(19)
(11)EP 3 281 405 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 16716270.0

(22)Date of filing:  11.04.2016
(51)International Patent Classification (IPC): 
G03B 21/60(2014.01)
G03B 21/608(2014.01)
H01S 3/16(2006.01)
H04N 13/39(2018.01)
H01S 3/102(2006.01)
(86)International application number:
PCT/GB2016/051003
(87)International publication number:
WO 2016/162696 (13.10.2016 Gazette  2016/41)

(54)

METHOD AND APPARATUS FOR HOLOGRAPHIC IMAGE PROJECTION

VERFAHREN UND VORRICHTUNG ZUR HOLOGRAFIEBILDPROJEKTION

PROCÉDÉ ET APPAREIL DE PROJECTION D'IMAGE HOLOGRAPHIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 10.04.2015 EP 15275116
10.04.2015 GB 201506085

(43)Date of publication of application:
14.02.2018 Bulletin 2018/07

(73)Proprietor: BAE SYSTEMS plc
London SW1Y 5AD (GB)

(72)Inventor:
  • COLOSIMO, Nicholas, Giacomo, Robert
    Preston Lancashire PR4 1AX (GB)

(74)Representative: BAE SYSTEMS plc Group IP Department 

Farnborough Aerospace Centre Farnborough Hampshire GU14 6YU
Farnborough Aerospace Centre Farnborough Hampshire GU14 6YU (GB)


(56)References cited: : 
WO-A1-02/056111
DE-A1- 10 245 682
US-A1- 2004 135 744
US-A1- 2011 001 429
WO-A1-2013/039465
US-A- 5 415 156
US-A1- 2009 009 862
US-A1- 2011 121 158
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates generally to a method and apparatus for holographic image projection and, more particularly but not necessarily exclusively, to a method and apparatus for enabling a scanned three-dimensional image to be projected for viewing in three dimensions.

    [0002] Holography is a technique which enables three-dimensional images (holograms) to be created. The image changes as the position and orientation of the viewing system changes in substantially the same way as if the imaged subject were present, thus making the image appear three-dimensional. A hologram is traditionally generated by using two laser beams: a first, object, beam which is spread using lenses and directed onto a subject or area of interest using mirrors and some of the radiation scattered (reflected) from the subject or area of interest then falls onto a recording medium; and a second, reference, beam, also spread using lenses is directed straight onto the recording medium, without coming into contact with the subject or region of interest. When the two laser beams reach the recording medium, their waves intersect and interfere with each other and it is this interference pattern that is imprinted on the recording medium. If a laser, identical to the one used to record the hologram, is directed onto the developed film, it is diffracted by the interference (surface) pattern on the film and produces a light field identical to the one produced by the subject or region of interest, which produces an image in the viewer's retina.

    [0003] In more recent years, three-dimensional (3D) image scanning has been developed. In this technology, the scanner projects a low-power, non-damaging laser on a section of an object's surface, each point of the surface touched by the laser is captured by a CCD camera integrated into the scanner, and the X, Y, Z coordinates of the laser intensity of each of these points are recorded. This operation is repeated thousands of times per second to generate a file containing a large amount of point data of the scanned surface. The operation of creating sequential overlapping images from multiple points of view on the surface of the object can be performed until the entire surface of the object (or the entire area of interest) is covered from all viewpoints. In some cases, individual 3D digital images, thus captured, are then aligned together with appropriate software to create an accurate 3D digital model of the object for display on a screen.

    [0004] However, in other cases, it may be desirable to project the 3D image to another location for viewing. A 3D projector is configured to project a plurality of image signals, each corresponding to an image created using a 3d image scanner, and these image signals can be used to create a three-dimensional holographic image on, for example, a three-dimensional holographic diffuser.

    [0005] For example, in US2013/0107217, the image signals are directed, by a set of respective mirrors, onto a holographic diffuser from distinct directions such that the 3D image is perceived by a person viewing the holographic diffuser. Any number of such images may be projected, from specific respective directions, onto the holographic diffuser such that the viewer can move around the holographic diffuser and still see the 3D image, 'adjusted' to appear from the viewer's perspective. Further, DE10245682 A1 discloses a display screen which is created by generating a heated air layer onto which the output of a projector is directed. In WO02056111 A1, a non-solid projection screen, projection volume, or the like is produced, by supplying and/or forming light scattering/reflecting scattering centres. A gaseous substance can be used as scattering centres and can be illuminated by a suitable laser projector or other projector that sends ultraviolet light or visible light.

    [0006] However, in order to enable the viewer to see the 3D image effectively from all possible viewpoints relative to the holographic diffuser, a large physical optical system having a large number of optical devices, precisely oriented, is required. This is clearly disadvantageous, especially in locations where space may be an issue, as this requirement results in a relatively large overhead in terms of size, and also cost. Furthermore, such an optical system may be prone to error if any of the optical devices is damaged or moved.

    [0007] It is, therefore, an object of aspects of the present invention, to address at least some of these issues.

    [0008] In accordance with an aspect of the present invention, there is provided a holographic projector system comprising an electromagnetic radiation source communicably coupled to a control system and a three dimensional (3D) image projector for outputting a plurality of image signals representative of a generated image, the control system being configured to cause electromagnetic radiation to be applied to a plurality of sets of selected three-dimensional portions of a gaseous volume so as to heat and/or ionise gas within said selected portions of gaseous volume, thereby to generate each set of said selected three-dimensional portions of said gaseous volume such that at least one set of selected three-dimensional portions of said gaseous volume is selectively orientated relative to and arranged to intersect a path of at least one of said image signals, and wherein said selected portions of each selected three dimensional portions are spatially located together in a substantially unbroken three-dimensional configuration and configured to generate an electromagnetic radiation path modifying element for modifying the path of a respective image signal incident thereon to direct said image signal to a selected location within a viewing region for viewing by at least one viewer, wherein each modifying element is operative to generate one of:

    a converging element wherein said selected portions are spatially located together in a concave lens configuration or wherein non-selected portions are spatially located together in a convex lens configuration; or

    a diverging element wherein said selected portions are spatially located together in a convex lens configuration or wherein the non-selected portions are spatially located together in a concave lens configuration.



    [0009] In one exemplary embodiment of the present invention, the atmospheric or gaseous volume may be an unconstrained or in an alternative embodiment an enclosed gaseous or atmospheric volume. Thus, the apparatus of the present invention may comprise a viewing enclosure formed of an optically transparent material through which the image signals, thus directed, can be viewed, depending on the viewpoint of a viewer relative to the enclosure. The electromagnetic radiation path modifying elements generated by each set of selected portions may comprise reflective elements, formed by heating and/or ionising the gas occupied by each of the selected three dimensional portions. In this case, the apparatus may comprise a viewing enclosure formed of an optically transparent material and filled with a gas that is more readily heatable and/or ionisable than air. In either case, the viewing enclosure may be formed of a material that is optically transparent but configured to absorb electromagnetic radiation of higher frequencies, thereby to protect viewers from potential damage by high frequency electromagnetic radiation.

    [0010] The selected portions may be spatially located together in a substantially unbroken three-dimensional configuration corresponding to the three-dimensional shape of a generated physical electromagnetic radiation modifying element. In another exemplary embodiment of the invention, the selected portions may be configured such that the non-selected portions are in a configuration corresponding to a three-dimensional shape of a generated electromagnetic radiation path modifying device. In yet another exemplary embodiment of the invention, the selected portions may be spatially located together in a three-dimensional configuration corresponding to an annulus having a non-circular cross-section.

    [0011] The control system may be configured to cause said electromagnetic radiation to be applied to said selected portions so as to heat and/or ionise the air therein and thus change the refractive index thereof.

    [0012] The electromagnetic radiation source may include a beam steering mechanism for selectively steering a beam of electromagnetic radiation output therefrom, said control system being communicably coupled to said beam steering mechanism and configured to generate signals for steering said beam of electromagnetic radiation relative to said gaseous volume so as to sequentially apply electromagnetic radiation to said selected portions.

    [0013] Alternatively, or in addition, the apparatus may further comprise a beam splitting module for splitting a beam output from said electromagnetic radiation source into a plurality of paths corresponding to respective locations of selected portions.

    [0014] The control system may further comprise an modifying element monitoring module for monitoring conditions within the gaseous volume, generating data representative thereof, and transmitting said data to said processor, said processor being further configured to generate adjusted actuation signals configured to adjust at least one characteristic of said electromagnetic radiation so as to compensate for distortion of gas with the gaseous volume.

    [0015] The control system may further comprise a quality monitoring module for monitoring the performance of each modifying element against a predefined set of desired criteria, and generating signals to dynamically adjust beam steering and/or power of the electromagnetic radiation source so as to reduce or eliminate deviation of the properties and characteristics of the modifying element from that which is defined by the predefined criteria.

    [0016] In other exemplary embodiments of the invention, each modifying element may be operative to generate a diffractive modifying element and said selected portions define a plurality of three-dimensional shapes, each spatially separated from each other within said gaseous volume. In this case, each modifying element may be operative to generate a diffractive device and said three-dimensional shapes, spatially separated, define a plurality of concentric transmissive and adjacent substantially opaque regions in the form of a zone plate.

    [0017] Each modifying element may be operative to generate a reflective device and the method comprises the steps of applying said electromagnetic radiation to said selected portions so as to heat and/or ionise the air therein.

    [0018] The electromagnetic radiation source may comprise one or more lasers.

    [0019] In accordance with another aspect of the present invention there is provided a method of projecting a holographic image into a viewing region for viewing by at least one viewer, the method comprising providing an electromagnetic radiation source communicably coupled to a control system and a three dimensional (3D) image projector for outputting a plurality of image signals representative of a generated, and configuring the control system to cause electromagnetic radiation to be applied to a plurality of sets of selected three-dimensional portions of a gaseous volume so as to heat and/or ionise gas within said selected portions of the gaseous volume, wherein each set of selected three-dimensional portions of said gaseous volume is selectively orientated relative to and arranged to intersect a path of at least one of said image signals, and wherein each set of selected three-dimensional portions are spatially located together in a substantially unbroken three-dimensional configuration and configured to generate an electromagnetic radiation path modifying element for modifying a path of a respective image signal incident thereon to direct said image signal to a selected location within said viewing region for viewing by the at least one viewer, wherein each modifying element is operative to generate one of:

    a converging element wherein said selected portions are spatially located together in a concave lens configuration or wherein non-selected portions are spatially located together in a convex lens configuration; or

    a diverging element wherein said selected portions are spatially located together in a convex lens configuration or wherein the non-selected portions are spatially located together in a concave lens configuration.



    [0020] The gaseous volume may be divided into an array of three dimensional portions, and the method comprises the step of sequentially applying said electromagnetic radiation to said selected portions within said array.

    [0021] Other aspects of the present invention extend to a control system for a holographic projector system substantially as described above, the control system being configured to cause electromagnetic radiation to be applied to a plurality of sets of selected three-dimensional portions of a gaseous volume so as to heat and/or ionise the gas within said selected portions, wherein each set of selected three-dimensional portions of said gaseous volume is arranged to intersect a path of a respective one of said image signals, and wherein said selected portions of each set is spatially located together in a substantially unbroken three-dimensional configuration and configured to generate an electromagnetic radiation path modifying element positioned to intersect at least one image signal and selectively orientated to direct a respective image signal incident thereon to a selected location within a viewing region for viewing by at least one viewer.

    [0022] These and other aspects of the present invention will be apparent from the following specific description in which embodiments of the present invention are described, by way of examples only, and with reference to the accompanying drawings, in which:

    Figure 1 is a schematic diagram illustrating the concept of an M by N cell matrix for the purposes of defining an atmospheric volume within which an atmospheric EM radiation path modifying component may be created in accordance with the principles employed in an exemplary embodiment of the present invention;

    Figure 2 is a schematic diagram illustrating the manner in which laser power may be applied to selected cells within a matrix in accordance with the principles employed in a first exemplary embodiment of the present invention;

    Figure 3 is a schematic diagram illustrating an alternative manner in which laser power may be applied to selected cells within a matrix in accordance with the principles employed in another exemplary embodiment of the present invention;

    Figure 4A is a schematic diagram illustrating an atmospheric diverging lens created in accordance with the principles employed in an exemplary embodiment of the present invention;

    Figure 4B is a schematic diagram illustrating an alternative atmospheric diverging lens created in accordance with the principles employed in an exemplary embodiment of the present invention;

    Figure 5A is a schematic diagram illustrating an atmospheric converging lens created in accordance with the principles employed in an exemplary embodiment of the present invention;

    Figure 5B is a schematic diagram illustrating an alternative atmospheric converging lens created in accordance with the principles employed in an exemplary embodiment of the present invention;

    Figure 6 is a schematic diagram illustrating an atmospheric Fresnel zone plate created in accordance with the principles employed in an exemplary embodiment of the present invention;

    Figure 7 is a schematic diagram of an atmospheric reflective component created in accordance with the principles employed in an exemplary embodiment of the present invention;

    Figure 8 is a schematic block diagram illustrating apparatus for creating a set of atmospheric EM radiation path modifying components for use in an exemplary embodiment of the present invention; and

    Figures 9A and 9B are schematic side and plan views of a holographic projector apparatus according to an exemplary embodiment of the present invention.



    [0023] Thus, aspects of the present invention operate on the principle of using one or more laser devices to selectively alter the refractive index and/or cause ionisation of portions of a three dimensional volume of the atmosphere or gaseous volume remote from the laser device(s) so as to create or simulate an optical component of a desired size having selected optical properties.

    [0024] In general, and referring to Figure 1 of the drawings, the area of the atmosphere in which an EM radiation path modifying component is required to be created can be considered as a cell matrix 10 comprised of M rows and N columns or layers of 'cells' 12, wherein a cell is simply a predefined three-dimensional portion of the matrix. In the example shown, each cell is identical in size and shape, but this is not essential, and the present invention is not necessarily intended to be limited in this regard. It will also be appreciated that the number of cells in the vertical dimension of the cell matrix may vary. Thus, the cell matrix may be of any desired size, shape and number of cells.

    [0025] Within the matrix 10, the three dimensional structure of an EM radiation path modifying device can be defined in terms of a number of cells 12 in a desired configuration, and it is these cells that will then be targeted by the laser source in order to effect the desired change in their respective properties (either by ionisation or heating to cause a change in refractive index).

    [0026] It is known that an increase in temperature of a volume of air causes a corresponding decrease in density of that volume of air. As a result, the refractive index of warm air is lower than that of cooler (and therefore denser) air. Thus, some aspects of the present invention operate on the principle that by providing a volume of air that is warmer than the air around it, that volume of air can cause refraction of a beam of electromagnetic radiation as it passes through, in a manner similar to a convergent or divergent lens.

    [0027] It is also known that if an electric field of a sufficiently high power is applied to a volume of air, the air may be ionised. Ionised air has reflective properties over a range of electromagnetic radiation wavelengths, such properties being a function of density and the type of ionisation created. Thus, some aspects of the present invention operate on the principle that by ionising a volume of air can cause it to reflect a beam of electromagnetic radiation as it hits that volume, in a manner similar to a mirror or similarly reflective device. A mixture of the two principles can be used to create a diffractive element, as will be described in more detail later.

    [0028] Thus, referring back to Figure 1 of the drawings, it will be appreciated that by selectively heating or ionising cells 12 within the matrix 10 a three dimensional atmospheric EM radiation path modifying component can be created using a high power electromagnetic radiation source. This may be achieved in a number of different ways. For example, a pulsed power laser (PPL) may be employed, and the 'Kerr' effect exploited therewith in order to attain self focussing of the laser beam at a required point (i.e. within the selected cell). Alternatively, a combination (i.e. crossing over) of two continuous wave (CW) laser beams at a required point may be used to achieve the desired effect. In any event, the laser system(s) is/are configured to selectively heat or ionise the atmosphere, thus changing its refractive index and electromagnetic properties such that electromagnetic energy passing through the heated cells is refracted and/or electromagnetic energy hitting the ionised cells is reflected.

    [0029] Thus, referring to Figure 2 of the drawings, apparatus according to one exemplary embodiment of the present invention comprises at least one laser source 14 mounted in an enclosure 15. In the example shown, the laser source 14 is a pulsed power laser source configured to emit high power laser pulses toward the cell matrix 10 via a laser transparent aperture 16. An optically reflective device, i.e. mirror, 18 is mounted on a dual-axis actuator (not shown) in the main laser output path, the actuator being communicably coupled with a control system that is configured to cause the actuator (and, therefore, the mirror 18) to move thereby to selectively direct the laser output through the aperture 16 toward selected cells 12 of the matrix 10. The control system may, for example, be configured to cause the laser output to be scanned across the cell matrix providing a pulse (or more than one pulse) to each selected cell, either via a raster pattern or a pattern optimised to suit the type of atmospheric component required to be created and its operational requirements.

    [0030] As mentioned briefly above, the laser pulse is self-focussing by means of the 'Kerr' effect, thereby enabling it to deliver enough concentrated power to heat or ionise the cell at which it is directed. The Kerr effect is a change in the refractive index of a material in response to an applied electric field. In the case of a laser pulse of sufficiently high power, its electric field is sufficiently high to change the refractive index of the air. As a result, the cross-sectional area of the pulse (perpendicular to the direction of propagation) can be thought of as shrinking with distance (due to the differences in refractive index), thus bringing the pulse to an intense focus at some point down range of the laser, in this case at the selected cell. This intense focus is of sufficiently high intensity to heat or ionise the cell to change its refractive index and/or other EM radiation path modifying properties. One or more pulses may be provided per cell, dependent upon the desired effect and environmental conditions. It may also be necessary to periodically re-supply laser pulses to all selected cells to maintain the required change in refractive index and/or ionisation for as long as the atmospheric component is required, as once the laser power is removed from a cell, the air therein will very quickly return to its normal (unheated or non-ionised) state.

    [0031] Referring to Figure 3 of the drawings, in an alternative exemplary embodiment of the invention, two (or more) CW (continuous wave) laser sources 20, 22 may be provided in respective enclosures 24, 26, each having a laser transparent aperture 28, 30 therein. Once again, each laser system is provided with a mirror 32, 34 mounted on a dual-axis actuator (not shown) communicably coupled to a control system (not shown). Operation of the system is similar, in principle, to that described previously with reference to Figure 3 of the drawings except, in this case, two (or more) spatially separated CW lasers (which may be mounted on the same platform or across different platforms) are used to selectively heat/ionise the atmosphere in each required cell. This is achieved by ensuring (through pointing) that the laser beams cross over at the same point (in the selected cell 12), thereby ensuring that sufficient power is attained. Such scanning may be performed on the basis of a control system configured to maintain a predetermined spatial separation and orientation between the atmospheric component and the electromagnetic radiation source. However, in an alternative exemplary embodiment, such scanning may be performed using a control system configured to direct the source(s) at specific coordinates corresponding to specific respective locations within the atmosphere.

    [0032] In yet another exemplary embodiment, and either in addition to the above-mentioned arrangements or alternatively, it is envisaged that a beam splitter could be employed to split a laser beam into numerous new paths corresponding to the configuration of a plurality of respective cells to be targeted. Thus, a plurality of such cells could be targeted simultaneously, without the need for scanning a single laser path across the cell matrix.

    [0033] In the following, a number of exemplary atmospheric electromagnetic radiation path modifying components that can be created according to the principles employed in respective exemplary embodiments of the present invention will now be described. However, it will be appreciated by a person skilled in the art that the principles set forth herein can be applied in numerous different ways in order to create other types and configurations of electromagnetic (EM) radiation path modifying components and the present invention is not necessarily intended to be limited in this regard.

    [0034] Referring to Figure 4A of the drawings, in one of its simplest forms, an exemplary embodiment of the present invention may be employed to create an atmospheric diverging lens. The illustrated lens 40 is of a double convex lens configuration and, in the example shown, has been created generally centrally within the cell matrix 10 with its longitudinal axis in line with the generally central vertical axis of the matrix 10. In order to create the lens 40, the cells corresponding to the three-dimensional 'structure' of a double convex lens are heated, for example using one of the methods described above, thereby to reduce the refractive index of those cells relative to the surrounding cells, and cause the rays of an incoming beam 41 of electromagnetic radiation to be refracted as they enter the component 40 and diverge. For the avoidance of doubt, it will be appreciated that the atmospheric component 40 is a three-dimensional area within the cell matrix comprised of a plurality of atmospheric cells, each of which has been heated in order to attain the required refractive index. A control system and any number of lasers may be employed to ensure that the correct amount of laser power is applied to each cell in order to attain the required level of heating, having regard to environmental factors and the refractive index change required to be achieved. When the component is no longer required, the laser power can simply be removed, and the atmospheric cells will quickly return to their normal state. In an alternative exemplary embodiment, a diverging lens may be created in accordance with an exemplary embodiment of the invention, by heating the cells surrounding a three-dimensional configuration of cells in the shape of a double concave lens (similar in form to that of a conventional diverging lens). Thus, the resultant atmospheric element would comprise a concave lens-shaped region of unheated cells surrounded by a body of heated cells, as shown in Figure 4B (wherein the shaded area 40 denotes the heated cells and the double concave lens region is unheated).

    [0035] Referring to Figure 5A of the drawings, an exemplary embodiment of the present invention may be used to create an atmospheric converging lens 44. Thus, in this particular case, the three-dimensional 'structure' represented by the heated cells within the matrix 10 comprises a double concave lens structure, wherein the rays of the incoming beam 41 of electromagnetic radiation are 'bent' or refracted as they enter the atmospheric component 44 and converge to a focal point 42. In an alternative exemplary embodiment, a converging lens may be created by heating the cells surrounding a three-dimensional configuration of cells in the shape of a convex lens (similar in form to that of a conventional converging lens). Thus, the resultant atmospheric element would comprise a convex lens-shaped region of unheated cells surrounded by a body of heated cells, as shown in Figure 5B of the drawings (wherein the shaded area 44 denotes the heated cells and the double convex lens region is unheated). In yet another exemplary embodiment, the body of heated cells may form an annulus having, for example, a double convex cross-section.

    [0036] In both cases described above with reference to Figures 4A and B and 5A and B of the drawings, the refractive index of the heated cells forming the lens structure is substantially constant, and the differing EM radiation path modifying properties (i.e. converging vs. diverging) are achieved by the geometry of the component. In other words, as with a physical component, it is just the geometry of the three dimensional volume of heated cells (or unheated cells) that defines the function of the resultant lens.

    [0037] Referring now to Figure 6 of the drawings, in yet another exemplary embodiment of the present invention, diffractive and refractive properties may be combined in order to create more complex atmospheric EM radiation path modifying components. In the illustrated example, a Fresnel zone plate 46 is defined substantially diagonally across the cell matrix 10. The zone plate 46 is formed of concentric rings of heated cells, diametrically separated by unheated cell regions; or it may be formed of concentric rings of ionised (reflective) cells diametrically separated by heated (or unheated) cells (transmissive). The resultant component combines refraction with the diffractive effects from boundaries between regions of significantly different refractive index and/or electromagnetic properties. Thus, it can be seen that more complex EM radiation path modifying components can be created by varying both the geometry and the refractive indices within the atmospheric 'structure'.

    [0038] As explained above, it is also possible to simulate reflective components and arrangements in accordance with other exemplary embodiments of the present invention. Thus, referring to Figure 7 of the drawings, a reflective arrangement is illustrated which comprises a planar reflective atmospheric element 50, configured substantially diagonally across the cell matrix 10.

    [0039] The atmospheric reflective component 50 is formed by ionisation of selected cells (in a configuration matching the required 'structure' and orientation of the component with thin the cell matrix 10). In use, an incoming beam 54, such as an image signal, for example, hits the reflective component 50 and is reflected back at an angle dictated by the orientation of the atmospheric component 50.

    [0040] In the examples illustrated, the cell matrix 10 is 'upright' and the orientation of the atmospheric element(s) is achieved by the pattern of the ionised/heated cells. However, it will be appreciated that, in alternative exemplary embodiments of the invention, the cell matrix itself may be oriented to match the required orientation of the atmospheric EM radiation path modifying element and, in this case, the populated cell pattern (relative to the cell matrix) will always be the same for a particular atmospheric element of a specified size. Also, it will be appreciated that a more 'curved' profile of the atmospheric components thus created may be achieved by varying the degree of heating/ionisation in the peripheral populated cells.

    [0041] Referring to Figure 8 of the drawings, an apparatus in accordance with an exemplary embodiment of the present invention for creating an atmospheric EM radiation path modifying arrangement comprises a control module 100 communicably coupled to, for example, a dual-axis actuator on which a reflective component is mounted within a laser system such as that described above with reference to Figures 2 and 3 of the drawings. Such a laser system may, for example, be mounted in or relative to a viewing enclosure (not shown).

    [0042] The control module 100 comprises a processor 102 communicably coupled to a database 104. The database has stored therein data representative of one or more cell matrices, representative of respective atmospheric volumes, and the cells therein that need to be 'populated' (i.e. heated or ionised) in order to construct a set of respective three-dimensional atmospheric EM radiation path modifying elements of which the arrangement is comprised. Such data may also include information as to the degree of ionisation/heating required to be maintained in order to achieve the required EM radiation path modifying characteristics of the elements. It will be appreciated that the database may simply include a single 'template' or populated cell matrix, bespoke to the platform or application in which the respective atmospheric elements are to be used. However, in alternative exemplary embodiments, the database may include a plurality of different such templates from which a required atmospheric component can be selected for use, as required.

    [0043] The processor 102 includes an input and an interface 106 for receiving an actuation signal indicative that an atmospheric component is required to be created, together with data representative of the size and orientation of the required component, and data representative of the position and orientation of the atmospheric component relative to the platform on which the apparatus is mounted, the electromagnetic radiation path to be modified and/or the laser source used to create the atmospheric component. The actuation signal and accompanying data may be manually entered by an operative (i.e. may be generated as part of a switching mechanism for switching a holographic projector on).

    [0044] The processor 102, in response to the actuation signal, searches the database 104 for the populated cell matrix data corresponding to the atmospheric component required to be created, and retrieves the associated data. A transformation module 108 is provided, which transforms the matrix cell data onto data representative of each real atmospheric matrix cell within which an EM radiation path modifying component is to be created, both in terms of size and orientation thereof, and determines precise coordinates for the location of each real atmospheric cell relative to the corresponding respective cell of the stored matrix (and also relative to the platform on which the apparatus is mounted, the electromagnetic source to be modified and/or the laser source used to create the atmospheric component), and a mapping module 110 maps the respective population data from the stored cell matrix onto the data representative of the real atmospheric cell matrix accordingly. Of course, in a fixed system, the coordinates of the cell matrix or matrices and individual cells therein may be hard coded, and do not need to be repeatedly supplied to the processor as part of the actuation signals. Either way, the processor now knows the precise physical location of each cell in the real atmospheric cell matrix and the cell 'population' pattern required to create the atmospheric component. Finally, such data is converted, by a signal processing module 112, into a scanning pattern comprised of a pattern of actuation signals configured to move and actuate the laser beam(s) in order to selectively heat/ionise each real atmospheric cell matrix in the required pattern (and to the required degree) to create the three-dimensional atmospheric elements. In other words, the actuation signals are configured to control the power and beam steering of the laser source(s) to heat/ionise each selected cell as required.

    [0045] Furthermore, an atmospheric component monitoring system 116 may be provided within, or communicably coupled to, the control module 100. The atmospheric component monitoring system 116 may, for example, comprise a low power laser of a suitable wavelength (as will be apparent to a person skilled in the art) to detect atmospheric effects. Thus, the monitoring system 116 may form part of a feedback loop with the signal processing module 112 to enable the actuation signals to be adjusted to compensate for atmospheric distortion. In alternative exemplary embodiments, the apparatus may comprise a quality monitoring module for monitoring the performance (i.e. the properties and characteristics) of the atmospheric element against a predefined set of desired criteria, and generating signals to dynamically adjust beam steering and/or power of the electromagnetic radiation source so as to reduce or eliminate deviation of the properties and characteristics of the atmospheric element from that which is defined by the predefined criteria. Such deviation may be caused by atmospheric distortion or otherwise. In other words, successive and/or continuous 'fine tuning' of the atmospheric elements is facilitated to create and maintain an atmospheric element having consistently desired characteristics and quality.

    [0046] In one exemplary embodiment of the present invention, the apparatus may further comprise a pre-seeding module 118. The pre-seeding module 118 may comprise a tank or receptacle containing particulate material, such as metal powder or plastic particles, which tend to be more readily ionised by laser power than air. Suitable materials for this purpose will be apparent to a person skilled in the art. The pre-seeding module 118 will also include a propelling mechanism for propelling the particulate material into a defined atmospheric cell matrix, the propelling mechanism being communicably coupled to the signal processing module 112. In use, if a reflective atmospheric component is required to be created, the initial actuation signal may be configured to operate the propelling mechanism and cause a quantity of the particulate material to be sprayed into the defined atmospheric volume corresponding to the cell matrix, before selective ionisation of the individual cells. As the particulate material is more readily ionised than air, it may be possible to create the required reflective atmospheric component using a lower power laser than would otherwise be required. In alternative exemplary embodiments, the atmospheric components may be created within an optically transparent enclosure, such as a cylinder or an inverted 'bell' shaped enclosure, for example. The enclosure may be filled with, or contain, a gas other than air which is more readily ionisable than air, and examples thereof will be apparent to a person skilled in the art. Furthermore, for safety purposes, the enclosure may be formed of an optically transmissive material that is configured to absorb higher frequency electromagnetic radiation.

    [0047] Referring to Figures 9A and 9B of the drawings, in a holographic projector system according to an exemplary embodiment of the present invention, a plurality of image signals 200 is output by a 3D image projector 202, wherein the image signals are spatially and/or angularly separated from each other. The projector comprises at least one laser source 204 communicably coupled to a control system, for creating a plurality of optical elements 208 in the manner described above.

    [0048] Each of the optical elements, in this case, comprises a diverging element, which is formed by heating selected cells in respective atmospheric matrices, to diverging lenses of the type described above, each being oriented to capture a single image signal and diverge or 'bend' the signal toward a specified location within a viewing enclosure 210. Thus, each of the image signals is bent or diverged to a different location within the viewing enclosure 210, dependent on the image viewpoint to which the respective image signal relates. Thus, as a viewer 212 moves around the enclosure 210, a different image signal is received in their retina, and a three dimensional image of the subject is thus perceived.

    [0049] In an alternative exemplary embodiment, the atmospheric optical elements provided in respect of each of the image signals may, for example, comprise reflective elements, created by ionising respective three-dimensional volumes of the cell matrices. In this case, when each respective image signal hits an atmospheric component, it is reflected toward the required location within the viewing enclosure.

    [0050] It will be appreciated by a person skilled in the art from the foregoing description that modifications and variations can be made to the described embodiments without departing from the scope of the invention as defined by the appended claims. Indeed, it will be appreciated that numerous variations are possible in terms of the shape and configuration of the three dimensional heated/ionised cell combinations in order to define any desired atmospheric EM radiation path modifying component. Furthermore, combinations of heating and ionisations can be used within a single cell matrix in order to realise more complex component configurations.


    Claims

    1. A holographic projector system comprising an electromagnetic radiation source (14, 20, 22, 204) communicably coupled to a control system (100) and a three dimensional image projector (202) for outputting a plurality of image signals representative of a generated image, the control system being configured to cause electromagnetic radiation to be applied to a plurality of sets (40) of selected three-dimensional portions (12) of a gaseous volume (10) so as to heat and/or ionise gas within said selected portions of the gaseous volume, thereby to generate each set of selected three-dimensional portions of said gaseous volume such that at least one set of said selected three-dimensional portions of said gaseous volume is selectively orientated relative to and arranged to intersect a path of at least one of said image signals, and wherein said selected portions of each set of selected three-dimensional portions are spatially located together in a substantially unbroken three-dimensional configuration and configured to generate an electromagnetic radiation path modifying element for modifying the path of a respective image signal incident thereon to direct said image signal to a selected location within a viewing region for viewing by at least one viewer,
    wherein each modifying element is operative to generate one of:

    a converging element (44) wherein said selected portions are spatially located together in a concave lens configuration or wherein non-selected portions are spatially located together in a convex lens configuration; or

    a diverging element (40) wherein said selected portions are spatially located together in a convex lens configuration or wherein the non-selected portions are spatially located together in a concave lens configuration.


     
    2. System according to claim 1, wherein the selected portions of each set are spatially located together in a substantially unbroken three-dimensional configuration corresponding to the three-dimensional shape of a generated electromagnetic radiation modifying element.
     
    3. System according to claim 2, wherein the electromagnetic radiation path modifying elements generated by each set of selected portions comprise reflective elements, formed by heating and/or ionising the gas occupied by each of the selected three dimensional portions.
     
    4. System according to any of claims 1 to 3, wherein the selected portions of each set are configured such that the non-selected portions are in a configuration corresponding to a three-dimensional shape of a generated electromagnetic radiation path modifying element.
     
    5. System according to any of claims 1, 2 or 4, wherein the control system is configured to cause said electromagnetic radiation to be applied to said selected portions so as to heat and/or ionise the air therein and thus change the refractive index thereof.
     
    6. System according to any of the preceding claims, wherein the electromagnetic radiation source includes a beam steering mechanism (18, 32, 34) for selectively steering a beam of electromagnetic radiation output therefrom, said control system being communicably coupled to said beam steering mechanism and configured to generate signals for steering said beam of electromagnetic radiation relative to said gaseous volume so as to sequentially apply electromagnetic radiation to said selected portions.
     
    7. System according to any of the preceding claims, further comprising a beam splitting module for splitting a beam output from said electromagnetic radiation source into a plurality of paths corresponding to respective locations of selected portions.
     
    8. System according to any of the preceding claims, wherein the control system further comprises modifying element monitoring module (116) for monitoring conditions within the gaseous volume, generating data representative thereof, and transmitting said data to a processor, the processor being configured to generate adjustment signals configured to adjust at least one characteristic of said electromagnetic radiation so as to compensate for distortion of gas within the gaseous volume.
     
    9. System according to any of the preceding claims, wherein the control system further comprises a quality monitoring module for monitoring the performance of each modifying element against a predefined set of desired criteria, and generating signals to dynamically adjust beam steering and/or power of the electromagnetic radiation source so as to reduce or eliminate deviation of the properties and characteristics of the modifying elements from that which is defined by the predefined criteria.
     
    10. System according to any of the preceding claims, wherein each modifying element is operative to generate a diffractive modifying element and said selected portions of each set define a plurality of three-dimensional shapes, each spatially separated from each other within said gaseous volume.
     
    11. System according to any of the preceding claims, wherein the electromagnetic radiation source comprises one or more lasers.
     
    12. A method of projecting a holographic image into a viewing region for viewing by at least one viewer (212), the method comprising providing an electromagnetic radiation source (14, 22, 24, 204) communicably coupled to a control system (100) and a three dimensional image projector (202) for outputting a plurality of image signals representative of a generated image, and configuring the control system to cause electromagnetic radiation to be applied to a plurality of sets (40) of selected three-dimensional portions (12) of a gaseous volume (10) so as to heat and/or ionise gas within said selected portions of the gaseous volume, wherein each set of selected three-dimensional portions of said gaseous volume is selectively orientated relative to and arranged to intersect a path of at least one of said image signals, and wherein each set of selected three-dimensional portions are spatially located together in a substantially unbroken three-dimensional configuration and configured to generate an electromagnetic radiation path modifying element for modifying the path of a respective image signal incident thereon to direct said image signal to a selected location within said viewing region for viewing by the at least one viewer,
    wherein each modifying element is operative to generate one of:

    a converging element wherein said selected portions are spatially located together in a concave lens configuration or wherein non-selected portions are spatially located together in a convex lens configuration; or

    a diverging element wherein said selected portions are spatially located together in a convex lens configuration or wherein the non-selected portions are spatially located together in a concave lens configuration.


     
    13. A method according to claim 12, wherein the gaseous volume (10) is divided into an array of three dimensional portions, and the method comprises the step of sequentially applying said electromagnetic radiation to said selected portions within said array.
     
    14. A control system (100) for a holographic projector system according to any of claims 1 to 11, the control system being configured to cause electromagnetic radiation to be applied to a plurality of sets of selected three-dimensional portions of a gaseous volume so as to heat and/or ionise the gas within said selected portions, wherein each set of selected three-dimensional portions of said gaseous volume is arranged to intersect a path of a respective one of said image signals, and wherein said selected portions of each set is spatially located together in a substantially unbroken three-dimensional configuration and configured to generate an electromagnetic radiation path modifying element positioned to intersect at least one image signal and selectively orientated to direct a respective image signal incident thereon to a selected location within a viewing region for viewing by at least one viewer (212), wherein each modifying element is operative to generate one of:

    a converging element wherein said selected portions are spatially located together in a concave lens configuration or wherein non-selected portions are spatially located together in a convex lens configuration; or

    a diverging element wherein said selected portions are spatially located together in a convex lens configuration or wherein the non-selected portions are spatially located together in a concave lens configuration.


     


    Ansprüche

    1. Holographisches Projektorsystem, umfassend eine Quelle (14, 20, 22, 204) elektromagnetischer Strahlung, die kommunikationsfähig mit einem Steuersystem (100) gekoppelt ist, und einen Projektor (202) für dreidimensionale Bilder zum Ausgeben mehrerer Bildsignale, die ein erzeugtes Bild darstellen, wobei das Steuersystem dafür konfiguriert ist, das Anwenden elektromagnetischer Strahlung auf mehrere Sätze (40) von ausgewählten dreidimensionalen Abschnitten (12) eines Gasvolumens (10) derart zu bewirken, dass Gas in den ausgewählten Abschnitten des Gasvolumens erwärmt und/oder ionisiert wird, um dadurch jeden Satz von ausgewählten dreidimensionalen Abschnitten des Gasvolumens derart zu erzeugen, dass mindestens ein Satz der ausgewählten dreidimensionalen Abschnitte des Gasvolumens wahlweise im Verhältnis zu einem Weg von mindestens einem der Bildsignale ausgerichtet und derart angeordnet ist, dass er diesen schneidet, und wobei die ausgewählten Abschnitte jedes Satzes von ausgewählten dreidimensionalen Abschnitten zusammen in einer im Wesentlichen nicht unterbrochenen dreidimensionalen Konfiguration räumlich angeordnet und dafür konfiguriert sind, ein den Weg der elektromagnetischen Strahlung modifizierendes Element zum Modifizieren des Weges eines entsprechenden Bildsignals, das darauf einfällt, zu erzeugen, um das Bildsignal zu einer ausgewählten Stelle in einem Betrachtungsbereich zum Betrachten durch mindestens einen Betrachter zu leiten,
    wobei jedes modifizierende Element funktionsfähig ist, eines des Folgenden zu erzeugen:

    ein Konvergenzelement (44), wobei die ausgewählten Abschnitte räumlich zusammen in einer Konfiguration einer konkaven Linse angeordnet sind oder wobei nicht ausgewählte Abschnitte räumlich zusammen in einer Konfiguration einer konvexen Linse angeordnet sind, oder

    ein Divergenzelement (40), wobei die ausgewählten Abschnitte räumlich zusammen in einer Konfiguration einer konvexen Linse angeordnet sind oder wobei die nicht ausgewählten Abschnitte räumlich zusammen in einer Konfiguration einer konkaven Linse angeordnet sind.


     
    2. System nach Anspruch 1, wobei die ausgewählten Abschnitte jedes Satzes räumlich zusammen in einer im Wesentlichen nicht unterbrochenen dreidimensionalen Konfiguration angeordnet sind, die der dreidimensionalen Form eines erzeugten, die elektromagnetische Strahlung modifizierenden Elements entspricht.
     
    3. System nach Anspruch 2, wobei die den Weg elektromagnetischer Strahlung modifizierenden Elemente, die von jedem Satz von ausgewählten Abschnitten erzeugt werden, reflektierende Elemente umfassen, die durch Erwärmen und/oder Ionisieren des Gases gebildet werden, das von jedem der ausgewählten dreidimensionalen Abschnitte besetzt ist.
     
    4. System nach einem der Ansprüche 1 bis 3, wobei die ausgewählten Abschnitte jedes Satzes derart konfiguriert sind, dass die nicht ausgewählten Abschnitte in einer Konfiguration vorliegen, die einer dreidimensionalen Form eines erzeugten, den Weg der elektromagnetischen Strahlung modifizierenden Elements entsprechen.
     
    5. System nach einem der Ansprüche 1, 2 oder 4, wobei das Steuersystem dafür konfiguriert ist zu bewirken, dass die elektromagnetische Strahlung derart auf die ausgewählten Abschnitte angewendet wird, dass die Luft darin erwärmt und/oder ionisiert und folglich deren Brechungsindex verändert wird.
     
    6. System nach einem der vorhergehenden Ansprüche, wobei die Quelle elektromagnetischer Strahlung einen Strahllenkungsmechanismus (18, 32, 34) zum wahlweisen Lenken eines Strahls einer Ausgabe elektromagnetischer Strahlung daraus beinhaltet, wobei das Steuersystem kommunikationsfähig mit dem Strahllenkungsmechanismus gekoppelt und dafür konfiguriert ist, Signale zum Lenken des Strahls elektromagnetischer Strahlung im Verhältnis zu dem Gasvolumen zu erzeugen, so dass auf die ausgewählten Abschnitte nacheinander elektromagnetische Strahlung angewendet wird.
     
    7. System nach einem der vorhergehenden Ansprüche, ferner ein Strahlteilungsmodul umfassend, um einen Strahl, der von der Quelle elektromagnetischer Strahlung ausgegeben wird, in mehrere Wege zu teilen, die entsprechenden Stellen ausgewählter Abschnitte entsprechen.
     
    8. System nach einem der vorhergehenden Ansprüche, wobei das Steuersystem ferner ein Modul (116) zum Überwachen des modifizierenden Elements umfasst, um Bedingungen in dem Gasvolumen zu überwachen, Daten zu erzeugen, die dies darstellen, und die Daten an einen Prozessor zu übertragen, wobei der Prozessor dafür konfiguriert ist, Justierungssignale zu erzeugen, die dafür konfiguriert sind, mindestens eine Eigenschaft der elektromagnetischen Strahlung derart zu justieren, dass eine Verzerrung von Gas in dem Gasvolumen ausgeglichen wird.
     
    9. System nach einem der vorhergehenden Ansprüche, wobei das Steuersystem ferner ein Qualitätsüberwachungsmodul umfasst, um die Leistung jedes modifizierenden Elements in Abhängigkeit von einem vordefinierten Satz von gewünschten Kriterien zu überwachen und Signale zu erzeugen, um die Strahllenkung und/oder die Energie der Quelle elektromagnetischer Strahlung derart zu justieren, dass eine Abweichung der Merkmale und Eigenschaften der modifizierenden Elemente von dem, das durch die vordefinierten Kriterien definiert ist, zu verringern oder zu beseitigen.
     
    10. System nach einem der vorhergehenden Ansprüche, wobei jedes modifizierende Element funktionsfähig ist, ein brechungsmodifizierendes Element zu erzeugen, und die ausgewählten Abschnitte jedes Satzes mehrere dreidimensionale Formen definieren, die in dem Gasvolumen jeweils räumlich voneinander getrennt sind.
     
    11. System nach einem der vorhergehenden Ansprüche, wobei die Quelle elektromagnetischer Strahlung einen oder mehrere Laser umfasst.
     
    12. Verfahren zum Projizieren eines holographischen Bildes in einen Betrachtungsbereich zum Betrachten durch mindestens einen Betrachter (212), wobei das Verfahren Folgendes umfasst: Bereitstellen einer Quelle (14, 22, 24, 204) elektromagnetischer Strahlung, die kommunikationsfähig mit einem Steuersystem (100) gekoppelt ist, und eines Projektors (202) für dreidimensionale Bilder zum Ausgeben mehrerer Bildsignale, die ein erzeugtes Bild darstellen, Konfigurieren des Steuersystems dafür, das Anwenden elektromagnetischer Strahlung auf mehrere Sätze (40) von ausgewählten dreidimensionalen Abschnitten (12) eines Gasvolumens (10) derart zu bewirken, dass Gas in den ausgewählten Abschnitten des Gasvolumens erwärmt und/oder ionisiert wird, wobei jeder Satz von ausgewählten dreidimensionalen Abschnitten des Gasvolumens wahlweise im Verhältnis zu einem Weg von mindestens einem der Bildsignale ausgerichtet und derart angeordnet ist, dass er diesen schneidet, und wobei jeder Satz von ausgewählten dreidimensionalen Abschnitten zusammen in einer im Wesentlichen nicht unterbrochenen dreidimensionalen Konfiguration räumlich angeordnet und dafür konfiguriert ist, ein den Weg der elektromagnetischen Strahlung modifizierendes Element zum Modifizieren des Weges eines entsprechenden Bildsignals, das darauf einfällt, zu erzeugen, um das Bildsignal zu einer ausgewählten Stelle in einem Betrachtungsbereich zum Betrachten durch mindestens einen Betrachter zu leiten,
    wobei jedes modifizierende Element funktionsfähig ist, eines des Folgenden zu erzeugen:

    ein Konvergenzelement, wobei die ausgewählten Abschnitte räumlich zusammen in einer Konfiguration einer konkaven Linse angeordnet sind oder wobei nicht ausgewählte Abschnitt räumlich zusammen in einer Konfiguration einer konvexen Linse angeordnet sind, oder

    ein Divergenzelement, wobei die ausgewählten Abschnitte räumlich zusammen in einer Konfiguration einer konvexen Linse angeordnet sind oder wobei die nicht ausgewählten Abschnitte räumlich zusammen in einer Konfiguration einer konkaven Linse angeordnet sind.


     
    13. Verfahren nach Anspruch 12, wobei das Gasvolumen (10) in eine Anordnung aus dreidimensionalen Abschnitten geteilt ist und das Verfahren den Schritt des aufeinanderfolgenden Anwendens der elektromagnetischen Strahlung auf die ausgewählten Abschnitte in der Anordnung umfasst.
     
    14. Steuersystem (100) für ein holographisches Projektorsystem nach einem der Ansprüche 1 bis 11, wobei das Steuersystem dafür konfiguriert ist zu bewirken, dass elektromagnetische Strahlung derart auf mehrere Sätze von ausgewählten dreidimensionalen Abschnitten eines Gasvolumens angewendet wird, dass das Gas in den ausgewählten Abschnitten erwärmt und/oder ionisiert wird, wobei jeder Satz von ausgewählten dreidimensionalen Abschnitten des Gasvolumens dafür angeordnet ist, einen Weg eines entsprechenden der Bildsignale zu schneiden, und wobei die ausgewählten Abschnitte jedes Satzes räumlich zusammen in einer im Wesentlichen nicht unterbrochenen dreidimensionalen Konfiguration angeordnet und dafür konfiguriert sind, ein den Weg der elektromagnetischen Strahlung modifizierendes Element zu erzeugen, dass derart positioniert ist, dass es mindestens ein Bildsignal schneidet und wahlweise ausgerichtet ist, um ein entsprechendes Bildsignal, das darauf einfällt, auf eine ausgewählte Stelle in einem Betrachtungsbereich zur Betrachtung durch mindestens einen Betrachter (212) zu leiten, wobei jedes modifizierende Element funktionsfähig ist, eines des Folgenden zu erzeugen:

    ein Konvergenzelement, wobei die ausgewählten Abschnitte räumlich zusammen in einer Konfiguration einer konkaven Linse angeordnet sind oder wobei nicht ausgewählte Abschnitte räumlich zusammen in einer Konfiguration einer konvexen Linse angeordnet sind, oder

    ein Divergenzelement, wobei die ausgewählten Abschnitte räumlich zusammen in einer Konfiguration einer konvexen Linse angeordnet sind oder wobei die nicht ausgewählten Abschnitt räumlich zusammen in einer Konfiguration einer konkaven Linse angeordnet sind.


     


    Revendications

    1. Système de projecteur holographique comprenant une source de rayonnement électromagnétique (14, 20, 22, 204) couplée en communication à un système de commande (100), et un projecteur d'image tridimensionnelle (202) pour fournir en sortie une pluralité de signaux d'image représentatifs d'une image générée, le système de commande étant configuré de manière à occasionner l'application d'un rayonnement électromagnétique à une pluralité d'ensembles (40) de parties tridimensionnelles sélectionnées (12) d'un volume gazeux (10), de manière à chauffer et/ou ioniser du gaz dans lesdites parties sélectionnées du volume gazeux, en vue de générer par conséquent chaque ensemble de parties tridimensionnelles sélectionnées dudit volume gazeux, de sorte qu'au moins un ensemble desdites parties tridimensionnelles sélectionnées dudit volume gazeux est sélectivement orienté par rapport à, et agencé de manière à couper, un trajet d'au moins l'un desdits signaux d'image, et dans lequel lesdites parties sélectionnées de chaque ensemble de parties tridimensionnelles sélectionnées sont spatialement situées ensemble dans une configuration tridimensionnelle sensiblement ininterrompue et sont configurées de manière à générer un élément de modification de trajet de rayonnement électromagnétique pour modifier le trajet d'un signal d'image respectif incident sur celles-ci en vue d'orienter ledit signal d'image vers un emplacement sélectionné dans une zone de visualisation, à des fins de visualisation par au moins un observateur;
    dans lequel chaque élément de modification est exploitable de manière à générer l'un parmi:

    un élément de convergence (44) dans lequel lesdites parties sélectionnées sont spatialement situées ensemble dans une configuration de lentille concave, ou dans lequel des parties non sélectionnées sont spatialement situées ensemble dans une configuration de lentille convexe; ou

    un élément de divergence (40) dans lequel lesdites parties sélectionnées sont spatialement situées ensemble dans une configuration de lentille convexe, ou dans lequel les parties non sélectionnées sont spatialement situées ensemble dans une configuration de lentille concave.


     
    2. Système selon la revendication 1, dans lequel les parties sélectionnées de chaque ensemble sont spatialement situées ensemble dans une configuration tridimensionnelle sensiblement ininterrompue correspondant à la forme tridimensionnelle d'un élément de modification de rayonnement électromagnétique généré.
     
    3. Système selon la revendication 2, dans lequel les éléments de modification de trajet de rayonnement électromagnétique générés par chaque ensemble de parties sélectionnées comprennent des éléments réfléchissants, formés en chauffant et/ou en ionisant le gaz occupé par chacune des parties tridimensionnelles sélectionnées.
     
    4. Système selon l'une quelconque des revendications 1 à 3, dans lequel les parties sélectionnées de chaque ensemble sont configurées de sorte que les parties non sélectionnées sont dans une configuration correspondant à une forme tridimensionnelle d'un élément de modification de trajet de rayonnement électromagnétique généré.
     
    5. Système selon l'une quelconque des revendications 1, 2 et 4, dans lequel le système de commande est configuré de manière à occasionner l'application dudit rayonnement électromagnétique auxdites parties sélectionnées de manière à chauffer et/ou ioniser l'air s'y trouvant, et par conséquent à modifier l'indice de réfraction connexe.
     
    6. Système selon l'une quelconque des revendications précédentes, dans lequel la source de rayonnement électromagnétique inclut un mécanisme d'orientation de faisceau (18, 32, 34) destiné à orienter sélectivement un faisceau de rayonnement électromagnétique fourni en sortie à partir de celui-ci, ledit système de commande étant couplé en communication audit mécanisme d'orientation de faisceau et configuré de manière à générer des signaux pour orienter ledit faisceau de rayonnement électromagnétique par rapport audit volume gazeux de manière à appliquer séquentiellement un rayonnement électromagnétique auxdites parties sélectionnées.
     
    7. Système selon l'une quelconque des revendications précédentes, comprenant en outre un module de séparation de faisceau pour séparer un faisceau, fourni en sortie à partir de ladite source de rayonnement électromagnétique, en une pluralité de trajets correspondant à des emplacements respectifs de parties sélectionnées.
     
    8. Système selon l'une quelconque des revendications précédentes, dans lequel le système de commande comprend en outre un module de surveillance d'élément de modification (116) pour surveiller des conditions au sein du volume gazeux, générer des données représentatives connexes, et transmettre lesdites données à un processeur, le processeur étant configuré de manière à générer des signaux d'ajustement configurés de manière à ajuster au moins une caractéristique dudit rayonnement électromagnétique de manière à compenser une déformation de gaz au sein du volume gazeux.
     
    9. Système selon l'une quelconque des revendications précédentes, dans lequel le système de commande comprend en outre un module de surveillance de qualité pour surveiller la performance de chaque élément de modification par rapport à un ensemble prédéfini de critères souhaités, et générer des signaux pour ajuster dynamiquement l'orientation de faisceau et/ou la puissance de la source de rayonnement électromagnétique de manière à réduire ou à éliminer un écart des propriétés et des caractéristiques des éléments de modification par rapport à ce qui est défini par les critères prédéfinis.
     
    10. Système selon l'une quelconque des revendications précédentes, dans lequel chaque élément de modification est exploitable de manière à générer un élément de modification diffractif, et dans lequel lesdites parties sélectionnées de chaque ensemble définissent une pluralité de formes tridimensionnelles, chacune étant séparée spatialement des autres au sein dudit volume gazeux.
     
    11. Système selon l'une quelconque des revendications précédentes, dans lequel la source de rayonnement électromagnétique comprend un ou plusieurs lasers.
     
    12. Procédé de projection d'une image holographique dans une zone de visualisation, à des fins de visualisation par au moins un observateur (212), le procédé comprenant l'étape consistant à fournir une source de rayonnement électromagnétique (14, 22, 24, 204) couplée en communication à un système de commande (100), et un projecteur d'image tridimensionnelle (202) pour fournir en sortie une pluralité de signaux d'image représentatifs d'une image générée, et l'étape consistant à configurer le système de commande de manière à occasionner l'application d'un rayonnement électromagnétique à une pluralité d'ensembles (40) de parties tridimensionnelles sélectionnées (12) d'un volume gazeux (10), de manière à chauffer et/ou ioniser du gaz dans lesdites parties sélectionnées du volume gazeux, dans lequel chaque ensemble de parties tridimensionnelles sélectionnées dudit volume gazeux est sélectivement orienté par rapport à, et agencé de manière à couper, un trajet d'au moins l'un desdits signaux d'image, et dans lequel lesdites parties sélectionnées de chaque ensemble de parties tridimensionnelles sélectionnées sont spatialement situées ensemble dans une configuration tridimensionnelle sensiblement ininterrompue et sont configurées de manière à générer un élément de modification de trajet de rayonnement électromagnétique pour modifier le trajet d'un signal d'image respectif incident sur celles-ci en vue d'orienter ledit signal d'image vers un emplacement sélectionné dans une zone de visualisation, à des fins de visualisation par ledit au moins un observateur;
    dans lequel chaque élément de modification est exploitable de manière à générer l'un parmi:

    un élément de convergence dans lequel lesdites parties sélectionnées sont spatialement situées ensemble dans une configuration de lentille concave, ou dans lequel des parties non sélectionnées sont spatialement situées ensemble dans une configuration de lentille convexe; ou

    un élément de divergence dans lequel lesdites parties sélectionnées sont spatialement situées ensemble dans une configuration de lentille convexe, ou dans lequel les parties non sélectionnées sont spatialement situées ensemble dans une configuration de lentille concave.


     
    13. Procédé selon la revendication 12, dans lequel le volume gazeux (10) est divisé en un réseau de parties tridimensionnelles, et le procédé comprend l'étape consistant à appliquer séquentiellement ledit rayonnement électromagnétique auxdites parties sélectionnées dans ledit réseau.
     
    14. Système de commande (100) pour un système de projecteur holographique selon l'une quelconque des revendications 1 à 11, le système de commande étant configuré de manière à occasionner l'application d'un rayonnement électromagnétique à une pluralité d'ensembles de parties tridimensionnelles sélectionnées d'un volume gazeux de manière à chauffer et/ou ioniser du gaz au sein desdites parties sélectionnées, dans lequel chaque ensemble de parties tridimensionnelles sélectionnées dudit volume gazeux est agencé de manière à couper un trajet d'un signal respectif desdits signaux d'image, et dans lequel lesdites parties sélectionnées de chaque ensemble sont spatialement situées ensemble dans une configuration tridimensionnelle sensiblement ininterrompue, et sont configurées de manière à générer un élément de modification de trajet de rayonnement électromagnétique positionné pour couper au moins un signal d'image et orienté sélectivement pour orienter un signal d'image respectif incident sur celle-ci vers un emplacement sélectionné au sein d'une zone de visualisation, à des fins de visualisation par au moins un observateur (212), dans lequel chaque élément de modification est exploitable de manière à générer l'un parmi:

    un élément de convergence dans lequel lesdites parties sélectionnées sont spatialement situées ensemble dans une configuration de lentille concave, ou dans lequel des parties non sélectionnées sont spatialement situées ensemble dans une configuration de lentille convexe; ou

    un élément de divergence dans lequel lesdites parties sélectionnées sont spatialement situées ensemble dans une configuration de lentille convexe, ou dans lequel les parties non sélectionnées sont spatialement situées ensemble dans une configuration de lentille concave.


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description