray level may overshoot the target level, causing distortion sometimes called "inverse ghosting."

[0030] FIG. 3c shows examples of changes with overdrive incorrectly applied. The target levels (310, 312) are the same as in FIG. 3a. For frame t, the LCD device sets an overdrive level (340) that is much higher than the target level (310). This overdrive level (340) causes a very fast transition to the target level (310), but the gray level (321) overshoots the target level (310) before returning to the target level (310). For a short period (shown as the error region (350) in FIG. 3c), the gray level is too high, which may be noticeable as inverse ghosting. Similarly, for frame t+2, the LCD device sets an overdrive level (342) that is much lower than the target level (312). This overdrive level (342) causes very fast transition to the target level (312), but the gray level (321) overshoots the target level (312) before returning to the target level (312). For a short period (shown as the error region (352) in FIG. 3c), the gray level is too low, which may be noticeable as inverse ghosting.

[0031] FIG. 4 shows an example of overdrive control logic (400) in an LCD device. The overdrive control logic (400) includes an overdrive lookup table (440) that maps a sample value (target level) for a location in a current frame (401) and sample value (target level) for the location in the previous frame (402) to an overdrive level (451). The overdrive LUT (440) can include up to p x p entries, where p is the number of possible sample values (target levels). For example, for 8-bit values, the overdrive LUT (440) can include 256x256=65536 entries, where each entry maps a different combination of sample value for the current frame (401) (that is, ending gray level) and sample value for the previous frame (402) (that is, starting gray level) to an overdrive level. Alternatively, the overdrive LUT (440) approximates the starting and ending gray levels to reduce the number of entries in the overdrive LUT (440). Or, instead of using a LUT, the overdrive control logic (400) uses a mapping function to map the gray levels to overdrive levels.

[0032] The frame memory (420) can directly store sample values for the previous frame (402). Or, as shown in FIG. 4, to reduce the size of the frame memory (420) (and hence lower the cost of an LCD device), the overdrive control logic (400) can include an encoder (410) that encodes the sample values of the previous frame (402) before the encoded values are stored in the frame memory (420). Typically, the compression applied by the encoder (410) is lossy compression, which reduces the bitrate (and storage cost) of the sample values of the previous frame (402) at the potential cost of distortion/information loss in the sample values. In particular, for certain patterns of sample values, the encoder (410) may approximate the sample values in order to store them in a smaller frame memory. Based on the compressed values in the frame memory (420), the decoder (430) reconstructs a version of the sample values for the previous frame (402). Depending on the amount of distortion/information loss introduced by the encoder (410), the reconstructed sample values may exactly match or poorly approximate the original sample value for the previous frame (402).

[0033] The details of the compression scheme applied by the encoder (410) and corresponding decompression scheme applied by the decoder (430) depend on implementation. In many cases, the encoder (410) performs a color space conversion to convert RGB sample values (or other sample values in a format suitable for controlling the sub-pixel display elements of the LCD device) to a YUV-type color space such as YCbCr for encoding. In a YUV-type color space, a Y sample value represents an overall brightness level among input sample values (here, e.g., R, G, and B sample values). U and V sample values (e.g., Cb, Cr) represent chroma differences. The Y, U, and V sample values are encoded, often using some combination of quantization (approximation) and entropy coding. Typically, Y sample values are encoded more "carefully" than corresponding U and V sample values (e.g., using quantization that is less coarse for Y sample values, or spatially downsampling U and V sample values) because Y sample values are understood to be more important to image quality. In corresponding decompression, a decoder (430) reconstructs the sample values, e.g., using some combination of entropy decoding and inverse quantization. As needed, the decoder (430) inverts a color space conversion performed by the encoder (410), returning sample values to a format suitable for controlling the sub-pixel display elements of the LCD device.

D. Chromatic Shifts



[0034] Although the reconstructed sample values of the previous frame (402) are not rendered for display, distortion introduced by the encoder (410) can change which overdrive levels (451) are retrieved using the overdrive LUT (440), which depends on the reconstructed sample values of the previous frame (402). This, in turn, may affect the display of the sample values of the current frame (401). When distortion is introduced by the encoder (410) during compression of U and V sample values (e.g., Cr, Cb values), the reconstructed R, G, and/or B sample values may be different than the corresponding, original sample values before compression with the encoder (410). For example, suppose RGB sample values for the previous frame (402) have Cb and Cr values of 128 after conversion to YCbCr color space (that is, they are grayscale values). Also suppose that, after compression and decompression, the reconstructed Cb and Cr values are not equal to 128 (e.g., the Cb and Cr values are 124, 126, 130, 132, etc.). This will introduce a pink/magenta shift (if the Cb and Cr values are greater than 128) or green shift (if the Cb and Cr values are less than 128) in the reconstructed R and B sample values of the previous frame (402). Such differences in reconstructed R and B sample values for the previous frame (402) may cause the LCD device to apply too much overdrive or not enough overdrive when rendering the sample values for the current frame (401).

[0035] In the examples shown in FIGS. 5a-5d, applying voltage to a control element of a sub-pixel display element causes a darker color to be displayed. Applying full voltage causes the control element to reach a state in which the polarization of light passing through the control element is unchanged, and the light is completely blocked by the second polarized light filter - black level. Applying no voltage causes the control element to reach a state in which the polarization of light passing through the control element is fully changed, and the light completely passes through the second polarized light filter - white level. Applying an intermediate voltage causes the control element to reach a state in which an appropriate amount of the light passes through the second polarized light filter - a gray level.

[0036] FIG. 5a shows a darkening transition between two gray levels for red, green, and blue sub-pixel display elements. In each of the sub-pixel display elements, the starting gray level is the same, and the target level (510) is the same. An overdrive level (530) is specified for each of the red and blue sub-pixel display elements, resulting in the correct transition of the gray level (520) to the target level (510). For the green sub-pixel display element, however, the overdrive level (531) is too high. As a result, the gray level (521) of the green sub-pixel display element increases (darkens) faster than the gray level (520) for the red and blue sub-pixel display elements. That is, the green sub-pixel display element gets darker faster than the red and blue sub-pixel display elements, causing a pink/magenta chromatic shift (shown as error (541)) until the target level (510) is reached by all of the sub-pixel display elements. The overdrive level (531) for the green sub-pixel display element might be too high, for example, if the reconstructed G sample value of the previous frame (after compression and decompression as described with reference to FIG. 4) is too bright, such that too much overdrive is applied to reach the target level (510). Similarly, a pink/magenta chromatic shift would result if the overdrive level for the green sub-pixel element is correct, but not enough overdrive is applied for the red and blue sub-pixel elements, such that the green sub-pixel display element darkens faster than the red and blue sub-pixel display elements.

[0037] FIG. 5b also shows a darkening transition between two gray levels for red, green, and blue sub-pixel display elements. In each of the sub-pixel display elements, the starting gray level is the same, and the target level (510) is the same. An overdrive level (530) is specified for the green sub-pixel display element, resulting in the correct transition of the gray level (520) to the target level (510). For each of the red and blue sub-pixel display elements, however, the overdrive level (531) is too high. As a result, the gray level (521) of each of the red and blue sub-pixel display element increases (darkens) faster than the gray level (520) for the green sub-pixel display element. That is, the red and blue sub-pixel display elements get darker faster than the green sub-pixel display element, causing a green chromatic shift (shown as error (542)) until the target level (510) is reached by all of the sub-pixel display elements. The overdrive level for the red and blue sub-pixel display element might be too high, for example, if the reconstructed R and B sample value of the previous frame (after compression and decompression as described with reference to FIG. 4) are too bright, such that too much overdrive is applied to reach the target level (510). Similarly, a green chromatic shift would result if the overdrive level for the red and blue sub-pixel elements is correct, but not enough overdrive is applied for the green sub-pixel element, such that the green sub-pixel display element darkens slower than the red and blue sub-pixel display elements.

[0038] FIGS. 5c and 5d illustrate chromatic shift in brightening transitions. FIG. 5c shows a brightening transition between two gray levels for red, green, and blue sub-pixel display elements. In each of the sub-pixel display elements, the starting gray level is the same, and the target level (515) is the same. An overdrive level (535) is specified for the green sub-pixel display element, resulting in the correct transition of the gray level (525) to the target level (515). For each of the red and blue sub-pixel display elements, however, the overdrive level (536) is too low. As a result, the gray level (526) of each of the red and blue sub-pixel display element decreases (brightens) faster than the gray level (520) for the green sub-pixel display element. That is, the red and blue sub-pixel display elements get brighter faster than the green sub-pixel display element, causing a pink/magenta chromatic shift (shown as error (545)) until the target level (515) is reached by all of the sub-pixel display elements. The overdrive level for the red and blue sub-pixel display element might be too low, for example, if the reconstructed R and B sample value of the previous frame (after compression and decompression as described with reference to FIG. 4) are too dark, such that too much overdrive is applied to reach the target level (515). Similarly, a pink/magenta chromatic shift would result if the overdrive level for the red and blue sub-pixel elements is correct, but not enough overdrive is applied for the green sub-pixel element, such that the green sub-pixel display element brightens slower than the red and blue sub-pixel display elements.

[0039] FIG. 5d also shows a brightening transition between two gray levels for red, green, and blue sub-pixel display elements. In each of the sub-pixel display elements, the starting gray level is the same, and the target level (515) is the same. An overdrive level (535) is specified for each of the red and blue sub-pixel display elements, resulting in the correct transition of the gray level (525) to the target level (515). For the green sub-pixel display element, however, the overdrive level (531) is too low. As a result, the gray level (526) of the green sub-pixel display element decreases (brightens) faster than the gray level (520) for the red and blue sub-pixel display elements. That is, the green sub-pixel display element gets brighter faster than the red and blue sub-pixel display elements, causing a green chromatic shift (shown as error (545)) until the target level (515) is reached by all of the sub-pixel display elements. The overdrive level (536) for the green sub-pixel display element might be too low, for example, if the reconstructed G sample value of the previous frame (after compression and decompression as described with reference to FIG. 4) is too dark, such that too much overdrive is applied to reach the target level (515). Similarly, a green chromatic shift would result if the overdrive level for the green sub-pixel element is correct, but not enough overdrive is applied for the red and blue sub-pixel elements, such that the green sub-pixel display element brightens faster than the red and blue sub-pixel display elements.

[0040] In other implementations of LCD sub-pixel display elements, as described with reference to FIG. 1, applying full voltage results in a white level, and applying no voltage results in a black level. Cases of chromatic shift still may similarly occur. The darkening transitions shown in FIGS. 5a and 5b would instead be brightening transitions, with chromatic shift in the opposite direction occurring for the respective examples. The brightening transitions in FIGS. 5c and 5d would instead be darkening transitions, with chromatic shift in the opposite direction occurring for the respective examples.

[0041] Aside from distortion introduced in compression of the sample values of a previous frame in LCD control logic, chromatic shift may be caused by other factors. For example, overdrive control logic may introduce variations or imbalances in overdrive levels by performing operations or making decisions for an area that includes multiple sample values, instead of making decisions on a per sample value basis. Or, as another example, overdrive control logic may introduce variations or imbalances in overdrive levels if dithering is used to simulate 24-bit color values with 18-bit color values (simulating color values with 8 bits per sample value using color values with 6 bits per sample value). For spatial dithering, for example, suppose four pixels in an area have the same 24-bit color value, which has no exact counterpart among 18-bit color values. The 24-bit color value may be simulated with two or three of the pixels having a first 18-bit color value and the remaining pixel(s) having a different (close) 18-bit color value. Which pixel(s) have the different 18-bit color value can change from frame to frame, in effect providing a low-level motion that may induce chromatic shift, even if a still image such as a photograph is displayed from frame to frame. In any case, chromatic shift may result if latency is different for different types of sub-pixel display elements that should transition to the same target level (e.g., if red and blue sub-pixel display elements are faster than green sub-pixel display elements, or if red and blue sub-pixel display elements are slower than green sub-pixel display elements).

II. Test Patterns for Motion-induced Chromatic Shift



[0042] This section describes test patterns for motion-induced chromatic shift. In particular, display of one of the test patterns on an LCD device can expose a problem with the control logic for the LCD device, when the problem causes shifting in color values (chromatic shift) away from correct color values. In actual use displaying regular images, such chromatic shifts may be noticeable by a user in areas of grayscale values (e.g., white, light gray, dark gray) that unexpectedly show flickering traces of pink, magenta, or green. Such motion-induced color aberrations are caused by sub-pixel display elements not responding at the same rate for a given transition between two gray levels.

[0043] In practice, motion-induced chromatic shift typically happens when video includes motion from frame to frame. In some cases, however, repeated display of a still image can trigger motion-induced chromatic shift (e.g., when dithering in LCD control logic introduces small, regular changes in sample values from frame to frame, even in the absence of motion in video). Still-image chromatic shift is a special case (i.e., type) of motion-induced chromatic shift that occurs when low-level changes are introduced in sample values from frame to frame by the display process.

A. Example Uses of Test Patterns for Motion-induced Chromatic Shift



[0044] FIG. 6 shows a generalized technique (600) of using a test pattern for motion-induced chromatic shift. The technique (600) is performed by a test pattern evaluation tool. The test pattern evaluation tool can be a software program executing on a computer system having an associated display device (e.g., laptop computer, personal computer). The software program can be a special-purpose application for display device evaluation, a control in a Web browser window, or some other software program. Or, the test pattern evaluation tool can be implemented in logic in a hardware component (e.g., as part of system on a chip for a video card, as part of a component of a gaming console). Or, the test pattern evaluation tool can be implemented in a display device itself (e.g., as part of the functionality for an on-screen display menu for device settings or calibration, which may be provided through firmware on the display device).

[0045] To start, the test pattern evaluation tool determines (610) a test pattern that is based at least in part on a base pattern of pixels. For example, the test pattern evaluation tool loads the test pattern from a library of multiple predefined test patterns. Alternatively, the test pattern evaluation tool generates the test pattern on-the-fly from a base pattern.

[0046] Each of the pixels in the base pattern includes multiple sub-pixel sample values. For example, the base pattern is an n x m pattern of grayscale values (grayscale R, G, B sample values) that is replicated multiple times within the test pattern, where each of n and m is a whole number that is a multiple of 2. FIGS. 7a and 7b show examples of 2x4 base patterns. Alternatively, the base pattern includes another pattern of grayscale values, or the base pattern has another size (e.g., 4x2, 2x3, 3x2, 2x2, 5x3, 3x5, and so on, or a much larger size, up to the size of the test pattern, in which case the base pattern is not replicated or repeated within the test pattern). FIGS. 11a and 11b show one approach to generating a complex pattern that may include areas suitable for a base pattern, as described below. For example, suitable areas for the base pattern may be derived based at least in part on sampling of a sine wave having a period of less than two pixels. To cause motion-induced chromatic shift, complicated base patterns tend to be more effective than simple base patterns.

[0047] FIGS. 8, 9a, and 9b show example test patterns in which a base pattern is simply replicated within the test pattern. A base pattern can instead be scaled at various scaling factors, stretched at various stretching factors, and/or distorted at various distortion factors within the test pattern, as described with reference to FIG. 10. Alternatively, the test pattern evaluation tool uses another test pattern.

[0048] In many of the foregoing examples, the test pattern uses a base pattern of grayscale values such as white, various shades of gray, and black. Using a test pattern with grayscale values can make chromatic shifts more readily apparent to a human viewer. Alternatively, however, the test pattern evaluation tool can use a test pattern in which a base pattern includes at least some non-grayscale values.

[0049] The test pattern evaluation tool successively renders (620) the test pattern for display on a display device, which can be an LCD device or other type of display device with sub-pixel display elements (e.g., a LED device, OLED device, quantum dot display device, where sub-pixel display elements for a pixel may have different transition times). In successively rendering (620) the test pattern, the test pattern evaluation tool offsets the base pattern by a number of pixels between successive rendering operations for the test pattern. The number of pixels can be an integer offset. For example, the test pattern evaluation tool shifts the base pattern one pixel horizontally between the successive rendering operations. The shifting can always be in the same direction (e.g., always left, always right). Or, when the base pattern is a 2x4 pattern, the test pattern evaluation tool causes the base pattern to oscillate regularly between the successive rendering operations (e.g., left, then right, then left, and so on). Alternatively, the test pattern evaluation tool shifts the base pattern one pixel vertically between the successive rendering operations, shifting in the same direction (e.g., always up, always down) or, for some patterns, oscillating. Or, the test pattern evaluation tool shifts the base pattern horizontally then vertically between the successive rendering operations (e.g., left, then down, then right, then up), which may resemble a rotation, as in some dithering for a 2x2 base pattern. Also, the test pattern need not be offset between all successive rendering operations. When offsetting the base pattern between successive rendering operations, offsets can be skipped between some of the successive rendering operations. Alternatively, the test pattern evaluation tool shifts the base pattern by some other number of pixels that causes regular motion in the test pattern. For example, the number of pixels can be a fractional offset such as a ½-pixel offset or ¼-pixel offset. In this case, values for the base pattern at the fractional offset can be derived by interpolation, with the test pattern alternating between the initial values of the base pattern and the interpolated values at the fractional offset. Although interpolation may be computationally intensive, the interpolated values can be determined at design time and directly specified in the test pattern.

[0050] The display device has a native refresh rate such as 30 hertz or 60 hertz. In some implementations, the offsetting the base pattern happens at the native refresh rate of the display device, which tends to accentuate motion-induced chromatic shift. For example, the base pattern is shifted or oscillates at the native refresh rate of the display device. Alternatively, the offsetting the base pattern happens a different rate, not synchronized with the native refresh rate of the display device, which may result in less noticeable chromatic shift.

[0051] The successive rendering (620) facilitates evaluation of whether chromatic shift is induced among at least some sub-pixel display elements of the display device. In particular, the base pattern and offsetting are configured to trigger chromatic shift in response to imbalances introduced by overdrive control logic in overdrive adjustments among the sub-pixel display elements. Or, the base pattern and offsetting can be configured to trigger chromatic shift in response to imbalances in transition times among the sub-pixel display elements that are introduced by some other factor.

B. Example Base Patterns and Example Test Patterns



[0052] FIGS. 7a and 7b show example base patterns (701, 702) of a test pattern for motion-induced chromatic shift. A test pattern evaluation tool can use either of the base patterns (701, 702) in a test pattern to reveal motion-induced chromatic shifts due to mistimed or misaligned sub-pixel display elements.

[0053] The base pattern (701) in FIG. 7a is a 2x4 pattern of pixels with grayscale sample values. The base pattern (702) in FIG. 7b is also a 2x4 pattern of pixels with grayscale sample values, but the pattern shown in FIG. 7b is simpler than the pattern shown in FIG. 7a. In many cases, the pattern shown in FIG. 7b is less effective than the pattern shown in FIG. 7a at causing motion-induced chromatic shift. Alternatively, the base pattern includes another pattern of grayscale values or includes at least some non-grayscale values. Also, the base pattern can have a size other than 2x4 (e.g., 4x2, 2x3, 3x2, 2x2, 5x3, 3x5, and so on, or a much larger size, up to the size of the test pattern, in which case the base pattern is not replicated or repeated within the test pattern).

[0054] FIG. 8 shows a simple example test pattern (800) for motion-induced chromatic shift. The test pattern (800) can have an arbitrary size, filling an entire display device or only a portion of the display device (e.g., a window). The test pattern (800) is rendered at the native resolution of the display device. In the test pattern (800), a base pattern (such as the base pattern (701) shown in FIG. 7a, base pattern (702) shown in FIG. 7b, or other base pattern) is replicated throughout the test pattern (800) in each frame. From frame to frame, pixels oscillate by one pixel horizontally at the native refresh rate of the display device, advancing and returning at a regular rate. As needed, a column of pixels consistent with the pattern can be added at the left or right side of the test pattern

[0055] (800). Alternatively, the replicated base pattern shifts by one pixel to the left (or right) on a frame-by-frame basis at the native refresh rate of the monitor, with the column of pixels that exits one side of the test pattern (800) being added back on the opposite side. Alternatively, instead of oscillating horizontally, for a different base pattern, the test pattern (800) can oscillate vertically.

[0056] On some display devices, rendering the test pattern (800) causes a chromatic shift throughout the test pattern (800) as sub-pixel display elements within the respective pixels of the test pattern (800) (or at least some of the respective pixels) fail to maintain uniform transition timing. The chromatic shift may be, for example, a solid area

[0057] (810) of pink/magenta within the test pattern (800), or it may be a solid area (810) of green within the test pattern (800). In some cases, the color of the chromatic shift changes depending on the phase of the oscillation. If starting the oscillation by shifting to the right causes one color of chromatic shift (e.g., pink/magenta), then starting the oscillation by shifting to the left causes another color of chromatic shift (e.g., green). Typically, chromatic shift induced in one area of the test pattern (800) also appears in other areas of the test pattern (800), since the same base pattern is being shifted in the same way throughout the test pattern (800).

[0058] FIGS. 9a and 9b show example wipe test patterns (901, 902) for motion-induced chromatic shift. In FIG. 9a, the wipe test pattern (901) can have an arbitrary size, filling an entire display device or only a portion of the display device (e.g., a window). The wipe test pattern (901) is rendered at the native resolution of the display device. In the wipe test pattern (901), a base pattern (such as the base pattern (701) shown in FIG. 7a, base pattern (702) shown in FIG. 7b, or other base pattern) is replicated throughout the test pattern (901) in each frame. From frame to frame, pixels oscillate by one pixel horizontally at the native refresh rate of the display device, advancing and returning at a regular rate. As needed, a column of pixels consistent with the pattern can be added at the left or right side of the test pattern (901). Alternatively, the replicated base pattern shifts by one pixel to the left (or right) on a frame-by-frame basis at the native refresh rate of the monitor, with the column of pixels that exits one side of the test pattern (901) being added back on the opposite side. Alternatively, instead of oscillating horizontally, for a different base pattern, the test pattern (901) can oscillate vertically.

[0059] Unlike the test pattern (800) shown in FIG. 8, the wipe test pattern (901) shown in FIG. 9a includes a fixed boundary (910) between two areas, as well as a rotating arm (920) that provides a "wipe reveal" effect. The arm (920) rotates around the center of the wipe test pattern (901) in successive rendering operations. Pixels oscillate (or move) in opposite phases in each new rotation of the rotating arm (920), starting at the boundary (910) and being exposed behind the arm (920) as it rotates. In some display devices, this causes different chromatic shift in the area behind the rotating arm (920) and in the area ahead of the rotating arm (920). For example, when the arm rotates in a clockwise manner, a solid area (940) behind the rotating arm (920) in a given rotation exhibits one chromatic shift (e.g., green), and a solid area (930) ahead of the rotating arm (920) in the given rotation exhibits another chromatic shift (e.g., pink/magenta). The wipe test pattern (901) can start with a full field in the same phase, causing a uniform chromatic shift in the entire pattern. As the rotating arm (920) rotates, an area with a different, opposite phase of oscillation is exposed behind the arm (920), which may cause a different chromatic shift in the area behind the arm (920), compared to the area ahead of the arm (920) that still has the other phase. Thus, for most stages, the test pattern (901) can show two chromatic shifts at the same time.

[0060] The wipe test pattern (902) shown in FIG. 9b includes the features of the wipe test pattern (901) shown in FIG. 9a. The wipe test pattern (902) shown in FIG. 9b also includes reference areas (951-954). Each of the reference areas includes pixels of a predefined color, which illustrate a degree of chromatic shift. For example, the reference areas (951-954) include pixels with different colors of pink/magenta or green, against which chromatic shift induced in the test pattern (902) can be judged.

[0061] FIG. 10 shows an example warp test pattern (1001) for motion-induced chromatic shift. In FIG. 10, the warp test pattern (1001) can have an arbitrary size, filling an entire display device or only a portion of the display device (e.g., a window). The warp test pattern (1001) is rendered at the native resolution of the display device. In the warp test pattern (1001), a base pattern (such as the base pattern (701) shown in FIG. 7a, base pattern (702) shown in FIG. 7b, or other base pattern) is repeated throughout the test pattern (1001) in each frame, with the base pattern being scaled according to various scaling factors, stretched according to various stretching factors, and/or distorted at various distortion factors within the test pattern (1001). From time to time (e.g., every second, every five seconds), the way the base pattern is repeated within the test pattern (1001) can be changed slightly. Thus, the base pattern as repeated in the test pattern (1001) can be compressed and expanded from time to time over a period much longer than the period of oscillation.

[0062] In any case, from frame to frame, pixels oscillate by one pixel horizontally at the native refresh rate of the display device, advancing and returning at a regular rate. As needed, a column of pixels consistent with the pattern can be added at the left or right side of the test pattern (1001). Alternatively, the repeated base pattern shifts by one pixel to the left (or right) on a frame-by-frame basis at the native refresh rate of the monitor, with the column of pixels that exits one side of the test pattern (1001) being added back on the opposite side. Alternatively, instead of oscillating horizontally, for a different base pattern, the test pattern (1001) can oscillate vertically.

[0063] On some display devices, rendering the warp test pattern (1001) causes alternating waves of chromatic shift throughout the test pattern (1001) as sub-pixel display elements within the respective pixels of the test pattern (1001) (or at least some of the respective pixels) fail to maintain uniform transition timing. The chromatic shift may be, for example, a solid area (1030) of pink/magenta within the test pattern (1001) alternating with a solid area (1040) of green within the test pattern (1001).

C. Generating Base Patterns



[0064] FIGS. 11a and 11b show a code listing (1101) illustrating an approach to generating candidate base patterns for a test pattern for motion-induced chromatic shift. Specifically, the code listing (1101) is a Visual Basic Script macro for Excel 2010. In this approach, a sine wave is sampled at various locations in a window with dimensions DimX and DimY (a 200x200 window in the code listing of FIGS. 11a and 11b). The amplitude of the sine wave varies between 16 and 235, which thus define the range of grayscale values. The frequency of the sine wave changes depending on location. FIG. 12 shows the generated pattern (1200).

[0065] By using the generated pattern (1200) as the base pattern in a test pattern, which oscillates at the native refresh rate of a display device, areas that cause motion-induced chromatic shift can be isolated. The patterns of sample values in such isolated areas can be used as base patterns, which are then used throughout a test pattern. In the pattern (1200) shown in FIG. 12, chromatic shift is especially noticeable in areas located 45 degrees, 135 degrees, 225 degrees, and 315 degrees from the center of the pattern (1200). Such areas include the highest-frequency details of the pattern (1200).

[0066] More generally, uniform patterns such as checkerboards, stripes, rows, or diagonals do not tend to cause chromatic shift when oscillated as part of a test pattern. Complex waveform patterns are more likely to yield motion-induced chromatic shift. Certain patterns based on derivatives of sine waves (as shown within the graphic pattern

[0067] (1200) of FIG. 12) tend to cause pronounced chromatic shift when oscillated as part of a test pattern, especially when the sine waves that are sampled have a period shorter than two pixels.

III. Example Computer Systems and Operating Environments



[0068] FIG. 13 illustrates a generalized example of a suitable computer system (1300) in which several of the described innovations may be implemented. The computer system (1300) is not intended to suggest any limitation as to scope of use or functionality, as the innovations may be implemented in diverse general-purpose or special-purpose computer systems.

[0069] With reference to FIG. 13, the computer system (1300) includes one or more processing units (1310, 1315) and memory (1320, 1325). The processing units (1310, 1315) execute computer-executable instructions. A processing unit can be a general-purpose CPU, processor in an ASIC or any other type of processor. In a multiprocessing system, multiple processing units execute computer-executable instructions to increase processing power. For example, FIG. 13 shows a CPU (1310) as well as a GPU or co-processing unit (1315). The tangible memory (1320, 1325) may be volatile memory (e.g., registers, cache, RAM), non-volatile memory (e.g., ROM, EEPROM, flash memory, etc.), or some combination of the two, accessible by the processing unit(s). The memory (1320, 1325) stores software (1380) implementing one or more innovations for generating and/or using test patterns for motion-induced chromatic shift, in the form of computer-executable instructions suitable for execution by the processing unit(s).

[0070] A computer system may have additional features. For example, the computer system (1300) includes storage (1340), one or more input devices (1350), one or more output devices (1360), and one or more communication connections (1370). An interconnection mechanism (not shown) such as a bus, controller, or network interconnects the components of the computer system (1300). Typically, operating system software (not shown) provides an operating environment for other software executing in the computer system (1300), and coordinates activities of the components of the computer system (1300).

[0071] The tangible storage (1340) may be removable or non-removable, and includes magnetic disks, magnetic tapes or cassettes, optical storage media such as CD-ROMs or DVDs, or any other medium which can be used to store information and which can be accessed within the computer system (1300). The storage (1340) stores instructions for the software (1380) implementing one or more innovations for generating and/or using test patterns for motion-induced chromatic shift.

[0072] The input device(s) (1350) may be a touch input device such as a keyboard, mouse, pen, or trackball, a voice input device, a scanning device, or another device that provides input to the computer system (1300). For video, the input device(s) (1350) may be a camera, video card, TV tuner card, screen capture module, or similar device that accepts video input in analog or digital form, or a CD-ROM or CD-RW that reads video input into the computer system (1300). In particular, if the computer system (1300) uses the test patterns as part of a calibration process with a feedback loop (see below), a camera can capture images of the test patterns on a display device. The output device(s) (1360) include a display device such as an LCD device. The output device(s) may also include a printer, speaker, CD-writer, or another device that provides output from the computer system (1300).

[0073] The communication connection(s) (1370) enable communication over a communication medium to another computing entity. The communication medium conveys information such as computer-executable instructions, audio or video input or output, or other data in a modulated data signal. A modulated data signal is a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media can use an electrical, optical, RF, or other carrier.

[0074] The innovations presented herein can be described in the general context of computer-readable media. Computer-readable media are any available tangible media that can be accessed within a computing environment. By way of example, and not limitation, with the computer system (1300), computer-readable media include memory (1320, 1325), storage (1340), and combinations of any of the above. As used herein, the term computer-readable media does not cover, encompass, or otherwise include carrier waves or signals per se.

[0075] The innovations can be described in the general context of computer-executable instructions, such as those included in program modules, being executed in a computer system on a target real or virtual processor. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Computer-executable instructions for program modules may be executed within a local or distributed computer system.

[0076] The terms "system" and "device" are used interchangeably herein. Unless the context clearly indicates otherwise, neither term implies any limitation on a type of computer system or computer device. In general, a computer system or computer device can be local or distributed, and can include any combination of special-purpose hardware and/or general-purpose hardware with software implementing the functionality described herein.

[0077] The disclosed methods can also be implemented using specialized computing hardware configured to perform any of the disclosed methods. For example, the disclosed methods can be implemented by an integrated circuit (e.g., an ASIC such as an ASIC digital signal processor ("DSP"), a GPU, or a programmable logic device ("PLD") such as a field programmable gate array ("FPGA")) specially designed or configured to implement any of the disclosed methods.

[0078] For the sake of presentation, the detailed description uses terms like "determine," "set," and "use" to describe computer operations in a computer system. These terms are high-level abstractions for operations performed by a computer, and should not be confused with acts performed by a human being. The actual computer operations corresponding to these terms vary depending on implementation.

IV. Alternatives and Variations



[0079] In most of the preceding examples, test patterns are used to detect motion-induced chromatic shift. Such test patterns can also be used as part of a feedback loop, if the cause of the motion-induced chromatic shift can be addressed by tuning, calibrating, or otherwise adjusting a setting of a display device, or if sample values can be adjusted to mitigate motion-induced chromatic shift.

[0080] For example, in a feedback loop, a calibration tool records an image of the test pattern as rendered on a display device. The image can be recorded using a camera or other capture device. The calibration tool determines whether the image shows chromatic shift. For example, the calibration tool compares original sample values with sample values as rendered on the display device, then decides whether chromatic shift has been induced. Or, the calibration tool receives user input that indicates the presence of chromatic shift (or a degree of chromatic shift), then decides whether chromatic shift has been induced based on the user input. If chromatic shift is detected, in response to determining that the image shows chromatic shift, the calibration tool adjusts one or more settings of the display device, one or more settings of a video card, and/or one or more other settings for processing of sample values to mitigate the chromatic shift. The calibration tool can repeat this process multiple times to address motion-induced chromatic shift in the display device.

[0081] The calibration tool can be a software program executing on a computer system having an associated display device (e.g., laptop computer, personal computer). The software program can be a special-purpose application for display device calibration, a control in a Web browser window, or some other software program. Or, the calibration tool can be implemented in logic in a hardware component (e.g., as part of system on a chip for a video card, as part of a component of a gaming console). Or, the calibration tool can be implemented in a display device itself (e.g., as part of the functionality for an on-screen display menu for device settings or calibration, which may be provided through firmware on the display device).

[0082] In many of the examples described herein, the display device is an LCD device. Alternatively, the test patterns for motion-induced chromatic shift can be used to identify problems with another type of display device that has sub-pixel display elements (e.g., a LED device, OLED device, quantum dot display device, where sub-pixel display elements for a pixel may have different transition times). For example, one of the test patterns can be used to identify a problem with the timing of signals to the sub-pixel display elements or a problem with control logic for the sub-pixel display elements.

[0083] In many of the examples described herein, the test pattern uses a base pattern of grayscale values. Using grayscale values such as white, various shades of gray, and black can make chromatic shift more readily apparent to a human viewer. In contrast, chromatic shift may be masked (less perceptible for a human viewer) by a test pattern that uses values other than grayscale values. Alternatively, however, a test pattern in which a base pattern includes at least some non-grayscale values can be used.

[0084] In many of the examples described herein, chromatic shift is a shade of green or pink/magenta. Alternatively, chromatic shift has another color (e.g., blue, cyan, orange, yellow).

[0085] More generally, various alternatives to the examples presented herein are possible. For example, some of the methods presented herein can be altered by changing the ordering of the method acts described, by splitting, repeating, or omitting certain method acts, etc. The various aspects of the disclosed technology can be used in combination or separately. Different embodiments use one or more of the described innovations. Some of the innovations presented herein address one or more of the problems noted in the background. Typically, a given technique/tool does not solve all such problems.

[0086] In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims.


Claims

1. One or more computer-readable memory or storage devices (1320, 1325, 1340) storing computer-executable instructions for causing a processor (1310,1315), when programmed thereby, to perform a test pattern evaluation (800) method on sub-pixel display elements of a display device, the method comprising:

determining (610) a test pattern (800) comprising a base pattern (701, 702) of pixels replicated zero or more times within the test pattern, wherein each of the pixels in the base pattern includes multiple sub-pixel sample values, wherein the base pattern is based on sampling of a sine wave having a period of less than two pixels; and wherein the base pattern comprises a pattern of grey-scale values;

successively rendering (620) the test pattern for display on the display device; and,

causing motion-induced chromatic shift in the test pattern among at least some sub-pixel display elements of the display device by offsetting the base pattern by a number of pixels between successive renderings of the test pattern, wherein the offsetting shifts the base pattern by a number of pixels that causes regular motion in the test pattern.


 
2. One or more computer-readable memory or storage devices (1320, 1325, 1340) as claimed in claim 1,
wherein the offsetting includes shifting by one pixel horizontally between the successive rendering operations and wherein the base pattern oscillates regularly between the successive rendering operations or
wherein the offsetting includes shifting by one pixel vertically between the successive rendering operations and wherein the base pattern oscillates regularly between the successive rendering operations.
 
3. The one or more computer readable memory or storage devices (1320, 1325, 1340) of claim 1, wherein the offsetting shifts the base pattern horizontally then vertically between the successive renderings.
 
4. The one or more computer readable memory or storage devices (1320, 1325, 1340) of claim 1, wherein within the test pattern the base pattern is not replicated but is instead:

scaled at multiple scaling factors;

stretched at multiple stretching factors; and/or

distorted at various distortion factors within the test pattern.


 
5. The one or more computer-readable memory or storage devices (1320, 1325, 1340) of claim 1, wherein the determining the test pattern comprises;

loading the test pattern from a library of multiple predefined test patterns; or

generating the test pattern on-the-fly from a base pattern.


 
6. The one or more computer-readable memory or storage devices (1320, 1325, 1340) of claim 1, wherein the display device is a liquid crystal display, LCD, device.
 
7. The one or more computer-readable memory or storage devices (1320, 1325, 1340) of claim 1, wherein the display device has a native refresh rate, and wherein the offsetting the base pattern happens at the native refresh rate of the display device.
 
8. The one or more computer-readable memory or storage devices (1320, 1325, 1340) of claim 1, wherein the test pattern is a wipe test pattern between two areas of different types of chromatic shift, the wipe test pattern further including an arm that rotates around a center of the wipe test pattern in the successive rendering operations, and wherein phase of the offsetting is different on opposite sides of the arm within the test pattern.
 
9. The one or more computer-readable memory or storage devices (1320, 1325, 1340) of claim 1, wherein the test pattern is a warp test pattern having two areas of different types of chromatic shift, the base pattern being repeated at various scaling factors, stretching factors, and/or distortion factors within the test pattern.
 
10. The one or more computer-readable memory or storage devices (1320, 1325, 1340) of claim 1, further storing computer-executable instructions for causing the processor, when programmed thereby, to perform calibration comprising, in a feedback loop:

causing an image capture device to record the successively rendered image of the test pattern on the display device;

determining whether the recorded image shows chromatic shift; and

in response to determining that the recorded image shows chromatic shift, adjusting one or more attributes of the display device and/or a setting of a video card to mitigate the chromatic shift.


 
11. The one or more computer-readable memory or storage devices (1320, 1325, 1340) of claim 1, wherein the base pattern is an n x m pattern of grayscale values that is replicated multiple times within the test pattern, and wherein each of n and m is a whole number that is a multiple of 2.
 
12. A processor-implemented method for performing test pattern evaluation on sub-pixel display elements of a display device, the method comprising:

determining (610) a test pattern (800) comprising a base pattern (701, 702) of pixels replicated zero or more times within the test pattern, wherein each of the pixels in the base pattern includes multiple sub-pixel sample values, wherein the base pattern is based on sampling of a sine wave having a period of less than two pixels, and wherein the base pattern comprises a pattern of grey-scale values;

successively rendering (620) the test pattern for display on the display device; and,

causing motion-induced chromatic shift in the test pattern among at least some sub-pixel display elements of the display device by offsetting the base pattern by a number of pixels between successive renderings of the test pattern, wherein the offsetting shifts the base pattern by a number of pixels that causes regular motion in the test pattern.


 
13. The method as claimed in claim 12,
wherein the offsetting includes shifting by one pixel horizontally between the successive rendering operations and wherein the base pattern oscillates regularly between the successive rendering operations; or
wherein the offsetting includes shifting by one pixel vertically between the successive rendering operations, and
wherein the base pattern oscillates regularly between the successive rendering operations.
 
14. The method as claimed in claim 12, wherein the determining the test pattern comprises:

loading the test pattern from a library of multiple predefined test patterns; or

generating the test pattern on-the-fly from a base pattern.


 
15. A computer system comprising:

a display device with sub-pixel display elements; and

an evaluation tool comprising at least one processer configured to execute logic to:

determine (610) a test pattern (800) comprising a base pattern (701,702 of pixels replicated zero or more times within the test pattern, wherein each of the pixels in the base pattern includes multiple sub-pixel sample values, wherein the base pattern is based on sampling of a sine wave having a period of less than two pixels, and wherein the base pattern comprises a pattern of grey-scale values;

successively render (620) the test pattern for display on the display device; and,

cause motion-induced chromatic shift in the test pattern among at least some sub-pixel display elements of the display device by offsetting the base pattern by a number of pixels between successive renderings of the test pattern, wherein the offsetting shifts the base pattern by a number of pixels that causes regular motion in the test pattern.


 


Ansprüche

1. Eine oder mehrere computerlesbare Arbeitsspeicher- oder Speichervorrichtungen (1320, 1325, 1340), die computerausführbare Befehle zum Veranlassen eines Prozessors (1310, 1315) speichern, wenn dadurch programmiert, ein Testmusterevaluierungs- (800) -verfahren an Subpixelanzeigeelementen einer Anzeigevorrichtung durchzuführen, das Verfahren umfassend:

Ermitteln (610) eines Testmusters (800), das ein Basismuster (701, 702) von Pixeln umfasst, die null Mal oder mehrere Male in dem Testmuster repliziert sind, wobei jedes der Pixel in dem Basismuster mehrere Subpixelabtastwerte beinhaltet, wobei das Basismuster auf Abtastung einer Sinuswelle basiert, die eine Dauer von weniger als zwei Pixel aufweist; und wobei das Basismuster ein Muster von Graustufenwerten umfasst;

aufeinanderfolgendes Rendern (620) des Testmusters zur Anzeige auf der Anzeigevorrichtung; und

Veranlassen bewegungsinduzierter chromatischer Verschiebung in dem Testmuster unter mindestens manchen Subpixelanzeigeelementen der Anzeigevorrichtung durch Versetzen des Basismusters um eine Zahl von Pixeln zwischen aufeinanderfolgenden Renderings des Testmusters, wobei das Versetzen das Basismuster um eine Zahl von Pixeln verschiebt, was regelmäßige Bewegung in dem Testmuster verursacht.


 
2. Eine oder mehrere computerlesbare Arbeitsspeicher- oder Speichervorrichtungen (1320, 1325, 1340) nach Anspruch 1,
wobei das Versetzen ein Verschieben um ein Pixel horizontal zwischen den aufeinanderfolgenden Rendering-Betrieben beinhaltet und wobei das Basismuster regelmäßig zwischen den aufeinanderfolgenden Rendering-Betrieben oszilliert oder
wobei das Versetzen ein Verschieben um ein Pixel vertikal zwischen den aufeinanderfolgenden Rendering-Betrieben umfasst und wobei das Basismuster regelmäßig zwischen den aufeinanderfolgenden Rendering-Betrieben oszilliert.
 
3. Eine oder mehrere computerlesbare Arbeitsspeicher- oder Speichervorrichtungen (1320, 1325, 1340) nach Anspruch 1, wobei das Versetzen das Basismuster horizontal, dann vertikal zwischen den aufeinanderfolgenden Renderings verschiebt.
 
4. Eine oder mehrere computerlesbare Arbeitsspeicher- oder Speichervorrichtungen (1320, 1325, 1340) nach Anspruch 1, wobei in dem Testmuster das Testmuster nicht repliziert wird, sondern stattdessen:

bei mehreren Skalierungsfaktoren skaliert wird;

bei mehreren Streckungsfaktoren gestreckt wird; und/oder

bei verschiedenen Verzerrungsfaktoren innerhalb des Testmusters verzerrt wird.


 
5. Eine oder mehrere computerlesbare Arbeitsspeicher- oder Speichervorrichtungen (1320, 1325, 1340) nach Anspruch 1, wobei das Ermitteln des Testmusters umfasst;
Laden des Testmusters aus einem Verzeichnis mehrerer vordefinierter Testmuster;
oder
Erstellen des Testmusters spontan aus einem Basismuster.
 
6. Eine oder mehrere computerlesbare Arbeitsspeicher- oder Speichervorrichtungen (1320, 1325, 1340) nach Anspruch 1, wobei die Anzeigevorrichtung eine Flüssigkristallanzeige-, LCD, -vorrichtung ist.
 
7. Eine oder mehrere computerlesbare Arbeitsspeicher- oder Speichervorrichtungen (1320, 1325, 1340) nach Anspruch 1, wobei die Anzeigevorrichtung eine native Bildwiederholungsrate aufweist und wobei das Versetzen des Basismusters bei der nativen Bildwiederholungsrate der Anzeigevorrichtung geschieht.
 
8. Eine oder mehrere computerlesbare Arbeitsspeicher- oder Speichervorrichtungen (1320, 1325, 1340) nach Anspruch 1, wobei das Testmuster ein Wischtestmuster zwischen zwei Bereichen unterschiedlicher Typen von chromatischer Verschiebung ist, wobei das Wischtestmuster weiter einen Arm beinhaltet, der sich um einen Mittelpunkt des Wischtestmusters in den aufeinanderfolgenden Rendering-Betrieben dreht und wobei eine Phase des Versetzens sich an gegenüberliegenden Seiten des Arms innerhalb des Testmusters unterscheidet.
 
9. Eine oder mehrere computerlesbare Arbeitsspeicher- oder Speichervorrichtungen (1320, 1325, 1340) nach Anspruch 1, wobei das Testmuster ein Verwerfungstestmuster ist, das zwei Bereiche unterschiedlicher Typen von chromatografischer Verschiebung aufweist, wobei das Basismuster bei verschiedenen Skalierungsfaktoren, Streckungsfaktoren und/oder Verzerrungsfaktoren in dem Testmuster wiederholt wird.
 
10. Eine oder mehrere computerlesbare Arbeitsspeicher- oder Speichervorrichtungen (1320, 1325, 1340) nach Anspruch 1, die weiter computerausführbare Befehle zum Veranlassen des Prozessors, wenn dadurch programmiert, Kalibrierung durchzuführen, speichern, umfassend, in einer Rückkopplungsschleife:

Veranlassen einer Bildaufnahmevorrichtung, das nacheinander gerenderte Bild des Testmusters auf der Anzeigevorrichtung aufzuzeichnen;

Ermitteln, ob das aufgezeichnete Bild chromatische Verschiebung zeigt; und

in Antwort auf Ermitteln, dass das aufgezeichnete Bild chromatische Verschiebung zeigt, Anpassen eines oder mehrerer Attribute der Anzeigevorrichtung und/oder einer Einstellung einer Videokarte, die chromatische Verschiebung zu mildern.


 
11. Eine oder mehrere computerlesbare Arbeitsspeicher- oder Speichervorrichtungen (1320, 1325, 1340) nach Anspruch 1, wobei das Basismuster ein n x m Muster von Graustufenwerten ist, das mehrere Male in dem Testmuster repliziert ist, und wobei sowohl n als auch m eine Ganzzahl ist, die ein Vielfaches von 2 ist.
 
12. Prozessorimplementiertes Verfahren zum Durchführen von Testmusterevaluierung an Subpixelanzeigeelementen einer Anzeigevorrichtung, wobei das Verfahren umfasst:

Ermitteln (610) eines Testmusters (800), umfassend ein Basismuster (701, 702) von null Mal oder mehrere Male innerhalb des Testmusters replizierten Pixeln, wobei jedes der Pixel in dem Basismuster mehrere Subpixelabtastwerte beinhaltet, wobei das Basismuster auf Abtastung einer Sinuswelle basiert, die eine Dauer von weniger als zwei Pixel aufweist, und wobei das Basismuster ein Muster von Graustufenwerten umfasst;

aufeinanderfolgendes Rendering (620) des Testmusters zur Anzeige auf der Anzeigevorrichtung; und

Veranlassen bewegungsinduzierter chromatischer Verschiebung in dem Testmuster unter mindestens manchen Subpixel-Anzeigeelementen der Anzeigevorrichtung durch Versetzen des Basismusters um eine Zahl von Pixeln zwischen aufeinanderfolgenden Renderings des Testmusters, wobei das Versetzen das Basismuster um eine Zahl von Pixeln verschiebt, was regelmäßige Bewegung in dem Testmuster veranlasst.


 
13. Verfahren nach Anspruch 12,
wobei das Versetzen ein Verschieben um ein Pixel horizontal zwischen den aufeinanderfolgenden Rendering-Betrieben beinhaltet und wobei das Basismuster regelmäßig zwischen den aufeinanderfolgenden Rendering-Betrieben oszilliert; oder
wobei das Versetzen ein Verschieben um ein Pixel vertikal zwischen den aufeinanderfolgenden Rendering-Betrieben beinhaltet, und
wobei das Basismuster regelmäßig zwischen den aufeinanderfolgenden Rendering-Betrieben oszilliert.
 
14. Verfahren nach Anspruch 12, wobei das Ermitteln des Testmusters umfasst:

Laden des Testmusters aus einem Verzeichnis mehrerer vordefinierter Testmuster;
oder

Erzeugen des Testmusters spontan aus einem Basismuster.


 
15. Computersystem, umfassend:

eine Anzeigevorrichtung mit Subpixelanzeigeelementen; und

ein Evaluierungswerkzeug, das mindestens einen Prozessor umfasst, der konfiguriert ist, Logik auszuführen zum:

Ermitteln (610) eines Testmusters (800), umfassend ein Basismuster (701, 702) von Pixeln, die null Mal oder mehrere Male innerhalb des Testmusters repliziert sind, wobei jedes der Pixel in dem Basismuster mehrere Subpixelabtastwerte beinhaltet, wobei das Basismuster auf Abtastung einer Sinuswelle basiert, die eine Dauer von weniger als zwei Pixel aufweist und wobei das Basismuster ein Muster von Graustufenwerten umfasst;

aufeinanderfolgendes Rendern (620) des Testmusters zur Anzeige auf der Anzeigevorrichtung; und

Veranlassen von bewegungsinduzierter chromatischer Verschiebung in dem Testmuster unter mindestens manchen Subpixelanzeigeelementen der Anzeigevorrichtung durch Versetzen des Basismusters um eine Zahl von Pixeln zwischen aufeinanderfolgenden Renderings des Testmusters, wobei das Versetzen das Basismuster um eine Zahl von Pixeln verschiebt, was regelmäßige Bewegung in dem Testmuster veranlasst.


 


Revendications

1. Un ou plusieurs dispositifs de stockage ou de mémoire lisibles par ordinateur (1320, 1325, 1340) stockant des instructions pouvant être exécutées par ordinateur pour amener un processeur (1310, 1315), quand il est programmé de ce fait, pour effectuer un procédé d'évaluation de motif de test (800) sur des éléments d'affichage de sous-pixel d'un dispositif d'affichage, le procédé comprenant :

la détermination (610) d'un motif de test (800) comprenant un motif de base (701, 702) de pixels reproduits zéro ou plus de fois à l'intérieur du motif de test, dans lesquels chacun des pixels dans le motif de base inclut de multiples valeurs d'échantillon de sous-pixel, dans lesquels le motif de base est basé sur l'échantillonnage d'une onde de sinus ayant une période de moins de deux pixels ; et dans lesquels le motif de base comprend un motif de valeurs en demi-teintes ;

la restitution successive (620) du motif de test pour affichage sur le dispositif d'affichage ; et

la provocation d'un décalage chromatique induit par le mouvement dans le motif de test parmi au moins quelques éléments d'affichage de sous-pixel du dispositif d'affichage en compensant le motif de base d'un certain nombre de pixels entre des restitutions successives du motif de test, dans lesquels la compensation décale le motif de base d'un certain nombre de pixels qui provoque un mouvement régulier dans le motif de test.


 
2. Un ou plusieurs dispositifs de stockage ou de mémoire lisibles par ordinateur (1320, 1325, 1340) selon la revendication 1,
dans lesquels la compensation inclut un décalage d'un seul pixel horizontalement entre les opérations de restitution successives et dans lesquels le motif de base oscille régulièrement entre les opérations de restitution successives, ou
dans lesquels la compensation inclut le décalage d'un pixel verticalement entre les opérations de restitution successives et dans lesquels le motif de base oscille régulièrement entre les opérations de restitution successives.
 
3. Le ou les plusieurs dispositifs de stockage ou de mémoire lisibles par ordinateur (1320, 1325, 1340) selon la revendication 1, dans lesquels la compensation décale le motif de base horizontalement puis verticalement entre les restitutions successives.
 
4. Le ou les plusieurs dispositifs de stockage ou de mémoire lisibles par ordinateur (1320, 1325, 1340) selon la revendication 1, dans lesquels à l'intérieur du motif de test, le motif de base n'est pas reproduit, mais est au lieu de cela :

mis à l'échelle à de multiples facteurs de mise à l'échelle ;

étiré à de multiples facteurs d'étirage ; et/ou

déformé à de multiples facteurs de déformation à l'intérieur du motif de test.


 
5. Le ou les plusieurs dispositifs de stockage ou de mémoire lisibles par ordinateur (1320, 1325, 1340) selon la revendication 1, dans lesquels la détermination du motif de test comprend ;

le chargement du motif de test à partir d'une bibliothèque de multiples motifs de test prédéfinis ; ou

la production du motif de test à la volée à partir d'un motif de base.


 
6. Le ou les plusieurs dispositifs de stockage ou de mémoire lisibles par ordinateur (1320, 1325, 1340) selon la revendication 1, dans lesquels le dispositif d'affichage est un dispositif d'affichage à cristaux liquides, LCD.
 
7. Le ou les plusieurs dispositifs de stockage ou de mémoire lisibles par ordinateur (1320, 1325, 1340) selon la revendication 1, dans lesquels le dispositif d'affichage a un taux de régénération natif, et dans lesquels la compensation du motif de base se produit au taux de régénération natif du dispositif d'affichage.
 
8. Le ou les plusieurs dispositifs de stockage ou de mémoire lisibles par ordinateur (1320, 1325, 1340) selon la revendication 1, dans lesquels le motif de test est un motif de test à volet entre deux zones de types différents de décalage chromatique, le motif test à volet incluant en outre un bras qui tourne autour d'un centre du motif de test à volet dans les opérations de restitution successives, et dans lesquels une phase de la compensation est différente sur des côtés opposés du bras à l'intérieur du motif de test.
 
9. Le ou les plusieurs dispositifs de stockage ou de mémoire lisibles par ordinateur (1320, 1325, 1340) selon la revendication 1, dans lesquels le motif de test est un motif de test à chaîne ayant deux zones de types différents de décalage chromatique, le motif de base étant répété à divers facteurs de mise à l'échelle, facteurs d'étirage, et/ou facteurs d'altération à l'intérieur du motif de test.
 
10. Le ou les plusieurs dispositifs de stockage ou de mémoire lisibles par ordinateur (1320, 1325, 1340) selon la revendication 1, stockant en outre des instructions pouvant être exécutées par ordinateur pour amener le processeur, quand il est programmé de ce fait, à effectuer un étalonnage comprenant, dans une chaîne de rétroaction :

le fait d'amener un dispositif de capture d'image à enregistrer l'image successivement restituée du motif de test sur le dispositif d'affichage ;

la détermination si l'image enregistrée présente un décalage chromatique ; et

en réponse à la détermination que l'image enregistrée présente un décalage chromatique, l'ajustement d'un ou plusieurs attributs du dispositif d'affichage et/ou un paramétrage d'une carte vidéo pour atténuer le décalage chromatique.


 
11. Le ou les plusieurs dispositifs de stockage ou de mémoire lisibles par ordinateur (1320, 1325, 1340) selon la revendication 1, dans lequel le motif de base est un motif n x m de valeurs en demi-teintes qui est reproduit de multiples fois à l'intérieur du motif de test, et dans lesquels chacun des n et m est un nombre entier qui est un multiple de 2.
 
12. Procédé mis en Ĺ“uvre par processeur pour effectuer une évaluation de motif de test sur des éléments d'affichage de sous-pixel d'un dispositif d'affichage, le procédé comprenant :

la détermination (610) d'un motif de test (800) comprenant un motif de base (701, 702) de pixels reproduits zéro ou plus de fois à l'intérieur du motif de test, dans lesquels chacun des pixels dans le motif de base inclut de multiples valeurs d'échantillon de sous-pixel, dans lesquels le motif de base est basé sur l'échantillonnage d'une onde de sinus ayant une période de moins de deux pixels, et dans lesquels le motif de base comprend un motif de valeurs en demi-teintes ;

la restitution successive (620) du motif de test pour affichage sur le dispositif d'affichage ; et

la provocation d'un décalage chromatique induit par le mouvement dans le motif de test parmi au moins quelques éléments d'affichage de sous-pixel du dispositif d'affichage en compensant le motif de base par un certain nombre de pixels entre des restitutions successives du motif de test, dans lesquels la compensation décale le motif de base d'un certain nombre de pixels ce qui provoque un mouvement régulier dans le motif de test.


 
13. Procédé selon la revendication 12,
dans lequel la compensation inclut le décalage d'un seul pixel horizontalement entre les opérations de restitution successives et dans lequel le motif de base oscille régulièrement entre les opérations de restitution successives ; ou
dans lequel la compensation inclut le décalage d'un seul pixel verticalement entre les opérations de restitution successives, et
dans lequel le motif de base oscille régulièrement entre les opérations de restitution successives.
 
14. Procédé selon la revendication 12, dans lequel la détermination du motif de test comprend :

le chargement du motif de test à partir d'une bibliothèque de multiples motifs de test prédéfinis ; ou

la production du motif de test à la volée à partir d'un motif de base.


 
15. Système informatique comprenant :

un dispositif d'affichage avec des éléments d'affichage de sous-pixel ; et

un outil d'évaluation comprenant au moins un processeur configuré pour exécuter une logique pour :

déterminer (610) un motif de test (800) comprenant un motif de base (701, 702) de pixels reproduits zéro ou plusieurs fois à l'intérieur du motif de test, dans lequel chacun des pixels dans le motif de base inclut de multiples valeurs d'échantillon de sous-pixel, dans lequel le motif de base est basé sur l'échantillonnage d'une onde de sinus ayant une période de moins de deux pixels, et dans lequel le motif de base comprend un motif de valeurs en demi-teintes ;

restituer successivement (620) le motif de test pour affichage sur le dispositif d'affichage ; et

provoquer un décalage chromatique induit par le mouvement dans le motif de test parmi au moins quelques éléments d'affichage de sous-pixel du dispositif d'affichage en compensant le motif de base par un certain nombre de pixels entre des restitutions successives du motif de test, dans lequel la compensation décale le motif de base d'un certain nombre de pixels ce qui provoque un mouvement régulier dans le motif de test.


 




Drawing




































REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description