(19)
(11)EP 3 285 439 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.12.2019 Bulletin 2019/49

(21)Application number: 15911830.6

(22)Date of filing:  30.12.2015
(51)Int. Cl.: 
H04L 12/24  (2006.01)
(86)International application number:
PCT/CN2015/099911
(87)International publication number:
WO 2017/113201 (06.07.2017 Gazette  2017/27)

(54)

NETWORK SERVICE LIFECYCLE MANAGEMENT METHOD AND DEVICE

VERFAHREN UND VORRICHTUNG ZUR NETZWERKDIENSTLEBENSZYKLUSVERWALTUNG

PROCÉDÉ ET DISPOSITIF DE GESTION DE CYCLE DE VIE DE SERVICE RÉSEAU


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
21.02.2018 Bulletin 2018/08

(60)Divisional application:
19204458.4

(73)Proprietor: Huawei Technologies Co., Ltd.
Longgang District Shenzhen, Guangdong 518129 (CN)

(72)Inventors:
  • XU, Ruiyue
    Shenzhen Guangdong 518129 (CN)
  • JI, Li
    Shenzhen Guangdong 518129 (CN)
  • ZOU, Lan
    Shenzhen Guangdong 518129 (CN)

(74)Representative: Thun, Clemens 
Mitscherlich PartmbB Patent- und Rechtsanwälte Sonnenstraße 33
80331 München
80331 München (DE)


(56)References cited: : 
EP-A1- 2 849 064
WO-A1-2015/172362
CN-A- 104 219 127
CN-A- 104 954 220
WO-A1-2015/149600
CN-A- 104 115 447
CN-A- 104 348 873
  
  • HUAWEI TECHNOLOGIES (UK) ET AL: "Missed consistency clarifications for B.5 and C.5;NFVMAN(14)000365r3_Missed_consistency_ clarifications_for_B_5_and_C_5", ETSI DRAFT; NFVMAN(14)000365R3_MISSED_CONSISTENCY_CLAR IFICATIONS_FOR_B_5_AND_C_5, EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI), 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS ; FRANCE, vol. ISG - NFV, 1 August 2014 (2014-08-01) , pages 1-45, XP014228848, [retrieved on 2014-08-01]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to the field of network functions virtualization technologies, and in particular, to a life cycle management method and device for a network service.

BACKGROUND



[0002] A Network Functions Virtualization (Network Function Virtualization, NFV) technology is used to virtualize one computer into multiple virtual logical computers, that is, virtual machines (Virtual Machine, VM). With the aid of a virtualization technology of information technology (Information Technology, IT), the NFV technology allows many types of network devices to use a same industry standard. For example, service, switching, storage, and the like may be deployed in a data center or on a network node. In the NFV technology, various network functions can be implemented in a manner of software, can run on a server of the industry standard, and can be further migrated, instantiated, redeployed, or the like according to a requirement. In addition, a virtualized network function (Virtualized Network Function, VNF) can be generated without a need to install a new device. Multiple VNFs may implement a network service (Network Service, NS).

[0003] A network service descriptor (Network Service Descriptor, NSD) is a template used by a manufacturer to deploy a network service. One NSD includes multiple virtualized network function descriptors (Virtualized Network Function Descriptor, VNFD) and multiple deployment flavors. The VNFD is a template used by the manufacturer to deploy a virtualized network function. One VNFD may be used for instantiation to obtain multiple VNFs according to different deployment flavors, or one VNFD may be used for instantiation to obtain multiple VNFs according to a same deployment flavor.

[0004] An NS instantiation process is as follows: An operations support system (Operations Support System, OSS) requests a network functions virtualization orchestrator (NFV Orchestrator, NFVO) to instantiate an NS according to a designated NSD. When receiving the request, the NFVO searches for the designated NSD, analyzes a correspondence between multiple VNFDs and multiple deployment flavors in the NSD, performs instantiation to obtain multiple VNFs, and establishes connections between the multiple VNFs. However, existing instantiation processing efficiency and resource utilization are low.

[0005] WO 2015/149600 A1 relates a virtual network service deployment method. Specially, the NSD information is obtained according to the NSD index carried in a NS instantiation request. The NSD information includes at least one NS deployment parameters. Each NS deployment parameters at least includes: the NS capacity, at least one VNF instance type, at least one VNF instance corresponding to each VNF instance type, VNFD information corresponding to each VNF instance type, and the ratio of the VNF instances corresponding to each VNF instance type.

SUMMARY



[0006] The present invention is defined in the appended independent claims to which reference should be made. Advantageous features are set out in the appended dependent claims.

BRIEF DESCRIPTION OF DRAWINGS



[0007] To describe the technical solutions in the embodiments of the present invention more clearly, the following briefly describes the accompanying drawings required for describing the embodiments. Apparently, the accompanying drawings in the following description show merely some embodiments of the present invention, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.

FIG. 1 is a schematic diagram of a network architecture of Network Functions Virtualization NFV;

FIG. 2 is a schematic flowchart of a life cycle management method for a network service according to Embodiment 1 of the present invention;

FIG. 3 shows a base constituent element of a VNF according to an embodiment of the present invention;

FIG. 4 shows a list of a correspondence between a characteristic parameter and another parameter according to an embodiment of the present invention;

FIG. 5 is a schematic flowchart of a life cycle management method for a network service according to Embodiment 2 of the present invention;

FIG. 6 shows a base element of a VNFFGD according to an embodiment of the present invention;

FIG. 7 is a schematic structural diagram of a first device according to an embodiment of the present invention;

FIG. 8 is a schematic structural diagram of a second device according to an embodiment of the present invention;

FIG. 9 is a schematic structural diagram of another first device according to an embodiment of the present invention;

FIG. 10 is a schematic structural diagram of another second device according to an embodiment of the present invention;

FIG. 11 is a schematic structural diagram of still another first device according to an embodiment of the present invention; and

FIG. 12 is a schematic structural diagram of still another second device according to an embodiment of the present invention.


DESCRIPTION OF EMBODIMENTS



[0008] A life cycle management method, device, and system for a network service according to embodiments of the present invention can be applied to a scenario in which life cycle management is performed on a network service NS in a Network Functions Virtualization NFV network.

[0009] Referring to FIG. 1, FIG. 1 is a schematic diagram of a network architecture of Network Functions Virtualization NFV. In a vertical direction, an NFV network is divided into three layers: an infrastructure layer (NFV Infrastructure, NFVI), a virtual network layer (Virtual Network Function, VNF), and a management layer. The infrastructure layer is a resource pool from a perspective of cloud computing. A physical infrastructure to which the NFVI is mapped is multiple geographically scattered data centers that are connected by using a high-speed communications network. The NFVI needs to convert physical computing/storage/switching resources into a virtual computing/storage/switching resource pool by means of virtualization. The virtual network layer includes multiple VNF network elements, which are not shown in FIG. 1. The virtual network layer is corresponding to each current telecommunication network service. Each physical network element is mapped to a virtualized network function VNF network element. Resources required by the VNF need to be decomposed into virtual computing/storage/switching resources, and the resources are carried by the NFVI. For an interface between VNFs, a signaling interface defined in a conventional network is still used. Multiple VNFs can implement one network service NS. The management layer includes an operations support layer (Operation/Business Support System, OSS/BSS) and element management (Element Manager, EM). The EM is used for managing some VNF network elements. The operations support layer is a current OSS/BSS system, and is a system of supporting integration and information resource sharing of telecommunication operators. The OSS/BSS system mainly includes components such as network management, system management, charging, operating, billing, and a customer service. Systems are integrated by using a uniform information bus. The OSS/BSS system can help an operator develop an operations support system that matches a characteristic of the operator, and determine a development direction of the system. Furthermore, the OSS/BSS system can help a user develop an integration standard of the system, so as to improve service quality for the user. The BSS is a business support system, the OSS is an operations support system, and the OSS/BSS system makes a necessary modification and adjustment for virtualization in the NFV network architecture. In a horizontal direction, the NFV network is divided into a network service field and a resource management and orchestration field. The network service field refers to various current telecommunication network services, that is, including the OSS/BSS, the EM, the VNF, and the NFVI. The resource management and orchestration (Management and Orchestration, MANO) field is in charge of management and orchestration of all NFVI resources, mapping and association of network services and NFVI resources, implementation of an OSS service resource procedure, and the like. The MANO includes a virtualized infrastructure manager (Virtualised Infrastructure Manager, VIM), a virtualized network function manager (VNF Manager, VNFM), and a network functions virtualization orchestrator (NFV Orchestrator, NFVO), which are not shown in FIG. 1. The NFVO, the VNFM, and the VIM are arranged from top to bottom in a structure of the MANO. The VIM is in charge of management of a virtualized infrastructure, and main functions of the VIM include: collecting status information of hardware resources and virtual resources, and reporting the status information to the VNFM, so as to implement resource monitoring and fault detection and reporting; and receiving an upper-layer application request from the VNFM and performing authentication, and after the authentication succeeds, controlling a virtual machine manager to perform the upper-layer application request, so as to implement migration and flexible scalability of resources. The VNFM is in charge of life cycle management of the VNF and monitoring use of VNF resources, which specifically include instantiation, addition, deletion, change, query, scale-out/scale-in, and reservation of the VNF, dynamic monitoring of resources occupied by the VNF, and the like. The NFVO is in charge of management and orchestration of an infrastructure and a virtualized network function VNF, thereby implementing a complete network service.

[0010] The OSS/BSS in FIG. 1 may send a life cycle management request to the MANO. The life cycle management request may be used to request the MANO to instantiate a network service NS, may be used to request the MANO to establish a network connection between multiple VNFs obtained after instantiation, or may be used to request the MANO to update a network service NS, or the like. For example, the life cycle management request is used to request the MANO to instantiate an NS. The life cycle management request includes an identifier of a designated NSD. When receiving the life cycle management request, the MANO searches for the designated NSD according to the identifier of the designated NSD, analyzes the designated NSD to determine VNF instance requirement information in the designated NSD, and performs instantiation according to the VNF instance requirement information to obtain multiple VNF instances, thereby implementing instantiation of the NS. However, there are instantiated VNF instances in the network architecture including the OSS/BSS and the MANO, and some instantiated VNF instances in these instantiated VNF instances match some VNF instance requirement information required by the designated NSD, so that the MANO can directly use these instantiated VNF instances to instantiate the NS. However, the MANO still instantiates the NS according to the foregoing procedure. Consequently, instantiation processing efficiency is reduced, and instantiated VNF instance resources in the network architecture are wasted.

[0011] To resolve prior-art problems of low instantiation processing efficiency and a waste of resources, the embodiments of the present invention provide a life cycle management method for a network service, so as to improve processing efficiency of life cycle management, make full use of VNF instance resources in a network architecture, and improve resource utilization.

[0012] The life cycle management method for a network service according to the embodiments of the present invention may be applied to the network architecture shown in FIG. 1. A method provided in Embodiment 1 of the present invention is a life cycle management method used to instantiate an NS. A method provided in Embodiment 2 of the present invention is a life cycle management method used to establish a network connection between instantiated VNF instances. A first device in the embodiments of the present invention is a device receiving a life cycle management request, that is, a device on which the MANO in FIG. 1 runs, and the first device includes a virtualized network function manager and a network functions virtualization orchestrator. A second device in the embodiments of the present invention is a device initiating a life cycle management request, that is, the device on which the OSS/BSS in FIG. 1 runs.

[0013] With reference to FIG. 2 and FIG. 3, the following describes in detail the life cycle management method for a network service according to the embodiments of the present invention.

[0014] FIG. 2 is a schematic flowchart of a life cycle management method for a network service according to Embodiment 1 of the present invention. As shown in FIG. 2, the method provided in Embodiment 1 of the present invention may include the following step 101 to step 104.

[0015] 101. A second device determines an existing virtualized network function VNF instance required for life cycle management on a target NS according to life cycle management requirement information.

[0016] Specifically, there are some instantiated VNF instances in the network architecture shown in FIG. 1. These instantiated VNF instances may be obtained by requesting a MANO to perform instantiation in advance, may be VNF instances reserved when another NS is released, or may be VNF instances that may be repeatedly used in another instantiated NS in the network architecture. An instantiated VNF instance may be obtained by means of instantiation by the MANO according to instance requirement information of the VNF. Instantiation information of an instantiated VNF instance is requirement information according to which instantiation is performed, and includes a virtualized network function descriptor VNFD. The VNFD is a template used by a manufacturer to deploy a virtualized network function, and the VNFD includes multiple deployment flavors (deployment flavor). One VNFD may be used for instantiation to obtain multiple VNF instances according to different deployment flavors, or one VNFD may be used for instantiation to obtain multiple VNF instances according to a same deployment flavor. Both the first device and the second device can obtain, according to these instantiated VNF instances, instantiation information corresponding to the instantiated VNF instances.

[0017] The second device is a device initiating a life cycle management request, and the life cycle management request in this embodiment of the present invention is used to instantiate an NS. Instantiation is changing a class to a concrete instance. In this embodiment of the present invention, instantiating an NS is performing instantiation to obtain a concrete network service instance that has a function, and instantiating a VNF is performing instantiation to obtain a concrete virtualized network function instance that has a function. Multiple virtualized network function instances may be combined to implement one network service instance. Actually, instantiating an NS is instantiating multiple VNFs required for implementation of the NS and connecting multiple VNF instances.

[0018] Because there are some instantiated VNF instances in the network architecture shown in FIG. 1, when the second device intends to initiate the life cycle management request, the second device determines, according to the life cycle management requirement information, an existing VNF instance required for life cycle management on the target NS. The target NS is a current to-be-instantiated NS. The existing VNF instance required for life cycle management on the target NS is one or more of the instantiated VNF instances that are already in the network architecture shown in FIG. 1, and the existing VNF instance is used to instantiate the target NS. A specific quantity of existing VNF instances is determined according to a specific situation. The life cycle requirement management information is used to determine the to-be-instantiated NS, that is, the target NS. The life cycle management request is further used to determine a target NSD of the target NS, that is, a network service descriptor of the target NS. The network service descriptor is a template that is used by a manufacturer to deploy a network service. One NSD includes multiple VNFDs, and one VNFD includes multiple deployment flavors. The VNFD and the deployment flavor are used as instance requirement information, and then the NSD includes multiple pieces of VNF instance requirement information.

[0019] The second device determines, according to the target NSD, the multiple pieces of VNF instance requirement information required by the target NSD. The second device determines, according to the multiple pieces of VNF instance requirement information required by the target NSD, the existing VNF instance required for life cycle management on the target NS. The second device matches instantiation information corresponding to the instantiated VNF instance in the network architecture with the multiple pieces of VNF instance requirement information required by the target NSD, and if there is matched VNF instantiation information, an instantiated VNF instance corresponding to the matched VNF instantiation information is determined as the existing VNF instance required for life cycle management on the target NS.

[0020] In this embodiment of the present invention, a characteristic parameter used to identify VNF instance requirement information is added to a constituent VNF IE architecture in a service deployment flavor structure in the target NSD, that is, a constituent VNF ID is added to nsd:service_deployment_flavour:constituent_VNF. Referring to FIG. 3, FIG. 3 shows a base constituent element of a VNF according to this embodiment of the present invention. A base constituent element of a VNF in the prior art does not include constituent_vnf_id in a table shown in FIG. 3. The constituent VNF ID is unique in an NSD to which the constituent VNF ID belongs, that is, one constituent VNF ID is used to identify only one piece of VNF instance requirement information. Referring to FIG. 4, FIG. 4 shows a list of a correspondence between a characteristic parameter and other parameters according to this embodiment of the present invention. A constituent VNF ID is the characteristic parameter, a VNFD ID is an identifier of a virtualized network function descriptor, and a VNF deployment flavor ID is an identifier of a deployment flavor. The VNFD ID and the VNF deployment flavor ID may represent one piece of VNF instance requirement information. It can be learned that each piece of instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD is corresponding to one characteristic parameter. It should be noted that, FIG. 4 does not exist in actual application, and data in FIG. 4 is only used as an example. FIG. 4 is used to help a reader understand a relationship between a characteristic parameter and other parameters. Characteristic parameters are identifier parameters that are in an NSD and that are used by an NSD provider to mark multiple pieces of VNF instance requirement information required by the NSD, or identifier parameters that are used by the second device to mark multiple pieces of VNF instance requirement information required by the NSD.

[0021] Optionally, the characteristic parameter is used to identify VNF instance requirement information that is in the target NSD and that includes a virtualized network function descriptor VNFD and a deployment flavor. That is, as shown in FIG. 4, each of different pieces of VNF instance requirement information is corresponding to one unique characteristic parameter.

[0022] Optionally, the characteristic parameter is used to identify VNF instance requirement information that is in the target NSD and that includes a virtualized network function descriptor, a deployment flavor, and an instance parameter. That is, a column of instance IDs, that is, instance parameters, is added to FIG. 4. The instance parameter is used to identify different pieces of VNF instance requirement information that have a same virtualized network function descriptor and a same deployment flavor. For example, a VNFD ID and a VNF deployment flavor ID in the second row are respectively the same as a VNFD ID and a VNF deployment flavor ID in the third row, but the two rows represent different pieces of VNF instance requirement information. Therefore, the instance parameter is used to differentiate between the two pieces of VNF instance requirement information. An instance ID in the second row is 1, and an instance ID in the third row is 2.

[0023] Based on FIG. 3 and FIG. 4, after the second device determines an existing VNF instance required for life cycle management on the target NS, the second device determines the identifier of the existing VNF instance and the characteristic parameter corresponding to the identifier according to instantiation information of the existing VNF instance and the multiple pieces of VNF instance requirement information required by the target NSD. That is, the second device matches the instantiation information of the existing VNF instance with the multiple pieces of VNF instance requirement information required by the target NSD, so as to determine the identifier of the existing VNF instance and the characteristic parameter corresponding to the identifier. The identifier of the existing VNF instance is obtained by marking the existing VNF instance by the second device, or the identifier of the existing VNF instance is obtained after the first device marks the existing VNF instance and feeds the marked existing VNF instance back to the second device. If there is one existing VNF instance, an identifier of the existing VNF instance and a characteristic parameter corresponding to the identifier are determined. If there are more than one existing VNF instance, an identifier of each existing VNF instance and a characteristic parameter corresponding to the identifier of each existing VNF are determined.

[0024] 102. The second device sends a life cycle management request of the target NS to a first device, where the life cycle management request includes a mapping relationship between an identifier of the existing VNF instance and a characteristic parameter corresponding to the identifier.

[0025] Specifically, the second device sends the life cycle management request of the target NS to the first device, and the life cycle management request is used to instruct the first device to perform life cycle management on the target NS. The life cycle management request includes the mapping relationship between the identifier of the existing VNF instance and the characteristic parameter corresponding to the identifier. It may be understood that the identifier of the existing VNF instance and the characteristic parameter corresponding to the identifier appear in pairs, that is, an identifier of one existing VNF instance is corresponding to one characteristic parameter, or an identifier of one existing VNF instance is corresponding to one constituent VNF ID. One mapping relationship is a correspondence between an identifier of one existing VNF instance and a constituent VNF ID corresponding to the identifier. For example, if an identifier of an existing VNF instance is 1, and a characteristic parameter "constituent VNF ID" corresponding to the identifier is 1, a mapping relationship may be expressed as "VNF instance ID 1 ↔ constituent VNF ID 1". If there are multiple existing VNF instances, the life cycle management request includes multiple mapping relationships.

[0026] The life cycle management request further includes an identifier of the target NSD. The identifier of the target NSD is used by the first device to search for the target NSD according to the identifier of the target NSD, so as to perform life cycle management. In the prior art, the life cycle management request includes only the identifier of the target NSD. Therefore, the first device can instantiate the target NS according to only the identifier of the target NSD, instantiation processing efficiency is reduced, and instantiated VNF instance resources in the network architecture are wasted.

[0027] 103. The first device receives the life cycle management request sent by the second device for the target NS.

[0028] Specifically, the first device is a device on which the MANO in FIG. 1 runs. The first device includes a virtualized infrastructure manager VIM, a virtualized network function manager VNFM, and a network functions virtualization orchestrator NFVO. The NFVO receives the life cycle management request sent by the second device for the target NS, and searches for the target NSD according to the identifier of the target NSD. The NFVO stores multiple NSDs and instantiation information of multiple instantiated VNF instances.

[0029] 104. The first device performs life cycle management on the target NS according to the existing VNF instance and the mapping relationship.

[0030] Specifically, the first device performs life cycle management on the target NS, that is, instantiates the target NS, according to the existing VNF instance and the mapping relationship. The first device obtains, according to the found target NSD, multiple pieces of VNF instance requirement information required by the target NSD. The first device may obtain the multiple pieces of VNF instance requirement information from a memory of the first device, or from the second device, and this is not limited herein. The NFVO in the first device analyzes, in sequence, the multiple pieces of obtained VNF instance requirement information corresponding to the target NSD. For example, if the first piece of VNF instance requirement information is "VNFD ID 1+VNF deployment flavor ID 1", and a corresponding characteristic parameter "constituent VNF ID" is 1, the NFVO detects whether a mapping relationship of a constituent VNF ID 1 is in the life cycle management request. If the mapping relationship does not exist, the NFVO sends an instantiation request to the VNFM. The instantiation request includes "VNFD ID 1+VNF deployment flavor ID 1", and the instantiation request is used to request the VNFM to generate a VNF instance 1 according to "VNFD ID 1+VNF deployment flavor ID 1". The VNFM receives the instantiation request, generates the VNF instance 1 according to "VNFD ID 1+VNF deployment flavor ID 1", and feeds the VNF instance 1 back to the NFVO. If the mapping relationship exists, the NFVO directly obtains an existing VNF instance that has the mapping relationship of the constituent VNF ID 1, without sending an instantiation request to the VNFM. A prerequisite for performing this step is that the existing VNF instance exists on the NFVO side, and if no existing VNF instance exists on the NFVO side, the NFVO still needs to send an instantiation request to the VNFM. By analogy, when the first device completes instantiation of the multiple pieces of VNF instance requirement information required by the target NSD, the first device completes instantiation of the target NS.

[0031] Optionally, after the first device completes instantiation of the target NS, the first device feeds multiple VNF instances obtained after instantiation back to the second device, so that the second device determines, before initiating a life cycle management request, an existing VNF instance required by current life cycle management.

[0032] In this embodiment of the present invention, a second device determines, according to a target NS, an existing VNF instance required for life cycle management on the target NS, and sends a life cycle management request of the target NS to a first device. The life cycle management request is used to instruct the first device to perform life cycle management on the target NS, and the life cycle management request includes a mapping relationship between an identifier of the existing VNF instance and a characteristic parameter corresponding to the identifier. The characteristic parameter is an identifier parameter that is in a target NSD and that marks each piece of VNF instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD. The first device receives the life cycle management request sent by the second device for the target NS, and performs life cycle management on the target NS according to the existing VNF instance and the mapping relationship. In this way, the first device performs life cycle management on the NS according to the existing VNF instance and the mapping relationship in the life cycle management request sent by the second device, and processing efficiency of life cycle management and resource utilization are improved.

[0033] FIG. 5 is a schematic flowchart of a life cycle management method for a network service according to Embodiment 2 of the present invention. As shown in FIG. 5, the method provided in Embodiment 2 of the present invention may include the following step 201 to step 205.

[0034] 201. A second device determines, according to life cycle management requirement information, an identifier of a target NSD required for life cycle management on a target NS.

[0035] Specifically, the second device is a device initiating a life cycle management request. In this embodiment of the present invention, the life cycle management request is used to establish a network connection between multiple VNF instances obtained by means of instantiation. The second device determines, according to the life cycle management requirement information, the identifier of the target NSD required for life cycle management on the target NS. The life cycle management requirement information is used to determine an NS to which the current to-be-connected multiple VNF instances belong, that is, the target NS. In addition, the life cycle requirement information is further used to determine the target NSD of the target NS, that is, a network service descriptor of the target NS.

[0036] 202. The second device sends a life cycle management request of the target NS to a first device, where the life cycle management request includes the identifier of the target NSD.

[0037] Specifically, after the second device determines the identifier of the target NSD, the second device sends the life cycle management request of the target NS to the first device, and the life cycle management request is used to instruct the first device to perform life cycle management on the target NS. The life cycle management request includes the identifier of the target NSD, and the target NSD includes a target VNF forwarding graph descriptor (VNF Forward Graph Descriptor, VNFFGD). The target VNFFGD includes a characteristic parameter of each piece of virtualized network function VNF instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD. Because both the second device end and the first device end store multiple NSDs, there are VNF forwarding graph descriptors corresponding to the multiple NSDs on both the second device end and the first device end.

[0038] 203. The first device receives the life cycle management request sent by the second device for the target NS.

[0039] Specifically, the first device is a device on which the MANO in FIG. 1 runs. The first device includes a virtualized infrastructure manager VIM, a virtualized network function manager VNFM, and a network functions virtualization orchestrator NFVO. The NFVO receives the life cycle management request sent by the second device for the target NS, and searches for the target NSD according to the identifier of the target NSD. The NFVO stores multiple NSDs and instantiation information of multiple instantiated VNF instances.

[0040] 204. The first device obtains a target VNFFGD according to the identifier of the target NSD.

[0041] Specifically, the NFVO in the first device searches for the target NSD according to the identifier of the target NSD, and obtains the target VNFFGD of the found target NSD. The target VNFFGD includes the characteristic parameter of each piece of virtualized network function VNF instance requirement information in the multiple pieces of VNF instance requirement information required by the target NSD. Optionally, the NFVO obtains, from the second device, the characteristic parameter of each piece of VNF instance requirement information in the multiple pieces of VNF instance requirement information required by the target NSD. Before sending the life cycle management request, the second device marks, according to the identifier of the target NSD, the characteristic parameter of each piece of VNF instance requirement information in the multiple pieces of VNF instance requirement information required by the target NSD. Optionally, the NFVO marks the characteristic parameter of each piece of VNF instance requirement information in the multiple pieces of VNF instance requirement information required by the target NSD.

[0042] Optionally, the characteristic parameter is used to identify VNF instance requirement information that is in the target NSD and that includes a virtualized network function descriptor VNFD and a deployment flavor.

[0043] Optionally, the characteristic parameter is used to identify VNF instance requirement information that is in the target NSD and that includes a virtualized network function descriptor, a deployment flavor, and an instance parameter. The instance parameter is used to identify different pieces of VNF instance requirement information that have a same virtualized network function descriptor and a same deployment flavor.

[0044] 205. The first device performs life cycle management on the target NS according to characteristic parameter of each piece of VNF requirement information in the target VNFFGD.

[0045] Specifically, the NFVO in the first device performs life cycle management on the target NS according to the characteristic parameter of each piece of VNF requirement information in the target VNFFGD, that is, establishes, according to the characteristic parameter of each piece of VNF requirement information in the target VNFFGD, a network connection between multiple VNF instances obtained by instantiating the target NS. The first device performs instantiation according to the multiple pieces of VNF instance requirement information required by the target NSD to obtain the multiple VNF instances, and the NFVO then establishes a network connection between the multiple VNF instances according to the characteristic parameter of each piece of VNF requirement information in the target VNFFGD.

[0046] Referring to FIG. 6, FIG. 6 shows a base element of a VNFFGD according to this embodiment of the present invention. A bold part in the fifth row in FIG. 6 includes a characteristic parameter "constituent VNF ID", and the characteristic parameter is used to instruct an NFVO to establish a network connection between VNF instances or between a VNF instance and a physical network function (Physical Network Function, PNF) instance according to the characteristic parameter. In the prior art, the bold part in the fifth row in FIG. 6 is nsd/vnfd/pnfd:connection_point:id. When multiple VNFs are generated based on one VNFD, it is hard to designate a connection point for connecting a particular VNF instance.

[0047] In this embodiment of the present invention, a second device determines, according to life cycle management requirement information, an identifier of a target NSD required for life cycle management on a target NS, and sends a life cycle management request of the target NS to a first device. The life cycle management request includes the identifier of the target NSD, and the target NSD includes a target VNFFGD. The target VNFFGD includes a characteristic parameter of each piece of virtualized network function VNF instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD. The first device receives the life cycle management request sent by the second device for the target NS, obtains the target VNFFGD according to the identifier of the target NSD, and performs life cycle management on the target NS according to the characteristic parameter of each piece of VNF requirement information in the target VNFFGD, so as to clearly indicate a network connection between VNF instances.

[0048] Referring to FIG. 7, FIG. 7 is a schematic structural diagram of a first device according to an embodiment of the present invention. The first device provided in the embodiment corresponding to FIG. 7 is the device that is provided in Embodiment 1 and that is configured to receive a life cycle management request. The first device 70 includes a receiving unit 701 and a management unit 702.

[0049] The receiving unit 701 is configured to receive a life cycle management request sent by a second device for a target network service NS. The life cycle management request includes a mapping relationship between an identifier of an existing virtualized network function VNF instance and a characteristic parameter corresponding to the identifier. The characteristic parameter is an identifier parameter that is in a target network service descriptor NSD and that marks each piece of VNF instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD.

[0050] The management unit 702 is configured to perform life cycle management on the target NS according to the existing VNF instance and the mapping relationship.

[0051] The management unit 702 includes a match unit, an obtaining unit, and an instantiation unit, which are not shown in FIG. 7.

[0052] The match unit is configured to match the mapping relationship with the characteristic parameter of each piece of VNF instance requirement information in the multiple pieces of VNF instance requirement information required by the target NSD.

[0053] The obtaining unit is configured to obtain an existing VNF instance corresponding to a matched characteristic parameter.

[0054] The instantiation unit is configured to perform instantiation according to VNF instance requirement information corresponding to a mismatched characteristic parameter.

[0055] Referring to FIG. 8, FIG. 8 is a schematic structural diagram of a second device according to an embodiment of the present invention. The second device provided in the embodiment corresponding to FIG. 8 is the device that is provided in Embodiment 1 and that is configured to initiate a life cycle management request. The second device 80 includes a determining unit 801 and a sending unit 802.

[0056] The determining unit 801 is configured to determine, according to life cycle management requirement information, an existing VNF instance required for life cycle management on a target NS.

[0057] The sending unit 802 is configured to send a life cycle management request of the target NS to a first device. The life cycle management request is used to instruct the first device to perform life cycle management on the target NS. The life cycle management request includes a mapping relationship between an identifier of the existing VNF instance and a characteristic parameter corresponding to the identifier. The characteristic parameter is an identifier parameter that is in a target NSD and that marks each piece of VNF instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD.

[0058] The determining unit 801 is specifically configured to: determine, according to the life cycle management requirement information, the target NSD and the existing VNF instance required for life cycle management on the target NS, where the target NSD is a descriptor of the target NS; and determine, according to instantiation information of the existing VNF instance and the multiple pieces of VNF instance requirement information required by the target NSD, the identifier of the existing VNF instance and the characteristic parameter corresponding to the identifier.

[0059] The first device shown in FIG. 7 and the second device shown in FIG. 8 are configured to implement the life cycle management method for a network service according to Embodiment 1 of the present invention. Based on a same concept, the device embodiment and the method embodiment have a same technical effect. For a specific implementation process, refer to specific descriptions in Embodiment 1. Details are not described herein again.

[0060] Referring to FIG. 9, FIG. 9 is a schematic structural diagram of another first device according to an embodiment of the present invention. The first device provided in the embodiment corresponding to FIG. 9 is the device that is provided in Embodiment 2 and that is configured to receive a life cycle management request. The second device 90 includes a receiving unit 901, an obtaining unit 902, and a management unit 903.

[0061] The receiving unit 901 is configured to receive a life cycle management request sent by a second device for a target NS. The life cycle management request includes an identifier of a target NSD. The target NSD includes a target virtualized network function forwarding graph descriptor VNFFGD. The target VNFFGD includes a characteristic parameter of each piece of virtualized network function VNF instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD.

[0062] The obtaining unit 902 is configured to obtain the target VNFFGD according to the identifier of the target NSD.

[0063] The management unit 903 is configured to perform life cycle management on the NS according to the characteristic parameter of each piece of VNF requirement information in the target VNFFGD.

[0064] The management unit 903 includes an instantiation unit and a connection unit, which are not shown in FIG. 9.

[0065] The instantiation unit is configured to perform instantiation according to the multiple pieces of VNF instance requirement information required by the target NSD to obtain multiple VNF instances.

[0066] The connection unit is configured to establish a network connection between the multiple VNF instances according to the characteristic parameter of each piece of VNF requirement information in the target VNFFGD.

[0067] Referring to FIG. 10, FIG. 10 is a schematic structural diagram of another second device according to an embodiment of the present invention. The second device provided in the embodiment corresponding to FIG. 10 is the device that is provided in Embodiment 2 and that is configured to initiate a life cycle management request. The second device 100 includes a determining unit 1001 and a sending unit 1002.

[0068] The determining unit 1001 is configured to determine, according to life cycle management requirement information, an identifier of a target NSD required for life cycle management on a target NS.

[0069] The sending unit 1002 is configured to send a life cycle management request of the target NS to a first device. The life cycle management request is used to instruct the first device to perform life cycle management on the target NS. The life cycle management request includes the identifier of the target NSD. The target NSD includes a target VNFFGD. The target VNFFGD includes a characteristic parameter of each piece of virtualized network function VNF instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD.

[0070] The first device shown in FIG. 9 and the second device shown in FIG. 10 are configured to implement the life cycle management method for a network service according to Embodiment 2 of the present invention. Based on a same concept, the device embodiment and the method embodiment have a same technical effect. For a specific implementation process, refer to specific descriptions in Embodiment 2. Details are not described herein again.

[0071] Referring to FIG. 11, FIG. 11 is a schematic structural diagram of still another first device according to an embodiment of the present invention. As shown in FIG. 11, the first device includes a memory 1101, a communications bus 1102, a network functions virtualization orchestrator NFVO 1103, and a virtualized network function manager VNFM 1104. The communications bus 1102 is configured to implement connection and communication between these components. The memory 1101 may be a high-speed RAM memory, or may be a non-volatile memory (non-volatile memory), for example, at least one magnetic disk memory. The memory 1101 stores a group of program codes, and the NFVO 1103 or the VNFM 1104 can execute a computer instruction by invoking the program code stored in the memory 1101, so as to implement the embodiment shown in FIG. 2 or FIG. 3.

[0072] The NFVO 1103 is configured to: receive a life cycle management request sent by a second device, search for a target NSD according to the life cycle management request, analyze multiple pieces of VNF instance requirement information required by the target NSD, and then send an instantiation request to the VNFM 1104 according to an existing VNF instance and a mapping relationship in the life cycle management request.

[0073] The VNFM 1104 is configured to receive the instantiation request sent by the NFVO 1103, and generate a required VNF instance according to the instantiation request. After the VNFM 1104 finishes generating all VNF instances required by the target NS, the VNFM 1104 stores instantiation information of the generated VNF instances in the memory 1101, or puts the generated VNF instances into a network architecture including the first device and the second device.

[0074] The NFVO 1103 is further configured to establish a network connection between the VNF instances generated by the VNFM 1104, and the network connection includes a connection between the VNF instances and a connection between a VNF instance and a PNF.

[0075] The first device can improve processing efficiency of life cycle management and utilization of the VNF instance.

[0076] Referring to FIG. 12, FIG. 12 is a schematic structural diagram of still another second device according to an embodiment of the present invention. As shown in FIG. 12, the second device includes at least one processor 1201, for example, a CPU, at least one communications bus 1202, a communications interface 1203, an input device 1204, an output device 1205, and a memory 1206. The communications bus 1202 is configured to implement connection and communication between these components. The communications interface 1203 is configured to communicate with another device. The memory 1206 may be a high-speed RAM memory, or may be a non-volatile memory (non-volatile memory), for example, at least one magnetic disk memory. The memory 1206 stores a group of program codes, and the processor 1201 can execute a computer instruction by invoking the program code stored in the memory 1101, so as to implement the embodiment shown in FIG. 2 or FIG. 3.

[0077] The memory 1206 may store instantiation information of some instantiated VNFs. The processor 1201 controls a time when the output device 1205 outputs a life cycle management request and an NS to which a life cycle management request that is output by the output device 1205 belongs. The processor 1201 determines an existing VNF instance required for life cycle management on a target NS; obtains an identifier parameter that marks each piece of VNF instance requirement information in multiple pieces of VNF instance requirement information required by a target NSD; determines, according to instantiation information of the existing VNF instance and the multiple pieces of VNF instance requirement information required by the target NSD, an identifier of the existing VNF instance and a characteristic parameter corresponding to the identifier; and determines, according to the life cycle management requirement information, an identifier of the target NSD required for life cycle management on the target NS.

[0078] The output device 1205 sends the life cycle management request to a first device. The life cycle management request is used to instruct the first device to perform life cycle management on the target NS. The life cycle management request includes a mapping relationship between the identifier of the existing VNF instance and the characteristic parameter corresponding to the identifier. The life cycle management request further includes the identifier of the target NSD.

[0079] For ease of identification by the second device and the first device, the second device marks characteristic parameters for the multiple pieces of VNF instance requirement information required by the NSD.

[0080] An embodiment of the present invention further provides a life cycle management system for a network service. The life cycle management system includes the first device shown in FIG. 11 and the second device shown in FIG. 12. That is, the life cycle management system includes the first device shown in FIG. 7 and the second device shown in FIG. 8, and/or the first device shown in FIG. 9 and the second device shown in FIG. 10.

[0081] It should be noted that, for brief description, the foregoing method embodiments are represented as a series of actions. However, a person skilled in the art should appreciate that the present invention is not limited to the described order of the actions, because according to the present invention, some steps may be performed in other orders or simultaneously. In addition, a person skilled in the art should also appreciate that all the embodiments described in the specification are example embodiments, and the related actions and modules are not necessarily mandatory to the present invention.

[0082] In the foregoing embodiments, the description of each embodiment has respective focuses. For a part that is not described in detail in an embodiment, reference may be made to related descriptions in other embodiments.

[0083] A sequence of the steps of the method in the embodiments of the present invention may be adjusted, and certain steps may also be merged or removed according to an actual requirement.

[0084] Merging, division, and removing may be performed on the units in the embodiments of the present invention according to an actual need. A technical person in this field can perform a combination or an association of different embodiments described in this specification and characteristics of the different embodiments.

[0085] With descriptions of the foregoing embodiments, a person skilled in the art may clearly understand that the present invention may be implemented by hardware, firmware or a combination thereof. When the present invention is implemented by software, the foregoing functions may be stored in a computer-readable medium or transmitted as one or more instructions or code in the computer-readable medium. The computer-readable medium includes a computer storage medium and a communications medium, where the communications medium includes any medium that enables a computer program to be transmitted from one place to another. The storage medium may be any available medium accessible to a computer. The following is taken as an example but is not limited: The computer readable medium may include a random access memory (Random Access Memory, RAM), a read-only memory (Read-Only Memory, ROM), an electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), a compact disc read-only memory (Compact Disc Read-Only Memory, CD-ROM) or other optical disk storage, a disk storage medium or other disk storage, or any other medium that can be used to carry or store expected program code in a command or data structure form and can be accessed by a computer. In addition, any connection may be appropriately defined as a computer-readable medium. For example, if software is transmitted from a website, a server or another remote source by using a coaxial cable, an optical fiber/cable, a twisted pair, a digital subscriber line (Digital Subscriber Line, DSL) or wireless technologies such as infrared ray, radio and microwave, the coaxial cable, optical fiber/cable, twisted pair, DSL or wireless technologies such as infrared ray, radio and microwave are included in fixation of a medium to which they belong. For example, a disk (Disk) and disc (disc) used by the present invention includes a compact disc CD, a laser disc, an optical disc, a digital versatile disc (DVD), a floppy disk and a Blu-ray disc, where the disk generally copies data by a magnetic means, and the disc copies data optically by a laser means. The foregoing combination should also be included in the protection scope of the computer-readable medium.


Claims

1. A life cycle management method for a network service, wherein the method comprises:

receiving (103), by a first device, a life cycle management request sent by a second device for a target network service, NS, wherein the life cycle management request comprises a mapping relationship between an identifier of an existing virtualized network function, VNF, instance and a characteristic parameter corresponding to the identifier, and the characteristic parameter is an identifier parameter that is in a target network service descriptor, NSD, and that marks each piece of VNF instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD, the characteristic parameter is for identifying only one piece of VNF instance requirement information; and

performing (104), by the first device, life cycle management on the target NS according to the existing VNF instance and the mapping relationship.


 
2. The method according to claim 1, wherein the identifier of the existing VNF instance and the characteristic parameter corresponding to the identifier are determined by the second device according to instance information of the existing VNF instance and the multiple pieces of VNF instance requirement information required by the target NSD.
 
3. The method according to claim 1, wherein the performing, by the first device, life cycle management on the target NS according to the existing VNF instance and the mapping relationship comprises:

matching, by the first device, the mapping relationship with the characteristic parameter of each piece of VNF instance requirement information in the multiple pieces of VNF instance requirement information required by the target NSD;

obtaining, by the first device, an existing VNF instance corresponding to a matched characteristic parameter; and

performing, by the first device, instantiation according to VNF instance requirement information corresponding to a mismatched characteristic parameter.


 
4. A life cycle management method for a network service, wherein the method comprises:

determining (101), by a second device according to life cycle management requirement information, an existing virtualized network function, VNF, instance required for life cycle management on a target network service, NS; and

sending (102), by the second device, a life cycle management request of the target NS to a first device, wherein the life cycle management request is used to instruct the first device to perform life cycle management on the target NS, the life cycle management request comprises a mapping relationship between an identifier of the existing VNF instance and a characteristic parameter corresponding to the identifier, and the characteristic parameter is an identifier parameter that is in a target network service descriptor, NSD, and that marks each piece of VNF instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD, the characteristic parameter is for identifying only one piece of VNF instance requirement information.


 
5. The method according to claim 4, wherein the life cycle management request further comprises an identifier of the target NSD.
 
6. A first device, comprising:

a receiving unit (701), configured to receive a life cycle management request sent by a second device for a target network service, NS, wherein the life cycle management request comprises a mapping relationship between an identifier of an existing virtualized network function, VNF, instance and a characteristic parameter corresponding to the identifier, and the characteristic parameter is an identifier parameter that is in a target network service descriptor, NSD, and that marks each piece of VNF instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD, the characteristic parameter is for identifying only one piece of VNF instance requirement information; and

a management unit (702), configured to perform life cycle management on the target NS according to the existing VNF instance and the mapping relationship.


 
7. The first device according to claim 6, wherein the life cycle management request further comprises an identifier of the target NSD.
 
8. The first device according to claim 6 or 7, wherein the identifier of the existing VNF instance and the characteristic parameter corresponding to the identifier are determined by the second device according to instance information of the existing VNF instance and the multiple pieces of VNF instance requirement information required by the target NSD.
 
9. A second device, comprising:

a determining unit (801), configured to determine, according to life cycle management requirement information, an existing virtualized network function, VNF, instance required for life cycle management on a target NS; and

a sending unit (802), configured to send a life cycle management request of the target NS to a first device, wherein the life cycle management request is used to instruct the first device to perform life cycle management on the target network service, NS, the life cycle management request comprises a mapping relationship between an identifier of the existing VNF instance and a characteristic parameter corresponding to the identifier, and the characteristic parameter is an identifier parameter that is in a target network service descriptor, NSD, and that marks each piece of VNF instance requirement information in multiple pieces of VNF instance requirement information required by the target NSD, the characteristic parameter is for identifying only one piece of VNF instance requirement information.


 
10. The second device according to claim 9, wherein the life cycle management request further comprises an identifier of the target NSD.
 
11. A computer program comprising instructions which, when the program is executed by a computer, cause the computer to carry out all the steps of the method according to any of claims 1 to 5.
 


Ansprüche

1. Lebenszyklusverwaltungsverfahren für einen Netzwerkdienst, wobei das Verfahren Folgendes umfasst:

Empfangen (103), durch eine erste Vorrichtung, einer durch eine zweite Vorrichtung für einen Zielnetzwerkdienst (network service - NS) gesendeten Lebenszyklusverwaltungsanfrage, wobei die Lebenszyklusverwaltungsanfrage eine Zuordnungsbeziehung zwischen einem Bezeichner einer vorhandenen virtualisierten Netzwerkfunktions(VNF)instanz und einem kennzeichnenden Parameter, der dem Bezeichner entspricht, umfasst, und wobei der kennzeichnende Parameter ein Bezeichnerparameter ist, der sich in einem Zielnetzwerkdienstdeskriptor (network service descriptor - NSD) befindet und der jeden Teil der VNF-Instanzanforderungsinformationen in mehreren Teilen von VNF-Instanzanforderungsinformationen markiert, die von dem Ziel-NSD benötigt werden, wobei der kennzeichnende Parameter zum Identifizieren nur eines Teils der VNF-Instanzanforderungsinformationen dient; und

Durchführen (104), durch die erste Vorrichtung, der Lebenszyklusverwaltung auf dem Ziel-NS gemäß der vorhandenen VNF-Instanz und der Zuordnungsbeziehung.


 
2. Verfahren nach Anspruch 1, wobei der Bezeichner der vorhandenen VNF-Instanz und der dem Bezeichner entsprechende kennzeichnende Parameter durch die zweite Vorrichtung gemäß den Instanzinformationen der vorhandenen VNF-Instanz und den von dem Ziel-NSD benötigten mehreren Teilen der VNF-Instanzanforderungsinformationen bestimmt werden.
 
3. Verfahren nach Anspruch 1, wobei das Durchführen, durch die erste Vorrichtung, der Lebenszyklusverwaltung auf dem Ziel-NS gemäß der vorhandenen VNF-Instanz und der Zuordnungsbeziehung Folgendes umfasst:

Anpassen, durch die erste Vorrichtung, der Zuordnungsbeziehung mit dem kennzeichnenden Parameter jedes Teils der VNF-Instanzanforderungsinformationen in den mehreren Teilen von VNF-Instanzanforderungsinformationen, die von dem Ziel-NSD benötigt werden;

Erhalten, durch die erste Vorrichtung, einer vorhandenen VNF-Instanz, die einem angepassten kennzeichnenden Parameter entspricht; und

Durchführen, durch die erste Vorrichtung, einer Instanziierung gemäß VNF-Instanzanforderungsinformationen, die einem fehlangepassten kennzeichnenden Parameter entsprechen.


 
4. Lebenszyklusverwaltungsverfahren für einen Netzwerkdienst, wobei das Verfahren Folgendes umfasst:

Bestimmen (101), durch eine zweite Vorrichtung gemäß Lebenszyklusverwaltungsanforderungen, einer vorhandenen virtualisierten Netzwerkfunktions(VNF)instanz, die für die Lebenszyklusverwaltung an einem Zielnetzwerkdienst (NS) benötigt wird; und

Senden (102), durch die zweite Vorrichtung, einer Lebenszyklusverwaltungsanforderung des Ziel-NS an eine erste Vorrichtung, wobei die Lebenszyklusverwaltungsanfrage verwendet wird, um die erste Vorrichtung anzuweisen, eine Lebenszyklusverwaltung an dem Ziel-NS durchzuführen, wobei die Lebenszyklusverwaltungsanfrage eine Zuordnungsbeziehung zwischen einem Bezeichner der vorhandenen virtualisierten VNF-Instanz und einem kennzeichnenden Parameter, der dem Bezeichner entspricht, umfasst, und wobei der kennzeichnende Parameter ein Bezeichnerparameter ist, der sich in einem Zielnetzwerkdienstdeskriptor (NSD) befindet und der jeden Teil der VNF-Instanzanforderungsinformationen in mehreren Teilen von VNF-Instanzanforderungsinformationen markiert, die von dem Ziel-NSD benötigt werden, wobei der kennzeichnende Parameter zum Identifizieren nur eines Teils der VNF-Instanzanforderungsinformationen dient.


 
5. Verfahren nach Anspruch 4, wobei die Lebenszyklusverwaltungsanforderung ferner einen Bezeichner des Ziel-NSD umfasst.
 
6. Erste Vorrichtung, Folgendes umfassend:

eine Empfangseinheit (701), die konfiguriert ist, um, eine durch eine zweite Vorrichtung für einen Zielnetzwerkdienst (NS) gesendete Lebenszyklusverwaltungsanfrage zu empfangen, wobei die Lebenszyklusverwaltungsanfrage eine Zuordnungsbeziehung zwischen einem Bezeichner einer vorhandenen virtualisierten Netzwerkfunktions(VNF)instanz und einem kennzeichnenden Parameter, der dem Bezeichner entspricht, umfasst, und wobei der kennzeichnende Parameter ein Bezeichnerparameter ist, der sich in einem Zielnetzwerkdienstdeskriptor (NSD) befindet und der jeden Teil der VNF-Instanzanforderungsinformationen in mehreren Teilen von VNF-Instanzanforderungsinformationen markiert, die von dem Ziel-NSD benötigt werden, wobei der kennzeichnende Parameter zum Identifizieren nur eines Teils der VNF-Instanzanforderungsinformationen dient; und

eine Verwaltungseinheit (702), die konfiguriert ist, um die Lebenszyklusverwaltung auf dem Ziel-NS gemäß der vorhandenen VNF-Instanz und der Zuordnungsbeziehung durchzuführen.


 
7. Erste Vorrichtung nach Anspruch 6, wobei die Lebenszyklusverwaltungsanforderung ferner einen Bezeichner des Ziel-NSD umfasst.
 
8. Erste Vorrichtung nach Anspruch 6 oder 7, wobei der Bezeichner der vorhandenen VNF-Instanz und der dem Bezeichner entsprechende kennzeichnende Parameter durch die zweite Vorrichtung gemäß den Instanzinformationen der vorhandenen VNF-Instanz und den von dem Ziel-NSD benötigten mehreren Teilen der VNF-Instanzanforderungsinformationen bestimmt werden.
 
9. Zweite Vorrichtung, Folgendes umfassend:

eine Bestimmungseinheit (801), die konfiguriert ist, um gemäß Lebenszyklusverwaltungsanforderungen eine vorhandene virtualisierte Netzwerkfunktions(VNF)instanz zu bestimmen, die für die Lebenszyklusverwaltung an einem Ziel-NS benötigt wird; und

eine Sendeinheit (802), die konfiguriert ist, um eine Lebenszyklusverwaltungsanforderung des Ziel-NS an eine erste Vorrichtung zu senden, wobei die Lebenszyklusverwaltungsanfrage verwendet wird, um die erste Vorrichtung anzuweisen, eine Lebenszyklusverwaltung an dem Zielnetzwerkdienst (NS) durchzuführen, wobei die Lebenszyklusverwaltungsanfrage eine Zuordnungsbeziehung zwischen einem Bezeichner der vorhandenen virtualisierten VNF-Instanz und einem kennzeichnenden Parameter, der dem Bezeichner entspricht, umfasst, und wobei der kennzeichnende Parameter ein Bezeichnerparameter ist, der sich in einem Zielnetzwerkdienstdeskriptor (NSD) befindet und der jeden Teil der VNF-Instanzanforderungsinformationen in mehreren Teilen von VNF-Instanzanforderungsinformationen markiert, die von dem Ziel-NSD benötigt werden, wobei der kennzeichnende Parameter zum Identifizieren nur eines Teils der VNF-Instanzanforderungsinformationen dient.


 
10. Zweite Vorrichtung nach Anspruch 9, wobei die Lebenszyklusverwaltungsanforderung ferner einen Bezeichner des Ziel-NSD umfasst.
 
11. Computerprogramm, umfassend Anweisungen, die, wenn das Programm durch einen Computer ausgeführt wird, den Computer veranlassen, all die Schritte des Verfahrens nach einem der Ansprüche 1 bis 5 abzuwickeln.
 


Revendications

1. Procédé de gestion du cycle de vie pour un service de réseau, le procédé comprenant :

la réception (103), au moyen d'un premier dispositif, d'une demande de gestion du cycle de vie envoyée par un second dispositif pour un service de réseau, NS, cible, la demande de gestion du cycle de vie comprenant une relation de mappage entre un identifiant d'une instance de fonction de réseau virtualisée, VNF, existante et un paramètre caractéristique correspondant à l'identifiant, et le paramètre caractéristique étant un paramètre d'identifiant qui se trouve dans un descripteur de service de réseau, NSD, cible, et qui marque chaque information d'exigence d'instance VNF parmi plusieurs informations d'exigence d'instance VNF requises par le NSD cible, le paramètre caractéristique permettant d'identifier une seule information d'exigence d'instance VNF ; et

la mise en oeuvre (104), au moyen du premier dispositif, de la gestion du cycle de vie sur le NS cible en fonction de l'instance VNF existante et de la relation de mappage.


 
2. Procédé selon la revendication 1, dans lequel l'identifiant de l'instance VNF existante et le paramètre caractéristique correspondant à l'identifiant sont déterminés par le second dispositif en fonction des informations d'instance de l'instance VNF existante et des multiples informations d'exigence d'instance VNF requises par le NSD cible.
 
3. Procédé selon la revendication 1, dans lequel la mise en oeuvre, au moyen du premier dispositif, de la gestion du cycle de vie sur le NS cible en fonction de l'instance VNF existante et de la relation de mappage comprend :

la mise en correspondance, au moyen du premier dispositif, de la relation de mappage avec le paramètre caractéristique de chaque information d'exigence d'instance VNF parmi les multiples informations d'exigence d'instance VNF requises par le NSD cible ;

l'obtention, au moyen du premier dispositif, d'une instance VNF existante correspondant à un paramètre caractéristique mis en correspondance ; et

la mise en oeuvre, au moyen du premier dispositif, de l'instanciation en fonction des informations d'exigence d'instance VNF correspondant à un paramètre caractéristique non correspondant.


 
4. Procédé de gestion du cycle de vie pour un service de réseau, le procédé comprenant :

la détermination (101), au moyen d'un second dispositif en fonction des informations d'exigence de gestion du cycle de vie, d'une instance de fonction de réseau virtualisée, VNF, existante, requise pour la gestion du cycle de vie sur un service de réseau, NS, cible ; et

l'envoi (102), au moyen du second dispositif, d'une demande de gestion du cycle de vie du NS cible à un premier dispositif, la demande de gestion du cycle de vie étant utilisée pour ordonner au premier dispositif de mettre en oeuvre la gestion du cycle de vie sur le NS cible, la demande de gestion du cycle de vie comprenant une relation de mappage entre un identifiant de l'instance VNF existante et un paramètre caractéristique correspondant à cet identifiant, et le paramètre caractéristique étant un paramètre d'identifiant qui se trouve dans un descripteur de service de réseau, NSD, cible, et qui marque chaque information d'exigence d'instance VNF parmi plusieurs informations d'exigence d'instance VNF requises par le NSD cible, le paramètre caractéristique permettant d'identifier une seule information d'exigence d'instance VNF.


 
5. Procédé selon la revendication 4, dans lequel la demande de gestion du cycle de vie comprend en outre un identifiant du NSD cible.
 
6. Premier dispositif, comprenant :

une unité de réception (701) configurée pour recevoir une demande de gestion du cycle de vie envoyée par un second dispositif pour un service de réseau, NS, cible, la demande de gestion du cycle de vie comprenant une relation de mappage entre un identifiant d'une instance de fonction de réseau virtualisée, VNF, existante et un paramètre caractéristique correspondant à l'identifiant, et le paramètre caractéristique étant un paramètre d'identifiant qui se trouve dans un descripteur de service de réseau, NSD, cible, et qui marque chaque information d'exigence d'instance VNF parmi plusieurs informations d'exigence d'instance VNF requises par le NSD cible, le paramètre caractéristique permettant d'identifier une seule information d'exigence d'instance VNF ; et

une unité de gestion (702) configurée pour mettre en oeuvre la gestion du cycle de vie sur le NS cible en fonction de l'instance VNF existante et de la relation de mappage.


 
7. Premier dispositif selon la revendication 6, dans lequel la demande de gestion du cycle de vie comprend en outre un identifiant du NSD cible.
 
8. Premier dispositif selon la revendication 6 ou 7, dans lequel l'identifiant de l'instance VNF existante et le paramètre caractéristique correspondant à l'identifiant sont déterminés par le second dispositif en fonction des informations d'instance de l'instance VNF existante et des multiples informations d'exigence d'instance VNF requises par le NSD cible.
 
9. Second dispositif comprenant :

une unité de détermination (801) configurée pour déterminer, en fonction des informations d'exigence de gestion du cycle de vie, une instance de fonction de réseau virtualisée, VNF, existante, requise pour la gestion du cycle de vie sur un NS cible ; et

une unité d'envoi (802) configurée pour envoyer une demande de gestion du cycle de vie du NS cible à un premier dispositif, la demande de gestion du cycle de vie étant utilisée pour ordonner au premier dispositif de mettre en oeuvre la gestion du cycle de vie sur le service de réseau, NS cible, la demande de gestion du cycle de vie comprenant une relation de mappage entre un identifiant de l'instance VNF existante et un paramètre caractéristique correspondant à cet identifiant, et le paramètre caractéristique étant un paramètre d'identifiant qui se trouve dans un descripteur de service de réseau, NSD, cible, et qui marque chaque information d'exigence d'instance VNF parmi plusieurs informations d'exigence d'instance VNF requises par le NSD cible, le paramètre caractéristique permettant d'identifier une seule information d'exigence d'instance VNF.


 
10. Second dispositif selon la revendication 9, dans lequel la demande de gestion du cycle de vie comprend en outre un identifiant du NSD cible.
 
11. Programme informatique comprenant des instructions qui, lorsque le programme est exécuté par un ordinateur, amènent l'ordinateur à exécuter toutes les étapes du procédé selon l'une quelconque des revendications 1 à 5.
 




Drawing



























REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description