(19)
(11)EP 3 275 014 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.12.2020 Bulletin 2020/50

(21)Application number: 15887946.0

(22)Date of filing:  27.03.2015
(51)International Patent Classification (IPC): 
H01L 23/28(2006.01)
H01L 21/56(2006.01)
H01L 23/31(2006.01)
H01L 23/29(2006.01)
(86)International application number:
PCT/US2015/023049
(87)International publication number:
WO 2016/159937 (06.10.2016 Gazette  2016/40)

(54)

CIRCUIT PACKAGE

SCHALTUNGSGEHÄUSE

BOÎTIER DE CIRCUIT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
31.01.2018 Bulletin 2018/05

(73)Proprietor: Hewlett-Packard Development Company, L.P.
Spring TX 77389 (US)

(72)Inventors:
  • CHEN, Chien-Hua
    Corvallis, Oregon 97330-4239 (US)
  • CUMBIE, Michael W.
    Corvallis, Oregon 97330-4239 (US)

(74)Representative: Haseltine Lake Kempner LLP 
Redcliff Quay 120 Redcliff Street
Bristol BS1 6HU
Bristol BS1 6HU (GB)


(56)References cited: : 
US-A1- 2003 036 587
US-A1- 2009 244 180
US-A1- 2012 104 435
US-A1- 2013 337 614
US-A1- 2006 016 780
US-A1- 2012 033 017
US-A1- 2012 193 779
US-A1- 2014 091 460
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Circuits such as integrated circuits are oftentimes packaged in an epoxy mold compound packaging to support and protect the circuitry. Depending on the manufacturing method used, it may be difficult to control dimensions, shapes or certain properties of packaged circuits.
    US 2012/033017 A1 describes a liquid discharge recording head. US 2012/193779 A1 describes a semiconductor device. US 2003/036587 A1 describes rheology-controlled epoxy-based compositions.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0002] For the purpose of illustration, certain examples constructed in accordance with this disclosure will now be described with reference to the accompanying drawings, in which:

    Fig. 1 illustrates a diagram of an example circuit package in a cross sectional side view.

    Fig. 2 illustrates a diagram of another example circuit package in a cross sectional side view.

    Fig. 3 illustrates a diagram of yet another example circuit package in a top view.

    Fig. 4 Illustrates a diagram of an example circuit package in a cross sectional side view.

    Fig. 5 illustrates a diagram of another example circuit package in a cross sectional side view.

    Fig. 6. Illustrates another example diagram of a circuit package in a top view.

    Fig. 7 illustrates a diagram of circuit package in a cross sectional side view according to the present invention.

    Fig. 8 illustrates a diagram of an example fluid circuit package in a cross sectional side view, not falling within the scope of the claimed invention.

    Fig. 9 illustrates a diagram of an example fluid circuit package in a top view.

    Fig. 10 illustrates a flow chart of an example of a method of compression molding.

    Fig. 11 illustrates a flow chart of another example of a method of compression molding.

    Fig. 12A illustrates an example of a circuit device and a plurality of epoxy mold compounds before compression molding.

    Fig. 12B illustrates an example of a circuit package after compression molding the circuit device and compounds of Fig. 12A.


    DETAILED DESCRIPTION



    [0003] The object underlying the present invention is achieved by a circuit package panel according to claim 1 and by a manufacturing method for a circuit package panel according to claim 9. Embodiments are defined in the respective dependent claims. Examples not comprising all the features of claims 1 or 9 are included as illustrative examples.

    [0004] Fig. 1 illustrates a diagram of a cross-section of a panel-shaped circuit package 1. The circuit package 1 has a panel shape in the sense that it has a thickness T between a back and front surface B, F, that is much less than its width W or length. For example its thickness T can be at least five times, or at least ten times its width W and/or length (in the drawing, the length extends into the page). In the drawing, the thickness extends in a Z-direction while the length and width W extend parallel to an X-Y plane.

    [0005] The circuit package 1 may be a component of, or an intermediate product for, a larger apparatus. The circuit package 1 includes a circuit device 3 packaged in a hybrid epoxy mold compound packaging 5. The packaging 5 includes at least two epoxy mold compounds 7, 9 that are each of different compositions. For example a filler density or filler diameter of each compound 7, 9 may be different. The circuit device 3 is provided near a front face F of the circuit package 1, opposite to a back face B.

    [0006] The packaging 5 includes at least one hybrid layer HL that includes both epoxy mold compounds 7, 9. The hybrid layer HL extends parallel to the front face F of the circuit package 1. In the illustrated example the packaging consists of the hybrid layer HB but in other examples the hybrid layer HB may be provided between other layers that may consist of a single epoxy mold compound.

    [0007] The example epoxy mold compounds 7, 9 of different compositions that are patterned in a single plane X-Y. For example, one of the compounds 7 is a bulk compound (i.e. that forms the bulk of the total volume of the packaging), while the other compound 9 may be patterned with respect to the bulk compound to control certain properties associated with the manufacture or use of the circuit device 1.

    [0008] In one example the patterned second compound 9 has a different CTE (Coefficient of Thermal Expansion) than the first compound 7 of the same hybrid layer HL, to control warpage of the panel that would otherwise occur because of a higher CTE of the bulk epoxy mold compound with respect to the lower CTE of the circuit device 3. For example, the circuit device 3 may be contain conductive and/or semi-conductor materials that generally have lower CTEs than bulk epoxy mold compounds. The difference in CTEs may generate deformations in the package during cooling. To counter deformations such as warpage, the CTE is altered. The CTE can be altered by varying the weight percentage of the fillers in the compound, also referred to as filler density.

    [0009] In other examples, one of the compounds could have a different average filler diameter, filler length or different weight and/or volume percentages of added components like fillers or other components. For example, a filler diameter can influence certain surface characteristics of laser ablated or cut panel parts. By patterning the second compound in the first compound (or vice versa) certain properties of the circuit package 1 can be controlled during manufacture or use of the circuit package 1.

    [0010] Fig. 2 illustrates an example of a circuit package 101 including a circuit device 103 packaged in a packaging 105. The packaging 105 includes a first epoxy mold compound 107 of a first composition and a second epoxy mold compound 109 of a second composition. The packaging 105 includes a first layer of a single epoxy mold compound 107. The packaging 105 includes a hybrid layer HL including both the first and second epoxy mold compounds 107, 109 in a single plane X-Y, over the first layer. The hybrid layer HL extends near a front face F. In the illustrated example the hybrid layer HL forms the front face F.

    [0011] In the illustrated example the circuit device 103 extends in the first compound 107. The first compound 107 surrounds the circuit device 103 at the sides and back of the circuit device 103. The second compound 109 surrounds the first compound 107 within the hybrid layer HL. The second epoxy compound 109 extends along the sides and over the first compound 107. Hence, the second epoxy mold compound 109, the first epoxy mold compound 107 and the circuit device 103 are disposed next to each other. The first compound 107 may be a bulk compound of the packaging 105 and may extend under the second compound 109 and under the hybrid layer HL. The first compound 107 may form the back surface B of the circuit package 101.

    [0012] The circuit package can be manufactured through compression molding. Compression molding involves heating an epoxy mold compound disposed in a mold, depositing the circuit device and compressing the assembly of the compound and the circuit device, and cooling the circuit package 101. The thermal expansion of the circuit device 103 and the thermal expansion of the first epoxy mold compound 107 are different. Hence, warpage could occur during cooling, if the circuit device 103 would be packaged in a packaging of the first or second epoxy mold compound only. For example, the back surface B could curve into a concave shape.

    [0013] In one example, the second epoxy mold compound 109 has a higher CTE than the first epoxy mold compound 107. In a further example the second epoxy mold compound 109 has a lower weight percentage of fillers than the first epoxy mold compound 107 to achieve the higher CTE. A hybrid layer HL that includes both the first and second epoxy mold compound is deposited adjacent to the circuit device 103 to increase an overall CTE of the entire hybrid layer HL. This may compensate for the difference in CTE with the back surface B and control overall panel warpage. For example, the second epoxy mold compound 109 is disposed in a strategic quantity (e.g. thickness, surface) and location in the hybrid layer HL, near the front surface F.

    [0014] By disposing a layer of the second epoxy mold compound 109 around the first epoxy mold compound 107 near the circuit device 103, an overall thermal expansion of the hybrid layer HL during cooling may be similar as, or of inverse shape with respect to, the thermal expansion near the back surface B. The second epoxy mold compound 109 can be patterned around the circuit device 103 and around the first epoxy mold compound 107 so as to control the bow or warpage of the circuit package 1. By obtaining a better control over panel bow with some of the example packages of this disclosure, certain design constraints can be relieved, such as circuit device thickness (versus length and width), number of circuit devices in a packaging, packaging thickness, mold temperature settings, substrate handling downstream of a compression mold such as an electrical redistribution layer (RDL) fabrication process, packaging clamping during cooling, and more.

    [0015] Fig. 3 illustrates the example of Fig. 2. in a top view, onto the front face F and the hybrid layer HL. As illustrated, in the hybrid layer HL, the first epoxy mold compound 107 surrounds the circuit device 103 and the second epoxy mold compound 109 surrounds the first epoxy mold compound 107.

    [0016] Fig. 4 illustrates another example of a cross-sectional side view of a circuit package 201. The circuit package 201 includes a packaging 205 and a circuit device 203 packaged in the packaging 205. The packaging 205 includes two epoxy mold compounds 207, 209 of different compositions. For example, the packaging 205 includes a first, bulk epoxy mold compound 207 and a second epoxy mold compound 209 of different composition patterned in the first epoxy mold compound 207. In the example, the circuit device 203 is disposed in the second epoxy mold compound. A hybrid layer HL includes the circuit device 203, the second epoxy mold compound 209 surrounding the circuit device 203, and the first epoxy mold compound 207 surrounding the second epoxy mold compound 209. Hence, the first epoxy mold compound, the second epoxy mold compound and the circuit device are disposed next to each other. In one example the second epoxy mold compound 209 has a lower weight percentage of filler and higher CTE than the first epoxy mold compound 207. The first epoxy mold compound 207 surrounds the second epoxy mold compound 209 and extends under the second epoxy mold compound 209. For example, the first epoxy mold compound 207 forms a back surface of the package 201. A top view of the circuit package 201 could be similar to Fig. 3 with the difference that the second epoxy mold compound 209 directly surrounds the circuit device 203 and the first epoxy mold compound 207 directly surrounds the second epoxy mold compound 209. Similar to Fig. 2, a back portion of the circuit package 201 is formed of the first, bulk epoxy mold compound 207.

    [0017] Fig. 5 illustrates a circuit package 301 similar to the example of Fig. 2 having a circuit device array 303A deposited in the first epoxy mold compound 307. The array 303A includes at least one row and/or column of circuit devices 303. A hybrid layer HL of different epoxy mold compounds 307, 309 of different compositions is disposed over a back layer of the first epoxy mold compound 307 that forms the back face B. The hybrid layer HL forms the front face F. In the hybrid layer HL, the second epoxy mold compound 309 of different composition than the first, bulk epoxy mold compound 307 surrounds the first epoxy mold compound 307.

    [0018] Fig. 6 illustrates another example of a circuit package 401 including a circuit device array 403A, in a top view onto the front face of the package 401. In the example, a hybrid layer may form the front face. The hybrid layer includes the circuit devices 403. The hybrid layer includes a pattern of a first epoxy mold compound 407 within a second epoxy mold compound 409 of a different composition than the first epoxy mold compound 407. For example, the pattern includes two islands 407A of the first epoxy mold compound 407. The second epoxy mold compound 409 surrounds each of the islands 407A. The islands 407A each connect to a thick layer of the first epoxy mold compound 407 that forms the back portion of the circuit package 407 (not illustrated). A thin layer of the second epoxy mold compound 409 may be patterned around the islands 407A, forming the hybrid layer. In different examples, different patterns of the first and/or second epoxy mold compounds 407, 409 may be provided in the hybrid layer. For example, relatively complex patterns can be formed. In an example, the second epoxy mold compound 409 has a lower CTE than the first epoxy mold compound 407, for example to compensate for panel bow.

    [0019] Fig. 7 illustrates a circuit package 501 according to the present invention in a cross sectional side view, having a gradient of filler densities. For example the circuit package 501 includes a circuit device 503 and a packaging 505 of different epoxy mold compounds 507, 509 of different compositions. The packaging 505 includes a first epoxy mold compound 507 that forms a back portion BP with a back surface B. The packaging 505 includes a second epoxy mold compound 509 that forms part of the front face F, into which the circuit device 503 is deposited. Near the front face F, the first epoxy mold compound 507 extends next to the second epoxy mold compound 509. The second epoxy mold compound 509 may surround the sides and back of the circuit device 503. The first epoxy compound 507 may surround the sides and back of the second epoxy compound 509. For example, the first epoxy mold compound 507 has a higher filler density than the second epoxy mold compound 509, and a lower CTE. Between the first and second epoxy mold compounds 507, 509, respectively, additional caps 508A, 508B of different epoxy mold compounds are provided that have varying filler densities. For example the epoxy mold compound caps 509, 508A, 508B, 507 may wrap around each other like onion shells of half an union. For example the filler density increases with each cap 509, 508A, 508B in a direction D away from the circuit device 503. Hence, a gradient of filler densities is provided in the epoxy mold compound packaging 505 around the circuit device 503. Note that, in one example, a filler density is a weight percentage of fillers in the compound. In one example, the filler density is to influence the CTE of the epoxy mold compound.

    [0020] In other examples that are not illustrated, the filler density may decrease in a direction away from the circuit device. In yet other examples the filler density may vary, for example by first decreasing, increasing and decreasing again, in a direction away from the circuit device 503. In yet other examples, the gradient can be one of varying filler fineness, filler diameters, or other additives quantity or additives weight, etc. Having a gradient of a certain filler or other component or property may allow for a gradient of certain properties in a desired direction or location in the package 501.

    [0021] Fig. 8 illustrates an example of a fluidic circuit package 701 in a cross sectional side view. The fluidic circuit package 701 includes a packaging 705 of different epoxy mold compounds 707, 709. The packaging 705 includes a first epoxy mold compound 707 of a first composition and a second epoxy mold compound 709 of a different composition. A fluidic circuit device array 703A is disposed near a front face F. Each circuit device 703 of the array 703A includes fluid channels 719. The fluid channels 719 may include manifolds, chambers and nozzles to dispense fluid. The nozzles are provided in the front surface F. The fluid circuit devices 703 further include fluid propelling components such as resistors to propel or eject fluid. The fluid channels 719 may be of microscopic shape. For example each fluid circuit device 703 includes a nozzle array having a nozzle density of at least 300 nozzles per inch (NPI), at least 600 NPI, at least 900 NPI, at least 1200 NPI or more, and channels leading thereto. The packaging 705 further includes fluid holes 723 that run from a back B of the packaging 705 to each circuit device 703, to provide fluid to the channels 719 of the circuit device 703. The fluid holes 723 can be of a bigger diameter, on average, than the average diameter of the fluid channels 719 in the circuit devices 703, to deliver sufficient quantities of fluid to multiple nozzles or multiple nozzle arrays in the circuit devices 703.

    [0022] In one example the fluid holes 723 are provided through at least part of the second epoxy mold compound. In the illustrated example the second epoxy mold compound extends from a back to a front face B, F of the package 701, whereby the fluid holes 723 extend completely through the second epoxy mold compound. In other examples the second epoxy mold compound may extend up to a back of the circuit devices 703, not reaching the front face F.

    [0023] The second epoxy mold compound 707 may include on average finer fillers than the first epoxy mold compound 709. On average, the diameters of the fillers in the second epoxy mold compound 709 are smaller than the diameters of the fillers in the first epoxy mold compound. The finer fillers may allow for smoother walls of the fluid holes 723. For example the fluid holes 723 may be manufactured through laser ablation and the finer fillers allow for smoother walls after said laser ablation.

    [0024] Fig. 9 illustrates an example of the fluid circuit package 701 of Fig. 8 in top view. The fluid circuit package 701 may be a component of a high precision digital liquid dispensing module such as a media wide array print bar for two-dimensional or three-dimensional printing. The fluid circuit devices 703 may be shaped like relatively thin slivers, and may include silicon material. In the drawing arrays 721 of nozzles are illustrated that open into the front surface F (Fig. 8) to eject fluid. In the illustrated example, each fluid circuit device 703 is provided with at least two nozzle arrays 721. Besides being relatively thin, in a further example, the fluid devices 703 have a relatively small width W and long length L. For example a ratio of length L versus width W may be at least approximately 25 : 1 or at least 50 : 1. The fluid circuit devices 703 may be arranged in two rows R so that subsequent nozzle arrays 721 in opposite rows R overlap so as to have continuous coverage of nozzle arrays 721 as seen from a side direction D perpendicular to said length L of the fluid circuit devices 703, as best illustrated by Fig. 9. In one example this allows for fluid ejection onto a complete width of a media that passes or extends under the fluid circuit package 701.

    [0025] In other fluidic or non-fluidic applications similar panel-shaped packagings may be provided that package arrays of circuit devices, in rows and/or columns.

    [0026] Fig. 10 illustrates a flow chart of an example of compression molding a circuit package. The method includes depositing on a carrier a first epoxy mold compound and a second epoxy mold compound each of a different composition (block 100). In one example, the carrier is a mold cavity. In another example, the two mold compounds are disposed on a separate carrier and later cooled in the mold. The method includes heating the epoxy mold compounds (block 110). The method includes providing a circuit device in the first epoxy mold compound (block 120). The method further includes compressing the epoxy mold compounds so that both epoxy mold compounds extend in the same X-Y plane (block 130), perpendicular to a thickness direction. Then, the compressed package is cooled in the mold. For example the X-Y plane extends through a hybrid layer that contains both different compounds and that extends parallel to a front surface. Hence, within said X-Y plane, a pattern of one of the compounds is provided. The pattern is chosen to optimize certain end properties of the circuit package.

    [0027] Fig. 11 and 12A and 12B illustrates a flow chart and diagrams, respectively, of a further example of compression molding a circuit package. The method includes patterning a second epoxy mold compound 909 with respect to a first epoxy mold compound 907, the compounds 907, 909 being of different compositions (block 200). The compounds 907, 909 can be deposited on a carrier or directly in a mold. For example the pattern can include islands 907A like dots or more complex patterns, see Fig. 12A. The method includes heating the epoxy mold compounds 907, 909 (block 210), depositing a circuit device 903 in one of the first epoxy mold compound or second epoxy mold compounds (block 220), depending on the type of property desired, and compressing the compounds so that the circuit device and compounds extend in the same X-Y plane (block 230). In Fig. 12B the circuit device 903 has been deposited in the first epoxy mold compound 907, compressed and cooled.

    [0028] Some of the described example packagings of this disclosure include multiple epoxy mold compounds having different CTEs. In an example, the CTEs of the epoxy mold compounds of this description can be determined by a weight percentage of fillers in the epoxy mold compound. For example, the CTE is inversely proportional to a filler concentration in the compound. In one example the first epoxy mold compound has a weight percentage of fillers of approximately 90%, corresponding to a CTE of approximately 6 ppm/C. An example of an industry standard epoxy mold compound having such characteristics is CEL400ZHF40W from Hitachi Chemical, Ltd ®. For example the second epoxy mold compound has a weight percentage of fillers of approximately 87% and a CTE of approximately 9 ppm/C. An example of an industry standard epoxy mold compound having such characteristics is CEL400ZHF40W-87. In other examples the weight percentage of filler in the first epoxy mold compound can be between 87 and 91%. For example the CTE of the first epoxy mold compound can be between approximately 6 and 9 ppm/C. In another example the weight percentage of filler in the second epoxy mold compound can be between 82 and 87%. For example, the CTE of the second epoxy mold compound is between 9 and 14 ppm/C. A different example of different CTEs of the first and second epoxy mold compound is 6 ppm/C and 13 ppm/C, respectively. An example of a CTE of a silicon of which a circuit device may be composed is approximately 3 ppm/C.

    [0029] Some of the examples of this disclosure describe placement of an extra epoxy mold compound of a different composition than a bulk epoxy mold compound, next to the circuit devices and the bulk epoxy compound, hence providing for a "patterning" effect in a hybrid layer of both compounds. Effects of such example circuit packages may include at least one of reducing bow, increasing design space, improving fluidic properties, improving electrical properties, and/or eliminating the need to add components or manufacturing process steps.

    [0030] The circuit package of the various examples described in this disclosure may be a subcomponent of a larger package or device, or an intermediate product of an end product. For example multiple other layers or components can be attached to the back or front surface. Hence, when the circuit package is a subcomponent, the back or front surface may not be visible or not apparent.

    [0031] The various examples of circuit packages and manufacturing methods may relate to integrated circuit packaging for example for computer components. In further examples, the packages and methods may involve fluidic applications such as 2D or 3D printing, digital titration, other microfluidic devices, etc. In different examples, the fluid may include liquids, inks, printing agents, pharmaceutical fluids, bio-fluids, etc.

    [0032] The example circuit packages can have any orientation: the descriptive terms "back" and "front" should be understood as relative to each other only. Also, the example sheets or panels of this disclosure have a thickness in a Z-direction and a width and length along an X-Y plane. The thickness of the package may be relatively thin with respect to the width and length. In certain examples, the filler density varies over the thickness.


    Claims

    1. A circuit package panel comprising
    a packaging (505) of epoxy mold compounds having a front face (F) and a back face (B) and a gradient of filler densities, and
    a circuit device (503) in the packaging (505), wherein
    the packaging (505) comprises, parallel to the front face (F) and in a single plane, at least one hybrid layer of a first epoxy mold compound (507) that forms a back portion (BP) of the back face (B) and next to it a second epoxy mold compound (509) of a different composition;
    wherein the second epoxy mold compound (509) forms part of the front face (F) and has a different Coefficient of Thermal Expansion, CTE, than the first epoxy mold compound (507), the different CTEs determined by different weight percentage of fillers in the first epoxy mold compound (507) and the second epoxy mold compound (509); and
    wherein the circuit package panel further comprises at least two additional caps (508A, 508B) of different epoxy mold compounds between the first and second epoxy mold compounds having varying filler densities.
     
    2. The circuit package of claim 1 comprising an array of circuit devices.
     
    3. The circuit package of claim 1 wherein the second epoxy mold compound (509) has a lower CTE than the first epoxy mold compound (507).
     
    4. The circuit package of claim 1 wherein the first epoxy mold compound (507) extends under the circuit device (503) and under the second epoxy mold compound (509).
     
    5. The circuit package of claim 1 wherein the second epoxy mold compound (509) has a higher Coefficient of Thermal Expansion, CTE, than the first epoxy mold compound (507), the second epoxy mold compound (509) having a lower weight percentage of fillers than the first epoxy mold compound (507) to achieve the higher CTE of the second epoxy mold compound (509).
     
    6. The circuit package of claim 1 wherein a filler density increases with each cap in a direction away from the circuit device (503), such that a gradient of filler densities is provided in the packaging (505; 705) around the circuit device (503).
     
    7. The circuit package of claim 1 wherein a filler density decreases with each cap in a direction away from the circuit device (503), such that a gradient of filler densities is provided in the packaging (505) around the circuit device (503).
     
    8. A circuit package (501), comprising
    the circuit package panel of claim 1,
    where filler density decreases, increases and then decreases again in a direction away from the circuit device (503) moving through the epoxy mold compounds.
     
    9. A method of compression molding a circuit package (501) having a gradient of filler densities, comprising
    depositing on a carrier a first epoxy mold compound (507) and a second epoxy mold compound (509) deposited at least partially next to the first epoxy mold compound (507) each of a different composition, wherein the second epoxy mold compound (509) has a different Coefficient of Thermal Expansion, CTE, than the first epoxy mold compound (507), the different CTEs determined by different weight percentage of fillers in the first epoxy mold compound (507) and the second epoxy mold compound (509),
    heating the epoxy mold compounds,
    providing a circuit device (503) in the second epoxy mold compound (509),
    providing at least two additional caps (508A, 508B) of different epoxy mold compounds between the first and second epoxy mold compounds having varying filler densities,
    compressing first and second epoxy mold compounds so that both epoxy mold compounds extend in one hybrid layer and wherein the first epoxy mold compound (507) forms a back portion of the back surface of the circuit package and the second epoxy mold compound (509) forms part of a front face of the circuit package.
     
    10. The method of claim 9 wherein the depositing comprises patterning the second epoxy mold compound (509) with respect to the first epoxy mold compound (507).
     


    Ansprüche

    1. Schaltungsgehäuseplatte, die Folgendes umfasst: eine Häusung (505) aus Epoxidformverbindungen, die eine Stirnfläche (F) und eine Rückfläche (B) und einen Gradienten von Füllstoffdichten aufweist, und eine Schaltungsvorrichtung (503) in der Häusung (505) wobei die Häusung (505) parallel zu der Stirnfläche (F) und in einer einzigen Ebene wenigstens eine Hybridschicht aus einer ersten Epoxidformverbindung (507), die einen hinteren Abschnitt (BP) der Rückfläche (B) ausbildet, und daneben eine zweite Epoxidformverbindung (509) mit einer anderen Zusammensetzung umfasst;
    wobei die zweite Epoxidformverbindung (509) einen Teil der Stirnfläche (F) ausbildet und einen anderen Wärmeausdehnungskoeffizienten (Coefficient of Thermal Expansion - CTE) aufweist als die erste Epoxidformverbindung (507), wobei die verschiedenen CTEs durch unterschiedliche Gewichtsprozentsätze von Füllstoffen in der ersten Epoxidformverbindung (507) und der zweiten Epoxidformverbindung (509) bestimmt werden; und
    wobei die Schaltungsgehäuseplatte ferner wenigstens zwei zusätzliche Kappen (508A, 508B) aus unterschiedlichen Epoxidformverbindungen zwischen der ersten und der zweiten Epoxidformverbindung umfasst, die unterschiedliche Füllstoffdichten aufweisen.
     
    2. Schaltungsgehäuse nach Anspruch 1, das eine Anordnung von Schaltungsvorrichtungen umfasst.
     
    3. Schaltungsgehäuse nach Anspruch 1, wobei die zweite Epoxidformverbindung (509) einen niedrigeren CTE als die erste Epoxidformverbindung (507) aufweist.
     
    4. Schaltungsghäuse nach Anspruch 1, wobei sich die erste Epoxidformverbindung (507) unter der Schaltungsvorrichtung (503) und unter der zweiten Epoxidformverbindung (509) erstreckt.
     
    5. Schaltungsgehäuse nach Anspruch 1, wobei die zweite Epoxidformverbindung (509) einen höheren Wärmeausdehnungskoeffizienten (CTE) aufweist als die erste Epoxidformverbindung (507), wobei die zweite Epoxidformverbindung (509) einen geringeren Gewichtsprozentsatz an Füllstoffen als die erste Epoxidformverbindung (507) aufweist, um den höheren CTE der zweiten Epoxidformverbindung (509) zu erreichen.
     
    6. Schaltungsgehäuse nach Anspruch 1, wobei eine Füllstoffdichte mit jeder Kappe in einer Richtung weg von der Schaltungsvorrichtung (503) zunimmt;
    derart, dass ein Gradient von Füllstoffdichten in der Häusung (505; 705) um die Schaltungsvorrichtung (503) herum bereitgestellt wird.
     
    7. Schaltungsgehäuse nach Anspruch 1, wobei eine Füllstoffdichte mit jeder Kappe in einer Richtung weg von der Schaltungsvorrichtung (503) derart abnimmt, dass ein Gradient von Füllstoffdichten in der Häusung (505) um die Schaltungsvorrichtung (503) herum bereitgestellt wird.
     
    8. Schaltungsgehäuse (501), das die Schaltungsgehäuseplatte nach Anspruch 1 umfasst, wobei die Füllstoffdichte in einer Richtung weg von der Schaltungsvorrichtung (503), die sich durch die Epoxidformverbindungen bewegt, abnimmt, zunimmt und dann wieder abnimmt.
     
    9. Verfahren zum Formpressen eines Schaltungsghäuses (501), das einen Gradienten von Füllstoffdichten aufweist, das Folgendes umfasst: Abscheiden einer ersten Epoxidformverbindung (507) und einer zweiten Epoxidformverbindung (509), die wenigstens teilweise neben der ersten Epoxidformverbindung (507) abgeschieden ist, jede mit einer anderen Zusammensetzung, auf einem Träger, wobei die zweite Epoxidformverbindung (509) einen anderen Wärmeausdehnungskoeffizienten (CTE) als die erste Epoxidformverbindung (507) aufweist, wobei die unterschiedlichen CTEs durch unterschiedliche Gewichtsprozentsätze von Füllstoffen in der ersten Epoxidformverbindung (507) und der zweiten Epoxidformverbindung (509) bestimmt werden, Erwärmen der Epoxidformverbindungen, Bereitstellen einer Schaltungsvorrichtung (503) in der zweiten Epoxidformverbindung (509), Bereitstellen von wenigstens zwei zusätzlichen Kappen (508A, 508B) aus unterschiedlichen Epoxidformverbindungen zwischen der ersten und der zweiten Epoxidformverbindung, die unterschiedliche Füllstoffdichten aufweisen, Komprimieren einer ersten und einer zweiten Epoxidformverbindung, so dass sich beide Epoxidformverbindungen in einer Hybridschicht erstrecken, und wobei die erste Epoxidformverbindung (507) einen hinteren Abschnitt einer Rückfläche des Schaltungsgehäuses ausbildet und die zweite Epoxidformverbindung (509) einen Teil einer Stirnfläche des Schaltungsgehäuses ausbildet.
     
    10. Verfahren nach Anspruch 9, wobei das Abscheiden ein Strukturieren der zweiten Epoxidformverbindung (509) in Bezug auf die erste Epoxidformverbindung (507) umfasst.
     


    Revendications

    1. Panneau de boîtier de circuit comprenant
    une encapsulation (505) de composés de moule époxy présentant une face avant (F) et une face arrière (B) et un gradient de densités de charges, et
    un dispositif de circuit (503) dans l'encapsulation (505), dans lequel
    l'encapsulation (505) comprend, parallèlement à la face avant (F) et dans un seul plan, au moins une couche hybride d'un premier composé de moule époxy (507) qui forme une partie arrière (BP) de la face arrière (B) et à côté de lui un second composé de moule époxy (509) d'une composition différente ;
    dans lequel le second composé de moule époxy (509) forme une partie de la face avant (F) et présente un coefficient de dilatation thermique CTE, différent du premier composé de moule époxy (507), les différents CTE étant déterminés par un pourcentage en poids de charges différent dans le premier composé de moule époxy (507) et le second composé de moule époxy (509) ; et
    dans lequel le panneau de boîtier de circuit comprend en outre au moins deux coiffes supplémentaires (508A, 508B) de différents composés de moule époxy entre les premier et second composés de moule époxy présentant des densités de charges variables.
     
    2. Boîtier de circuit selon la revendication 1, comprenant un réseau de dispositifs de circuit.
     
    3. Boîtier de circuit selon la revendication 1, dans lequel le second composé de moule époxy (509) présente un CTE inférieur à celui du premier composé de moule époxy (507).
     
    4. Boîtier de circuit selon la revendication 1, dans lequel le premier composé de moule époxy (507) s'étend sous le dispositif de circuit (503) et sous le second composé de moule époxy (509).
     
    5. Boîtier de circuit selon la revendication 1, dans lequel le second composé de moule époxy (509) présente un coefficient de dilatation thermique CTE, plus élevé que le premier composé de moule époxy (507), le second composé de moule époxy (509) présentant un pourcentage en poids de charges inférieur au premier composé de moule époxy (507) pour atteindre le CTE plus élevé du second composé de moule époxy (509).
     
    6. Boîtier de circuit selon la revendication 1, dans lequel une densité de charges augmente avec chaque coiffe dans une direction éloignée du dispositif de circuit (503) ;
    de telle sorte qu'un gradient de densités de charges est fourni dans l'encapsulation (505 ; 705) autour du dispositif de circuit (503).
     
    7. Boîtier de circuit selon la revendication 1, dans lequel une densité de charge diminue avec chaque coiffe dans une direction éloignée du dispositif de circuit (503),
    de telle sorte qu'un gradient de densités de charges est fourni dans l'encapsulation (505) autour du dispositif de circuit (503).
     
    8. Boîtier de circuit (501), comprenant
    le panneau de boîtier de circuit selon la revendication 1,
    où la densité de charge diminue, augmente puis diminue à nouveau dans une direction éloignée du dispositif de circuit (503) se déplaçant à travers les composés de moule époxy.
     
    9. Procédé de moulage par compression d'un boîtier de circuit (501) présentant un gradient de densités de charges, comprenant
    le dépôt sur un support d'un premier composé de moule époxy (507) et d'un second composé de moule époxy (509) déposés au moins partiellement à côté du premier composé de moule époxy (507), chacun d'une composition différente, dans lequel le second composé de moule époxy (509) présente un coefficient de dilatation thermique, CTE, différent du premier composé de moule époxy (507), les différents CTE étant déterminés par un pourcentage en poids de charges différent dans le premier composé de moule époxy (507) et le second composé de moule époxy (509),
    le chauffage des composés de moule époxy,
    la fourniture d'un dispositif de circuit (503) dans le second composé de moule époxy (509),
    la fourniture d'au moins deux coiffes supplémentaires (508A, 508B) de différents composés de moule époxy entre les premier et second composés de moule époxy présentant des densités de charges variables,
    la compression des premier et second composés de moule époxy de façon à ce que les deux composés de moule époxy s'étendent dans une couche hybride et dans lequel le premier composé de moule époxy (507) forme une partie arrière d'une surface arrière du boîtier de circuit et le second composé de moule époxy (509) forme une partie d'une face avant du boîtier de circuit.
     
    10. Procédé selon la revendication 9,
    dans lequel le dépôt comprend la formation de motif du second composé de moule époxy (509) par rapport au premier composé de moule époxy (507).
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description