(19)
(11)EP 3 285 273 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
16.10.2019 Bulletin 2019/42

(21)Application number: 17194298.0

(22)Date of filing:  17.08.2011
(51)International Patent Classification (IPC): 
H01H 3/56(2006.01)
H01H 3/42(2006.01)

(54)

DUAL STROKE MECHANICALLY LATCHED MECHANISM

MECHANISCH VERRIEGELTER MECHANISMUS MIT DOPPELTEM HUB

MÉCANISME À DOUBLE COURSE VERROUILLÉ MÉCANIQUEMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
21.02.2018 Bulletin 2018/08

(62)Application number of the earlier application in accordance with Art. 76 EPC:
11870898.1 / 2745302

(73)Proprietor: Hubbell Incorporated
Shelton, CT 06484 (US)

(72)Inventor:
  • Gerovac, Joseph P
    Menomonee Falls, WI 53051 (US)

(74)Representative: Wilson Gunn 
Charles House 148/9 Great Charles Street
Birmingham B3 3HT
Birmingham B3 3HT (GB)


(56)References cited: : 
DE-B3-102005 013 231
US-A1- 2009 314 620
US-A- 4 142 167
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present disclosure relates generally to the field of latching mechanisms. More specifically, the present disclosure relates to the field of solenoid actuated electromechanical switches.

    [0002] In the field of capacitor switches (e.g., vacuum interrupter based voltage switches) an operating rod is used to separate electrical contacts and bring the electrical contacts together. Conventional switches use magnetic actuators to move the operating rod to separate electrical contacts and bring the electrical contacts together. Magnetic actuators use rare Earth magnets to hold the operating rod at the end of each stroke, are costly, and require sophisticated controls. Other conventional switches use motor operated spring loaded mechanisms to move the operating rod to separate electrical contacts and bring the electrical contacts together. Motor operated spring loaded mechanisms are complex, costly, and have limited speeds. Other switches have used solenoid actuated mechanisms to move the operating rod that either require one solenoid for each direction of travel or require electronic controls to maintain current at the end of each stroke. These requirements increase reliability concerns and cost.

    [0003] US 4, 142, 167 discloses a solenoid operated actuator for use in automobile door locks. The actuator includes a rotatable cam reciprocated by the solenoid and which in turn drives a rotatable pivot member in alternating, opposite directions via cam followers for completing one or other of two electrical circuits.

    [0004] US 2009/0314620 A1 discloses a circuit interrupter with an actuating mechanism for opening and closing electrical contacts. The actuating mechanism includes a cam and two-link linkage member. There is a need for an improved latching mechanism. Thus, there is also a need for a switch that includes a lower cost mechanism for moving the operating rod. Further still, there is a need for a system for and method of moving an operating rod that does not require one solenoid for each direction of travel or require electronic controls to maintain current at the end of each stroke. Yet further, there is a need for an actuator that does not require rare Earth magnets.

    SUMMARY



    [0005] In accordance with the invention, there is provided a latching mechanism as defined in claim 1.

    [0006] Further optional features of the latching mechanism in accordance with the invention are set out in the claims dependent on claim 1.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] 

    FIG. 1 is a perspective view of a latching mechanism, shown according to an exemplary embodiment.

    FIG. 2 is a front planar view of the latching mechanism of FIG. 1.

    FIG. 3 is a right side planar view of the latching mechanism of FIG. 1.

    FIG. 4 is a rear planar view of the latching mechanism of FIG. 1.

    FIG. 5 is an exploded view of the latching mechanism of FIG. 1.

    FIG. 6 is an enlarged view of a component of the latching mechanism of FIG. 1, shown according to an exemplary embodiment.

    FIG. 7 is a front planar view of the latching mechanism of FIG. 1, shown in an exemplary second arrangement.

    FIG. 8 is a front planar view of the latching mechanism of FIG. 1, shown in an exemplary third arrangement.

    FIG. 9 is a front planar view of the latching mechanism of FIG. 1, shown in an exemplary fourth arrangement.


    DETAILED DESCRIPTION



    [0008] Referring generally to the FIGURES, a latching mechanism and components thereof are shown according to an exemplary embodiment. The latching mechanism generally includes a solenoid, an operating rod, and a mechanical linkage (shown to include a cam) coupling the solenoid to the operating rod. Actuation of the mechanical linkage causes the operating rod to move between a retracted position and an extended position. Further, the linkage provides a toggle action. That is, each time the solenoid is actuated, it provides the opposite linear motion on the operating rod. Accordingly, a single-direction solenoid may be used to provide both push and pull functionality, thereby reducing cost and complexity, which, in turn, increases reliability.

    [0009] According to an exemplary embodiment, the latching system may be used as vacuum interrupter based medium voltage capacitor switch. In such an embodiment, the operating rod may be configured to selectively couple at least two electrical contacts in response to movement between the retracted position and the extended position. The medium voltage switch may be used in utility power distribution environments, for example, in a pole - mounted or pad-mounted interrupter, operating in circuits of 15,000 Volts to 35,000 Volts and 200 amps to 400 amps.

    [0010] While the exemplary embodiment may be configured as an electromechanical switch, it is contemplated that the mechanism disclosed herein may be used in any application where push and pull functionality is required, for example, as a latch or deadbolt for a door, gate, or safe.

    [0011] Before discussing further details of the latching mechanism and/or the components thereof, it should be noted that references to "front," "back," "rear," "upward," "downward," "inner," "outer," "right," and "left" in this description are merely used to identify the various elements as they are oriented in the FIGURES. These terms are not meant to limit the element which they describe, as the various elements may be oriented differently in various applications.

    [0012] It should further be noted that for purposes of this disclosure, the term coupled means the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature and/or such joining may allow for the flow of fluids, electricity, electrical signals, or other types of signals or communication between the two members. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or alternatively may be removable or releasable in nature.

    [0013] Referring to FIGS. 1-6, a latching mechanism 100 and components thereof are shown according to an exemplary embodiment. A base 110 is shown supporting a solenoid 120, a member (e.g., finger, bar, rod, etc.), shown as an operating rod 130, and a mechanical linkage 150. According to the embodiment shown, the base 110 is approximately 15 cm (6 inches) wide and approximately 20 cm (8 inches) tall. However, the latching mechanism 100 can easily be scaled up or down in size to suit the desired application.

    [0014] The solenoid 120 includes a housing 122 and an armature or plunger 124. The plunger 124 extends from the housing 122 to a distal end 126 and defines a longitudinal axis L. When the solenoid 120 is energized, the distal end 126 moves towards the housing 122 along the axis L to an energized position, as shown in FIGS. 7 and 9. When the solenoid 120 is de-energized, a spring 128 causes the distal end 126 to move away from the housing 122 and to return to a de-energized position, as shown in FIGS. 1-4 and 8. According to the embodiment shown, the solenoid 120 couples to base 110 with fasteners 112. Using fasteners facilitates replacement of the solenoid 120, which facilitates repair and enables the solenoid 120 to be exchanged for a solenoid having different characteristics (e.g., speed, strength, etc.). According to alternative embodiments, the solenoid 120 may be welded, adhered, or otherwise coupled to the base 110.

    [0015] The operating rod 130 may be movably coupled to base 110. The operating rod 130 translates between a retracted position, as shown in FIGS. 1-4 and 9, and an extended position shown in FIGS. 7 and 8. According to the embodiment shown, the distance between the extended position and the retracted position is approximately 1 cm (0.4 inches). The length of the stroke of the operating rod 130 may be modified by changing the stroke of the solenoid 120 and/or the configuration of the mechanical linkage 150.

    [0016] The operating rod 130 includes a first end 132 and a second end 134. The operating rod 130 may also include rearward extending flanges 136, which provides strength and may be configured to guide the movement of the operating rod 130 in a channel 114 defined by the base 110. The first end 132 may include a forwardly extending flange 138. According to the embodiment shown, the first end 132 is configured to indirectly push together separate electrical contacts via an extension coupled to the flange 138, but may be configured to directly connect and disconnect the contacts. The second end 134 includes a cam follower 140.

    [0017] The cam follower 140 is shown to be supported by a fastener 142, which extends through the operating rod 130 and an arm or blade 144. Referring to FIG. 4, the blade 144 is rotatably coupled to a rear side of base 110 with a fastener 146. As blade 144 pivots about fastener 146, fastener 142 sweeps an arc to which the stroke of the operating rod 130 is substantially tangential. Further, since the stroke of the operating rod 130 is short relative to the distance from the pivot (e.g., fastener 146) to the arc (e.g., fastener 142), the arc swept by the blade 144 at the fastener 142 as it rotates about fastener 146 is approximately linear. Accordingly, the blade 144 couples the operating rod 130 to the base 110 while permitting substantially linear motion of the operating rod 130. According to alternative embodiments, the cam follower 140 may be the head of the fastener or may be integrally formed as part of the operating rod 130.

    [0018] A mechanical linkage 150 is shown to include a bar (e.g., finger, member, linkage, etc.), shown as a link 160, and a structure (e.g., plate, member, rotor, etc.), shown as a cam 200. The link 160 includes a first portion 162 and a second portion 164, located opposite first portion 162. The first portion 162 is rotatably coupled to distal end 126 of plunger 124, thereby allowing the second portion 162 to depart from the axis L of the plunger 124 during the energizing and de-energizing cycles. The second portion 164 includes a cam driver 166, which may be coupled to the link 160 or integrally formed as part of the link 160. Referring to FIG. 4, the cam driver 166 may be seen through a hole 119 in the base 110 when the operating rod 130 is in a retracted position and the solenoid 120 is de-energized. Viewing cam driver 166 in this position from the rear side of base 110 enables a user (e.g., a technician) to confirm that the switch is open (i.e., powered off) before beginning repairs.

    [0019] Referring to FIG. 6, the cam 200 defines a hole or aperture defined by the cam 200, shown as an opening 202, a first profile (e.g., slot, channel, groove, etc.), shown as a driving profile 210, and a second profile (e.g., slot, channel, groove, etc.), shown as an operating profile 250. A bearing 152 is located in the opening 202 and supports the cam 200 while permitting rotation of the cam 200 relative to the base 110. The cam 200 and the bearing 152 may be coupled to the base 110 by a fastener 154. The driving profile 210 is configured to receive the cam driver 166 coupled to the link 160, and the operating cam profile 250 is configured to receive the cam follower 140 coupled to the operating rod 130. Accordingly, the mechanical linkage 150 operatively couples the solenoid 120 to the operating rod 130. According to various alternative embodiments, the cam 200 may be replaced by a multi-bar linkage mechanism.

    [0020] The driving profile 210 is shown to have an inner contour 213 and an outer contour 214 and to comprise a plurality of segments, shown as a first segment 221, a second segment 222, a third segment 223, and a fourth segment 224. The first segment 221 extends at an angle from the second segment 222 to a first end 216. The first segment 221 and the second segment 222 form an outwardly convex first corner 231 of the inner contour 213 and form an inwardly concave first corner 241 of the outer contour 214. The second segment 222 and the third segment 223 are substantially continuous and follow a somewhat circumferential path around opening 202. The fourth segment 224 extends at an angle from the third segment 223 to a second end 218. The fourth segment 224 and the third segment 223 form an outwardly convex second corner 232 of the inner contour 213 and form an inwardly concave second corner 242 of the outer contour 214.

    [0021] The distance from the first corner 241 to the second corner 242 of the outer contour 214 is greater than the distance from the first corner 231 to the second corner 232 of inner contour 213. The first corner 231 of the inner contour 213 is closer to the longitudinal axis L of the plunger 124 than is the first corner 241 of the outer corner 214. Similarly, the second corner 232 of the inner contour 213 is closer to the longitudinal axis L of the plunger 124 than is the second corner 242 of the outer corner 214. Accordingly, when the solenoid 120 is in a de-energized state and the cam driver 166 rests in either the first corner 241 or the second corner 242 of the outer contour 214, the cam driver 166 is biased to enter the first segment 221 or the fourth segment 224, respectively, when solenoid 120 is energized. According to alternative embodiments, the driving profile 210 may comprise other shapes, e.g., a substantially V-shaped opening having a wide base such the cam driver 166 is biased to one side or the other of the fork in the V when the solenoid 120 is de-energized.

    [0022] The operating profile 250 is shown to include a first portion, shown as a retracted portion 251, and a second portion, shown as a transition portion 252, and a third portion, shown as an extend portion 253. The retracted portion 251 includes a radially outward turned end which prevents cam 200 from rotating in response to force applied to operating rod 130, thereby retaining operating rod 130 in a retracted position. The transition portion 252 extends between the retracted portion 251 and the extended portion 253 and is configured to cause the operating rod 130 to move between a retracted position and an extended position in response to rotation of the cam 200 about the bearing 152. The extended portion 253 is configured to retain the operating rod 130 in an extended position. For example, the extended portion 253 includes a constant radius about the opening 202 which prevents rotation of the cam 200 in response to force applied to the operating rod 130 and prevents retraction of the operating rod 130 in response to minor rotation of the cam 200. Accordingly, the operating rod 130 may be mechanically latched at either the extended position or the retracted position. The operating profile 250 may also be configured to provide torque multiplication. According to the exemplary embodiment, the solenoid 120 provides 30 pounds (133 newtons) of force, whereas operating rod 130 provides over 100 pounds (445 newtons) of force to the electrical contacts.

    [0023] Referring to FIGS. 3-4, the cam 200 may include a flange 270, which includes a radially outward extending portion 272 and a rearward extending portion 274. The rearward extending portion 274 extends from a front side or cam side of the base 110 to a back side or handle side of the base 110. On the back side of the base 110, the flange 270 is coupled to a lever or handle 170 by a spring 172, the handle 170 being rotatably coupled to the base 110 by a fastener 174. As the cam 200 rotates between a first or retracted orientation (shown in FIGS. 2 and 9) and a second or extended orientation (shown in FIGS. 7-8), the rearward extending portion 274 of the flange 270 concentrically follows a curved edge 118 of base 110. In turn, the handle 170 rotates between a first or retracted position and a second or extended position as it is pulled by the spring 172. The handle 170 may be used for manual override of the cam 200. That is, the cam 200 will rotate between the extended and retracted orientations in response to movements of the handle 170 between the extended and retracted positions, respectively. According to alternative embodiments, the handle 170 may be located forward of the base 110, or the flange 270 may be configured to be a handle, e.g., extend outward so as to provide a gripping surface for a user.

    [0024] The lever mechanism of handle 170 may further be configured to retain the cam 200 in extended or retracted orientations. The flange 270 sweeps a substantially circular arc around the curved edge 1 18 as the cam 200 rotates, the curved edge 118 of base 110 following an arc of substantially constant radius around the fastener 154. As shown, the axis of rotation of the handle 170 (e.g., the fastener 174) is diametrically opposite the axis of rotation of the cam 200 (e.g., the fastener 154) from the midpoint of the arc of the curved edge 118. Accordingly, the distance from the handle 170 to the rearward extending portion of the flange 270 is greater when the cam 200 is between the extended and retracted orientations than when the cam 200 is in one of the extended orientation and retracted orientation. As such, when the cam 200 rotates from the retracted orientation to the extended orientation, the spring 172 stretches, and the tensile forces in the spring increase, until the apex of the curved path of the flange 270 is reached. As the cam 200 continues to rotate passed the apex of the curve, the spring 172 decreases in length until the extended orientation is reached. Rotating the cam 200 back to the retracted orientation would require again stretching the spring 172. Accordingly, the spring 172 retains the cam 200, and therefore the operating rod 130, in an extended or retracted position, and when the cam 200 and the handle 170 rotate past the apex of the curve, the spring 172 pulls the cam 200 and the handle 170 to the end position or orientation. According to alternate embodiments, the axis of rotation (e.g., the fastener 174) or the handle 170 may be located so that the point of maximum stretch of the spring 172 is not at mid-rotation of cam 200. Accordingly, the tensile force of the spring 172 may be configured to correspond to (e.g., assist) the forces generated by the operating profile 250 on the cam follower 154.

    [0025] The latching mechanism 100 may include one or more position sensors configured to determine the position or orientation of the cam 200. According to the embodiment shown, the latching mechanism 100 includes first and second switches, shown as a retracted switch 116a and an extended switch 116b, coupled to the base 110. The retracted switch 116a is configured to output a signal in response to the cam 200 being in the retracted orientation. For example, the cam 200 may include a radially outward extending flange 260, and the retracted switch 116a may open or close a circuit when the flange 260 contacts the retracted switch 116a. Similarly, the extended switch 116b may output a signal in response to the cam 200 being in the extended orientation, in which case the flange 260 contacts the extended switch 116b.

    [0026] According to an exemplary embodiment, the switches 116a and 116b may be coupled to the power circuit for the solenoid 120. Accordingly, the circuit may be configured such that the solenoid 120 is de-energized when it reaches the extended or retracted position. That is, when the flange 260 contacts the switch 116a or 116b respectively, power to the solenoid 120 is switched off. This prevents the solenoid 120 from attempting to push or pull the operating rod 130 too far, thereby reducing burnout of the solenoid and extending the life of the solenoid. The position sensors also enable remote monitoring and diagnostics of the mechanical latch 110. According to alternative embodiments, the sensor may be a Hall effect sensor or a rotational position senor coupled to the rotational axis of the cam 200, e.g., if the fastener 154 were fixedly coupled to the cam 200. Alternatively again, the sensor may output a signal in response to the position of the operating rod 130, the handle 170, or the solenoid plunger 124.

    [0027] While many components of the latching mechanism 100 are shown disposed on the base 110, it is contemplated that the components may be supported by one or more other structures. Each of the fasteners described may be the same or different type and/or size. Further, it is contemplated that any fastener may be replaced by a stud, boss, pin or other suitable coupling mechanism.

    [0028] Referring now to FIGS. 2 and 7-9, the operation of the latching mechanism 100 is described according to an exemplary embodiment. FIG. 2 depicts the solenoid 120 in a de-energized position and the cam 200 in a retracted orientation; FIG. 7 depicts the solenoid 120 in an energized position and the cam 200 in an extended orientation; FIG. 8 depicts the solenoid 120 in a de-energized position and the cam 200 in a retracted orientation; and FIG. 9 depicts the solenoid 120 in an energized position and the cam 200 in an extended orientation

    [0029] According to an exemplary embodiment, transition from FIG. 2 to FIG. 7 comprises a first energized state of the solenoid 120; transition from FIG. 7 to FIG. 8 comprises a first de-energized state; transition from FIG. 8 to FIG. 9 comprises a second energized state of solenoid 120; and transition from FIG. 9 to FIG. 2 comprises a second de- energized state. A first cycle may comprise the first energized state and the first de- energized state. A second cycle may comprise the second energized state and the second de-energized state. As described below, the latch mechanism 100 is configured such that the first and second cycles alternate, and alternating energized states of the solenoid 120 cause opposite linear motion of operating rod 130.

    [0030] Beginning with FIG. 2, and with reference to FIG. 6, the operating rod 130 is shown in a retracted position, and the cam driver 166 is shown resting in the first corner 241 of the outer contour 214 of the driving profile 210 of the cam 200. In this position, the cam driver 166 may be viewed through the hole 119 in the base 110 from the rear side of the base 110 (See FIG. 4). As the solenoid 120 is energized (e.g., is in the first energized state), the plunger 124 retracts upward, which pulls the link 160 upward. Since the first corner 241 of the outer contour 214 is biased outwards of the first corner 231 of the inner contour 213, the cam driver 166 follows the inner contour 213 into the first segment 221 of the driving profile 210 until it reaches the first end 216. As the plunger 124 continues to retract, the cam driver 166 pulls on the first end 216 of the driving profile 210, thereby causing rotation of the cam 200 about the bearing 152. As the cam 200 rotates, the operating profile 250 acts upon the cam follower 140. The cam follower 140 leaves the retracted portion 251, passes through the transition portion 252, and enters the extended portion 253. As the cam follower 140 passes through the transition portion 252, the cam follower 140 is forced upwards, which in turn moves the operating rod 130 from the retracted position to the extended position. According to the embodiment shown, the cam 200 rotates approximately 87 degrees between the retracted orientation and the extended orientation.

    [0031] At this point, the latching mechanism 100 is arranged as in FIG. 7, with the operating rod 130 in the extended position. The flange 260 of the cam 200 contacts the switch 116b and closes the power circuit to the solenoid 120. As the solenoid 120 de- energizes (e.g., is in the first de-energized state), the spring 128 forces the plunger 124 downward, which pushes the link 160 downward. The cam driver 166 follows the driving profile 210 until coming to rest in the second corner 242 of the outer contour 214. At which point, the first cycle is complete, with the latching mechanism 100 arranged as shown in FIG. 8, and the operating rod 130 mechanically latched into the extended position by the cam 200. In this position, the cam driver 166 is offset from the hole 119 and, therefore, may not be viewable through the hole 119 in the base 110 from the rear side of the base 110. Accordingly, a user would be alerted that the operating rod 130 may be in an extended position.

    [0032] When solenoid 120 is next energized (e.g., in the second energized state), the plunger 124 is drawn upward, but because the second corner 241 of the outer contour 214 is biased outwards of the second corner 232 of the inner contour 213, the cam driver 166 follows the inner contour 213 towards the second end 218 of the driving profile 210. As the plunger 124 continues to draw upward, the cam driver 166 pulls on the second end 218, causing the cam 200 to rotate oppositely to the direction it rotated during the first energized state. As the cam 200 rotates, the cam follower 140 leaves the extended portion 253 of the operating profile 250, passes through the transition portion 252, and enters the retracted portion 251. As the cam follower 140 passes through the transition portion 252, the cam follower 140 is forced downwards, which causes the operating rod 130 to move from the extended position to the retracted position.

    [0033] At this point, the latching mechanism 100 arranged as in FIG. 9, with the operating rod 130 in the retracted position. The flange 260 of the cam 200 contacts the switch 116a, which closes the power circuit to the solenoid 120. As the solenoid 120 de-energizes (e.g., is in the second de-energized state), the spring 128 forces the plunger 124 downward, which pushes the link 160 downward. The cam driver 166 follows the driving profile 210 until coming to rest in the first corner 241 of the outer contour 214. At which point, the second cycle is complete, with the latching mechanism 100 arranged as shown in FIG. 2, and the operating rod 130 mechanically latched into the extended position by the cam 200. When the solenoid 120 is next energized, the latching mechanism 100 will respond as described for the first cycle.

    [0034] The cam 200 and the solenoid 120 may be configured to control the velocity of operating rod 130. According to an exemplary embodiment in which the latch mechanism 100 is used in a voltage capacitor switch, the operating rod 130 should generate 70% of its total contact force between the electrical contacts within a half-loop of alternating current (e.g., at 60 hertz, approximately 8.3 milliseconds), so that the electrical contacts can couple at less than maximum current, thereby reducing arcing between the contacts. At the same time, the velocity of the operating rod 130 should be limited so as not to cause premature wear and failure of the bellows used in a vacuum interrupter application. Further, excessive velocity may cause the electrical contacts to bounce or rebound off of one another, thereby causing arcing, which reduces the life of the equipment.

    [0035] It is also important to note that the construction and arrangement of the elements of the latching mechanism as shown in the exemplary embodiments are illustrative only. Although only a few embodiments of the present disclosure have been described in detail, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements. It should be noted that the elements and/or assemblies of the enclosure may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Additionally, in the subject description, the word "exemplary" is used to mean serving as an example, instance or illustration. Any embodiment or design described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word exemplary is intended to present concepts in a concrete manner. Accordingly, all such modifications are intended to be included within the scope of the present inventions. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the preferred and other exemplary embodiments without departing from the scope of the appended claims.

    [0036] The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating configuration, and arrangement of the preferred and other exemplary embodiments without departing from the scope of the appended claims.


    Claims

    1. A latching mechanism, comprising:

    a solenoid (120) comprising a first cycle having a first energized state and a first de-energized state, and a second cycle having a second energized state and a second de-energized state;

    a moveable cam (200) rotatably coupled to a base, the movable cam defining a first profile (210) and a second profile (250) and being movable between a first orientation and a second orientation;

    a member (130) configured to translate in a linear direction between an extended position and a retracted position, said member having a cam follower (140) configured to follow the second profile (250) and move the member in said linear direction by rotation of the cam; and

    a mechanical linkage (150) having a link (160) with a first portion operatively coupled to the solenoid and a second portion movably coupled to the first profile of the cam to rotate the cam (200) between the first orientation and the second orientation;

    wherein the mechanical linkage (150) is configured such that when the solenoid is in the first cycle, the second portion of the link moves in the first profile (210) and rotates the cam from the first orientation to the second orientation and the member (130) moves from the retracted position to the extended position and the mechanical linkage moves from a first position to a second position, and wherein the mechanical linkage is configured such that when the solenoid is in the second cycle, the second portion of the link moves in the first profile and rotates the cam from the second orientation to the first orientation and the member moves from the extended position to the retracted position and the mechanical linkage moves from the second position to the first position.


     
    2. The latching mechanism of claim 1, wherein the first energized state and the second energized state alternate in time.
     
    3. The latching mechanism of claim 1, wherein the first de-energized state occurs between the first energized state and the second energized state and the second de-energized state occurs after the second energized state; and
    wherein the mechanical linkage (150) is configured such that the member (130) remains in the extended position when the solenoid (120) is in the first de-energized state, and the member remains in the retracted position when the solenoid is in the second de-energized state.
     
    4. The latching mechanism of claim 1, wherein the cam (200) is configured to control the velocity of the member.
     
    5. The latching mechanism of claim 1, wherein the cam (200) is configured to control the force of the member.
     
    6. The latching mechanism of claim 1, wherein the first cam profile (210) has a first segment (221), a second segment (222), a third segment (223), and a fourth segment (224), and wherein when the solenoid (120) is in the first energized state, the second portion of the link (160) moves from the first segment to the second segment causing the cam to rotate from the first orientation to the second orientation and the member (130) to move from the retracted position to the extended position, and when the solenoid is in the first de-energized state, the second portion of the link (150) moves from the second segment to the third segment, the cam remains in the second orientation and the member (130) remains in the extended position.
     
    7. The latching mechanism of claim 6, wherein
    when the solenoid (120) is in the second energized state, the second portion of the link (160) moves from the third segment to the fourth segment and the member (130) moves from the extended position to the retracted position; and
    when the solenoid is in the second de-energized state, the second portion of the link moves from the fourth segment to the first segment and the member remains in the retracted position.
     
    8. The latching mechanism of claim 6, wherein when the solenoid (120) is in the first energized state, the second portion of the link (160) moves from a first position to a second position and the member (130) moves from the retracted position to the extended position;
    wherein when the solenoid is in the first de-energized state, the second portion of the link (160) moves from the second segment to the third segment and the member remains in the extended position.
     
    9. The latching mechanism of claim 1, wherein the second profile (250) is configured to retain the member (130) in the extended state when the solenoid is in the first de-energized state, and wherein the second profile is configured retain the member in the retracted state when the solenoid is in the second de-energized state.
     
    10. The latching mechanism of claim 1, wherein the second profile (250) comprises a portion (253) having a constant radius.
     
    11. The latching mechanism of claim 1 further comprising at least one position sensor configured to detect the orientation of the cam.
     
    12. The latching mechanism of claim 1 further comprising a handle (170) configured to rotate the cam when the solenoid is de-energized.
     
    13. The latching mechanism of claim 12 further comprising a spring coupling the handle (170) to the cam.
     


    Ansprüche

    1. Verriegelungsmechanismus aufweisend:

    eine Magnetspule (120) aufweisend einen ersten Zyklus mit einem ersten angeregten Zustand und einem ersten nicht-angeregten Zustand und einem zweiten Zyklus mit einem zweiten angeregten Zustand und einem zweiten nicht-angeregten Zustand;

    einen beweglichen Nocken (200), welcher rotierbar an eine Basis gekoppelt ist, wobei der bewegliche Nocken ein erstes Profil (210) und ein zweites Profil (250) definiert und zwischen einer ersten Orientierung und einer zweiten Orientierung bewegbar ist;

    ein Bauteil (130), welches konfiguriert ist, um sich in einer Linearrichtung zwischen einer ausgefahrenen Position und einer zurückgezogenen Position zu bewegen, wobei das Bauteil einen Nockenstössel (140) aufweist, welcher konfiguriert ist, dem zweiten Profil (250) zu folgen und das Bauteil in der linearen Richtung durch Rotation des Nocken zu bewegen; und

    eine mechanische Verbindung (150) aufweisend eine Verbindung (160) mit einem ersten Bereich, welcher operativ mit der Magnetspule gekoppelt ist und einen zweiten Bereich, welcher beweglich mit dem ersten Profil des Nocken gekoppelt ist, um den Nocken (200) zwischen einer ersten Orientierung und einer zweiten Orientierung zu rotieren;

    wobei die mechanische Verbindung (150) so konfiguriert ist, dass wenn die Magnetspule in ihrem ersten Zyklus ist, der zweite Bereich der Verbindung sich in dem ersten Profil (210) bewegt und den Nocken von der ersten Orientierung zu der zweiten Orientierung rotiert, wobei sich das Bauteil (130) von der zurückgezogenen Position zu der ausgefahrenen Position bewegt und wobei die mechanische Verbindung sich von einer ersten Position zu einer zweiten Position bewegt und wobei die mechanische Verbindung so konfiguriert ist, dass wenn die Magnetspule in dem zweiten Zyklus ist, der zweite Bereich der Verbindung sich in dem ersten Profil bewegt und den Nocken von der zweiten Orientierung in die erste Orientierung rotiert und wobei das Bauteil sich von der herausgefahrenen Position in die zurückgezogene Position bewegt und wobei sich die mechanische Verbindung von der zweiten Position zur ersten Position bewegt.


     
    2. Verriegelungsmechanismus nach Anspruch 1, wobei sich der erste angeregte Zustand und der zweite Zustand zeitlich abwechseln.
     
    3. Verriegelungsmechanismus nach Anspruch 1, wobei der erste nicht-angeregte Zustand zwischen dem ersten angeregten Zustand und dem zweiten angeregten Zustand und der zweite nicht-angeregte Zustand nach dem zweiten angeregten Zustand auftritt;
    wobei die mechanische Verbindung (150) so konfiguriert ist, dass das Bauteil (130) in der ausgefahrenen Position verbleibt, wenn die Magnetspule (120) in dem ersten nicht-angeregten Zustand ist und das Bauteil in der zurückgezogenen Position verbleibt, wenn die Magnetspule in dem zweiten nicht-angeregten Zustand ist.
     
    4. Verriegelungsmechanismus nach Anspruch 1, wobei der Nocken (200) konfiguriert ist, um die Geschwindigkeit des Bauteils zu steuern.
     
    5. Verriegelungsmechanismus nach Anspruch 1, wobei der Nocken konfiguriert ist, um die Kraft des Bauteils zu steuern.
     
    6. Verriegelungsmechanismus nach Anspruch 1, wobei das erste Nockenprofil (210) ein erstes Segment (221), ein zweites Segment (222), ein drittes Segment (223) und ein viertes Segment (224) aufweist, wobei wenn die Magnetspule (120) in ihrem ersten angeregten Zustand ist, sich der zweite Bereich der Verbindung (160) von dem ersten Segment zu dem zweiten Segment bewegt und verursacht, dass der Nocken von der ersten Orientierung zur zweiten Orientierung rotiert und das Bauteil von der zurückgezogenen Position zu der ausgefahrenen Position bewegt und wenn die Magnetspule in dem ersten nicht-angeregten Zustand ist, der zweite Bereich der Verbindung (150) sich von dem zweiten Segment zu dem dritten Segment bewegt, wobei der Nocken in der zweiten Orientierung verbleibt und das Bauteil (130) in der ausgefahrenen Position verbleibt.
     
    7. Verriegelungsmechanismus nach Anspruch 6, wobei wenn die Magnetspule (120) in dem zweiten angeregten Zustand ist, sich der zweite Bereich der Verbindung (160) von dem dritten Segment zu dem vierten Segment bewegt und das Bauteil (130) sich von der ausgefahrenen Position in die zurückgezogene Position bewegt; und
    wenn die Magnetspule in dem zweiten nicht-angeregten Zustand ist, sich der zweite Bereich der Verbindung von dem vierten Segment zu dem ersten Segment bewegt und das Bauteil in der zurückgezogenen Position verbleibt.
     
    8. Verriegelungsmechanismus nach Anspruch 6, wobei wenn die Magnetspule in dem ersten angeregten Zustand ist, sich der zweite Bereich der Verbindung (160) von einer ersten Position zu einer zweiten Position bewegt und das Bauteil (130) von der zurückgezogenen Position in die ausgefahrene Position bewegt;
    wobei wenn die Magnetspule in dem ersten nicht-angeregten Zustand ist, sich der zweite Bereich der Verbindung (160) von dem zweiten Segment zu dem dritten Segment bewegt und das Bauteil in der ausgefahrenen Position verbleibt.
     
    9. Verriegelungsmechanismus nach Anspruch 1, wobei das zweite Profil (250) konfiguriert ist, das Bauteil (130) in dem ausgefahrenen Zustand zu halten, wenn die Magnetspule in dem ersten nicht-angeregten Zustand ist und wobei das zweite Profil konfiguriert ist, das Bauteil in dem zurückgezogenen Zustand zu halten, wenn die Magnetspule in dem zweiten nicht-angeregten Zustand ist.
     
    10. Verriegelungsmechanismus nach Anspruch 1, wobei das zweite Profil (250) einen Bereich (253) mit einem konstanten Radius aufweist.
     
    11. Verriegelungsmechanismus nach Anspruch 1, des Weiteren aufweisend mindestens einen Positionssensor, der konfiguriert ist, um die Orientierung der Nocke zu detektieren.
     
    12. Verriegelungsmechanismus nach Anspruch 1, des Weiteren aufweisend einen Griff (170), der konfiguriert ist, die Nocke zu rotieren, wenn die Magnetspule nicht angeregt ist.
     
    13. Verriegelungsmechanismus nach Anspruch 12, des Weiteren aufweisend eine Feder, welche den Griff (170) an die Nocke koppelt.
     


    Revendications

    1. Mécanisme de verrouillage comprenant
    un solénoïde (120) comprenant un premier cycle ayant un premier état excité et un premier état désexcité, et un second cycle ayant un second état excité et un second état désexcité,
    une came mobile (200) couplée de manière pivotante à un socle, la came mobile définissant un premier profil (210) et un second profil (250) et étant mobile entre une première orientation et une seconde orientation;
    un élément (130) configuré pour se déplacer dans une direction linéaire entre une position étendue et une position rétractée, ledit élément ayant un galet de came (140) configuré pour suivre le second profil (250) et déplacer l'élément dans ladite direction linéaire en faisant tourner la came et
    une articulation mécanique (150) ayant une liaison (160) avec une première partie couplée de manière fonctionnelle au solénoïde et une seconde partie couplée de manière mobile au premier profil de la came pour faire pivoter la came (200) entre la première orientation et la seconde orientation,
    dans lequel l'articulation mécanique (150) est configurée de sorte que, quand le solénoïde est dans le premier cycle, la seconde partie de la liaison se déplace dans le premier profil (210) et fait tourner la came de la première orientation à la seconde orientation, l'élément (130) passe de la position rétractée à la position étendue et l'articulation mécanique passe d'une première position à une seconde position, et dans lequel l'articulation mécanique est configurée de sorte que, quand le solénoïde est dans le second cycle, la seconde partie de la liaison se déplace dans le premier profil et fait tourner la came de la seconde orientation à la première orientation, l'élément passe de la position étendue à la position rétractée et l'articulation mécanique passe de la seconde position à la première position.
     
    2. Mécanisme de verrouillage selon la revendication 1, dans lequel le premier état excité et le second état excité alternent dans le temps.
     
    3. Mécanisme de verrouillage selon la revendication 1, dans lequel le premier état désexcité intervient entre le premier état excité et le second état excité et le second état désexcité intervient après le second état excité, et dans lequel l'articulation mécanique (150) est configurée de sorte que l'élément (130) reste en position étendue quand le solénoïde (120) est dans le premier état désexcité et l'élément reste en position rétractée quand le solénoïde est dans le second état désexcité.
     
    4. Mécanisme de verrouillage selon la revendication 1, dans lequel la came (200) est configurée pour contrôler la vitesse de l'élément.
     
    5. Mécanisme de verrouillage selon la revendication 1, dans lequel la came (200) est configurée pour contrôler la force de l'élément.
     
    6. Mécanisme de verrouillage selon la revendication 1, dans lequel le premier profil (210) de la came a un premier segment (221), un second segment (222), un troisième segment (223) et un quatrième segment (224) et dans lequel, quand le solénoïde (120) est dans le premier état excité, la seconde partie de la liaison (160) passe du premier segment au second segment, faisant tourner la came de la première orientation à la seconde orientation et faisant passer l'élément (130) de la position rétractée à la position étendue, et, quand le solénoïde est dans le premier état désexcité, la seconde partie de la liaison (150) passe du second segment au troisième segment, la came reste dans la seconde orientation et l'élément (130) reste en position étendue.
     
    7. Mécanisme de verrouillage selon la revendication 6, dans lequel, quand le solénoïde (120) est dans le second état excité, la seconde partie de la liaison (160) passe du troisième segment au quatrième segment et l'élément (130) passe de la position étendue à la position rétractée, et, quand le solénoïde est dans le second état désexcité, la seconde partie de la liaison passe du quatrième segment au premier segment et l'élément reste en position rétractée.
     
    8. Mécanisme de verrouillage selon la revendication 6, dans lequel, quand le solénoïde (120) est dans le premier état excité, la seconde partie de la liaison (160) passe d'une première position à une seconde position et l'élément (130) passe de la position rétractée à la position étendue, et, quand le solénoïde est dans le premier état désexcité, la seconde partie de la liaison (160) passe du second segment au troisième segment et l'élément reste en position étendue.
     
    9. Mécanisme de verrouillage selon la revendication 1, dans lequel le second profil (250) est configuré pour retenir l'élément (130) en position étendue quand le solénoïde est dans le premier état désexcité, et dans lequel le second profil est configuré pour retenir l'élément en position rétractée quand le solénoïde est dans le second état désexcité.
     
    10. Mécanisme de verrouillage selon la revendication 1, dans lequel le second profil (250) comprend une partie (253) ayant un rayon constant.
     
    11. Mécanisme de verrouillage selon la revendication 1 comprenant en outre au moins un détecteur de position configuré pour détecter l'orientation de la came.
     
    12. Mécanisme de verrouillage selon la revendication 1 comprenant en outre une poignée (170) configurée pour faire pivoter la came quand le solénoïde est désexcité.
     
    13. Mécanisme de verrouillage selon la revendication 12 comprenant en outre un ressort reliant la poignée (170) à la came.
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description