(19)
(11)EP 3 276 723 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.01.2021 Bulletin 2021/02

(21)Application number: 17176297.4

(22)Date of filing:  16.06.2017
(51)International Patent Classification (IPC): 
H01M 8/0267(2016.01)
H01M 8/0284(2016.01)
H01M 8/0297(2016.01)
H01M 8/248(2016.01)
H01M 8/0273(2016.01)
H01M 8/0286(2016.01)
H01M 8/1004(2016.01)

(54)

FUEL-CELL UNIT CELL AND MANUFACTURING METHOD THEREFOR

BRENNSTOFFZELLENEINHEITSZELLE UND HERSTELLUNGSVERFAHREN DAFÜR

UNITÉ DE CELLULE DE PILE À COMBUSTIBLE ET SON PROCÉDÉ DE FABRICATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.07.2016 JP 2016145133

(43)Date of publication of application:
31.01.2018 Bulletin 2018/05

(73)Proprietor: TOYOTA JIDOSHA KABUSHIKI KAISHA
Toyota-shi, Aichi 471-8571 (JP)

(72)Inventors:
  • OKADA, Sachio
    Toyota-shi,, Aichi 471-8571 (JP)
  • KURIHARA, Takuya
    Toyota-shi,, Aichi 471-8571 (JP)
  • SHIZUKU, Fumishige
    Toyota-shi,, Aichi 471-8571 (JP)
  • MURAYAMA, Ryogo
    Toyota-shi,, Aichi 471-8588 (JP)
  • KAMIYA, Makoto
    Toyota-shi,, Aichi 471-8588 (JP)

(74)Representative: TBK 
Bavariaring 4-6
80336 München
80336 München (DE)


(56)References cited: : 
EP-A1- 1 876 666
JP-A- 2018 181 500
US-A1- 2008 305 384
US-A1- 2009 291 350
US-A1- 2016 181 630
EP-A1- 2 584 636
US-A1- 2002 064 703
US-A1- 2009 286 121
US-A1- 2010 173 226
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    FIELD



    [0001] The present disclosure relates to a fuel-cell unit cell and its manufacturing method.

    RELATED ART



    [0002] JP 2015 133269 A and US 2009/0286121 A1 disclose a unit cell for fuel cells. The unit cell includes an electrolyte-membrane/electrode structure, and a resin frame joined to a periphery of the electrolyte-membrane/electrode structure, which is sandwiched between an anode-side separator and a cathode-side separator. Gas manifold holes are formed in outer edge portions of the two separators, respectively, and gas flow paths are formed on respective surfaces of the two separators facing the resin-frame added electrolyte membrane/electrode structure. A plurality of guide flow paths (or gas-flow-path forming portions) that connect the gas manifold holes and the gas flow paths are formed from resin on the surface of the resin frame facing the cathode-side separator. In the related art, when the resin frame and the two separators are joined together by thermal pressing, the gas-flow-path forming portions may be fused and deformed depending on properties of the resin of the gas-flow-path forming portions, and the deformation may cause clogging of the gas flow paths.

    [0003] EP 1 876 666 A1 and US 2009/286121 disclose a unit cell for fuel cells as specified in the preamble of claim 1, and a method of manufacturing the unit cell as specified in the preamble of claim 6. The gas-flow-path forming portions are provided in the separators, thereby preventing fusion and deformation of the gas-flow-path forming portions.

    SUMMARY



    [0004] The present disclosure, having been accomplished to solve at least part of the above-described problems, can be implemented in the following aspects.
    1. (1) In one aspect, there is provided a fuel-cell unit cell as specified in claim 1.
      According to the fuel-cell unit cell of this aspect, since the melting point of the gas-flow-path forming portion is higher than the melting point of the fusion-bonding portion, fusion and deformation of the gas-flow-path forming portion will be reduced in assembling of the fuel-cell unit cell, making it possible to reduce the possibility that the gas flow paths of the gas-flow-path forming portion may be clogged.
    2. (2) In the above aspect, the resin frame may have a rectangular frame-like shape, and the gas manifold hole may be formed at four corner positions of the resin frame such that the resulting gas manifold holes includes two first gas manifold holes formed at one pair of diagonal positions of the resin frame and two second gas manifold holes formed at the other pair of diagonal positions. The gas-flow-path forming portion provided on the first surface of the resin frame may include two first gas-flow-path forming portions for forming gas flow paths between each of the two first gas manifold holes and the first surface of the MEGA. The fuel-cell unit cell may be further provided with two second gas-flow-path forming portions with a recessed-and-protruded shape for forming gas flow paths between each of the two second gas manifold holes and the second surface of the MEGA on the second surface of the resin frame. Also, independent of the fusion-bonding portion provided on the second surface of the resin frame, a first fusion-bonding portion may be formed on the first surface of the resin frame so as to pass across backsides of the two second gas-flow-path forming portions such that the first fusion-bonding portion does not cut off gas circulation between each of the two first gas manifold holes and the first surface of the MEGA while the first fusion-bonding portion surrounds each of the two second gas manifold holes to cut off gas circulation between each of the two second gas manifold holes and the first surface of the MEGA, and the first fusion-bonding portion bonds the resin frame and the first separator with each other. Moreover, the fusion-bonding portion provided on the second surface of the resin frame may include a second fusion-bonding portion which is formed so as to pass across backsides of the two first gas-flow-path forming portions such that the second fusion-bonding portion does not cut off gas circulation between each of the two second gas manifold holes and the second surface of the MEGA while the second fusion-bonding portion surrounds each of the two first gas manifold holes to cut off gas circulation between each of the two first gas manifold holes and the second surface of the MEGA, and the second fusion-bonding portion bonds the resin frame and the second separator with each other. In this case, the first fusion-bonding portion and the second fusion-bonding portion may be formed from the first resin, and the two first gas-flow-path forming portions and the two second gas-flow-path forming portions are formed from the second resin.
      According to the fuel-cell unit cell of this aspect, since the two first gas-flow-path forming portions and the two second gas-flow-path forming portions are higher in melting point than the first fusion-bonding portion and the second fusion-bonding portion, fusion and deformation of each of the four gas-flow-path forming portions will be reduced in assembling of the fuel-cell unit cell, making it possible to reduce the possibility that the gas flow paths of the gas-flow-path forming portions may be clogged.
    3. (3) In the above aspect, the two first gas-flow-path forming portions and the two second gas-flow-path forming portions may be formed at mutually non-overlapping positions when projected and observed along a stacking direction in which a plurality of the fuel-cell unit cells are to be stacked together.
      According to the fuel-cell unit cell of this aspect, since the two first gas-flow-path forming portions and the two second gas-flow-path forming portions are formed at mutually non-overlapping positions when projected and observed along a stacking direction in which a plurality of the fuel-cell unit cells are to be stacked together, pressure applied to the separators will be dispersed in assembling of the fuel-cell unit cell, so that deformation of the fuel-cell unit cell will be reduced.
    4. (4) In the above aspect, the resin frame may include an inner frame joined to a periphery of the MEGA and an outer frame joined to a periphery of the inner frame, the outer frame may be joined to the first separator and the second separator. In this case, Young's modulus of the inner frame may be smaller than Young's modulus of the outer frame.
      According to the fuel-cell unit cell of this aspect, since Young's modulus of the inner frame is smaller than Young's modulus of the outer frame, the inner frame is more elastically deformable. Therefore, when the fuel-cell unit cell is used under an environment of larger temperature variations, stresses occurring to the separators and the outer frame will be relaxed by the inner frame, making it possible to reduce the possibility that the electrolyte membrane of the MEGA joined to the inner frame may be broken due to tensile stress.
    5. (5) In the above aspect, the fuel-cell unit cell may further comprises: a seal gasket which is to be put into contact with the second separator of neighboring another fuel-cell unit cell when a plurality of the fuel-cell unit cells are to be stacked together. The seal gasket may be formed on a cooling surface out of two surfaces of the first separator, where the cooling surface is opposed to the surface which is placed on the first-surface side of the resin frame. The seal gasket may be disposed such that the seal gasket passes across a position overlapping with the gas-flow-path forming portion when projected and observed along a stacking direction in which a plurality of the fuel-cell unit cells are to be stacked together.
      According to the fuel-cell unit cell of this aspect, since a seal gasket is formed to pass across a position overlapping with the gas-flow-path forming portion on the cooling surface, part of the pressure applied to the seal gasket will be received by the gas-flow-path forming portion in stacking of a plurality of fuel-cell unit cells, making it possible to reduce deformation of the fuel-cell unit cells.
    6. (6) According to another aspect of the disclosure, there is provided a method of manufacturing a fuel-cell unit cell as specified in claim 6.


    [0005] According to the method of this aspect, in assembling of the fuel-cell unit cell, since the gas-flow-path forming portion and the thermoplastic bonding portion are compressed and heated at a temperature which is not lower than the melting point of the thermoplastic bonding portion and which is lower than the melting point of the gas-flow-path forming portion, fusion and deformation of the gas-flow-path forming portion will be reduced, making it possible to reduce the possibility that the gas flow paths of the gas-flow-path forming portion may be clogged.

    [0006] The present disclosure may also be implemented in various modes other than the above-described aspects. For example, the disclosure can be implemented in such modes as fuel cells, fuel cell manufacturing methods, fuel cell systems, fuel cell vehicles, and fuel cell vehicle manufacturing methods.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] 

    Fig. 1 illustrates a fuel-cell unit cell, as it is exploded, according to a first embodiment of the disclosure;

    Fig. 2 is a plan view of an MEGA plate;

    Figs. 3A-3B illustrate an outer frame and an inner frame of a resin frame;

    Figs. 4A-4C are sectional views of the MEGA plate according to the first embodiment;

    Figs. 5A-5B illustrate a manufacturing method of the fuel-cell unit cell;

    Figs. 6A-6C are sectional views of an MEGA plate according to a second embodiment;

    Figs. 7A-7C are sectional views of an MEGA plate according to a third embodiment; and

    Figs. 8A-8B illustrate a step of joining a gas-flow-path forming portion to the outer frame in the third embodiment.


    DESCRIPTION OF THE EMBODIMENTS


    First embodiment



    [0008] Fig. 1 is an explanatory view showing a fuel-cell unit cell 140, as it is exploded, according to a first embodiment of the disclosure. The fuel-cell unit cell 140 is, for example, a solid polymer type fuel cell. A fuel cell stack in which this fuel-cell unit cell 140 is stacked in plurality is to be mounted, for example, on a fuel cell vehicle as a power source. Herein, a stacking direction of the fuel-cell unit cells 140 is an X direction, and a horizontal direction is a Z direction. In addition, a direction perpendicular to the stacking direction X and the horizontal direction Z is a vertical direction Y.

    [0009] The fuel-cell unit cell 140 is so configured that a Membrane-Electrode Gas-diffusion-layer Assembly (hereinafter, referred to as 'MEGA') plate 35, which includes a MEGA 30 and a resin frame 31 joined to a periphery of the MEGA 30, is sandwiched by a first separator 50 and a second separator 40. In the first embodiment, the first separator 50 is an anode-side separator, and the second separator 40 is a cathode-side separator. The MEGA 30 has a first surface 30a and a second surface 30b. The first surface 30a, which is to be in contact with the first separator 50, serves as an anode electrode. The second surface 30c, which is to be in contact with the second separator 40, serves as a cathode electrode. It is noted that the anode side and the cathode side may be reversed.

    [0010] The first separator 50 is placed in contact with the first surface 30a of the MEGA 30 and also placed on a first surface 31a side of the resin frame 31. The first separator 50 is joined to the first surface 31a of the resin frame 31 with a first fusion-bonding portion 81. On a surface 51a of the first separator 50A, which is in contact with the MEGA plate 35, there are formed anode gas flow paths 52 by stripe-like recesses and protrusions. On a cooling surface 51c, which is a backside of the surface 51a, there are formed cooling medium flow paths 54 at reverse-side positions corresponding to the anode gas flow paths 52. Also on the cooling surface 51c, there is formed a seal gasket 83, which is to be in contact with the second separator 40 of a neighboring fuel-cell unit cell 140 for sealing a cooling medium in a state where a plurality of fuel-cell unit cells 140 are stacked together. The second separator 40 is placed in contact with the second surface 30c of the MEGA 30 and also placed on a second surface 31c (a backside of the first surface 31a) side of the resin frame 31. The second separator 40 is joined to the second surface 31c of the resin frame 31 with a second fusion-bonding portion 82. On a surface 41 of the second separator 40, which is to be in contact with the MEGA plate 35, there are formed cathode gas flow paths 42 by stripe-like recesses and protrusions. Gas manifold holes 62, 64, 72, 74 and cooling medium manifold holes 84, 85 are formed in outer edge portions of the first separator 50, the MEGA plate 35, and the second separator 40, respectively.

    [0011] Fig. 2 is a plan view of the MEGA plate 35. The resin frame 31, which has a rectangular frame shape as a whole, includes a rectangular frame-shaped inner frame 33 joined to the periphery of the MEGA 30, and an outer frame 32 joined to the periphery of the inner frame 33. The gas manifold holes 62, 64, 72, 74 are formed at four corner positions of the resin frame 31, respectively, and at four corners of the outer frame 32 in this embodiment. The two first gas manifold holes 62, 64 are formed at a pair of diagonal positions on a first diagonal line D1 of the resin frame 31. The two second gas manifold holes 72, 74 are formed at the other pair of diagonal positions on a second diagonal line D2 intersecting the first diagonal line D1. In the first embodiment, anode gas flows into the anode side (first surface 30a) of the MEGA 30 through the first gas manifold hole 62 for gas-supply use, passing through the anode gas flow paths 52 (Fig. 1) and then, after gathered to the first gas manifold hole 64 for gas-discharge use, discharged to outside of the fuel-cell unit cell 140 (Fig. 1). Cathode gas flows into the cathode side (second surface 30c) of the MEGA 30 through the second gas manifold hole 72 for gas-supply use, passing through the cathode gas flow paths 42 (Fig. 1) and then, after gathered to the second gas manifold hole 74 for gas-discharge use, discharged to outside of the fuel-cell unit cell 140.

    [0012] On the first surface 31a of the resin frame 31, there are formed two first gas-flow-path forming portions 34T with recesses and protrusions for allowing the anode gas to pass through; their protruded portions protruding in the X-direction are hatched for drawing convenience' sake. One of the two first gas-flow-path forming portions 34T forms gas flow paths between the first gas manifold hole 62 for gas-supply use and the first surface 30a of the MEGA 30 while the other forms gas flow paths between the first gas manifold hole 64 for gas-discharge use and the first surface 30a of the MEGA 30.

    [0013] On the second surface 31c of the resin frame 31, there are formed two second gas-flow-path forming portions 34B with recesses and protrusions for allowing the cathode gas to pass through. The two second gas-flow-path forming portions 34B are identical in shape and size to the two first gas-flow-path forming portions 34T. One of the two second gas-flow-path forming portions 34B forms gas flow paths between the second gas manifold hole 72 for gas-supply use and the second surface 30c of the MEGA 30 while the other forms gas flow paths between the second gas manifold hole 74 for gas-discharge use and the second surface 30c of the MEGA 30. In this embodiment, the two first gas-flow-path forming portions 34T and the two second gas-flow-path forming portions 34B are formed at mutually non-overlapping positions when the MEGA plate 35 is projected and observed along the stacking direction X. With such arrangement, when the two separators 40, 50 are compressed from outside in assembling of the fuel-cell unit cell 140, pressure applied to the separators 40, 50 will be dispersed, so that deformation of the fuel-cell unit cell 140 will be suppressed. The first gas-flow-path forming portions 34T and the second gas-flow-path forming portions 34B, however, may partly or entirely be placed at mutually overlapping positions.

    [0014] There is further formed a first fusion-bonding portion 81 integrally on the first surface 31a of the resin frame 31. The first fusion-bonding portion 81, which is also protruded in the X direction, is hatched. The first fusion-bonding portion 81 surrounds peripheries of the two second gas manifold holes 72, 74, respectively, to cut off circulation of the cathode gas between the second gas manifold holes 72, 74 and the first surface 30a of the MEGA 30 while bonding the resin frame 31 and the first separator 50 (Fig. 1) with each other. The first fusion-bonding portion 81 is so provided as to pass across backside of the two second gas-flow-path forming portions 34B. The first fusion-bonding portion 81 also surrounds the cooling medium manifold holes 84, 85, individually, to seal the cooling medium. In order to seal the anode gas, the first fusion-bonding portion 81 is so provided as to surround an anode gas flow-path region containing the two first gas manifold holes 62, 64 and the first surface 30a of the MEGA 30. The first fusion-bonding portion 81 is not formed between each of the two first gas manifold holes 62, 64 and the first surface 30a of the MEGA 30 so as not to cut off the gas circulation therebetween.

    [0015] There is further formed a second fusion-bonding portion 82 integrally on the second surface 31c of the resin frame 31. The second fusion-bonding portion 82 has a shape obtained by turning the first fusion-bonding portion 81 to a left-right 180° turn. That is, the second fusion-bonding portion 82 is formed so as to surround the two first gas manifold holes 62, 64 individually, thereby cutting off circulation of the anode gas between the first gas manifold holes 62, 64 and the second surface 30c of the MEGA 30, and moreover bonding the resin frame 31 and the second separator 40 (Fig. 1) with each other. The second fusion-bonding portion 82 is so provided as to pass across backside of the two first gas-flow-path forming portions 34T. the second fusion-bonding portion 82 surrounds the cooling medium manifold holes 84, 85 individually to seal the cooling medium,. In order to seal the cathode gas, the second fusion-bonding portion 82 is provided so as to surround the cathode gas flow-path region containing the two second gas manifold holes 72, 74 and the second surface 30c of the MEGA 30. The second fusion-bonding portion 82 is not formed between each of the two second gas manifold holes 72, 74 and the second surface 30c of the MEGA 30 so as not to cut off the gas circulation therebetween.

    [0016] The gas-flow-path forming portions 34T, 34B and the fusion-bonding portions 81, 82 are formed from mutually different resins. For example, the fusion-bonding portions 81, 82 may be formed from a resin such as adhesive thermoplastic resin containing a maleic anhydride-modified polypropylene (or modified PP). The gas-flow-path forming portions 34T, 34B may be formed from a resin such as an olefinic resin containing, in part or in entirety, polypropylene (PP), polyethylene (PE), and ethylene propylene diene terpolymer (EPDM). These resin materials are selected in order that the melting point of a first resin for forming the gas-flow-path forming portions 34T, 34B is higher than the melting point of a second resin for forming the fusion-bonding portions 81, 82.

    [0017] Figs. 3A and 3B are explanatory views showing the resin frame 31 as it is exploded into the outer frame 32 and the inner frame 33. Fig. 3A is a plan view of the outer frame 32. In this example, the outer frame 32 is molded integrally with the first fusion-bonding portion 81 and the second fusion-bonding portion 82 from the same material as theirs. An opening 32P into which the inner frame 33 is to be fitted is provided in the center of the outer frame 32. Cutout portions 36T at which the outer frame 32 is cut out are formed between the opening 32P and the two first gas manifold holes 62, 64, respectively. Side edges of the cutout portions 36T are joined to the first gas-flow-path forming portions 34T while in contact with side edges of the first gas-flow-path forming portions 34T. In the state after this junction, the bottom surface of the second fusion-bonding portion 82 is joined to the backside of the first gas-flow-path forming portions 34T. Also between the opening 32P and the two second gas manifold holes 72, 74, respectively, cutout portions 36B at which the outer frame 32 is cut out are provided. Side edges of the cutout portions 36B are joined to the second gas-flow-path forming portions 34B while in contact with side edges of the second gas-flow-path forming portions 34B. In the state after this junction, the bottom surface of the first fusion-bonding portion 81 is joined to the backside of the second gas-flow-path forming portions 34B.

    [0018] Fig. 3B is a plan view of the inner frame 33. An MEGA opening 30P to which the MEGA 30 is to be joined is formed in the center of the inner frame 33. In this example, the inner frame 33 is molded integrally with the two first gas-flow-path forming portions 34T and the two second gas-flow-path forming portions 34B from the same material as theirs. Gas guide flow paths 52r, which are recessed grooves, are formed at the first gas-flow-path forming portions 34T. Similarly, gas guide flow paths 42r, which are recessed grooves, are formed also at the second gas-flow-path forming portions 34B. These gas guide flow paths 52r, 42r are preferably provided in a plurality such as two or more, whereas only two flow paths are depicted in Figs. 3A and 3B for drawing convenience' sake. The resin frame 31 (Fig. 2) may formed in a two-color molding process such that the fusion-bonding portions 81, 82 and the outer frame 32 are integrally molded from an identical first resin while the gas-flow-path forming portions 34T, 34B and the inner frame 33 are integrally molded from a second resin which is different from the first resin.

    [0019] Figs. 4A-4C are explanatory views showing a 4a-4a cross section, a 4b-4b cross section and a 4c-4c cross section of the MEGA plate 35 shown in Fig. 2. Here are shown states before the fuel-cell unit cell 140 is assembled. In the state before the fuel-cell unit cell 140 is assembled, the first fusion-bonding portion 81 and the second fusion-bonding portion 82 shown in Fig. 2 have not yet been fused, so they are referred to as a first thermoplastic bonding portion 81t and a second thermoplastic bonding portion 82t.

    [0020] As shown in Fig. 4A, the first gas-flow-path forming portions 34T have a recessed-and-protruded shape to form gas guide flow paths 52r for the anode gas. In this example, the first gas-flow-path forming portions 34T are integrally molded from the same material as the inner frame 33 of the resin frame 31 (Fig. 2). The second thermoplastic bonding portion 82t passes across backside of the first gas-flow-path forming portions 34T. As shown in Fig. 4B, the thermoplastic bonding portions 81t, 82t are integrally molded from the same material as the outer frame 32 of the resin frame 31. Preferably, an end portion 33e of the inner frame 33 joined to the outer frame 32 is joined so as to be contained in and surrounded by the outer frame 32. With this structure, three end faces of the end portion 33e of the inner frame 33 are in contact with the outer frame 32, so that the inner frame 33 and the outer frame 32 are firmly joined together. As shown in Fig. 4C, the second gas-flow-path forming portions 34B have a recessed-and-protruded shape to form gas guide flow paths 42r for the cathode gas. The second gas-flow-path forming portions 34B are molded integrally with the inner frame 33 of the resin frame 31 from the same material. The first thermoplastic bonding portion 81t passes across backside of the second gas-flow-path forming portions 34B.

    [0021] As shown in Figs. 4A-4C, the MEGA 30 joined to the inner frame 33 is configured such that electrode catalyst layers 11, 12 formed on opposite surfaces of an electrolyte membrane 10 are sandwiched by gas diffusion layers 21, 22. In this example, the first electrode catalyst layer 11 is one size larger than the second electrode catalyst layer 12, and the first gas diffusion layer 21 is one size larger than the second gas diffusion layer 22. However, the first electrode catalyst layer 11 and the second electrode catalyst layer 12 may be of the same size, and the first gas diffusion layer 21 and the second gas diffusion layer 22 may be of the same size. In the first embodiment, the first electrode catalyst layer 11 is an anode-electrode catalyst layer, and the second electrode catalyst layer 12 is a cathode-electrode catalyst layer. In the MEGA 30, out of two surfaces of the electrolyte membrane 10, one surface opposite to the surface in contact with the first electrode catalyst layer 11 is joined to the inner frame 33 of the resin frame 31 (Fig. 2) with adhesive.

    [0022] Preferably, Young's modulus of the inner frame 33 is smaller than Young's modulus of the outer frame 32. With this configuration, when the fuel-cell unit cell 140 (Fig. 1) is used under an environment of large temperature variations, stresses occurring to the separators 40, 50 (Fig. 1) and the outer frame 32 can be relaxed by the inner frame 33 by virtue of high elastic deformability of the inner frame 33, thereby reducing the possibility that the electrolyte membrane 10 of the MEGA 30 joined to the inner frame 33 may be broken by tensile stress.

    [0023] Figs. 5A and 5B are explanatory views showing a manufacturing method of the fuel-cell unit cell 140; the explanation will be given by using the cross section of Fig. 4A. First, the MEGA plate 35, the first separator 50, and the second separator 40 are prepared. The separators 40, 50 are press-formed plates in which the gas flow paths 42, 52 and the cooling medium flow paths 54 have been formed by press forming of metal plates, for example. It is noted that recesses and protrusions of the separators 40, 50 are omitted in Figs. 5A and 5B.

    [0024] As shown in Fig. 5A, the first separator 50, the MEGA plate 35 and the second separator 40, which have been prepared, are stacked together to form a stacked assembly. Next, a first jig 210 is set in contact with an outer position of the first separator 50 corresponding to the position of the first gas-flow-path forming portion 34T, and a second jig 220 is set in contact with an outer position of the second separator 40 corresponding to the position of the second thermoplastic bonding portion 82t. As indicated by hollow arrows, the first gas-flow-path forming portion 34T and the second thermoplastic bonding portion 82t are compressed while pinched by the jigs 210, 220. In this process, the jigs 210, 220 are heated with an unshown heater so that the first gas-flow-path forming portion 34T and the second thermoplastic bonding portion 82t are heated at a temperature which is not lower than the melting point of the second thermoplastic bonding portion 82t and which is lower than the melting point of the first gas-flow-path forming portion 34T. For example, given that the melting point of the second thermoplastic bonding portion 82t is 135°C and that the melting point of the first gas-flow-path forming portion 34T is 160°C, the heating temperature is not lower than 135°C and lower than 160°C (where heat loss is not considered). With this setting, the second thermoplastic bonding portion 82t is fused or melted to form the second fusion-bonding portion 82 bonded to the second separator 40, as shown in Fig. 5B. In this way, the MEGA plate 35 and the second separator 40 are bonded together. Similarly, by compressing and heating the second gas-flow-path forming portion 34B and the first thermoplastic bonding portion 81t shown in Fig. 4C in a similar manner, the first fusion-bonding portion 81 is formed so that the MEGA plate 35 and the first separator 50 are bonded together. Finally, the seal gasket 83 is bonded to the outer cooling surface 51c of the first separator 50 with adhesive, for example. As a result of this, the assembly of the fuel-cell unit cell 140 is completed. Preferably, the seal gasket 83 extends to pass across positions overlapping with the first gas-flow-path forming portion 34T when projected and observed in the stacking direction of the fuel-cell unit cell 140. With this arrangement, when a plurality of fuel-cell unit cells 140 are stacked together, part of pressure applied to the seal gasket 83 will be received by the first gas-flow-path forming portion 34T, thereby reducing deformation of the fuel-cell unit cells 140.

    [0025] As described above, in the first embodiment, since the melting point of the gas-flow-path forming portions 34T, 34B is higher than the melting point of the thermoplastic bonding portions 81t, 82t (or fusion-bonding portions 81, 82), the gas-flow-path forming portions 34T, 34B are prevented from being excessively fused or deformed, so that the possibility of clogging of the gas guide flow paths 52r, 42r (or gas flow paths) will be reduced in the assembly of the fuel-cell unit cell 140.

    Second Embodiment



    [0026] Figs. 6A-6C are explanatory views showing a second embodiment, corresponding to Figs. 4A-4C of the first embodiment. For drawing convenience' sake, the MEGA 30 is omitted. This embodiment differs from the first embodiment shown in Figs. 4A-4C only in the materials for forming gas-flow-path forming portions 34Ta, 34Ba, the rest of the constitution being the same as in the first embodiment. As shown in Fig. 6A and Fig. 6C, the gas-flow-path forming portions 34Ta, 34Ba are formed from a material different from that of the inner frame 33 of the resin frame 31 (Fig. 2). The resin frame 31, which includes the gas-flow-path forming portions 34Ta, 34Ba, the inner frame 33, and the outer frame 32 having the thermoplastic bonding portions 81t, 82t integrally molded therewith, may be formed by three-color molding process, for example.

    [0027] Also in the second embodiment, resin materials of these members are selected such that the melting point of the gas-flow-path forming portions 34Ta, 34Ba is higher than the melting point of the thermoplastic bonding portions 81t, 82t (or fusion-bonding portions 81, 82),. Therefore, as in the first embodiment, the gas-flow-path forming portions 34Ta, 34Ba are prevented from being excessively fused or deformed, thereby reducing the possibility of clogging of the gas guide flow paths 52r, 42r in the assembly of the fuel-cell unit cell 140.

    Third embodiment



    [0028] Figs. 7A-7C are explanatory views showing a third embodiment, corresponding to Figs. 6A-6C of the second embodiment. This embodiment differs from the second embodiment shown in Figs. 6A-6C only in the joining method of gas-flow-path forming portions 34Tb, 34Bb with the outer frame 32 of the resin frame 31 (Fig. 2), the rest of the constitution being similar to that of the second embodiment.

    [0029] Figs. 8A-8C illustrate how a first gas-flow-path forming portion 34Tb is joined to the outer frame 32 by using the cross section of Fig. 7A as an example. As shown in Fig. 8A, first, the inner frame 33, and the outer frame 32 with which the second thermoplastic bonding portion 82t is integrally molded, are made by two-color molding process. The first gas-flow-path forming portion 34Tb is modeled separately. Then, the first gas-flow-path forming portion 34Tb is set into contact with the outer frame 32 and joined to the outer frame 32 with heat treatment or adhesive, whereby a cross section of Fig. 8B is obtained. As can be understood from this example, the resin frame does not need to be integrally molded as the whole, and a plurality of members of the resin frame, after molded independently, may be joined together.

    Modifications



    [0030] The present disclosure is not limited to the above-described embodiments, and may be carried out in other various modes unless those modes depart from the gist of the disclosure, the other modes exemplified by the following modifications.

    Modification 1



    [0031] In the foregoing embodiments, a total of four gas-flow-path forming portions 34T, 34B and two fusion-bonding portions 81, 82 are formed in the resin frame 31. However, these gas-flow-path forming portions 34T, 34B and fusion-bonding portions 81, 82 may be partly omitted. In this case, a separator to be put into contact with that surface of the resin frame 31 which is not provided with the fusion-bonding portion may be joined to the resin frame 31 by means of other adhesive or bonding portion, or otherwise may be non-joined with the resin frame 31. It is preferable, however, that at least one gas-flow-path forming portion is provided on one surface (or first surface) out of the two surfaces of the resin frame 31 while a fusion-bonding portion is provided on its reverse surface.

    [0032] A fuel-cell unit cell comprises an MEGA plate with a resin frame, and two separators. There is formed a gas manifold hole in an outer edge portion of the resin frame. There is provided a gas-flow-path forming portion with a recessed-and-protruded shape on the first surface of the resin frame for forming gas flow paths between the gas manifold hole and the first surface of the MEGA. There is also formed a fusion-bonding portion for surrounding a periphery of the gas manifold hole to cut off gas circulation between the gas manifold hole and the second surface of the MEGA and for bonding the resin frame and the second separator with each other, on the second surface of the resin frame so as to pass across a backside of the gas-flow-path forming portion. The fusion-bonding portion is formed from a first resin, and the gas-flow-path forming portion is formed from a second resin higher in melting point than the first resin.


    Claims

    1. A fuel-cell unit cell (140) comprising:

    a membrane-electrode gas-diffusion-layer assembly (MEGA) plate (35) including an MEGA (30) and a resin frame (31, 32, 33) joined to a periphery of the MEGA (30);

    a first separator (50) placed in contact with a first surface (30a) of the MEGA (30) and also placed on a first-surface (31a) side of the resin frame (31, 32, 33); and

    a second separator (40) placed in contact with a second surface (30c) of the MEGA (30) and also placed on a second-surface (31c) side of the resin frame (31, 32, 33);

    wherein a gas manifold hole (62, 64, 72, 74) is formed in an outer edge portion of the resin frame (31, 32, 33),

    the fuel-cell unit cell (140) further comprising:

    a gas-flow-path forming portion (34T; 34Ta; 34Tb) with a recessed-and-protruded shape, provided on the first surface (31a) of the resin frame (31, 32, 33), for forming gas flow paths between the gas manifold hole (62, 64, 72, 74) and the first surface (30a) of the MEGA (30); and

    a bonding portion (82) for surrounding a periphery of the gas manifold hole (62, 64, 72, 74) to cut off gas circulation between the gas manifold hole (62, 64, 72, 74) and the second surface (30c) of the MEGA (30) and for bonding the resin frame (31, 32, 33) and the second separator (40) with each other, the bonding portion (82) being formed on the second surface (31c) of the resin frame (31, 32, 33) so as to pass across a backside of the gas-flow-path forming portion (34T; 34Ta; 34Tb),

    characterized in that

    the bonding portion (82) is a fusion bonding portion (82) and,

    the
    fusion-bonding portion (82) is formed from a first resin, and the gas-flow-path forming portion (34T; 34Ta; 34Tb) is formed from a second resin higher in melting point than the first resin.


     
    2. The fuel-cell unit cell (140) in accordance with claim 1, wherein
    the resin frame (31) has a rectangular frame-like shape,
    the gas manifold hole (62, 64, 72, 74) is formed at four corner positions of the resin frame (31), the resulting gas manifold holes (62, 64, 72, 74) including two first gas manifold holes (62, 64) formed at one pair of diagonal positions of the resin frame (31) and two second gas manifold holes (72, 74) formed at the other pair of diagonal positions,
    the gas-flow-path forming portion (34T; 34Ta; 34Tb) provided on the first surface (31a) of the resin frame (31) includes two first gas-flow-path forming portions (34T; 34Ta; 34Tb) for forming gas flow paths between each of the two first gas manifold holes (62, 64) and the first surface (30a) of the MEGA (30),
    the fuel-cell unit cell (140) further comprises two second gas-flow-path forming portions (34B, 34Ba, 34Bb) with a recessed-and-protruded shape for forming gas flow paths between each of the two second gas manifold holes (72, 74) and the second surface (30c) of the MEGA (30) on the second surface (31c) of the resin frame (31),
    independent of the fusion-bonding portion (82) provided on the second surface (31c) of the resin frame (31), a first fusion-bonding portion (81) is formed on the first surface (31a) of the resin frame (31) so as to pass across backsides of the two second gas-flow-path forming portions (34B; 34Ba; 34Bb) such that the first fusion-bonding portion (81) does not cut off gas circulation between each of the two first gas manifold holes (62, 64) and the first surface (30a) of the MEGA (30) while the first fusion-bonding portion (81) surrounds each of the two second gas manifold holes (72, 74) to cut off gas circulation between each of the two second gas manifold holes (72, 74) and the first surface (30a) of the MEGA (30), and the first fusion-bonding portion (81) bonds the resin frame (31) and the first separator (50) with each other,
    the fusion-bonding portion (82) provided on the second surface (31c) of the resin frame (31) includes a second fusion-bonding portion (82) which is formed so as to pass across backsides of the two first gas-flow-path forming portions (34T; 34Ta; 34Tb) such that the second fusion-bonding portion (82) does not cut off gas circulation between each of the two second gas manifold holes (72, 74) and the second surface (30c) of the MEGA (30) while the second fusion-bonding portion (82) surrounds each of the two first gas manifold holes (62, 64) to cut off gas circulation between each of the two first gas manifold holes (62, 64) and the second surface (30c) of the MEGA (30), and the second fusion-bonding portion (82) bonds the resin frame (31) and the second separator (40) with each other, and
    the first fusion-bonding portion (81) and the second fusion-bonding portion (82) are formed from the first resin, and the two first gas-flow-path forming portions (34T; 34Ta; 34Tb) and the two second gas-flow-path forming portions (34B; 34Ba; 34Bb) are formed from the second resin.
     
    3. The fuel-cell unit cell (140) in accordance with claim 2, wherein
    the two first gas-flow-path forming portions (34T; 34Ta; 34Tb) and the two second gas-flow-path forming portions (34B; 34Ba; 34Bb) are formed at mutually non-overlapping positions when projected and observed along a stacking direction in which a plurality of the fuel-cell unit cells (140) are to be stacked together.
     
    4. The fuel-cell unit cell (140) in accordance with claim 1, wherein
    the resin frame (31) includes an inner frame (33) joined to a periphery of the MEGA (30) and an outer frame (32) joined to a periphery of the inner frame (33),
    the outer frame (32) is joined to the first separator (50) and the second separator (40), and
    Young's modulus of the inner frame (33) is smaller than Young's modulus of the outer frame (32).
     
    5. The fuel-cell unit cell (140) in accordance with claim 1 or 4, further comprising:
    a seal gasket (83) which is to be put into contact with the second separator (40) of neighboring another fuel-cell unit cell (140) when a plurality of the fuel-cell unit cells (140) are to be stacked together, the seal gasket (83) being formed on a cooling surface (51c) out of two surfaces (51a, 51c) of the first separator (50), the cooling surface (51c) being opposed to the surface (51a) which is placed on the first-surface (31a) side of the resin frame (31), the seal gasket (83) being disposed such that the seal gasket (83) passes across a position overlapping with the gas-flow-path forming portion (34T; 34Ta; 34Tb) when projected and observed along a stacking direction in which a plurality of the fuel-cell unit cells (140) are to be stacked together.
     
    6. A method of manufacturing a fuel-cell unit cell (140) comprising the steps of:

    (a) preparing a membrane-electrode gas-diffusion-layer assembly (MEGA) plate (35) including an MEGA (30) and a resin frame (31, 32, 33) joined to a periphery of the MEGA (30), a first separator (50) to be placed in contact with a first surface (30a) of the MEGA (30) and also placed on a first-surface (31a) side of the resin frame (31, 32, 33), and a second separator (40) to be placed in contact with a second surface (30c) of the MEGA (30) and also placed on a second-surface (31c) side of the resin frame (31, 32, 33); and

    (b) stacking the first separator (50), the MEGA plate (35), and the second separator (40) to assemble the fuel-cell unit cell (140),

    wherein
    a gas manifold hole (62, 64, 72, 74) is formed in an outer edge portion of the resin frame (31, 32, 33),
    a gas-flow-path forming portion (34T; 34Ta; 34Tb) with a recessed-and-protruded shape for forming gas flow paths between the gas manifold hole (62, 64, 72, 74) and the first surface (30a) of the MEGA (30) is formed on the first surface (31a) of the resin frame (31, 32, 33),
    a thermoplastic bonding portion (82t) for surrounding a periphery of the gas manifold hole (62, 64, 72, 74) to cut off gas circulation between the gas manifold hole (62, 64, 72, 74) and the second surface of the MEGA (30) and for bonding the resin frame (31, 32, 33) and the second separator (40) with each other is formed on the second surface (31c) of the resin frame (31, 32, 33) so as to pass across a backside of the gas-flow-path forming portion (34T; 34Ta; 34Tb), and
    the step (b) includes a step of, after the stacking, compressing the gas-flow-path forming portion (34T; 34Ta; 34Tb) and the thermoplastic bonding portion (82t) of the resin frame (31, 32, 33) from outside of the first separator (50) and the second separator (40),
    the thermoplastic bonding portion (82t) is formed from a first resin and the gas-flow-path forming portion (34T; 34Ta; 34Tb) is formed from a second resin higher in melting point than the first resin, and
    the gas-flow-path forming portion (34T; 34Ta; 34Tb) and the thermoplastic bonding portion (82t) of the resin frame (31, 32, 33) are compressed while heating the gas-flow-path forming portions (34T; 34Ta; 34Tb) and the thermoplastic bonding portion (82t) at a temperature which is not lower than a melting point of the thermoplastic bonding portion (82t) and also which is lower than a melting point of the gas-flow-path forming portion (34T; 34Ta; 34Tb) so as to fuse the thermoplastic bonding portion (82t) to form a fusion-bonding portion (82) bonded to the second separator (40).
     
    7. The method in accordance with claim 6, wherein
    the resin frame (31) has a rectangular frame-like shape,
    the gas manifold hole (62, 64, 72, 74) is formed at four corner positions of the resin frame (31), the resulting gas manifold holes (62, 64, 72, 74) including two first gas manifold holes (62, 64) formed at one pair of diagonal positions of the resin frame (31) and two second gas manifold holes (72, 74) formed at the other pair of diagonal positions,
    the gas-flow-path forming portion (34T; 34Ta; 34Tb) provided on the first surface (31a) of the resin frame (31) includes two first gas-flow-path forming portions (34T; 34Ta; 34Tb) for forming gas flow paths between each of the two first gas manifold holes (62, 64) and the first surface (30a) of the MEGA (30),
    the resin frame (31) is further provided with two second gas-flow-path forming portions (34B; 34Ba; 34Bb) with a recessed-and-protruded shape for forming gas flow paths between each of the two second gas manifold holes (72, 74) and the second surface (30c) of the MEGA (30) on the second surface (31c) of the resin frame (30),
    independent of the thermoplastic bonding portion (82t) provided on the second surface (31c) of the resin frame (31), a first thermoplastic bonding portion (81t) is formed on the first surface (31a) of the resin frame (31) so as to pass across backsides of the two second gas-flow-path forming portions (34B; 34Ba; 34Bb) such that the first thermoplastic bonding portion (81t) does not cut off gas circulation between each of the two first gas manifold holes (62, 64) and the first surface (30a) of the MEGA (30) while the first thermoplastic bonding portion (81t) surrounds each of the two second gas manifold holes (72, 74) to cut off gas circulation between each of the two second gas manifold holes (72, 74) and the first surface (30a) of the MEGA (30), and the first thermoplastic bonding portion (81t) is used to bond the resin frame (31) and the first separator (50) with each other,
    the thermoplastic bonding portion (82t) provided on the second surface (31c) of the resin frame (31) includes a second thermoplastic bonding portion (82t) which is formed so as to pass across backsides of the two first gas-flow-path forming portions (34T; 34Ta; 34Tb) such that the second thermoplastic bonding portion (82t) does not cut off gas circulation between each of the two second gas manifold holes (72, 74) and the second surface (30c) of the MEGA (30) while the second thermoplastic bonding portion (82t) surrounds each of the two first gas manifold holes (72, 74) to cut off gas circulation between each of the two first gas manifold holes (62, 64) and the second surface (30c) of the MEGA (30), and the second thermoplastic bonding portion (82t) is used to bond the resin frame (31) and the second separator (40) with each other, and
    the first thermoplastic bonding portion (81t) and the second thermoplastic bonding portion (82t) are formed from the first resin, and the two first gas-flow-path forming portions (34T; 34Ta; 34Tb) and the two second gas-flow-path forming portions (34B; 34Ba; 34Bb) are formed from the second resin.
     
    8. The method in accordance with claim 7, wherein
    the two first gas-flow-path forming portions (34T; 34Ta; 34Tb) and the two second gas-flow-path forming portions (34B; 34Ba; 34Bb) are formed at mutually non-overlapping positions when projected and observed along a stacking direction in which a plurality of the fuel-cell unit cells (140) are to be stacked together.
     
    9. The method in accordance with claim 6, wherein
    the resin frame (31) includes an inner frame (33) joined to a periphery of the MEGA (30) and an outer frame (32) joined to a periphery of the inner frame (33),
    the outer frame (32) is joined to the first separator (50) and the second separator (40), and
    Young's modulus of the inner frame (33) is smaller than Young's modulus of the outer frame (32).
     
    10. The method in accordance with claim 6 or 9, wherein
    the first separator (50) includes a seal gasket (83) which is to be put into contact with the second separator (40) of neighboring another fuel-cell unit cell (140) when a plurality of the fuel-cell unit cells (140) are to be stacked together, the seal gasket (83) being formed on a cooling surface (51c) out of two surfaces (51a, 51c) of the first separator (50), the cooling surface (51c) being opposed to the surface (51a) which is placed on the first-surface (31a) side of the resin frame (31), the seal gasket (83) being disposed such that the seal gasket (83) passes across a position overlapping with the gas-flow-path forming portion (34T; 34Ta; 34Tb) when projected and observed along a stacking direction in which a plurality of the fuel-cell unit cells (140) are to be stacked together.
     


    Ansprüche

    1. Brennstoffzelleneinheitszelle (140) mit:

    einer Membran-Elektroden-Gasdiffusionsschicht-Einheit-(MEGA-)Platte (35), die eine MEGA (30) und einen Harzrahmen (31, 32, 33) umfasst, der mit einem Rand der MEGA (30) verbunden ist;

    einem ersten Separator (50), der mit einer ersten Oberfläche (30a) der MEGA (30) in Berührung kommt sowie auf Seiten einer ersten Oberfläche (31a) des Harzrahmens (31, 32, 33) platziert ist; und

    einem zweiten Separator (40), der mit einer zweiten Oberfläche (30c) der MEGA (30) in Berührung kommt sowie auf Seiten einer zweiten Oberfläche (31c) des Harzrahmens (31, 32, 33) platziert ist;

    wobei in einem Außenkantenabschnitt des Harzrahmens (31, 32, 33) ein Gasverteilerloch (62, 64, 72, 74) ausgebildet ist,

    wobei die Brennstoffzelleneinheitszelle (140) außerdem Folgendes umfasst:

    einen Gasströmungswegausbildungsabschnitt (34T; 34Ta; 34Tb) mit einer zurückgesetzten und vorstehenden Form, der auf der ersten Oberfläche (31a) des Harzrahmens (31, 32, 33) vorgesehen ist, um zwischen dem Gasverteilerloch (62, 64, 72, 74) und der ersten Oberfläche (30a) der MEGA (30) Gasströmungswege auszubilden; und

    einen Schmelzverbindungsabschnitt (82), um einen Rand des Gasverteilerlochs (62, 64, 72, 74) zu umgeben, damit eine Gaszirkulation zwischen dem Gasverteilerloch (62, 64, 72, 74) und der zweiten Oberfläche (30c) der MEGA (30) abgeschnitten wird, und um den Harzrahmen (31, 32, 33) und den zweiten Separator (40) miteinander zu verbinden, wobei der Schmelzverbindungsabschnitt (82) so auf der zweiten Oberfläche (31c) des Harzrahmens (31, 32, 33) ausgebildet ist, dass er über eine Rückseite des Gasströmungswegausbildungsabschnitts (34T; 34Ta; 34Tb) verläuft,

    dadurch gekennzeichnet, dass

    der Gasströmungswegausbildungsabschnitt (34T; 34Ta; 34Tb) eine Vielzahl von Gasführungsströmungswegen (52r) aufweist und

    der Schmelzverbindungsabschnitt (82) aus einem ersten Harz ausgebildet ist und der Gasströmungswegausbildungsabschnitt (34T; 34Ta; 34Tb) aus einem zweiten Harz ausgebildet ist, das einen höheren Schmelzpunkt als das erste Harz hat.


     
    2. Brennstoffzelleneinheitszelle (140) nach Anspruch 1, wobei
    der Harzrahmen (31) eine rechteckrahmenartige Form hat,
    das Gasverteilerloch (62, 64, 72, 74) an vier Eckpositionen des Harzrahmens (31) ausgebildet ist, wobei die sich ergebenden Gasverteilerlöcher (62, 64, 72, 74) zwei erste Gasverteilerlöcher (62, 64), die an einem Paar Diagonalpositionen des Harzrahmens (31) ausgebildet sind, und zwei zweite Gasverteilerlöcher (72, 74) umfassen, die an dem anderen Paar Diagonalpositionen ausgebildet sind,
    der auf der ersten Oberfläche (31a) des Harzrahmens (31) vorgesehene Gasströmungswegausbildungsabschnitt (34T, 34Ta; 34Tb) zwei erste Gasströmungswegausbildungsabschnitte (34T, 34Ta; 34Tb) umfasst, um zwischen jedem der zwei ersten Gasverteilerlöcher (62, 64) und der ersten Oberfläche (30a) der MEGA (30) Gasströmungswege auszubilden,
    die Brennstoffzelleneinheitszelle (140) außerdem zwei zweite Gasströmungswegausbildungsabschnitte (34B, 34Ba, 34Bb) mit einer zurückgesetzten und vorstehenden Form umfasst, um auf der zweiten Oberfläche (31c) des Harzrahmens (31) zwischen jedem der zwei zweiten Gasverteilerlöcher (72, 74) und der zweiten Oberfläche (30c) der MEGA (30) Gasströmungswege auszubilden,
    unabhängig von dem auf der zweiten Oberfläche (31c) des Harzrahmens (31) vorgesehenen Schmelzverbindungsabschnitt (82) auf der ersten Oberfläche (31a) des Harzrahmens (31) ein erster Schmelzverbindungsabschnitt (81) so ausgebildet ist, dass er derart über Rückseiten der zwei zweiten Gasströmungswegausbildungsabschnitte (34B; 34Ba; 34Bb) verläuft, dass der erste Schmelzverbindungsabschnitt (81) eine Gaszirkulation zwischen jedem der zwei ersten Gasverteilerlöcher (62, 64) und der ersten Oberfläche (30a) der MEGA (30) nicht abschneidet, während der erste Schmelzverbindungsabschnitt (81) jedes der zwei zweiten Gasverteilerlöcher (72, 74) umgibt, damit eine Gaszirkulation zwischen jedem der zwei zweiten Gasverteilerlöcher (72, 74) und der ersten Oberfläche (30a) der MEGA (30) abgeschnitten wird, und der erste Schmelzverbindungsabschnitt (81) den Harzrahmen (31) und den ersten Separator (50) miteinander verbindet,
    der auf der zweiten Oberfläche (31c) des Harzrahmens (31) vorgesehene Schmelzverbindungsabschnitt (82) einen zweiten Schmelzverbindungsabschnitt (82) umfasst, der so ausgebildet ist, dass er derart über Rückseiten der zwei ersten Gasströmungswegausbildungsabschnitte (34T; 34Ta; 34Tb) verläuft, dass der zweite Schmelzverbindungsabschnitt (82) eine Gaszirkulation zwischen jedem der zweiten Gasverteilerlöcher (72, 74) und der zweiten Oberfläche (30c) der MEGA (30) nicht abschneidet, während der zweite Schmelzverbindungsabschnitt (82) jedes der zwei ersten Gasverteilerlöcher (62, 64) umgibt, damit eine Gaszirkulation zwischen jedem der zwei ersten Gastverteilerlöcher (62, 64) und der zweiten Oberfläche (30c) der MEGA (30) abgeschnitten wird, und der zweite Schmelzverbindungsabschnitt (82) den Harzrahmen (31) und den zweiten Separator (40) miteinander verbindet, und
    der erste Schmelzverbindungsabschnitt (81) und der zweite Schmelzverbindungsabschnitt (82) aus dem ersten Harz ausgebildet sind und die ersten Gasströmungswegausbildungsabschnitte (34T; 34Ta; 34Tb) und die zweiten Gasströmungswegausbildungsabschnitte (34B; 34Ba; 34Bb) aus dem zweiten Harz ausgebildet sind.
     
    3. Brennstoffzelleneinheitszelle (140) nach Anspruch 2, wobei
    die ersten Gasströmungswegausbildungsabschnitte (34T; 34Ta; 34Tb) und die zweiten Gasströmungswegausbildungsabschnitte (34B; 34Ba; 34Bb) an sich gegenseitig nicht überlappenden Positionen ausgebildet sind, wenn sie entlang einer Stapelrichtung, in der eine Vielzahl der Brennstoffzelleneinheitszellen (140) zusammengestapelt werden soll, projiziert und betrachtet werden.
     
    4. Brennstoffzelleneinheitszelle (140) nach Anspruch 1, wobei
    der Harzrahmen (31) einen inneren Rahmen (33), der mit einem Rand der MEGA (30) verbunden ist, und einen äußeren Rahmen (32) umfasst, der mit einem Rand des inneren Rahmens (33) verbunden ist,
    der äußere Rahmen (33) mit dem ersten Separator (50) und dem zweiten Separator (40) verbunden ist, und
    das Elastizitätsmodul des inneren Rahmens (33) kleiner als das Elastizitätsmodul des äußeren Rahmens (32) ist.
     
    5. Brennstoffzelleneinheitszelle (140) nach Anspruch 1 oder 4, mit außerdem:
    einer Dichtung (83), die mit dem zweiten Separator (40) einer benachbarten anderen Brennstoffzelleneinheit (140) in Berührung zu bringen ist, wenn eine Vielzahl der Brennstoffzelleneinheiten (140) zusammengestapelt werden soll, wobei die Dichtung (83) auf einer Kühloberfläche (51c) von zwei Oberflächen (51a, 51c) des ersten Separators (50) ausgebildet ist, wobei die Kühloberfläche (51c) der Oberfläche (51a) gegenüberliegt, die auf Seiten der ersten Oberfläche (31a) des Harzrahmens (31) platziert ist, wobei die Dichtung (83) derart angeordnet ist, dass die Dichtung (83) über eine Position verläuft, die sich mit dem Gasströmungswegausbildungsabschnitt (34T; 34Ta; 34Tb) überlappt, wenn sie entlang einer Stapelrichtung, in der eine Vielzahl der Brennstoffzelleneinheitszellen (140) zusammengestapelt werden soll, projiziert und betrachtet wird.
     
    6. Verfahren zur Herstellung einer Brennstoffzelleneinheitszelle (140) mit den folgenden Schritten:

    (a) Anfertigen einer Membran-Elektroden-Gasdiffusionsschicht-Einheit-(MEGA-)Platte (35), die eine MEGA (30) und einen Harzrahmen (31, 32, 33) umfasst, der mit einem Rand der MEGA (30) verbunden ist, eines ersten Separators (50), der mit einer ersten Oberfläche (30a) der MEGA (30) in Berührung kommen soll sowie auf Seiten einer ersten Oberfläche (31a) des Harzrahmens (31, 32, 33) platziert werden soll, und eines zweiten Separators (40), der mit einer zweiten Oberfläche (30c) der MEGA (30) in Berührung kommen soll sowie auf Seiten einer zweiten Oberfläche (31c) des Harzrahmens (31, 32, 33) platziert werden soll; und

    (b) Stapeln des ersten Separators (50), der MEGA-Platte (35) und des zweiten Separators (40), um die Brennstoffzelleneinheitszelle (140) zusammenzubauen,
    wobei
    in einem Außenkantenabschnitt des Harzrahmens (31, 32, 33) ein Gasverteilerloch (62, 64, 72, 74) ausgebildet wird,
    auf der ersten Oberfläche (31a) des Harzrahmens (31, 32, 33) ein Gasströmungswegausbildungsabschnitt (34T; 34Ta; 34Tb) mit einer zurückgesetzten und vorstehenden Form ausgebildet wird, um zwischen dem Gasverteilerloch (62, 64, 72, 74) und der ersten Oberfläche (30a) der MEGA (30) Gasströmungswege auszubilden,
    auf der zweiten Oberfläche (31c) des Harzrahmens (31, 32, 33) ein thermoplastischer Verbindungsabschnitt (82t), um einen Rand des Gasverteilerlochs (62, 64, 72, 74) zu umgeben, damit eine Gaszirkulation zwischen dem Gasverteilerloch (62, 64, 72, 74) und der zweiten Oberfläche der MEGA (30) abgeschnitten wird, und um den Harzrahmen (31, 32, 33) und den zweiten Separator (40) miteinander zu verbinden, so ausgebildet wird, dass er über eine Rückseite des Strömungswegausbildungsabschnitts (34T; 34Ta; 34Tb) verläuft, und
    der Schritt (b) einen Schritt beinhaltet, in dem nach dem Stapeln der Gasströmungswegausbildungsabschnitt (34T; 34Ta; 34Tb) und der thermoplastische Verbindungsabschnitt (82t) des Harzrahmens (31, 32, 33) von außerhalb des ersten Separators (50) und des zweiten Separators (40) komprimiert werden,
    dadurch gekennzeichnet, dass
    der Gasströmungswegausbildungsabschnitt (34T; 34Ta; 34Tb) eine Vielzahl von Gasführungsströmungswegen (52r) aufweist,
    der thermoplastische Verbindungsabschnitt (82t) aus einem ersten Harz ausgebildet wird und der Gasströmungswegausbildungsabschnitt (34T; 34Ta; 34Tb) aus einem zweiten Harz ausgebildet wird, das einen höheren Schmelzpunkt als das erste Harz hat, und
    der Gasströmungswegausbildungsabschnitt (34T; 34Ta; 34Tb) und der thermoplastische Verbindungsabschnitt (82t) des Harzrahmens (31, 32, 33) komprimiert werden, während die Gasströmungswegausbildungsabschnitte (34T; 34Ta; 34Tb) und der thermoplastische Verbindungsabschnitt (82t) bei einer Temperatur erwärmt werden, die nicht niedriger als ein Schmelzpunkt des thermoplastischen Verbindungsabschnitts (82t) sowie niedriger als ein Schmelzpunkt des Gasströmungswegausbildungsabschnitts (34T; 34Ta; 34Tb) ist, um so den thermoplastischen Verbindungsabschnitt (82t) aufzuschmelzen, um einen Schmelzverbindungsabschnitt (82) auszubilden, der mit dem zweiten Separator (40) verbunden ist.


     
    7. Verfahren nach Anspruch 6, wobei
    der Harzrahmen (31) eine rechteckrahmenartige Form hat,
    das Gasverteilerloch (62, 64, 72, 74) an vier Eckenpositionen des Harzrahmens (31) ausgebildet wird, wobei die sich ergebenden Gasverteilerlöcher (62, 64, 72, 74) zwei erste Gasverteilerlöcher (62, 64), die an einem Paar Diagonalpositionen des Harzrahmens (31) ausgebildet sind, und zwei zweite Gasverteilerlöcher (72, 74) umfassen, die an dem anderen Paar Diagonalpositionen ausgebildet sind,
    der auf der ersten Oberfläche (31a) des Harzrahmens (31) vorgesehene Gasströmungswegausbildungsabschnitt (34T; 34Ta; 34Tb) zwei erste Gasströmungswegausbildungsabschnitte (34T; 34Ta; 34Tb) umfasst, um zwischen jedem der zwei ersten Gasverteilerlöcher (62, 64) und der ersten Oberfläche (30a) der MEGA (30) Gasströmungswege auszubilden,
    der Harzrahmen (31) außerdem mit zwei zweiten Gasströmungswegausbildungsabschnitten (34B; 34Ba; 34Bb) mit einer zurückgesetzten und vorstehenden Form versehen wird, um auf der zweiten Oberfläche (31c) des Harzrahmens (30) zwischen jedem der zwei zweiten Gasverteilerlöcher (72, 74) und der zweiten Oberfläche (30c) der MEGA (30) Gasströmungswege auszubilden,
    unabhängig von dem auf der zweiten Oberfläche (31c) des Harzrahmens (31) vorgesehenen thermoplastischen Verbindungsabschnitt (82t) auf der ersten Oberfläche (31a) des Harzrahmens (31) ein erster thermoplastischer Verbindungsabschnitt (31t) so ausgebildet wird, dass er derart über Rückseiten der zwei zweiten Gasströmungswegausbildungsabschnitte (34B; 34Ba; 34Bb) verläuft, dass der erste thermoplastische Verbindungsabschnitt (31t) eine Gaszirkulation zwischen jedem der zwei ersten Gasverteilerlöcher (62, 64) und der ersten Oberfläche (30a) der MEGA (30) nicht abschneidet, während der erste thermoplastische Verbindungsabschnitt (81t) jedes der zwei zweiten Gasverteilerlöcher (72, 74) umgibt, damit eine Gaszirkulation zwischen jedem der zwei zweiten Gasverteilerlöcher (72, 74) und der ersten Oberfläche (30a) der MEGA (30) abgeschnitten wird, und der erste thermoplastische Verbindungsabschnitt (81t) dazu verwendet wird, den Harzrahmen (31) und den ersten Separator (50) miteinander zu verbinden,
    der auf der zweiten Oberfläche (31c) des Harzrahmens (31) vorgesehene thermoplastische Verbindungsabschnitt (82t) einen zweiten thermoplastischen Verbindungsabschnitt (82t) umfasst, der so ausgebildet ist, dass er derart über Rückseiten der zwei ersten Gasströmungswegausbildungsabschnitte (34T; 34Ta; 34Tb) verläuft, dass der zweite thermoplastische Verbindungsabschnitt (82t) eine Gaszirkulation zwischen jedem der zwei zweiten Gasverteilerlöcher (72, 74) und der zweiten Oberfläche (30c) der MEGA (30) nicht abschneidet, während der zweite thermoplastische Verbindungsabschnitt (82t) jedes der zwei ersten Gasverteilerlöcher (72, 74) umgibt, damit eine Gaszirkulation zwischen jedem der zwei ersten Gasverteilerlöcher (62, 64) und der zweiten Oberfläche (30c) der MEGA (30) abgeschnitten wird, und der zweite thermoplastische Verbindungsabschnitt (82t) dazu verwendet wird, den Harzrahmen (31) und den zweiten Separator (40) miteinander zu verbinden, und
    der erste thermoplastische Verbindungsabschnitt (81t) und der zweite thermoplastische Verbindungsabschnitt (82t) aus dem ersten Harz ausgebildet werden und die zwei ersten Gasströmungswegausbildungsabschnitte (34T; 34Ta; 34Tb) und die zwei zweiten Gasströmungswegausbildungsabschnitte (34B; 34Ba; 34Bb) aus dem zweiten Harz ausgebildet werden.
     
    8. Verfahren nach Anspruch 7, wobei
    die zwei ersten Gasströmungswegausbildungsabschnitte (34T; 34Ta; 34Tb) und die zwei zweiten Gasströmungswegausbildungsabschnitte (34B; 34Ba; 34Bb) an sich gegenseitig nicht überlappenden Positionen ausgebildet sind, wenn sie entlang einer Stapelrichtung, in der eine Vielzahl der Brennstoffzelleneinheitszellen (140) zusammengestapelt werden soll, projiziert und betrachtet werden.
     
    9. Verfahren nach Anspruch 6, wobei
    der Harzrahmen (31) einen inneren Rahmen (33), der mit einem Rand der MEGA (30) verbunden ist, und einen äußeren Rahmen (32) umfasst, der mit einem Rand des inneren Rahmens (33) verbunden ist,
    der äußere Rahmen (32) mit dem ersten Separator (50) und dem zweiten Separator (40) verbunden wird, und
    das Elastizitätsmodul des inneren Rahmens (33) kleiner als das Elastizitätsmodul des äußeren Rahmens (32) ist.
     
    10. Verfahren nach Anspruch 6 oder 9, wobei
    der erste Separator (50) eine Dichtung (83) aufweist, die mit dem zweiten Separator (40) einer benachbarten anderen Brennstoffzelleneinheitszelle (140) in Berührung zu bringen ist, wenn eine Vielzahl der Brennstoffzelleneinheitszellen (140) zusammengestapelt werden soll, wobei die Dichtung (83) auf einer Kühloberfläche (51c) von zwei Oberflächen (51a, 51c) des ersten Separators (50) ausgebildet ist, wobei die Kühloberfläche (51c) der Oberfläche (51a) gegenüberliegt, die auf Seiten der ersten Oberfläche (31a) des Harzrahmens (31) platziert wird, wobei die Dichtung (83) derart angeordnet ist, dass die Dichtung (83) über eine Position verläuft, die sich mit dem Gasströmungswegausbildungsabschnitt (34T; 34Ta; 34Tb) überlappt, wenn sie entlang einer Stapelrichtung, in der eine Vielzahl der Brennstoffzelleneinheitszellen (140) zusammengestapelt werden soll, projiziert und betrachtet wird.
     


    Revendications

    1. Unité de cellule de pile à combustible (140) comprenant :

    une plaque (35) d'ensemble de couche de diffusion de gaz d'électrode à membrane (MEGA) comprenant un MEGA (30) et un bâti en résine (31, 32, 33) assemblé à une périphérie du MEGA (30) ;

    un premier séparateur (50) placé en contact avec une première surface (30a) du MEGA (30) et également placé du côté d'une première surface (31a) du bâti en résine (31, 32, 33) ; et

    un second séparateur (40) placé en contact avec une seconde surface (30c) du MEGA (30) et également placé du côté d'une seconde surface (31c) du bâti en résine (31, 32, 33) ;

    dans laquelle un trou de collecteur de gaz (62, 64, 72, 74) est formé dans une partie de bord externe du bâti en résine (31, 32, 33),

    l'unité de cellule de pile à combustible (140) comprenant :

    une partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) avec une forme évidée et en saillie, prévue sur la première surface (31a) du bâti en résine (31, 32, 33) pour former des trajectoires d'écoulement de gaz entre le trou de collecteur de gaz (62, 64, 72, 74) et la première surface (30a) du MEGA (30) ; et

    une partie de liaison (82) pour entourer une périphérie du trou de collecteur de gaz (62, 64, 72, 74) pour couper la circulation de gaz entre le trou de collecteur de gaz (62, 64, 72, 74) et la seconde surface (30c) du MEGA (30) et pour relier le bâti en résine (31, 32, 33) et le second séparateur (40) entre eux, la partie de liaison (82) étant formée sur la seconde surface (31c) du bâti en résine (31, 32, 33) afin de traverser un côté arrière de la partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb),

    caractérisé en ce que :

    la partie de liaison (82) est une partie de liaison par fusion (82), et

    la partie de liaison par fusion (82) est formée à partir d'une première résine, et la partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) est formée à partir d'une seconde résine ayant un point de fusion supérieur à la première résine.


     
    2. Unité de cellule de pile à combustible (140) selon la revendication 1, dans laquelle :

    le bâti en résine (31) a une forme de bâti rectangulaire,

    le trou de collecteur de gaz (62, 64, 72, 74) est formé au niveau de quatre positions de coin du bâti en résine (31), les trous de collecteur de gaz (62, 64, 72, 74) résultants comprenant deux premiers trous de collecteur de gaz (62, 64) formés au niveau d'une paire de positions diagonales du bâti en résine (31) et deux seconds trous de collecteur de gaz (72, 74) formés au niveau de l'autre paire de positions diagonales,

    la partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) prévue sur la première surface (31a) du bâti en résine (31) comprend deux premières parties de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) pour former des trajectoires d'écoulement de gaz entre chacun des deux premiers trous de collecteur de gaz (62, 64) et la première surface (30a) du MEGA (30),

    l'unité de cellule de pile à combustible (140) comprend en outre deux secondes parties de formation de trajectoire d'écoulement de gaz (34B, 34Ba, 34Bb) avec une forme évidée et en saillie pour former des trajectoires d'écoulement de gaz entre chacun des deux seconds trous de collecteur de gaz (72, 74) et la seconde surface (30c) du MEGA (30) sur la seconde surface (31c) du bâti en résine (31),

    indépendamment de la partie de liaison par fusion (82) prévue sur la seconde surface (31c) du bâti en résine (31), une première partie de liaison par fusion (81) est formée sur la première surface (31a) du bâti en résine (31) afin de traverser les côtés arrière des deux parties de formation de trajectoire d'écoulement de gaz (34B ; 34Ba ; 34Bb) de sorte que la première partie de liaison par fusion (81) ne coupe pas la circulation de gaz entre chacun des deux premiers trous de collecteur de gaz (62, 64) et la première surface (30a) du MEGA (30) alors que la première partie de liaison par fusion (81) entoure chacun des deux seconds trous de collecteur de gaz (72, 74) pour couper la circulation de gaz entre chacun des deux seconds trous de collecteur de gaz (72, 74) et la première surface (30a) du MEGA (30), et la première partie de liaison par fusion (81) relie le bâti en résine (31) et le premier séparateur (50) entre eux,

    la partie de liaison par fusion (82) prévue sur la seconde surface (31c) du bâti en résine (31) comprend une seconde partie de liaison par fusion (82) qui est formée afin de traverser les côtés arrière des deux parties de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) de sorte que la seconde partie de liaison par fusion (82) ne coupe pas la circulation de gaz entre chacun des deux seconds trous de collecteur de gaz (72, 74) et la seconde surface (30c) du MEGA (30) alors que la seconde partie de liaison par fusion (82) entoure chacun des deux premiers trous de collecteur de gaz (62, 64) pour couper la circulation de gaz entre chacun des deux premiers trous de collecteur de gaz (62, 64) et la seconde surface (30c) du MEGA (30), et la seconde partie de liaison par fusion (82) relie le bâti en résine (31) et le second séparateur (40) entre eux, et

    la première partie de liaison par fusion (81) et la seconde partie de liaison par fusion (82) sont formées à partir de la première résine, et les deux premières parties de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) et les deux secondes parties de formation de trajectoire d'écoulement de gaz (34B ; 34Ba ; 34Bb) sont formées à partir de la seconde résine.


     
    3. Unité de cellule de pile à combustible (140) selon la revendication 2, dans laquelle :
    les deux premières parties de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) et les deux secondes parties de formation de trajectoire d'écoulement de gaz (34B ; 34Ba ; 34Bb) sont formées dans des positions mutuellement non chevauchantes lorsqu'elles font saillie et sont observées le long d'une direction d'empilement dans laquelle une pluralité d'unités de cellule de pile à combustible (140) doivent être empilées.
     
    4. Unité de cellule de pile à combustible (140) selon la revendication 1, dans laquelle :

    le bâti en résine (31) comprend un bâti interne (33) assemblé à une périphérie du MEGA (30) et un bâti externe (32) assemblé à une périphérie du bâti interne (33),

    le bâti externe (32) est assemblé au premier séparateur (50) et au second séparateur (40), et

    le module de Young du bâti interne (33) est inférieur au module de Young du bâti externe (32).


     
    5. Unité de cellule de pile à combustible (140) selon la revendication 1 ou 4, comprenant en outre :
    un joint d'étanchéité (83) qui doit être placé en contact avec le second séparateur (40) d'une autre unité de cellule de pile à combustible (140) voisine lorsqu'une pluralité d'unités de cellule de pile à combustible (140) doivent être empilées ensemble, le joint d'étanchéité (83) étant formé sur une surface de refroidissement (51c) parmi les deux surfaces (51a, 51c) du premier séparateur (50), la surface de refroidissement (51c) étant opposée à la surface (51a) qui est placée du côté de la première surface (31a) du bâti de résine (31), le joint d'étanchéité (83) étant disposé de sorte que le joint d'étanchéité (83) traverse une position chevauchant sur la partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) lorsqu'elle fait saillie et qu'elle est observée le long d'une direction d'empilement dans laquelle une pluralité d'unités de cellule de pile à combustible (140) doivent être empilées ensemble.
     
    6. Procédé pour fabriquer une unité de cellule de pile à combustible (140) comprenant les étapes suivantes :

    (a) préparer une plaque (35) d'ensemble de couche de diffusion de gaz d'électrode à membrane (MEGA) comprenant un MEGA (30) et un bâti en résine (31, 32, 33) assemblé à une périphérie du MEGA (30), un premier séparateur (50) destiné à être placé en contact avec une première surface (30a) du MEGA (30) et également placé du côté d'une première surface (31a) du bâti en résine (31, 32, 33), et un second séparateur (40) destiné à être placé en contact avec une seconde surface (30c) du MEGA (30) et également placé du côté d'une seconde surface (31c) du bâti de résine (31, 32, 33) ; et

    (b) empiler le premier séparateur (50), la plaque (35) de MEGA, et le second séparateur (40) pour assembler l'unité de cellule de pile à combustible (140),
    dans lequel :

    un trou de collecteur de gaz (62, 64, 72, 74) est formé dans une partie de bord externe du bâti en résine (31, 32, 33),

    une partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) avec une forme évidée et en saillie pour former des trajectoires d'écoulement de gaz entre le trou de collecteur de gaz (62, 64, 72, 74) et la première surface (30a) du MEGA (30) est formée sur la première surface (31a) du bâti en résine (31, 32, 33),

    une partie de liaison thermoplastique (82t) pour entourer une périphérie du trou de collecteur de gaz (62, 64, 72, 74) pour couper la circulation de gaz entre le trou de collecteur de gaz (62, 64, 72, 74) et la seconde surface du MEGA (30) et pour relier le bâti en résine (31, 32, 33) et le second séparateur (40) entre eux, est formée sur la seconde surface (31c) du bâti en résine (31, 32, 33), afin de traverser un côté arrière de la partie de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb), et

    l'étape (b) comprend une étape, après l'empilement, pour comprimer la partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) et la partie de liaison thermoplastique (82t) du bâti en résine (31, 32, 33) depuis l'extérieur du premier séparateur (50) et du second séparateur (40),

    la partie de liaison thermoplastique (82t) est formée à partir d'une première résine et la partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) est formée à partir d'une seconde résine avec un point de fusion supérieur à la première résine, et

    la partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) et la partie de liaison thermoplastique (82t) du bâti en résine (31, 32, 33) sont comprimées tout en chauffant les parties de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) et la partie de liaison thermoplastique (82t) à une température qui n'est pas inférieure à un point de fusion de la partie de liaison thermoplastique (82t) et qui est également inférieure à un point de fusion de la partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) afin de faire fondre la partie de liaison thermoplastique (82t) pour former une partie de liaison par fusion (82) reliée au second séparateur (40).


     
    7. Procédé selon la revendication 6, dans lequel :

    le bâti en résine (31) a une forme de bâti rectangulaire,

    le trou de collecteur de gaz (62, 64, 72, 74) est formé au niveau des quatre positions de coin du bâti en résine (31), les trous de collecteur de gaz (62, 64, 72, 74) résultants comprenant deux premiers trous de collecteur de gaz (62, 64) formés au niveau d'une paire de positions diagonales du bâti en résine (31) et deux seconds trous de collecteur de gaz (72, 74) formés au niveau de l'autre paire de positions diagonales,

    la partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) prévue sur la première surface (31a) du bâti en résine (31) comprend deux premières parties de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) pour former les trajectoires d'écoulement de gaz entre chacun des deux premiers trous de collecteur de gaz (62, 64) et la première surface (30a) du MEGA (30),

    le bâti en résine (31) est en outre prévu avec deux secondes parties de formation de trajectoire d'écoulement de gaz (34B ; 34Ba ; 34Bb) avec une forme évidée et en saillie pour former les trajectoires d'écoulement de gaz entre chacun des deux seconds trous de collecteur de gaz (72, 74) et la seconde surface (30c) du MEGA (30) sur la seconde surface (31c) du bâti en résine (30),

    indépendamment de la partie de liaison thermoplastique (82t) prévue sur la seconde surface (31c) du bâti en résine (31), une première partie de liaison thermoplastique (81t) est formée sur la première surface (31a) du bâti en résine (31) afin de traverser les côtés arrière des deux secondes parties de formation de trajectoire d'écoulement de gaz (34B ; 34Ba ; 34Bb) de sorte que la première partie de liaison thermoplastique (81t) ne coupe pas la circulation de gaz entre chacun des deux premiers trous de collecteur de gaz (62, 64) et la première surface (30a) du MEGA (30) alors que la première partie de liaison thermoplastique (81t) entoure chacun des deux seconds trous de collecteur de gaz (72, 74) pour couper la circulation de gaz entre chacun des deux seconds trous de collecteur de gaz (72, 74) et la première surface (30a) du MEGA (30), et la première partie de liaison thermoplastique (81t) est utilisée pour relier le bâti en résine (31) et le premier séparateur (50) entre eux,

    la partie de liaison thermoplastique (82t) prévue sur la seconde surface (31c) du bâti en résine (31) comprend une seconde partie de liaison thermoplastique (82t) qui est formée afin de traverser les côtés arrière des deux premières parties de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) de sorte que la seconde partie de liaison thermoplastique (82t) ne coupe pas la circulation de gaz entre chacun des deux seconds trous de collecteur de gaz (72, 74) et la seconde surface (30c) du MEGA (30) alors que la seconde partie de liaison thermoplastique (82t) entoure chacun des deux premiers trous de collecte de gaz (72, 74) pour couper la circulation de gaz entre chacun des deux premiers trous de collecteur de gaz (62, 64) et la seconde surface (30c) du MEGA (30), et la seconde partie de liaison thermoplastique (82t) est utilisée pour relier le bâti en résine (31) et le second séparateur (40) entre eux, et

    la première partie de liaison thermoplastique (81t) et la seconde partie de liaison thermoplastique (82t) sont formées à partir de la première résine, et les deux premières parties de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) et les deux secondes parties de formation de trajectoire d'écoulement de gaz (34B ; 34Ba ; 34Bb) sont formées à partir de la seconde résine.


     
    8. Procédé selon la revendication 7, dans lequel :
    les deux premières parties de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) et les deux secondes parties de formation de trajectoire d'écoulement de gaz (34B ; 34Ba ; 34Bb) sont formées dans des positions mutuellement non chevauchantes lorsqu'elles font saillie et sont observées le long d'une direction d'empilement dans laquelle une pluralité d'unités de cellule de pile à combustible (140) doivent être empilées ensemble.
     
    9. Procédé selon la revendication 6, dans lequel :

    le bâti en résine (31) comprend un bâti interne (33) assemblé à une périphérie du MEGA (30) et un bâti externe (32) assemblé à une périphérie du bâti interne (33),

    le bâti externe (32) est assemblé au premier séparateur (50) et au second séparateur (40), et

    le module de Young du bâti interne (33) est inférieur au module de Young du bâti externe (32).


     
    10. Procédé selon la revendication 6 ou 9, dans lequel :
    le premier séparateur (50) comprend un joint d'étanchéité (83) qui doit être placé en contact avec le second séparateur (40) d'une autre unité de cellule de pile à combustible (140) lorsqu'une pluralité d'unités de cellule de pile à combustible (140) doivent être empilées ensemble, le joint d'étanchéité (83) étant formé sur une surface de refroidissement (51c) sur les deux surfaces (51a, 51c) du premier séparateur (50), la surface de refroidissement (51c) étant opposée à la surface (51a) qui est placée du côté de la première surface (31a) du bâti en résine (31), le joint d'étanchéité (83) étant disposé de sorte que le joint d'étanchéité (83) traverse une position chevauchant sur la partie de formation de trajectoire d'écoulement de gaz (34T ; 34Ta ; 34Tb) lorsqu'elle fait saillie et est observée le long d'une direction d'empilement dans laquelle une pluralité des unités de cellule de pile à combustible (140) doivent être empilées ensemble.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description