(19)
(11)EP 3 288 182 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.07.2020 Bulletin 2020/27

(21)Application number: 17167831.1

(22)Date of filing:  24.04.2017
(51)Int. Cl.: 
H03F 1/32  (2006.01)
H03F 3/189  (2006.01)
H03F 1/56  (2006.01)
H03F 3/24  (2006.01)

(54)

SYSTEM ARCHITECTURE FOR SUPPORTING DIGITAL PRE-DISTORTION AND FULL DUPLEX IN CABLE NETWORK ENVIRONMENTS

SYSTEMARCHITEKTUR ZUR UNTERSTÜTZUNG VON DIGITALER VORVERZERRUNG UND VOLLDUPLEX IN KABELNETZWERKUMGEBUNGEN

ARCHITECTURE DE SYSTÈME PERMETTANT DE PRENDRE EN CHARGE LA PRÉ-DISTORSION NUMÉRIQUE ET LE DUPLEX INTÉGRAL DANS DES ENVIRONNEMENTS DE RÉSEAU CÂBLÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.08.2016 US 201615247580
15.11.2016 US 201615352445

(43)Date of publication of application:
28.02.2018 Bulletin 2018/09

(73)Proprietor: Cisco Technology, Inc.
San Jose, CA 95134-1706 (US)

(72)Inventors:
  • JIN, Hang
    Plano, Texas 75025 (US)
  • CHAPMAN, John T.
    Coto de Caza, California 92679 (US)

(74)Representative: Clark, Jane Anne 
Mathys & Squire LLP The Shard 32 London Bridge Street
London SE1 9SG
London SE1 9SG (GB)


(56)References cited: : 
EP-A1- 2 244 380
US-A1- 2001 038 423
WO-A1-2014/075106
US-A1- 2016 065 250
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] This disclosure relates in general to the field of communications and, more particularly, to a system architecture for supporting digital pre-distortion and full duplex in cable network environments.

    BACKGROUND



    [0002] Driven by 50% growth rate in bandwidth consumption, cable network operators are increasingly focused on cost-performance of the Hybrid Fiber Coaxial (HFC) network. Consumers are expected to turn to progressively higher volume of Internet Protocol content and services. As a result, cable network operators are seeking technology solutions that provide a low cost per bit for their cable networks. A dominant part of the cost is electrical power consumption by various components in the network. The cost of electrical power to the cable industry is approximately $1B in 2015, and expected to rise to $4B in 2020. A majority of the power is consumed by HFC amplifiers in the cable network. Amplifiers are provided along the cables to boost signal power. For example, an average of ten amplifiers are provided along a length of three miles, or thereabouts, throughout the cable network. Yet, typical amplifiers have low power efficiency, leading to greater power consumption with no proportionate increase in throughput.

    [0003] US2016/0065250 describes a wireless communication unit comprising a transmitter which comprises: a linearization circuit arranged to receive and digitally distort an input signal; a radio frequency power amplifier operably coupled to the linearization circuit and arranged to amplify a radio frequency representation of the digitally distorted input signal; a feedback path arranged to feed back a portion of the amplified digitally distorted output of the received input signal to the linearization circuit; a bypass circuit comprising a plurality of energy storage elements operably coupled between an output of the radio frequency power amplifier and ground; and a first connector arranged to provide a representation of at least one electrical memory effect of at least one of the plurality of energy storage elements to the linearization circuit, wherein the linearization circuit is arranged to use the representation of the at least one electrical memory effect when digitally distorting the input signal.

    [0004] EP2244380 describes a predistorter which compensates for a memory effect occurring in an amplifier used in a communication device, especially an electric memory effect as well. The predistorter includes: a distortion compensation circuit for compensating for a nonlinear distortion caused by an amplifier, in which the distortion compensation circuit outputs a predistortion signal to be input to the amplifier. The predistorter includes: first filter section which is connected between the distortion compensation circuit and the amplifier, for compensating for a frequency characteristic appearing in a signal component occurring in an entire analog circuit including the amplifier; and second filter section which is connected between the distortion compensation circuit and the first filter section or between the first filter section and the amplifier, for compensating for a frequency characteristic appearing in a distortion component occurring in the amplifier.

    [0005] WO2014075106 describes a virtual converged cable access platform (CCAP) system and method for hybrid fibre CATV (HFC) cable networks. The system uses a type of digital optical fibre node configured to receive optical fibre data packets, and reconstitute the optical data packets into RF waveforms suitable for injection into the system's CATV cable. The system replaces the legacy HFC head end with a simplified "virtual head end". The system's virtual head end operates using a type of virtual CCAP controller and virtual CCAP software that in turn controls high performance edge routers. Much of the intelligence of running the HFC cable system is managed by the controller software, while the edge router manages the interface between the CATV portion of the system and outside networks.

    [0006] Aspects and examples are set out in the appended claims.

    [0007] The present invention is defined by the appended claims. Any of the following disclosure that is not in accordance with the appended claims is not considered part of the invention and is described by way of example only.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] To provide a more complete understanding of the present disclosure and features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying figures, wherein like reference numerals represent like parts, in which:

    FIGURE 1 is a simplified block diagram illustrating a communication system facilitating a system architecture for supporting digital pre-distortion and full duplex in cable network environments;

    FIGURE 2 is a simplified block diagram illustrating other example details of embodiments of the communication system;

    FIGURE 3 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 4 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 5 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 6 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 7 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 8 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 9 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 10 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 11 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 12 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 13 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 14 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 15 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 16 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 17A is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 17B is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 18 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 19 is a simplified block diagram illustrating yet other example details of embodiments of the communication system;

    FIGURE 20 is a simplified flow diagram illustrating example operations that may be associated with embodiments of the communication system;

    FIGURE 21 is a simplified flow diagram illustrating other example operations that may be associated with embodiments of the communication system; and

    FIGURE 22 is a simplified flow diagram illustrating yet other example operations that may be associated with embodiments of the communication system.


    DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS


    OVERVIEW



    [0009] An example apparatus for supporting digital pre-distortion (DPD) and full duplex (FDX) in cable network environments is provided and includes a first path for signals being transmitted out of the apparatus, a second path for signals being received into the apparatus, a DPD actuator located on the first path, an amplifier located on the first path, an echo cancellation (EC) actuator located on the second path, and a data interface including a plurality of channels connecting the apparatus to a signal processor. DPD coefficients, EC coefficients and delay parameters are provided over the data interface from the signal processor to the apparatus. The DPD actuator predistorts signals on the first path using the DPD coefficients compensating for distortions introduced by the amplifier, and the EC actuator reduces interferences in signals on the second path using the EC coefficients and the delay parameters, facilitating FDX communication by the apparatus. As used herein, the term "coefficient" expresses a numerical or constant quantity placed before and multiplying a variable in an algebraic expression (e.g., 4 in 4xy).

    EXAMPLE EMBODIMENTS



    [0010] Turning to FIGURE 1, FIGURE 1 is a simplified block diagram illustrating a communication system 10 for supporting digital pre-distortion and full duplex in cable network environments in accordance with one example embodiment. FIGURE 1 illustrates a cable network 12 (indicated generally by an arrow) facilitating communication between a cable modem termination system (CMTS) 14 and one or more cable modems (CMs) 16. Network 12 includes transceivers 18, stand-alone Hybrid-Fibre Coaxial (HFC) radio frequency (RF) amplifiers 19, digital pre-distortion (DPD) module(s) 20, Echo Cancellation (EC) module(s) 22, and taps and splitters 23 (in addition to various other components that are not shown in detail in the figure).

    [0011] According to various embodiments, transceivers 18 and stand-alone amplifiers 19 enable full band communication for both upstream and downstream network traffic and implement dynamic interference cancellation, also referred to herein as adaptive interference cancellation (AIC). Amplifiers 19 enable full band communication for both upstream and downstream network traffic, and implement AIC with ringing (e.g., echo) suppression. Taps and splitters 23 may enable full band communication for downstream and upstream traffic. In addition, any amplification of signals within transceivers 18 and amplifiers 19 may also be in conjunction with DPD mechanisms. To facilitate DPD and full band duplex (FDX) communication in cable network 12, at least one DPD module 20 and at least one EC module 22 may be incorporated into transceivers 18 and amplifiers 19. In a general sense, network 12 may comprise a plurality of DPD modules 20 and EC modules 22.

    [0012] Embodiments of communication system 10 can resolve bandwidth limitation issues by enabling full duplex communication using appropriately configured components (among other techniques). Full duplex communication can be successfully implemented by suppressing (e.g., eliminating) transmitted signals that are coupled back to the receiver (e.g., as an echo, as an upstream signal leaking into the downstream pathway and vice versa, etc.). Sufficient transmitted signal cancellation and/or elimination can be achieved by leveraging (among other parameters) state of art devices and digital signal processing technologies, high speed and high performance (e.g., high resolution) analog to digital converters (ADC), powerful devices with more signal processing capability, appropriate AIC algorithms, and advanced MAC scheduling for spectrum sharing. In various embodiments, the AIC algorithm suppresses at a receiver (of transceiver 18 or amplifier 19 appropriately) a signal transmitted by a transmitter (of transceiver 18 or amplifier 19 appropriately). Further, in addition to the AIC algorithm, full band amplifier 19 implements a ringing suppression scheme with more than one EC module 22.

    [0013] Turning to the infrastructure of communication system 10, the network topology can include any number of cable modems, customer premises equipment, servers, switches (including distributed virtual switches), routers, amplifiers, taps, splitters, combiners and other nodes inter-connected to form a large and complex network. Network 12 represents a series of points or nodes of interconnected communication pathways for receiving and transmitting packets and/or frames of information that are delivered to communication system 10. A node may be any electronic device, computer, printer, hard disk drive, client, server, peer, service, application, or other object capable of sending, receiving, amplifying, splitting, or forwarding signals over communications channels in a network. Elements of FIGURE 1 may be coupled to one another through one or more interfaces employing any suitable connection (wired or wireless), which provides a viable pathway for electronic communications. Additionally, any one or more of these elements may be combined or removed from the architecture based on particular configuration needs.

    [0014] Cable network 12 offers a communicative interface between cable network components, and may include any local area network (LAN), wireless local area network (WLAN), metropolitan area network (MAN), Intranet, Internet, Extranet, wide area network (WAN), virtual private network (VPN), or any other appropriate architecture or system that facilitates communications in a network environment. Network 12 may implement any suitable communication protocol for transmitting and receiving data packets within communication system 10. The architecture of the present disclosure may include a configuration capable of DOCSIS, TCP/IP, TDMA, and/or other communications for the electronic transmission or reception of signals in a network. The architecture of the present disclosure may also operate in conjunction with any suitable protocol, where appropriate and based on particular needs. In addition, gateways, routers, switches, and any other suitable nodes (physical or virtual) may be used to facilitate electronic communication between various nodes in the network.

    [0015] In some embodiments, a communication link may represent any electronic link supporting a network environment such as, for example, cable, Ethernet, wireless technologies (e.g., IEEE 802.11x), ATM, fiber optics, etc. or any suitable combination thereof. In other embodiments, communication links may represent a remote connection through any appropriate medium (e.g., digital subscriber lines (DSL), coaxial fiber, telephone lines, T1 lines, T3 lines, wireless, satellite, fiber optics, cable, Ethernet, etc. or any combination thereof) and/or through any additional networks such as a wide area networks (e.g., the Internet).

    [0016] Note that the numerical and letter designations assigned to the elements of FIGURE 1 do not connote any type of hierarchy; the designations are arbitrary and have been used for purposes of teaching only. Such designations should not be construed in any way to limit their capabilities, functionalities, or applications in the potential environments that may benefit from the features of communication system 10. It should be understood that communication system 10 shown in FIGURE 1 is simplified for ease of illustration.

    [0017] In particular embodiments, CMTS 14 may comprise a hardware appliance with appropriate ports, processors, memory elements, interfaces, and other electrical and electronic components that facilitate the functions described herein, including providing high speed data services, such as cable Internet or voice over Internet Protocol (e.g., in the form of digital, RF, or other suitable signals) to cable subscribers, such as cable modems 16. In various embodiments, CMTS 14 comprises a Universal Broadband Router (uBR) with features that enable it to communicate with the HFC cable network via a suitable cable modem card, which provides an interface between the uBR protocol control information (PCI) bus and RF signals on the DOCSIS HFC cable network.

    [0018] In some embodiments, CMTS 14 may comprise a converged cable access platform (CCAP) core that transmits and receives digital signals in IP protocols, coupled with one or more physical interface (PHY) transceiver(s), such as transceiver 18 that convert the digital IP signals into RF signals, and vice versa. The PHY transceivers, such as transceiver 18, may be co-located with the CCAP core at a common location, or may be located remote from the CCAP core and connected over a converged interconnect network (CIN). In some embodiments, CMTS 14 may comprise a single CCAP core and a plurality of PHY transceivers, such as transceiver 18. CMTS 14 is connected (e.g., communicatively coupled, for example, through wired communication channels) to cable modems 16, transceiver 18, and DPD modules 20 in cable network 12.

    [0019] Transceivers 18 may comprise suitable hardware components and interfaces for facilitating the operations described herein. In some embodiments, transceivers 18 may be embedded in or be part of another hardware component, such as a broadband processing engine comprising a motherboard, microprocessors and other hardware components. In some embodiments, transceivers 18 comprise downstream and upstream PHY modules, deployed in a Coaxial Media Converter (CMC) that supports RF functions at the PHY layer. Transceivers 18 may comprise pluggable modules (e.g., small form-factor pluggable (SFP)) that may be plugged into a network element chassis, or embedded modules that attach to cables directly. In addition to optical and electrical interfaces, transceivers 18 include a PHY chip, appropriate digital signal processors (DSPs) and application specific integrated circuits (ASICs) according to particular needs. In various embodiments, the DSPs in transceivers 18 may be adapted (e.g., programmed) to perform echo cancellation and DPD functionalities as described herein.

    [0020] Amplifiers 19 comprise RF amplifiers suitable for use in cable network 12. Amplifiers 19 are typically used at intervals in network 12 to overcome cable attenuation and passive losses of electrical signals caused by various factors (e.g., splitting or tapping the coaxial cable). Amplifiers 19 may include trunk amplifiers, distribution amplifiers, line extenders, house amplifier and any other suitable type of amplifier used in cable networks. According to various embodiments, substantially all amplifiers 19 are configured suitably as described herein to facilitate full duplex communication and DPD.

    [0021] In various embodiments, DPD module 20 and EC module 22 comprise electrical circuits fabricated on integrated circuits, printed circuit boards, or other suitable platforms with appropriate transistors, conductors, resistors and other electrical components for facilitating various operations as described herein. In various embodiments, they comprise processors and memory elements for processing signals in real time, offline, or a combination of real time and offline.

    [0022] Turning to FIGURE 2, FIGURE 2 is a simplified diagram illustrating example details of a logical arrangement of DPD module 20 according to an embodiment of communication system 10. DPD module 20 includes, on a transmission (TX) path 24: a digital pre-distortion (DPD) actuator 26, a digital to analog converter (DAC) 28 and an amplifier 30. Note that the term "path" as used herein refers to an electrical signal path, such as a conductor trace, that facilitates signals (e.g., signal transmission, signal communication, etc.) through an electrical circuit. On a reference path 32 is included an analog-to-digital converter (ADC) 34, and a DPD coefficient (coef) finder 36. According to various embodiments, an input signal 40 (in digital domain) entering DPD module 20 is forked (e.g., copied, bifurcated, split, branched, separated, sampled, etc.) into DPD coef finder 36, which outputs DPD coef 42 to DPD actuator 26. Note that in a general sense, signals flowing through cable network 12 comprise RF signals in multiple frequencies. For example, the RF signals may comprise digital data carried in at least two carrier waves of differing frequencies. The RF signals may be converted into the digital domain (e.g., using ADCs) before being input to DPD module 20. As used herein, "signal" denotes an electrical signal comprising a voltage or current; signals described herein can comprise analog signals (RF signals being an example) or digital signals.

    [0023] DPD actuator 26 distorts input signal 40 using DPD coef 42 to generate pre-distorted signal 44. Pre-distorted signal 44 is converted to analog signal 46 by DAC 28. Analog signal 46 is amplified by amplifier 30 into amplified signal 48. As used herein, the term "amplifier" refers to an electrical or electronic circuit that increases the power of an electrical signal, such as a RF signal. In a general sense, the amplifier modulates the output of a power supply (e.g., source of electrical signals) to make the output signal stronger than the input signal. In various embodiments, amplifier 30 comprises a power amplifier operating in a frequency range between 20 kHz and 300 GHz in the RF domain.

    [0024] Amplifier 30 introduces distortion into analog signal 46 in the amplification process due to its inherent properties, construction, and/or configuration. Amplified signal 48, which is output from amplifier 30, is forked into (e.g., sampled into) reference path 32, and converted into digital reference signal 50 in the digital domain by ADC 34. Reference signal 50 is fed to DPD coef finder 36, which compares reference signal 50 with input signal 40 to generate DPD coef 42. The process is performed iteratively until values of DPD coef 42 are such that any distortions due to amplifier 30 are canceled out (e.g., eliminated, reduced, etc.).

    [0025] Typical power amplifiers used in cable networks, such as cable network 12, include high linearity low efficiency Class A amplifiers. High efficiency low linearity Class AB amplifiers may be used in cable networks but their non-linearity must be corrected to meet cable industry RF fidelity requirements (amplifier classes represent the amount of the output signal varying within the amplifier circuit over one cycle of operation when excited by a sinusoidal input signal).

    [0026] A class-A amplifier is distinguished from other power amplifiers by the output stage device being biased for class A operation. Generally, the class A amplifier uses a single transistor (e.g., Bipolar, field effect transistor (FET), insulated-gate bipolar transistor (IGBT), etc.) connected in a common emitter configuration for both halves of an input waveform signal. The amplification process in Class-A is inherently linear. To achieve high linearity and gain, the output stage of a class A amplifier is biased "ON" (conducting) all the time. In other words, the transistor always has current flowing through it, even if it has no base signal. This means that the output stage is never driven fully into its cut-off or saturation regions but instead has a base biasing Q-point in the middle of its load line. Thus the transistor never turns "OFF" which is one of its main disadvantages. Due to this continuous loss of power, the class A amplifier generates large amount of heat adding to its low efficiency.

    [0027] A class AB amplifier includes two transistors providing a push-pull operation, with each transistor operating similar to a class B amplifier, amplifying a complementary half (e.g., either positive half or negative half of sinusoidal signal) of the input signal. In a Class B amplifier, when the input signal goes positive, a positive biased transistor conducts while a negative biased transistor is switched "OFF". Likewise, when the input signal goes negative, the positive biased transistor switches "OFF" while the negative biased transistor turns "ON" and conducts the negative portion of the signal. In the class AB amplifier, each transistor will be ON for more than half a cycle, but less than a full cycle of the input signal, leading to better power efficiency than the Class A amplifier. However, signal distortion is introduced at a cross-over region (between one transistor turning OFF and the other turning ON), typically between -0.7V and +0.7V. Thus, Class AB has higher efficiency than Class-A at the price of linearity.

    [0028] Traditional pre-distortion mechanisms attempt to correct for non-linear transfer characteristics of the amplifier by forming an inverse model of its transfer characteristic. The inverse model is applied to the low-level (unamplified) signal at the input of the amplifier in a nonlinear memoryless function to pre-distort the signal such that the amplified signal appears undistorted. The nonlinear memoryless function is updated periodically to account for variations in the amplifier transfer characteristics by monitoring the output from the amplifier.

    [0029] Typical DPD systems use a DSP to pre-distort the input signal before upconversion to the RF domain and amplification. In some systems, digital samples of the input signal to the amplifier and the output signal from the amplifier are captured are fed to an estimator that calculates correction coefficients used by the DSP block to pre-distort the input signal. Due to the inherent limitations of the electronic circuitry, such traditional systems are limited in operation to 5 MHz signal bandwidth to meet standards of signal-to-noise ratio (SNR) performance of the network.

    [0030] To overcome the bandwidth limitations for DPD purposes, at least one known system modifies the existing circuitry using different DACs to separately convert the input signal and the error correction signal (provided by the estimator to the DSP block). By reducing the power and/or bandwidth to be handled by any one DAC, available levels of quantization of the DAC are applied to a lower power signal, resulting in improved signal to noise ratio (as compared to systems that do not use separate DACs). The input signal is additionally separated into two or more sub-bands of narrower bandwidth; each of the sub-bands is converted to analog using a separate DAC. Each digital sub-band is passed through a correction filter, which is driven by the estimator to compensate for relative gain, phase, and delay inconsistencies between the different sub-bands. The technique relies on multiple DACs and multiple analog filters, which can lead to complicated circuitry.

    [0031] Moreover, currently existing cable network technologies do not facilitate full duplex communication, which is bidirectional, allowing both end nodes of a communication channel to send and receive data simultaneously and/or one at a time on the same frequency range. With a properly configured cable network architecture, such as cable network 12 of communication system 10, full duplex communication can drastically expand available upstream spectrum (e.g., estimated 5 to 10 times upstream capacity increase). Full duplex communication can provide near symmetric downstream and upstream throughput. System capacities (e.g., bandwidth) can improve with full duplex communication. Moreover, full duplex communication may be technology-agnostic and/or standards/agnostic.

    [0032] However, implementing full duplex in existing cable networks meet with certain challenges. For example, a large transmitted signal coupled back to the receiver due to reflection (e.g., self-interference from the transmit pathway into the receive pathway within one and same transceiver) at any of the network components, including CMTS 14, cable modems 16, transceivers 18, amplifiers 19 and taps and splitters 23 can kill the received signal at the receiver. Moreover, upstream transmit signal from one of cable modems 16 may leak into the downstream pathway of another of cable modems 16, causing interference. Unlike self-interference, such inter-CM interference cannot be removed with mere echo cancellation techniques because the upstream transmit signal is unknown in the downstream pathway.

    [0033] Embodiments of communication system 10 can resolve such issues by enabling high fidelity (e.g., high linearity), high power-efficient amplifiers through digital pre-distortion and machine learning and incorporating echo cancellation mechanisms appropriately. According to embodiments of communication system 10, input signal 40 is pre-distorted to compensate for any nonlinearity of amplifier 30. The predistortion is applied to the digitized RF signal after a modulator (not shown) in the transmitter (e.g., if DPD module 20 is located at a transmitter, for example, in transceiver 18) or amplifier 30.

    [0034] Snap shots (e.g., samples) of input signal 40 and output signal 50 of DPD module 20 are taken. Predistortion coefficients namely DPD coef 42 are computed (e.g., determined, calculated, etc.) by comparing the snap shots. The comparison is performed such that channel effects (e.g., fraction delay, time offset of the input and output signals, reflection, frequency dependent channel response, leakage of upstream signal, inherent noise (e.g., thermal/phase noise) of DPD module 20, etc.) are compensated for. The computation is performed iteratively. As used herein, "channel effects" can include fraction delay, time offset between input and output signals, reflection, frequency dependent channel response, signal leakage, thermal noise, phase noise and any other parameter that distorts signals traversing the amplifier module according to a predominantly linear mathematical relationship (e.g., nonlinear effects on the signals being negligent compared to the linear effect).

    [0035] When new coefficients are obtained in an iteration starting out with old coefficients (e.g., coefficients computed in the preceding iteration), a coefficient 'update direction' is determined (e.g., computed) from the old and new coefficients. A step (e.g., small step in terms of magnitude) in the 'update direction' is taken to obtain trial coefficients. The trial coefficients are used as DPD coef 42 to predistort input signal 40. The signal quality (e.g., modulation error ratio (MER), adjacent channel power ratio (ACPR)) of output signal 48 is computed. If the signal quality improved, the new coefficients are used; otherwise, the new coefficients are discarded in favor of the old coefficients. The iterative steps are repeated until a preconfigured signal quality is obtained.

    [0036] In various embodiments, DPD actuator 26 comprises a DSP, field-programmable gate array (FPGA) integrated circuit, application specific integrated circuit (ASIC), or other suitable integrated circuit configured to receive input signals, process (e.g., modify, adjust, etc.) them using DPD coef 42 and generate output signal 44 in the digital domain. In some embodiments, DPD coef finder 36 may comprise an ASIC, DSP or other processor configured to perform the operations as described herein.

    [0037] Turning to FIGURE 3, FIGURE 3 is a simplified diagram illustrating example details of a logical arrangement of DPD module 20 according to an embodiment of communication system 10. DPD actuator 26 comprises a pre-distorter 52 and an inverting network 54. The electrical and RF circuitry preceding amplifier 30 and subsequent to DPD actuator 26 (e.g., circuit comprises DAC 28 and any other appropriate component, such as noise inducers, resistive elements, etc.) are represented by an input-matching circuitry 56 also referred to as "pre-network," which introduces channel effects. Likewise, the electrical and RF circuitry following amplifier 30 on reference path 32 (e.g., circuit may include RF downconverter, ADC 34, etc.) are represented by an output matching circuitry 56 also referred to as "post-network."

    [0038] Amplifier 30 is represented logically (e.g., mathematically, algorithmically) by a nonlinear function f(.). Pre-network 56 is represented logically by a channel function H1. In various examples, H1 may represent undesirable interferences and disturbances that corrupts input signal 40 before it reaches amplifier 30. H1 can also represent multiple frequencies comprised in input signal 40. In a general sense, H1 may represent a channel emulator. For example, H1 may represent a channel impulse response (CIR) such as:

    where αi(t) is the ith complex channel tap coefficient of input signal 40, δ is the Dirac delta function representing the impulse signal, τi is the delay of the ith tap, and M is the number of resolvable taps. Each tap in the CIR shows delay, attenuation and phase shift introduced to the signal, and may be emulated using appropriate filters, attenuators, delay elements, etc. Post-network 58 is represented logically by another channel function H2.

    [0039] In a general sense, DPD mechanisms are used to find amplifier non-linearity f(.) and invert it in the digital domain so as to make the overall block of DPD actuator + amplifier appear more linear. In various embodiments, the DPD mechanism includes sampling the RF signal (digitized to input signal 40) before and after amplification, and, based on the sample differences, extracting amplifier nonlinearity. The RF signal sampled after amplification not only bears the characteristics of the amplifier nonlinearity, but also includes effects of the pre-network CIR H1 and the post network CIR H2. In some use-cases (e.g., based on the data carried in the signal), the effects of the H1 and H2 on the RF signal may be more dominant than the amplifier nonlinearity. For example, the nonlinearity may distort the RF signal and generate noise that is 45dBc below a desired signal level, but discontinuities in HFC may create reflections with level 30dBc, or 15dB above the noise generated by non-linearity.

    [0040] Further, the frequency dependent input and output impedance matching circuitries may create 'memory effect' in the output signal, that is, the output at the current (e.g., present) time depends on the inputs of previous times. Moreover, any fractional delay occurring between input and output will make the output signal appear totally different from the input signal. Such effects (e.g., reflection, frequency dependent channel, fractional delay) are suitably modeled as H1 and H2. In various embodiments, H1 and H2 may comprise linear functions, represented by corresponding linear networks. In other words, H1 and H2 together may logically represent all linear distortions on input signal 40 within DPD module 20.

    [0041] Pre-distorter 52 represents a logical circuit that modifies input signal 40 according to an inverse function of f(.), namely f-1(.). Inverting network 54 comprises an inverting function W1 that approximates an inverse function of CIR H1 (e.g., W1H1-1, where H-1∗H1=U, unitary matrix). Input signal 40 is represented as tx_rf0, and output signal 50 out of post-network 58 is represented as tx_rf. In other words, tx_rf0 subjected to functions f-1(.), W1, H1, f(.) and H2 is transformed into tx_rf:

    where stands for convolution operation. Synchronizing tx_rf and tx_rf0 (in time) can be indicative of the nonlinear function f(.). Synchronizing procedure according to an example embodiment may comprise finding a vector w that minimizes the following objective function:



    [0042] As used herein, the term "vector" refers to a list of data items, for example, a one-dimensional array, and can represent one-dimensional time or frequency dependent signals (or functions). In other words, w represents a virtual network that behaves substantially identically to a combination of H1 and H2, such that any differences between wtx_rf0 and tx_rf represents the nonlinearity f(.) of amplifier 30. The virtual network is represented as a W module 60, which comprises convoluting vector w, representing mathematical approximations H1 and H2. tx_rf0 convoluted with w may be represented as tx_rf0', which may be compared with tx_rf in an optimizer 62. The optimizing process can comprise any suitable mathematical method known in the art, for example, linear regression, or root least square (RLS). For optimization purposes, the reference function is tx_rf0, the observation function is tx_rf, and w is the coefficient sought. Optimizer 62 provides substantially accurate values for convoluting vector w, which can, in turn, be used to determine f-1(.).

    [0043] In various embodiments, the amplifier nonlinearity is characterized with the input-output signal level relationship in 2x1024 vector format:

    where xi, i=0,1, ...,1023 are the input signal level (real numbers), and yi, i=0,1,...,1023 are the output signal level (real numbers). xi, i=0,1, ...,1023 are evenly spaced. At each input level xi (i=0,1, 2, ..., 1023), multiple output level observations due to noise are averaged to give the corresponding yi (i=0,1, 2, ..., 1023). f-1(.) is obtained by inverting the nonlinearity curve:

    where λ is a damping factor, 0<λ<=1. f-1(.) maps data points to inverts f(.), point by point instantaneously, without any 'memory' effect.

    [0044] Turning to FIGURE 4, FIGURE 4 is a simplified diagram illustrating example details of a logical arrangement of DPD module 20 according to an embodiment of communication system 10. Pre-network H1 exhibits certain (e.g., non-zero) frequency dependent response, and causes signal spread over time, i.e., signal at the current time depends on signals in previous times. To apply DPD coef 42 effectively, the effect of the pre-network is removed in various embodiments as follows. tx_rf0 subjected to inverting function f-1(.) is represented as tx_rf1. Using tx_rf1 as the reference and tx_rf-tx_rf0 (delayed) as the observation, a function W1 is optimized using the following objective function:

    which can also be written as:

    where stands for convolution function, and f(.) represents amplifier non-linearity of amplifier 30. W1 module 64 convolutes and computes tx_rf1 with W1, and computes tx_rf1W1. Time delay module 66 introduces a time delay τ according to the following relation: τ= ceiling(τ0)+13, where τ0 is a delay estimation between tx_rf1W1 and tx_rf. (Note that ceiling function or ceiling(x), also represented as ┌x┐ is the smallest integer greater than or equal to x). Optimizer 62 performs optimization appropriately to minimize differences between tx_rf and tx_rf0(t-τ). The result of the process is vector W1, which approximates H1-1.

    [0045] Turning to FIGURE 5, FIGURE 5 is a simplified block diagram illustrating example details of EC module 22 according to an embodiment of communication system 10. On TX path 24, an OFDM signal baseband generator (not shown) generates a baseband reference signal. In an example embodiment, the baseband reference signal comprises a pseudo-random binary sequence (PRBS) signal with a bandwidth of 12.8MHz, at a clock rate of 20.48 MHzm with OFDM characteristics including subcarrier spacing of 20kHz, Fast Fourier size of 1024, and a cyclic prefix up to 1.2207µs (e.g., 25 time-domain samples). In some embodiments, an external interface with an external OFDM signal generator inputs data to be transmitted in the OFDM baseband reference signal. In some embodiments, the baseband signal with data is up sampled by 20 times to 409.6MHz, for example, to tune to any desired location in a frequency spectrum from 0MHz to 150MHz. The 20 time oversamples are split into 3 steps of 5 times, 2 times and 2 times, respectively, with half band harmonics suppression filtering. A quadrature modulator modulates the oversampled signal to generate a digital baseband OFDM signal 72 (for the sake of brevity, digital baseband (BB) OFDM signal may alternatively be referred to as simply BB signal).

    [0046] BB signal 72 is provided as a reference signal to an AIC module 74. AIC module 74 comprises a block of instructions implementing an appropriate AIC algorithm. BB signal 72 is further converted to RF signal 76 at DAC 26; amplifier 30 amplifies RF signal 76 into amplified RF signal 78. A two-way combiner-splitter 79 transmits amplified RF signal 78 out as a transmitted signal.

    [0047] Amplified RF signal 78 may be reflected back on to a receive (RX) path 80 in one or more frequencies that overlap with those of received RF signal 82 received on RX path 80 due to full duplex operation. Thus, the reflected signal may interfere with received signal 82 on RX path 80, generating RF signal 84. In various embodiments, it may be desirable to extract received signal 82 without the interferences from the reflected signal.

    [0048] A portion of received RF signal 82 may be reflected back on TX path 24, interfering with RF signal 78 generating an RF reference signal 86, which is provided to AIC module 74 on reference path 32 as a digital signal 87 after conversion by ADC 34. On RX path 80, RF signal 84 is amplified by a low-noise amplifier (LNA) 90, converted to a digital signal 91 by an ADC 92 and fed to AIC module 74. Note that LNA 90 amplifies low-power signals on RX path 80 without significantly degrading their signal-to-noise ratio. AIC module 74 reduces interferences in digitized signal 91 from the reflected signal based on BB reference signal 72 and digitized reference signal 87, producing desired output signal 94. In various embodiments, AIC module 74 calculates various EC coefficients and delay parameters in the digital domain using signals 72 and 87, and applies them to signal 91 to obtain output signal 94.

    [0049] In a general sense, a channel impulse response can be measured from BB reference signal 72 and RF reference signal 86. In various embodiments, AIC module 74 executes the AIC algorithm and cancels out interferences in RF signal 84 from transmitted RF signal 78. In some embodiments, prior to interference cancellation, RF signal 84 may be processed through a quadrature demodulator and subjected to decimation, for example, at which the received 409.6 intermediate frequency (IF) signal is decimated by 20 times to a 20.48MHz base band signal. In various embodiments, interference-canceled output signal 94 is subjected to demodulation and fed to an OFDM signal receptor (not shown). The interference-canceled signal may be sent to the external computing device and post-processed with appropriate post processing algorithms.

    [0050] Turning to FIGURE 6, FIGURE 6 is a simplified diagram illustrating example details of a hardware implementation of DPD module 20 and EC module 22 in a single component (e.g., transceiver 18) according to an embodiment of communication system 10. Note that a similar hardware architecture may be employed in amplifiers 19 within the broad scope of the embodiments.

    [0051] A PHY chip 100 may include a downstream (DS) PHY module 102 (comprising electrical circuitry for facilitating DS signal transmission and reception at the PHY layer), DPD actuator 26, DAC 28, ADC 34, ADC 92, an Echo Cancellation (EC) actuator 104 (comprising electrical circuitry for implementing echo cancellation on signals in real-time), and an upstream (US) PHY module 106 (comprising electrical circuitry for facilitating US signal transmission and reception at the PHY layer). In various embodiments, DPD actuator 26 predistorts signals on TX path 24, compensating for distortions introduced by amplifier 30 in TX path 24. In various embodiments, EC actuator 104 reduces interferences in signals on RX path 80, facilitating FDX communication by transceiver 18 in cable network 12.

    [0052] PHY chip 100 is electrically coupled to amplifier 30 and LNA 90 as indicated in the figure. In a general sense, amplifier 30 differs from LNA 90 in that amplifier 30 comprises a power amplifier, used to increase power of outgoing signals; on the other hand, LNA 90 is used to reduce noise from incoming signals. LNA 90 operates as a front end of the receiver channel on RX path 80, capturing and amplifying very-low-power, low-voltage signals and associated random noise within the bandwidth of interest. In contrast, amplifier 30 takes a relatively strong signal from the preceding circuitry, with relatively high signal-to-noise ratio, and boosts its power.

    [0053] Reference path 32 is forked from main path 24 after amplifier 30 (e.g., at output of amplifier 30) and connected to ADC 34 over an appropriate electrical pin (not shown) in PHY chip 100. In various embodiments, TX path 24 is connected to a first port (e.g., port 1) of two-way combiner 79; RX path 80 is connected to a second port (e.g., port 2) of combiner 79; and a coaxial cable is connected to a third port (e.g., port 3) of combiner 79. In some embodiments, DAC 28, ADC 34, and ADC 92 may be located in PHY chip 100; in other embodiments, DAC 28, ADC 34, and ADC 92 may be located outside PHY chip 100. In various embodiments, PHY chip 100 may be comprised in a field programmable gate array (FPGA) integrated circuit.

    [0054] In addition, PHY chip 100 presents two interfaces 108 and 110. Note that PHY chip 100 follows appropriate cable communication protocol specifications (e.g., ECMA, DOCSIS, etc.) and presents interfaces 108 and 110 accordingly. Interface 108 may be used to communicate with MAC components elsewhere in the system. For example, interface 108 may present appropriate ports for communicating data, control messages (e.g., to control operations of PHY chip 100) and management messages (e.g., to access registers in PHY chip 100) between PHY and MAC (e.g., located in CMTS 14) in cable network 12.

    [0055] Interface 110 may be used to communicate with DPD coef finder 36, EC coef finder 112 and delay coef finder 114 integrated into a DSP 116. In various embodiments, a portion of AIC module 74 may be implemented as EC coef finder 112 and delay coef finder 114. Interface 110 may comprise ports for communicating data between PHY chip 100 and DSP 116. Interface 110 comprises a bi-directional interface for data communication between PHY chip 100 and off line DSP 116. Interface 110 carries data from PHY chip 100 to DSP 116 for coefficient calculations, and carries the updated coefficients back to PHY chip 100. In some embodiments, interface 110 may facilitate direct memory access (DMA), inter-process communication (IPC), and other fast communication mechanisms. PHY chip 100 may include various other components, which are used in full duplex communications, such as modulators, demodulators, ADCs, etc.

    [0056] Offline DSP 116 may perform various appropriate computations in non-real time (e.g., offline, asynchronously, periodically, etc.). As used herein, the term "real time" refers to synchronicity in time; for example, signals traversing PHY chip 100 are processed (e.g., predistorted; interferences removed; etc.) by DPD actuator 26 and EC actuator 104 synchronously (e.g., without substantial delay); in contrast, DSP 116 computes the DPD coefficients, EC coefficients and the delay parameters asynchronously, independent of timing of the signals traversing PHY chip 100. For example, DPD actuator 26 stores DPD coefficients obtained from DPD coef finder 36 and predistorts signals on TX path 24 in real time, using the stored DPD coefficients. The predistorted signal is amplified by amplifier 30 on TX path 24 and transmitted out of transceiver 18. Similarly, EC actuator stores EC coefficients and delay parameters and processes signals on RX line 80 in real-time using the stored EC coefficients and delay parameters. Periodically (e.g., at preconfigured intervals or at preconfigured network conditions, or at preconfigured environmental conditions), certain signals are forked from TX path 24 including over reference path 32, any analog signals being converted into digital domain by ADC 34, and provided to DSP chip 116 over interface 110. The forked signals are used by DPD coef finder 36 to generate updated DPD coef 42 off-line in non-real time. The forked signals are also used by EC coef finder 112 and delay coef finder 114 to generate updated EC coefficients and delay parameters. In some embodiments, the same forked signals are used by both DPD coef finder 36 and EC coef finder 112 and delay coef finder 114; in other embodiments, separate forked signals are used by DPD coef finder 36 and EC coef finder 112 and delay coef finder 114 to calculate respective coefficients.

    [0057] "Off-line" as used herein refers to a status of a device (e.g., DPD coef finder 36, EC coef finder 112, delay coef finder 114) that is disconnected from the main signal paths (e.g., TX path 24, RX path 80); in other words, DPD coef finder 36 is not available for immediate use in real-time, on demand by DPD actuator 26; neither are EC coef finder 112 and delay coef finder 114 available for immediate use in real-time, on demand by EC actuator 104. Off-line computation of DPD coefficients, EC coefficients and delay parameters are not time-constrained to signals on the main signal paths; moreover, off-line computation may be performed to selected signals only (e.g., samples). In contrast, real-time processing of input signals (e.g., transmitted signals and received signals) is performed constantly, to all signals as they traverse through the main signal paths.

    [0058] Moreover, DPD actuator 26 does not immediately control DPD coef finder 36 and read DPD coef 42 continuously; rather, DPD coef finder 36 may compute DPD coef 42 at pre-determined intervals (or events) and feed them to DPD actuator 26. Thus, computation of DPD coef 42 takes place independently of DPD actuator 26. Similarly, EC actuator 104 does not immediately control EC coef finder 112 or delay coef finder 114 and read the computed parameters continuously; rather, EC coef finder 112 may compute EC coefficients at pre-determined intervals (or events) and feed them to EC actuator 104.

    [0059] Turning to FIGURE 7, FIGURE 7 is a simplified diagram illustrating example details of interface 110 according to an embodiment of communication system 10. Interface 110 includes seven channels, out of which five channels provide data from PHY chip 100 to DSP 116 (also referred to as Off-Chip Processor), and two channels provide data from DSP 116 to PHY chip 100. Data channels D1, D2, D3, D4 and D5 provide digitized forked signals for coefficient calculation; data channels D6 and D7 return computed coefficients to PHY chip 100.

    [0060] Turning to FIGURE 8, FIGURE 8 is a simplified diagram illustrating example details of a hardware implementation of DPD module 20 and EC module 22 in a single component (e.g., transceiver 18) according to an embodiment of communication system 10. Data over channels D1 and D2 comprise input and output data (e.g., signals 40 and 50 in FIGURE 2) obtained before and after amplifier 30 on TX path 24. Signals on a plurality of channels (e.g., channels 1 through N) are subjected to inverse fast fourier transform (IFFT), cyclic prefix addition (+CP), up sampling, and modulation. After modulation, modulated digital signal 40 is forked over channel D1 as real numbers to DPD coef finder 36. Modulated digital signal 40 is converted to analog domain by DAC 28, amplified by amplifier 30, forked into reference path 32 and converted into digital domain by ADC 34. Amplified digital signal 50 is provided as real numbers over channel D2 to DPD coef finder 36.

    [0061] In various embodiments, data over channels D1 and D2 have the same sampling clock rate. Although the data need not necessarily be synchronized in time (although they can be), a substantial portion (e.g., >90%) is overlapped in time to enable accurate DPD computation. The data over D1 and D2 may be in xx format with N (N>12) bit resolution, and data sizes greater than 1 Mb with continuous samples in time. In various embodiments, data over D1 and D2 are provided when a trigger is received by PHY chip 100. For slow tracking, the trigger may occur infrequently.

    [0062] Data over D3 comprises a base band portion of the signals traversing TX path 24. For example, BB signal 72 (see FIGURE 5) may be provided over channel D3. Each channel 1 to N may provide a separate base band signal over D3 to EC/delay coef finder 118. Note that for ease of illustration, EC coef finder 112 and delay coef finder 114 are collapsed into one logical block, namely, EC/delay coef finder 118. In hardware implementation, each of EC coef finder 112 and delay coef finder 114 may operate separately from each other.

    [0063] Signals on a plurality of channels (e.g., channels 1 through N) are subjected to inverse fast Fourier transform (IFFT) and cyclic prefix addition (+CP), and then forked over channel D3 as complex numbers to EC/delay coef finder 118. In a general sense, BB signal 72 over TX path 24 comprise complex numbers (e.g., (I, Q) clocked at 204.8Msps). Data over D3 is sent when a trigger received by PHY chip 100. The trigger may occur infrequently for slow tracking. In an example embodiment, data over D3 is in xx format with 16-bit resolution. Data size may be greater than 1Mb, with continuous samples in time. In general, data over D2 does not necessarily have to be synchronized with data over D4 and D5, although a substantial portion (e.g., >90%) of the data over these channels overlap in time.

    [0064] Data over channels D4 and D5 comprise the BB portion of each channel, taken, respectively, from reference path 32 and RX path 80. For example, digitized reference signal 87 and digitized RF signal 91 (see FIGURE 5) may be provided over channels D4 and D5, respectively. In some embodiments, whereas data over D3 comprise BB signals on DS channels, data over D4 and D5 comprise BB signals on US channels. Data over D4 and D5 are complex numbers (e.g., (I, Q) clocked at 102.4Msps). Data over D4 and D5 are sent when a trigger is received by PHY chip 100. The trigger may occur infrequently for slow tracking. In an example embodiment, data over D4 and D5 are in xx format with 16-bit resolution. Data size may be greater than 1Mb, with continuous samples in time. Data over D4 and D5 are provided as inputs to EC/delay coef finder 118. Note that data over D5 may be provided to both EC/delay coef finder 118 and EC actuator 104. Whereas EC/delay coef finder 118 uses the data over D5 on a periodic basis, EC actuator 104 processes the data in real time. Moreover, in many embodiments, EC/delay coef finder 118 is implemented in off-line DSP 116, whereas EC actuator 104 is implemented on-line in PHY chip 100.

    [0065] Data over D6 comprises DPD coefficients and channel coefficients (e.g., data 42 in FIGURE 2) provided to DPD actuator 26 from DPD coef finder 36. The DPD coefficients are provided in 2x1024 format: [x0,x1,...,x1023;y0,y1,...,y1023], where xi, i=0,1, ...,1023, are evenly spaced input signal level (real numbers), and yi, i=0,1,...,1024, are the pre-distorted input signal level (real numbers), representing the non-linearity of amplifier 30. DPD actuator 26 implements DPD algorithm, comprising a two-points linear interpolation (LUT) algorithm in an example embodiment, after modulation in RF domain. The 1024 points cover a peak-to-peak signal swing. Channel coefficients, representing channel effects on TX line 24, are provided in 1x16 format: [F0, F1, ..., F15]. The channel coefficients may be used on signals traversing TX path 24 according to standard (e.g., known, ordinary, usual, etc.) finite impulse response (FIR) techniques. For example, the output signal from DPD actuator 28 represents a weighted sum of the most recent input signals (e.g., the input signal as subjected to 16 taps (e.g., τ apart, where τ comprises a finite delay, and representing the 16 channel coefficients) and weighted respectively using the channel coefficients F0, F1, ... F15).

    [0066] Data over channel D7 comprises the EC coefficients and delay parameters of each channel in RX path 80 (e.g., representing the US channel in some embodiments) provided to EC actuator 104 from EC/delay coef finder 118. EC is performed by EC actuator 104 on a per channel basis after channelization into channels 1 through M on RX path 80. The EC coefficients are complex numbers, and delay parameters are in samples clocked at 102.4Msps in some embodiments. Note that the demodulation and down sampling operations in reference path 32 are identical as those in the RX path 80.

    [0067] Turning to FIGURE 9, FIGURE 9 is a simplified block diagram illustrating channel compensation in DPD actuator 26 according to an embodiment of communication system 10. DPD actuator 26 receives updated channel coefficients over channel D6: (F0, F1, ..., F15). Input signal subjected to LUT in DPD actuator 26 using DPD coefficients [x0,x1,...,x1023; y0,y1,...,y1023] is convoluted using channel coefficients [F0, F1, ... F15] to obtain pre-distorted signal (e.g., signal 44 in FIGURE 2) from DPD actuator 26.

    [0068] Turning to FIGURE 10, FIGURE 10 is a simplified block diagram illustrating example details of EC actuator 104 according to an embodiment of communication system 10. In an example embodiment, EC is implemented as two branch adaptive filters in EC actuator 104. Data over D7 is provided externally to EC actuator 104 of each channel as (C0, C1,...,CN-1; D0, D1, ..., DM-1; n_r, n_s). C0, C1, ... CN-1 represent channel coefficients on reference path 32; D0, D1, ... DM-1 represent channel coefficients on RX path 80; N represents the number of channels (or taps) on TX path 24 (e.g., DS channels); M represents the number of channels (or taps) on RX path 80 (e.g., US channels); n_r and n_s represent initial delay coefficients for FIR calculations on TX path 24 and RX path 80, respectively. In an example embodiment, N=512, M=64, n_r>=0, n_s>=0. In various embodiments, n_r, n_s depend on how well the reference and receiver signals are aligned inside PHY chip 100.

    [0069] In various embodiments, input signal S(t), received over channel D5 at EC actuator 104, and the reference signal R(t) received over channel D4 may be subjected to respective convolution functions using EC coefficients and delay parameters (C0, C1,...,CN-1; D0, D1, ..., DM-1; n_r, n_s) provided to EC actuator 104 over channel D7. For example, each convolution function may result in a corresponding signal comprising weighted time-shifted samples of the respective signals. The convoluted reference signal is cancelled (e.g., subtracted) from the convoluted input signal to obtain the desired output signal without interferences. These operations may be repeated at each subcarrier frequency (e.g., channel).

    [0070] Turning to FIGURE 11, FIGURE 11 is a simplified diagram illustrating example details of transceiver 18 having multiple ports according to an embodiment of communication system 10. Example PHY chip 100 may be used in a transceiver with two ports, Port A and Port B, with respective two-way combiners 79(A) and 79(B). Signals over Port A and Port B are split in the RF domain (as opposed to the digital domain). Due to the DPD and AIC algorithms used in the various embodiments, the TX data and RX data are mapped to each other one-to-one. In some embodiments, Port A and Port B transmit identical data, but may receive different signals. For example, signal S1 may be sent out through Port A and Port B; signals R1 and R2 may be received over Port A and Port B respectively. In other embodiments, Port A and Port B transmit and receive different signals. For example, signals S1 and S2 may be sent out through respective ports Port A and Port B; signals R1 and R2 may be received over Port A and Port B respectively. Additional two-way combiners 96(A) and 96(B) may be used to combine and/or split the US and DS signals in the RF domain. In such embodiments, the hardware circuitry for DPD and EC functionalities can be reused for Ports A and B.

    [0071] Turning to FIGURE 12, FIGURE 12 is a simplified diagram illustrating other example details of transceiver 18 having multiple ports according to an embodiment of communication system 10. Example PHY chip 100 may be used in a transceiver with two ports, Port A and Port B, with respective two-way combiners 79(A) and 79(B). Signals over Port A and Port B are split in the digital domain (as opposed to the RF domain). Due to the DPD and AIC algorithms used in the various embodiments, the TX data and RX data are mapped to each other one-to-one. In some embodiments, Port A and Port B transmit identical data, but may receive different signals. For example, signal S1 may be sent out through Port A and Port B; signals R1 and R2 may be received over Port A and Port B respectively. In other embodiments, Port A and Port B transmit and receive different signals. For example, signals S1 and S2 may be sent out through respective ports Port A and Port B; signals R1 and R2 may be received over Port A and Port B respectively.

    [0072] Due to the signal split in the digital domain, each of Port A and Port B has dedicated circuitry for performing real-time DPD and EC processing. Thus, Port A has associated dedicated DPD actuator 26(A), DAC 28(A), amplifier 30(A), etc.; Port B has associated dedicated DPD actuator 26(B), DAC 28(B), amplifier 30(B), etc. In other words, hardware for DPD and EC processing cannot be reused by Port A and Port B when signals are split in the digital domain.

    [0073] Turning to FIGURE 13, FIGURE 13 is a simplified diagram illustrating example details of another hardware implementation of DPD module 20 and EC module 22 in a single component (e.g., transceiver 18) according to an embodiment of communication system 10. According to the embodiment shown in the FIGURE, the RF reference signal for EC coefficient calculations may be determined indirectly, from signals on TX path 24 and RX path 80, without using reference path 32. Note that a similar hardware architecture may be employed in amplifiers 19 within the broad scope of the embodiments. In various embodiments, signals for DPD computations and EC computations may be uncoupled from each other in hardware.

    [0074] PHY chip 100 may include DS PHY module 102, DPD actuator 26, EC actuator 104, and US PHY module 106. Unlike the embodiment illustrated in FIGURE 6, reference path 32 is not connected to PHY chip 100; PHY chip 100 also does not include ADC 34, which may be separately provisioned in DSP 116, or outside either PHY chip 100 and DSP 116. In some embodiments, DAC 28 and ADC 92 may be located in PHY chip 100; in other embodiments, DAC 28 and ADC 92 may be located outside PHY chip 100. PHY chip 100 is electrically coupled to amplifier 30 and LNA 90 as indicated in the figure. In various embodiments, PHY chip 100 may be comprised in a FPGA integrated circuit.

    [0075] PHY chip 100 presents two data interfaces 108 and 110. Note that PHY chip 100 follows appropriate cable communication protocol specifications (e.g., ECMA, DOCSIS, etc.) and presents interfaces 108 and 110 accordingly. Interface 108 may be used to communicate with MAC components elsewhere in the system. For example, interface 108 may present appropriate ports for communicating data, control messages (e.g., to control operations of PHY chip 100) and management messages (e.g., to access registers in PHY chip 100) between PHY and MAC (e.g., located in CMTS 14) in cable network 12.

    [0076] Interface 110 may be used to communicate with DPD coef finder 36, EC coef finder 112 and delay coef finder 114 integrated into DSP 116. In various embodiments, a portion of AIC module 74 may be implemented as EC coef finder 112 and delay coef finder 114. Interface 110 may comprise ports for communicating data between PHY chip 100 and DSP 116. Interface 110 comprises a bi-directional interface for data communication between PHY chip 100 and off line DSP 116. Interface 110 carries data from PHY chip 100 to DSP 116 for coefficient calculations, and carries the updated coefficients back to PHY chip 100. In some embodiments, interface 110 may facilitate direct memory access (DMA), inter-process communication (IPC), and other fast communication mechanisms. PHY chip 100 may include various other components, which are used in full duplex communications, such as modulators, demodulators, ADCs, etc.

    [0077] Offline DSP 116 may perform various appropriate computations in non-real time (e.g., offline, asynchronously, periodically, etc.). For example, DPD actuator 26 stores DPD coefficients obtained from DPD coef finder 36 and predistorts signals on TX path 24 in real time, using the stored DPD coefficients. The predistorted signal is amplified by amplifier 30 on TX path 24 and transmitted out of transceiver 18. Similarly, EC actuator stores EC coefficients and processes signals on RX line 80 in real-time using the stored EC coefficients. Periodically (e.g., at preconfigured intervals or at preconfigured network conditions, or at preconfigured environmental conditions), certain signals are forked from TX path 24 and provided to DSP chip 116 over interface 110 (the forking is not shown in the figure). The forked signals are used by DPD coef finder 36 to generate updated DPD coef 42 off-line in non-real time. The forked signals are also used by EC coef finder 112 and delay coef finder 114 to generate updated EC coefficients.

    [0078] Turning to FIGURE 14, FIGURE 14 is a simplified diagram illustrating example details of interface 110 according to an embodiment of communication system 10. Interface 110 includes seven channels, out of which four channels provide data from PHY chip 100 to DSP 116, and three channels provide data from DSP 116 to PHY chip 100. Data channels D1, D2, D3 and D4 provide digitized forked signals for coefficient calculation; data channels C1, C2 and C3 return computed coefficients to PHY chip 100.

    [0079] Turning to FIGURE 15, FIGURE 15 is a simplified diagram illustrating example details of a hardware implementation of DPD module 20 and EC module 22 in a single component (e.g., transceiver 18) according to an embodiment of communication system 10. D1 and D2 comprise input and output data (e.g., signals 40 and 50 in FIGURE 2) obtained before and after amplifier 30 on TX path 24. Signals on a plurality of channels (e.g., channels 1 through N) are subjected to IFFT, CP addition (+CP), up sampling, and modulation. After modulation, modulated digital signal 40 is forked over channel D1 as real numbers to DPD coef finder 36.

    [0080] Modulated digital signal 40 is converted to analog domain by DAC 28, (which may be located outside PHY chip 100 in some embodiments) amplified by amplifier 30 (which may be located outside PHY chip 100 in some embodiments), forked into reference path 32 and converted into digital domain by ADC 34. Amplified digital signal 50 is provided as real numbers over channel D2 to DPD coef finder 36. In various embodiments, although the data over channels D1 and D2 need not necessarily be synchronized in time (although they can be), a substantial portion (e.g., >90%) is overlapped in time to enable accurate DPD computation. The data over D1 and D2 may be in xx format with N (N>12) bit resolution, and data sizes greater than 1 Mb with continuous samples in time. In various embodiments, data over D1 and D2 are provided when a trigger is received by PHY chip 100. For slow tracking, the trigger may occur infrequently.

    [0081] Signals traversing TX path 24 are forked out to a reference path 119 before DPD actuator 26. Note that reference path 119 differs from reference path 32, although they both fork over signals traversing TX path 24. Whereas reference path 119 forks signals prior to amplification at amplifier 30, reference path 32 forks signals after amplification at amplifier 30. The forked signals on reference path 119 are demodulated and downsampled substantially identically as signals traversing RX path 80. The BB portion of signals in reference path 119 are provided over channel D3 to EC/delay coef finder 118. Data over channel D4 comprises the BB portion of US channels, taken from RX path 80. In some embodiments, data over D3 comprises digital signals traversing TX path 24; data over D4 comprises echoes of the same over RX path 80 together with signals traversing RX path 80. Data over D3 and D4 are complex numbers (e.g., (I, Q) clocked at 102.4Msps). Data over D3 and D4 are sent to EC/delay coef finder 118 when a trigger is received by PHY chip 100. The trigger may occur infrequently for slow tracking. In an example embodiment, data over D3 and D4 are in xx format (e.g., GCP) with 16-bit resolution. Data size may be greater than 1Mb, with continuous samples in time. Data over D3 and D4 are provided as inputs to EC/delay coef finder 118 and EC actuator 104. Whereas EC/delay coef finder 118 uses the data on a periodic basis, EC actuator 104 processes the data in real time. Moreover, in many embodiments, EC/delay coef finder 118 is implemented in off-line DSP 116, whereas EC actuator 104 is implemented on-line in PHY chip 100.

    [0082] Data over C1 comprises DPD coefficients (e.g., portion of data 42 in FIGURE 2) provided to DPD actuator 26 from DPD coef finder 36. The DPD coefficients are provided in 2x1024 format: [x0, x1, ..., x1023;y0, y1, ..., y1023], where xi, i=0,1, ...,1023, are evenly spaced input signal level (real numbers), and yi, i=0,1,...,1024, are the pre-distorted input signal level (real numbers). DPD actuator 26 implements DPD algorithm, comprising a two-points linear interpolation (LUT) algorithm in an example embodiment, after modulation in RF domain. The 1024 points cover a peak-to-peak signal swing. Channel coefficients are provided over channel C2 in 1x16 format: [C20, C21, ..., C2m-1, m], where 0 ≤ m ≤ 16. The channel coefficients, representing the channel effects on TX line 24 may be used on signals traversing TX path 24 according to standard (e.g., known, ordinary, usual, etc.) FIR techniques. For example, the pre-distorted signal generated by LUT using DPD coefficients obtained over C1 may be subjected to FIR (e.g., convoluted) using coefficients obtained over C2 and compared with the original transmitted signal delayed by m times (0 ≤ m ≤ 16).

    [0083] Data over channel C3 comprises the EC coefficients and delay parameters (e.g., (C0, C1, ... CN-1, n_s); N=400) of each channel in RX path 80 (e.g., representing the US channel in some embodiments) provided to EC actuator 104 from EC/delay coef finder 118. EC is performed by EC actuator 104 on a per channel basis after channelization into channels 1 through M on RX path 80. The EC coefficients are complex numbers, and delay parameters are in samples (e.g., clocked at 102.4Msps in some embodiments). Note that the demodulation and down sampling operations in reference path 32 are identical as those in the RX path 80.

    [0084] In some embodiments, an analog EC module 120 may be provisioned in transceiver 18, either inside or outside PHY chip 100 according to convenience on RX path 80. An assumption of analog echo cancellation is that DACs have a better dynamic range than ADCs. For example, currently available DACs have one to two bit better dynamic range than ADCs, resulting in six to 10dB better performance. The AIC algorithm used for analog EC is similar to that used in digital EC, except that the reference TX signal in analog EC adds noise (e.g., any noise 6dB below a predetermined threshold typically adds 1 dB to overall noise). Given a particular DAC clock rate (e.g., of greater than 3Gbps), analog EC can only cancel out the first one or two dominant interference components (e.g., 10 dB or so interference suppression). Note that any known analog echo cancellation circuitry may be implemented in Analog EC module 120. For example, Analog EC module 120 may include a DSP, a DAC and LNA 90, which may operate together to remove influence of certain TX signals from RX path 80.

    [0085] Turning to FIGURE 16, FIGURE 16 is a simplified block diagram illustrating channel compensation in DPD actuator 26 according to an embodiment of communication system 10. DPD actuator 26 receives updated channel coefficients over channel C2: (C20, C21, ..., C215). S0 is the original transmitted signal, ΔS is the delta (pre-distortion) signal generated by pre-distortion (e.g., using LUT techniques) in DPD actuator 26 using DPD coefficients obtained over channel C1: ΔS=LUT(S0) - S0.

    [0086] Turning to FIGURES 17A and 17B, FIGURES 17A and 17B are simplified block diagrams illustrating echo cancellation operations of EC actuator 104. EC is performed on a per US channel basis after channelization. The demodulation and down sampling operations in reference path 32 are identical as those in receiver path 80. EC is implemented in the form of adaptive filters, with delays and filter coefficients provided externally through channel C3 from DSP 116. In FIGURE 17A, delay n_s>0, whereas in FIGURE 17B, n_s<0.

    [0087] In various embodiments, where n_s>0, the reference signal received over channel D3 may be subjected to a convolution function using EC coefficients and delay parameters (C30, C31,...,C3N-1; n_s) provided to EC actuator 104 over channel C3. For example, the convolution function may result in a corresponding signal comprising weighted time-shifted samples of the reference signal. The convoluted reference signal is cancelled (e.g., subtracted) from the input signal received over channel D4 to obtain the desired output signal without interferences. These operations may be repeated at each subcarrier frequency (e.g., channel).

    [0088] In various embodiments, where n_s<0, the input signal received over channel D4 may be subjected to a convolution function using EC coefficients and delay parameters (C30, C31,...,C3N-1; n_s) provided to EC actuator 104 over channel C3. For example, the convolution function may result in a corresponding signal comprising weighted time-shifted samples of the input signal. The convoluted input signal is cancelled (e.g., subtracted) from the reference signal received over channel D3 to obtain the desired output signal without interferences. These operations may be repeated at each subcarrier frequency (e.g., channel).

    [0089] Turning to FIGURE 18, FIGURE 18 is a simplified block diagram illustrating example details of transceiver 18 having multiple ports according to an embodiment of communication system 10. Example PHY chip 100 may be used in a transceiver with two ports, Port A and Port B, with respective two-way combiners 79(A) and 79(B). Signals over Port A and Port B are split in the RF domain (as opposed to the digital domain). There is one-to-one mapping between TX digital input and output for closed-loop DPD. On the other hand, RF sampling ADC can be shared among multiple ports. According to an example embodiment, transmitted signals sent out over TX path 24 are split in the RF domain at combiner/splitter 96 into Port A and Port B. Received signals from Port A and Port B are added at adder 122 in RX path 80. Thus, with minimal hardware change, a majority of the hardware usable for single port transceivers can be reused for multi-port transceivers.

    [0090] Turning to FIGURE 19, FIGURE 19 is a simplified diagram illustrating other example details of transceiver 18 having multiple ports according to an embodiment of communication system 10. Example PHY chip 100 may be used in a transceiver with two ports, Port A and Port B, with respective two-way combiners 79(A) and 79(B). Signals over Port A and Port B are split in the digital domain (as opposed to the RF domain). Due to the DPD and AIC algorithms used in the various embodiments, the TX data and RX data are mapped to each other one-to-one.

    [0091] Despite the signal split in the digital domain, certain hardware components of single port transceivers may be reused in TX signal path 24 of multi-port transceivers, whereas substantially all hardware components in RX path 80 may be reused. For example, DPD coefficient calculation for signals S1 and S2 may be accomplished by a switch 124, which switches between reference paths 32(A) and 32(B), respectively for corresponding DPD coefficient calculations.

    [0092] Turning to FIGURE 20, FIGURE 20 is a simplified flow diagram illustrating example operations 200 that may be associated with an embodiment of communication system 10. At 202, DPD coef finder 36 receives a first signal (tx_rf0) and a second signal (tx_rf), the first signal being transformed into the second signal after being passed in sequence through pre-network circuit 56, amplifier 30, and post-network circuit 58, wherein pre-network circuit 56 and post-network circuit 58 introduces distortions due to channel effects (H1 and H2, respectively) and amplifier 30 introduces distortions due to nonlinearity. At 204, DPD coef finder 36 synchronizes the first signal with the second signal to remove the channel effects H1 and H2 of corresponding pre-network circuit 56 and post network circuit 58. At 206, DPD coef finder 36 determines a first vector (f-1(.)) representing an inverse of the nonlinearity of amplifier 30. At 208, DPD coef finder 36 determines a second vector (W1) representing an inverse of the channel effects H1 of pre-network circuit 56.

    [0093] At 210, DPD coef finder 36 provides DPD coef 42 to DPD actuator 26, DPD coef 42 comprising the first vector and the second vector. In some embodiments (e.g., FIGURE 8), the first vector and second vector are provided over the same channel D6; in other embodiments (e.g., FIGURE 15), the first vector and second vector are provided over different channels, namely C1 and C2. DPD actuator 26 predistorts input signals to DPD module 20 using DPD coef 42, such that corresponding output signals from DPD module 20 retains linearity relative to the input signals.

    [0094] Turning to FIGURE 18, FIGURE 18 is a simplified flow diagram illustrating example operations 200 that may be associated with DPD module 20 according to embodiments of communication system 10. At 202, DPD coef finder 36 receives a first signal (e.g., signal 40 in FIGURE 2; tx_rf0 in FIGURE 3 and FIGURE 4) and a second signal (e.g., signal 50 in FIGURE 2; tx_rf in FIGURE 3 and FIGURE 4), the first signal being transformed into the second signal after being passed in sequence through pre-network circuit 56, amplifier 30, and post-network circuit 58, wherein pre-network circuit 56 and post-network circuit 58 introduces distortions due to channel effects (H1 and H2, respectively) and amplifier 30 introduces distortions due to nonlinearity (see, e.g., FIGURE 3 and FIGURE 4). In various embodiments (e.g., FIGURE 8 and FIGURE 15), the first signal is received over channel D1 and the second signal is received over channel D2 from PHY chip 100.

    [0095] At 204, DPD coef finder 36 synchronizes the first signal with the second signal to remove the channel effects H1 and H2 of corresponding pre-network circuit 56 and post network circuit 58. At 206, DPD coef finder 36 determines a first vector (e.g., f-1(.) of FIGURE 3 and FIGURE 4) representing an inverse of the nonlinearity of amplifier 30. At 208, DPD coef finder 36 determines a second vector (e.g., W1 of FIGURE 3 and FIGURE 4) representing an inverse of the channel effects H1 of pre-network circuit 56. At 210, DPD coef finder 36 provides DPD coef 42 to DPD actuator 26, DPD coef 42 comprising the first vector and the second vector. At 212, DPD actuator 26 predistorts input signal 40 using DPD coef 42, such that corresponding output signal 48 from DPD module 20 retains linearity relative to input signal 40.

    [0096] Turning to FIGURE 19, FIGURE 19 is a simplified flow diagram illustrating example operations 200 that may be associated with EC module 22 according to embodiments of communication system 10. At 252, BB signal 72 is generated on a first path, such as TX path 24, of an integrated circuit (e.g., PHY chip 100) in a network element, such as transceiver 18. As used herein, the term "network element" encompasses a transceiver (e.g., transceiver 18), an amplifier (e.g., amplifier 19), a cable modem (e.g., cable modem 16) or other network component of cable network 12 that supports full duplex communication and includes at least one non-linear amplifier, and through which signals flow in an upstream direction and downstream direction in overlapping frequency ranges. At 254, BB signal 72 is provided to an off-line signal processor (e.g., DSP 116) over a suitable interface, such as channel D3. In some embodiments (see, e.g., FIGURE 5), BB signal 72 may be provided after a data signal is subjected to IFFT and CP addition; in other embodiments (see, e.g., FIGURE 15), BB signal 72 may be provided after demodulation and down sampling.

    [0097] At 256, a first RF signal 78 on TX path 24 is reflected into a second path, such as RX path 80, and interferes with received signal 82 on RX path 80, generating a second RF signal 84 on RX path 80. At 258, second RF signal 84 is provided, as input to DSP 116 (e.g., after suitably amplifying and converting to digital domain) over a suitable interface, such as channel D5 (e.g., FIGURE 5), or D4 (e.g., FIGURE 15). At 260, second RF signal 84 is reflected into TX path 24, and interferes with first RF signal 78, generating RF reference signal 86 on TX path 24. At 262, RF reference signal 86 is bifurcated into reference path 32 and provided to DSP 116 (e.g., after suitably amplifying and converting to digital domain) over a suitable interface, such as channel D4 (e.g., FIGURE 8). In some embodiments (e.g., FIGURE 15), RF reference signal 86 is integrated with other signals (e.g., BB signal 72) and provided over channel D3.

    [0098] At 264, DSP 116 computes EC coefficients and delay parameters from BB signal 72, RF reference signal 86 and second RF signal 84. For example, in some embodiments, (see, e.g., FIGURE 8), DSP 116 computes EC coefficients and delay parameters from data provided over channels D3, D4 and D5; in other embodiments (see, e.g., FIGURE 15), DSP 116 computes EC coefficients and delay parameters from data provided over channels D3 and D4. At 266, EC actuator 104 receives the calculated EC coefficients and delay parameters over an appropriate interface, such as channel D7 (e.g., FIGURE 8) or C3 (e.g., FIGURE 15). At 268, EC actuator 104 reduces interferences in second RF signal 84 in real-time from reflections of first RF signal 78 using the EC coefficients and delay parameters.

    [0099] Turning to FIGURE 22, FIGURE 22 is a simplified flow diagram illustrating example operations 280 that may be associated with embodiments of communication system 10. At 282, signal samples are provided by PHY chip 100 to signal processor, DSP 116. The signal samples may be provided upon a trigger (e.g., timer), or at specified intervals (e.g., periodically), or network conditions (e.g., traffic congestion, etc.). At 283, DSP 116 calculates DPD coefficients, EC coefficients and delay parameters from the signal samples. At 284, DPD coefficients, EC coefficients and delay parameters are received at PHY chip 100 from DSP 116. At 286, DPD actuator 26 in PHY chip 100 predistorts signals on TX path 24 using the DPD coefficients. At 288, EC actuator 104 reduces interferences in signals on RX path 80 using the EC coefficients and the delay parameters. Note that except for operation 283 performed at DSP 116, the operations are performed in real time at PHY chip 100.

    [0100] In example implementations, at least some portions of the activities outlined herein may be implemented in software in, for example, DPD module 20, EC module 22, and transceiver 18. In some embodiments, one or more of these features may be implemented in hardware, provided external to these elements, or consolidated in any appropriate manner to achieve the intended functionality. The various components may include software (or reciprocating software) that can coordinate in order to achieve the operations as outlined herein. In still other embodiments, these elements may include any suitable algorithms, hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof.

    [0101] Furthermore, DPD module 20, EC module 22, and transceiver 18 described and shown herein (and/or their associated structures) may also include suitable interfaces for receiving, transmitting, and/or otherwise communicating data or information in a network environment.

    [0102] In some of example embodiments, one or more memory elements (e.g., memory element comprised in DPD actuator 26, DPD coef finder 36, EC coef finder 112, delay coef finder 114, EC actuator 104) can store data used for the operations described herein. This includes the memory element being able to store instructions (e.g., software, logic, code, etc.) in non-transitory media, such that the instructions are executed to carry out the activities described in this Specification. A processor can execute any type of instructions associated with the data to achieve the operations detailed herein in this Specification. In one example, processors (e.g., processor comprised in DPD actuator 26, DPD coef finder 36) could transform an element or an article (e.g., data, or electrical signals) from one state or thing to another state or thing. In another example, the activities outlined herein may be implemented with fixed logic or programmable logic (e.g., software/computer instructions executed by a processor) and the elements identified herein could be some type of a programmable processor, programmable digital logic (e.g., a field programmable gate array (FPGA), an erasable programmable read only memory (EPROM), an electrically erasable programmable read only memory (EEPROM)), an ASIC that includes digital logic, software, code, electronic instructions, flash memory, optical disks, CD-ROMs, DVD ROMs, magnetic or optical cards, other types of machine-readable mediums suitable for storing electronic instructions, or any suitable combination thereof.

    [0103] These devices may further keep information in any suitable type of non-transitory storage medium (e.g., random access memory (RAM), read only memory (ROM), field programmable gate array (FPGA), erasable programmable read only memory (EPROM), electrically erasable programmable ROM (EEPROM), etc.), software, hardware, or in any other suitable component, device, element, or object where appropriate and based on particular needs. The information being tracked, sent, received, or stored in communication system 10 could be provided in any database, register, table, cache, queue, control list, or storage structure, based on particular needs and implementations, all of which could be referenced in any suitable timeframe. Any of the memory items discussed herein should be construed as being encompassed within the broad term 'memory element.' Similarly, any of the potential processing elements, modules, and machines described in this Specification should be construed as being encompassed within the broad term 'processor.'

    [0104] It is also important to note that the operations and steps described with reference to the preceding FIGURES illustrate only some of the possible scenarios that may be executed by, or within, the system.

    [0105] An example apparatus for supporting digital pre-distortion (DPD) and full duplex (FDX) in cable network environments is provided and includes a first path for signals being transmitted out of the apparatus, a second path for signals being received into the apparatus, a DPD actuator located on the first path, an amplifier located on the first path, an echo cancellation (EC) actuator located on the second path, and a data interface including a plurality of channels connecting the apparatus to a signal processor. DPD coefficients, EC coefficients and delay parameters are provided over the data interface from the signal processor to the apparatus. The DPD actuator predistorts signals on the first path using the DPD coefficients compensating for distortions introduced by the amplifier, and the EC actuator reduces interferences in signals on the second path using the EC coefficients and the delay parameters, facilitating FDX communication by the apparatus.


    Claims

    1. A cable network apparatus, comprising:

    a first, transmission, path (24) configured to supply output signals to a transmitter of the apparatus;

    a second, receive, path (80) configured to receive input signals (40) from a receiver of the apparatus;

    said transmission path comprising

    a digital pre-distortion, DPD, actuator (26) configured to pre-distort input signals on the transmission path using DPD coefficients,

    a pre-network circuit (56) connected to an output of the DPD actuator (26), an amplifier (30) connected to an output of the pre-network circuit (56), and a post-network circuit (58) connected to an output of the amplifier (30) to supply amplified signals to the transmitter;

    an echo cancellation, EC, actuator (104) located on the receive path and configured to implement echo cancellation by using EC coefficients to suppress signals transmitted by the transmitter that are coupled back to the receiver; and

    a data interface (110) comprising a plurality of channels connecting the apparatus to a signal processor (116), wherein the signal processor comprises a DPD coefficient finder (36) configured:

    to sample the input signal before and after amplification to provide a sampled input signal (tx_rf0) and a sampled output signal (tx_rf);

    to represent the sampled output signal (tx_rf), as:



    where H1 represents the channel effects of the pre-network circuit (56), H2 represents the channel effects of the post-network circuit (58), f(.) is a non-linear function representing the non-linearity of the amplifier (30), and

    represents a convolution;

    to synchronize the sampled output signal (tx_rf) and the sampled input signal (tx_rf0) in time to provide an indication of the non-linear function (f(.)) by finding a vector w that minimizes the following objective function:



    where w represents the combination of the channel effects (H1 and H2) of the pre-network circuit (56) and the post-network circuit (58) and wherein any difference between wtx_fr0 and tx_rf represents the non-linearity of the amplifier;

    to subject the sampled input signal (tx_rf) to a first vector (f-1(.)) representing the inverse of the non-linear function (f(.)) to provide a reference (tx_rf1);

    to convolve (64) the reference (tx_rf1) with a second vector (W1);

    to introduce (66) a time delay (τ) to provide a delayed sampled input signal (tx_rf0(t-τ)), wherein the time delay τ is based on an estimation of a delay between tx_rf1W1 and tx_rf;

    to perform optimization (62) by minimizing the difference between the sampled output signal (tx_rf) and the delayed sampled input signal (tx_rf0(t-τ)) by determining an objective function



    wherein, because the objective function can also be written as

    the optimization results in the second vector (W1) which approximates the inverse (H1-1) of the channel effect (H1) of the pre-network circuit (56); and

    to provide to the DPD actuator (26) the DPD coefficients (42) comprising the first vector (f-1(.)) and the second vector (W1),

    wherein the output signals retain linearity relative to the input signals.


     
    2. The apparatus of Claim 1, wherein the signal processor (116) further comprises an EC coefficient finder (112), and a delay coefficient finder (114), and wherein the DPD coefficient finder (36) is further arranged to compute the DPD coefficients, wherein the EC coefficient finder (112) is arranged to compute the EC coefficients and the delay coefficient finder (114) is arranged to compute the delay parameters.
     
    3. The apparatus of Claim 1 or 2, wherein the apparatus is arranged to process signals in real time in digital domain, wherein the processing comprises predistorting signals on the first path by the DPD actuator (26), wherein the processing further comprises reducing interferences in signals on the second path by the EC actuator (104).
     
    4. The apparatus of Claim 1, 2 or 3, wherein the signal processor (116) is arranged to periodically sample the signals traversing the apparatus and to compute the DPD coefficients, EC coefficients and delay parameters offline.
     
    5. The apparatus of any preceding claim, wherein the data interface (110) comprises at least four channels providing data from the apparatus to the signal processor, wherein the at least four channels comprise: a first channel (D1) providing samples of the signals into the DPD actuator on the first path, a second channel (D2) providing samples of the signals out of the amplifier on the first path, a third channel (D3) providing a base band (BB) portion of the signals on the first path, and a fourth channel (D4) providing a BB portion of signals on the second path.
     
    6. The apparatus of Claim 5, wherein the data interface (110) comprises at least three channels providing data from the signal processor to the apparatus, wherein the three channels comprise: a fifth channel (C1) providing a first portion of the DPD coefficients computed using the data provided over the first channel and the second channel, a sixth channel (C2) providing a second portion of the DPD coefficients computed using the data provided over the first channel and the second channel, and a seventh channel (C3) providing the EC coefficients and the delay parameters using the data provided over the third channel and the fourth channel.
     
    7. The apparatus of any of claims 1 to 4, further comprising an ADC located on a third path between an output of the amplifier (30) and the EC actuator (104), optionally wherein the data interface (110) comprises at least five channels providing data from the apparatus to the signal processor, wherein the five channels comprise: a first channel (D1) providing samples of the signals into the DPD actuator on the first path, a second channel (D2) providing samples of the signals out of the amplifier on the first path, a third channel (D3) providing a BB portion of the signals on the first path, a fourth channel (D4) providing a BB portion of signals on the third path, and a fifth channel (D5) providing a BB portion of signals on the second path, optionally wherein the data interface comprises at least two channels providing data from the signal processor to the apparatus, wherein the two channels comprise: a sixth channel (D6) providing the DPD coefficients computed using the data provided over the first channel and the second channel, and a seventh channel (D7) providing the EC coefficients and the delay parameters using the data provided over the third channel, the fourth channel and the fifth channel.
     
    8. The apparatus of any preceding claim, further comprising: a combiner (79) connected to the first path on a first port of the combiner (79), to the second path on a second port of the combiner (79) and to a coaxial cable on a third port of the combiner (79), the coaxial cable connecting the apparatus to the cable network, wherein the coaxial cable is arranged to transmit signals on the first path out of the apparatus , wherein the coaxial cable is arranged to receive the signals on the second path into the apparatus over.
     
    9. The apparatus of any preceding claim, further comprising:

    a digital-to-analog converter, DAC, (28) located between the DPD actuator (26) and the amplifier (30) on the first path, wherein the DAC (28) is arranged to convert the predistorted signals from the DPD actuator (26) from digital domain to analog domain; and

    an analog-to-digital converter, ADC, (34) located on the second path, wherein the ADC (34) is arranged to convert signals to the EC actuator (104) from analog domain to digital domain.


     
    10. A method executed by a cable network apparatus, comprising:

    a first, transmission, path (24) configured to supply output signals to a transmitter of the apparatus;

    a second, receive, path (80) configured to receive input signals (40) from a receiver of the apparatus;

    said transmission path comprising

    a digital pre-distortion, DPD, actuator (26) configured to pre-distort input signals on the transmission path using DPD coefficients,

    a pre-network circuit (56) connected to an output of the DPD actuator (26), an amplifier (30) connected to an output of the pre-network circuit (56), and a post-network circuit (58) connected to an output of the amplifier (30) to supply amplified signals to the transmitter;

    an echo cancellation, EC, actuator (104) located on the receive path and configured to implement echo cancellation by using EC coefficients to suppress signals transmitted by the transmitter that are coupled back to the receiver; and

    a data interface (110) comprising a plurality of channels connecting the apparatus to a signal processor (116), wherein the signal processor comprises a DPD coefficient finder (36), wherein the method comprises:

    sampling the input signal before and after amplification to provide a sampled input signal (tx_rf0) and a sampled output signal (tx_rf);

    representing the sampled output signal (tx_rf), as:



    where H1 represents the channel effects of the pre-network circuit (56), H2 represents the channel effects of the post-network circuit (58), f(.) is a non-linear function representing the non-linearity of the amplifier (30), and * represents a convolution;

    synchronizing the sampled output signal (tx_rf) and the sampled input signal (tx_rf0) in time to provide an indication of the non-linear function (f(.)) by finding a vector w that minimizes the following objective function:



    where w represents the combination of the channel effects (H1 and H2) of the pre-network circuit (56) and the post-network circuit (58) and wherein any difference between wtx_fr0 and tx_rf represents the non-linearity of the amplifier;

    subjecting the sampled input signal (tx_rf) to a first vector (f-1(.)) representing the inverse of the non-linear function (f(.)) to provide a reference (tx_rf1);

    to convolve (64) the reference (tx_rf1) with a second vector (W1);

    introducing (66) a time delay (τ) to provide a delayed sampled input signal (tx_rf0(t-τ)), wherein the time delay τ is based on an estimation of a delay between tx_rf1W1 and tx_rf;

    performing optimization (62) by minimizing the difference between the sampled output signal (tx_rf) and the delayed sampled input signal (tx_rf0(t-τ)) by determining an objective function



    wherein, because the objective function can also be written as

    the optimization results in the second vector (W1) which approximates the inverse (H1-1) of the channel effect (H1) of the pre-network circuit (56); and

    providing to the DPD actuator (26) the DPD coefficients (42) comprising the first vector (f-1(.)) and the second vector (W1),

    wherein the output signals retain linearity relative to the input signals.


     
    11. The method of Claim 10, wherein the data interface (110) comprises at least four channels providing data from the integrated circuit to the signal processor, wherein the at least four channels comprise: a first channel (D1) providing samples of the signals into the DPD actuator on the first path, a second channel (D2) providing samples of the signals out of the amplifier on the first path, a third channel (D3) providing a base band (BB) portion of the signals on the first path, and a fourth channel (D4) providing a BB portion of signals on the second path, optionally wherein the data interface comprises at least three channels providing data from the signal processor to the integrated circuit, wherein the three channels comprise: a fifth channel (C1) providing a first portion of the DPD coefficients computed using the data provided over the first channel and the second channel, a sixth channel (C2) providing a second portion of the DPD coefficients computed using the data provided over the first channel and the second channel, and a seventh channel (C3) providing the EC coefficients and the delay parameters using the data provided over the third channel and the fourth channel.
     
    12. The method of Claim 10 or 11, wherein the data interface (110) comprises at least five channels providing data from the integrated circuit to the signal processor, wherein the five channels comprise: a first channel (D1) providing samples of the signals into the DPD actuator on the first path, a second channel (D2) providing samples of the signals out of the amplifier on the first path, a third channel (D3) providing a BB portion of the signals on the first path, a fourth channel (D4) providing a BB portion of signals on a third path, and a fifth channel (D5) providing a BB portion of signals on the second path, wherein an ADC is located on the third path between an output of the amplifier and the EC actuator.
     
    13. The method of Claim 12, wherein the data interface (110) comprises at least two channels providing data from the signal processor to the apparatus, wherein the two channels comprise: a sixth channel (D6) providing the DPD coefficients computed using the data provided over the first channel and the second channel, and a seventh channel (D7) providing the EC coefficients and the delay parameters using the data provided over the third channel, the fourth channel and the fifth channel.
     
    14. The method of claim 10, 11, 12 or 13, wherein:

    the signal processor (116) computes the DPD coefficients, EC coefficients and delay parameters using the samples; and/or

    the samples are provided to the signal processor when a trigger is received by the integrated circuit, optionally wherein the predistorting by the DPD actuator and the reducing interferences by the EC actuator are performed in real time as the signals traverse the integrated circuit and/or wherein the signal processor periodically computes the DPD coefficients, the EC coefficients and the delay parameters offline using the samples.


     
    15. A computer programming product, such as a non-transitory tangible computer-readable media, that includes instructions for execution, which when executed by an integrated circuit, is operable to perform operations comprising:
    the method of any of claims 10 to 14.
     


    Ansprüche

    1. Kabelnetzwerkvorrichtung, die Folgendes umfasst:

    einen ersten Pfad, Sendepfad (24), konfiguriert zum Zuführen von Ausgangssignalen zu einem Sender der Vorrichtung;

    einen zweiten Pfad, Empfangspfad (80), konfiguriert zum Empfangen von Eingangssignalen (40) von einem Empfänger der Vorrichtung;

    wobei der genannte Sendepfad Folgendes umfasst:

    einen DPD-(Digital Pre-Distortion)-Aktuator (26), konfiguriert zum Vorverzerren von Eingangssignalen auf dem Sendepfad mittels DPD-Koeffizienten,

    eine Vor-Netzwerk-Schaltung (56), die mit einem Ausgang des DPD-Aktuators (26) verbunden ist,

    einen Verstärker (30), der mit einem Ausgang der Vor-Netzwerk-Schaltung (56) verbunden ist, und

    eine Nach-Netzwerk-Schaltung (58), die mit einem Ausgang des Verstärkers (30) verbunden ist, um dem Senderverstärkte Signale zuzuführen;

    einen Echounterdrückungs-(EC)-Aktuator (104), der sich auf dem Empfangspfad befindet und zum Implementieren von Echounterdrückung anhand von EC-Koeffizienten zum Unterdrücken von vom Sender gesendeten Signalen konfiguriert ist, die zum Empfänger zurückgekoppelt werden; und

    eine Datenschnittstelle (110), die mehrere Kanäle umfasst, die die Vorrichtung mit einem Signalprozessor (116) verbinden, wobei der Signalprozessor einen DPD-Koeffizientensucher(36) umfasst, konfiguriert zum:

    Abtasten des Eingangssignals vor und nach der Verstärkung zum Bereitstellen eines abgetasteten Eingangssignals (tx_rf0) und eines abgetasteten Ausgangssignals (tx_rf);

    Darstellen des abgetasteten Ausgangssignals (tx_rf)als:



    wobei H1 die Kanaleffekte der Vor-Netzwerk-Schaltung (56) repräsentiert, H2 die Kanaleffekte der Nach-Netzwerk-Schaltung (58) repräsentiert, f(.) eine nichtlineare Funktion ist, die die Nichtlinearität des Verstärkers (30) repräsentiert, und * eine Faltung repräsentiert;

    zeitlichen Synchronisieren des abgetasteten Ausgangssignals (tx_rf) und des abgetasteten Eingangssignals (tx_rf0), um eine Anzeige der nichtlinearen Funktion (f(.)) durch Finden eines Vektors w bereitzustellen, derdie folgende objektive Funktion minimiert:



    wobei w die Kombination der Kanaleffekte (H1 und H2) der Vor-Netzwerk-Schaltung (56) und der Nach-Netzwerk-Schaltung (58) repräsentiert und wobei jede Differenz zwischen wtx_fr0 und tx_rf die Nichtlinearität des Verstärkers repräsentiert;

    Unterziehen desabgetasteten Eingangssignals (tx_rf) einem ersten Vektor (f-1(.)), der die Umkehr der nichtlinearen Funktion (f(.)) repräsentiert, um eine Referenz (tx_rf1) bereitzustellen;

    Falten (64) der Referenz(tx_rf1) mit einem zweiten Vektor(W1);

    Einführen (66) einer Zeitverzögerung (τ) zum Bereitstellen eines verzögerten abgetasteten Eingangssignals (tx_rf0(t-x)), wobei die Zeitverzögerung τ auf einer Schätzung einer Verzögerung zwischen tx_rf1W1 und tx_rf basiert;

    Durchführen von Optimierung (62) durch Minimieren der Differenz zwischen dem abgetasteten Ausgangssignal (tx_rf) und dem verzögerten abgetasteten Eingangssignal (tx_rf0(t-τ)) durch Bestimmen einer objektiven Funktion:




    wobei, da die objektive Funktion auch geschrieben werden kann als:

    die Optimierung im zweiten Vektor(W1) resultiert, der die Umkehr(H1-1) des Kanaleffekts(H1) der Vor-Netzwerk-Schaltung(56) approximiert; und

    Bereitstellen, dem DPD-Aktuator (26), der DPD-Koeffizienten (42), die den ersten Vektor (f-1(.)) und den zweiten Vektor(W1) umfassen,

    wobei die Ausgangssignale Linearität relativ zu den Eingangssignalen beibehalten.


     
    2. Vorrichtung nach Anspruch 1, wobei der Signalprozessor (116) ferner einen EC-Koeffizientensucher(112) und einen Verzögerungskoeffizientensucher(114) umfasst und wobei der DPD-Koeffizientensucher (36) ferner zum Berechnen der DPD-Koeffizienten ausgelegt ist, wobei der EC-Koeffizientensucher (112) zum Berechnen der EC-Koeffizienten ausgelegt ist und der Verzögerungskoeffizientensucher (114) zum Berechnen der Verzögerungsparameter ausgelegt ist.
     
    3. Vorrichtung nach Anspruch 1 oder 2, wobei die Vorrichtung zum Verarbeiten von Signalen in Echtzeit in der digitalen Domäne ausgelegt ist, wobei die Verarbeitung das Vorverzerren von Signalen auf dem ersten Pfad durch den DPD-Aktuator (26) beinhaltet, wobei das Verarbeiten ferner das Reduzieren von Interferenzen in Signalen auf dem zweiten Pfad durch den EC-Aktuator (104) beinhaltet.
     
    4. Vorrichtung nach Anspruch 1, 2 oder 3, wobei der Signalprozessor (116) zum periodischen Abtasten der die Vorrichtung durchlaufenden Signale und zum Offline-Berechnen der DPD-Koeffizienten, EC-Koeffizienten und Verzögerungsparameter ausgelegt ist.
     
    5. Vorrichtung nach einem vorherigen Anspruch, wobei die Datenschnittstelle (110) wenigstens vier Kanäle umfasst, die dem Signalprozessor Daten von der Vorrichtung bereitstellen, wobei die wenigstens vier Kanäle Folgendes umfassen: einen ersten Kanal (D1) zum Bereitstellen, dem DPD-Aktuator, von Samples der Signale auf dem ersten Pfad, einen zweiten Kanal (D2) zum Bereitstellen von Samples der Signale aus dem Verstärker auf dem ersten Pfad, einen dritten Kanal (D3) zum Bereitstellen eines Basisband-(BB)-Teils der Signale auf dem ersten Pfad und einen vierten Kanal (D4) zum Bereitstellen eines BB-Teils von Signalen auf dem zweiten Pfad.
     
    6. Vorrichtung nach Anspruch 5, wobei die Datenschnittstelle (110) wenigstens drei Kanäle zum Bereitstellen, der Vorrichtung, von Daten von dem Signalprozessor umfasst, wobei die drei Kanäle Folgendes umfassen: einen fünften Kanal (C1) zum Bereitstellen eines ersten Teils der DPD-Koeffizienten, berechnet anhand der über den ersten Kanal und den zweiten Kanal bereitgestellten Daten, einen sechsten Kanal (C2) zum Bereitstellen eines zweiten Teils der DPD-Koeffizienten, berechnet anhand der über den ersten Kanal und den zweiten Kanal bereitgestellten Daten, und einen siebten Kanal (C3) zum Bereitstellen der EC-Koeffizienten und der Verzögerungsparameter anhand der über den dritten Kanal und den vierten Kanal bereitgestellten Daten.
     
    7. Vorrichtung nach einem der Ansprüche 1 bis 4, die ferner einen ADC umfasst, der sich auf einem dritten Pfad zwischen einem Ausgang des Verstärkers (30) und dem EC-Aktuator (104) befindet, wobei die Datenschnittstelle (110) optional wenigstens fünf Kanäle zum Bereitstellen, dem Signalprozessor, von Daten von der Vorrichtung umfasst, wobei die fünf Kanäle Folgendes umfassen: einen ersten Kanal (D1) zum Bereitstellen, dem DPD-Aktuator, von Samples der Signale auf dem ersten Pfad, einen zweiten Kanal (D2) zum Bereitstellen von Samples der Signale aus dem Verstärkerauf dem ersten Pfad, einen dritten Kanal (D3) zum Bereitstellen eines BB-Teils der Signale auf dem ersten Pfad, einen vierten Kanal (D4) zum Bereitstellen eines BB-Teils von Signalen auf dem dritten Pfad und einen fünften Kanal (D5) zum Bereitstellen eines BB-Teils der Signale auf dem zweiten Pfad, wobei die Datenschnittstelle optional wenigstens zwei Kanäle zum Bereitstellen, der Vorrichtung, von Daten von dem Signalprozessor umfasst, wobei die zwei Kanäle Folgendes umfassen: einen sechsten Kanal (D6) zum Bereitstellen der DPD-Koeffizienten, berechnet anhand der über den ersten Kanal und den zweiten Kanal bereitgestellten Daten, und einen siebten Kanal (D7) zum Bereitstellen der EC-Koeffizienten und der Verzögerungsparameter anhand der über den dritten Kanal, den vierten Kanal und denfünften Kanal bereitgestellten Daten.
     
    8. Vorrichtung nach einem vorherigen Anspruch, die ferner Folgendes umfasst: einen Kombinierer (79), der mit dem ersten Pfad auf einem ersten Port des Kombinierers (79), dem zweiten Pfad auf einem zweiten Port des Kombinierers (79) und einem Koaxialkabel auf einem dritten Port des Kombinierers (79) verbunden ist, wobei das Koaxialkabel die Vorrichtung mit dem Kabelnetzwerk verbindet, wobei das Koaxialkabel zum Senden von Signalen auf dem ersten Pfad aus der Vorrichtung ausgelegt ist, wobei das Koaxialkabel zum Empfangen der Signale auf dem zweiten Pfad in die Vorrichtung ausgelegt ist.
     
    9. Vorrichtung nach einem vorherigen Anspruch, die ferner Folgendes umfasst:

    einen Digital-Analog-Wandler DAC (28), der sich zwischen dem DPD-Aktuator (26) und dem Verstärker(30) auf dem ersten Pfad befindet, wobei der DAC (28) zum Umwandeln der vorverzerrten Signale vom DPD-Aktuator (26) von der digitalen Domäne in die analoge Domäne ausgelegt ist; und

    einen Analog-Digital-Wandler ADC (34), der sich auf dem zweiten Pfad befindet, wobei der ADC (34) zum Umwandeln von Signalen zum EC-Aktuator (104) von der analogen Domäne in die digitale Domäne ausgelegt ist.


     
    10. Verfahren, ausgeführt von einer Kabelnetzwerkvorrichtung, die Folgendes umfasst:

    einen ersten Pfad, Sendepfad (24), konfiguriert zum Zuführen von Ausgangssignalen zu einem Sender der Vorrichtung;

    einen zweiten Pfad, Empfangspfad (80), konfiguriert zum Empfangen von Eingangssignalen (40) von einem Empfänger der Vorrichtung;

    wobei der genannte Sendepfad Folgendes umfasst:

    einen DPD-(Digital Pre-Distortion)-Aktuator (26), konfiguriert zum Vorverzerren von Eingangssignalen auf dem Sendepfad mittels DPD-Koeffizienten,

    eine Vor-Netzwerk-Schaltung (56), die mit einem Ausgang des DPD-Aktuators (26) verbunden ist,

    einen Verstärker (30), der mit einem Ausgang der Vor-Netzwerk-Schaltung (56) verbunden ist, und

    eine Nach-Netzwerk-Schaltung (58), die mit einem Ausgang des Verstärkers (30) verbunden ist, um dem Senderverstärkte Signale zuzuführen;

    einen Echounterdrückungs-(EC)-Aktuator (104), der sich auf dem Empfangspfad befindet und zum Implementieren von Echounterdrückung anhand von EC-Koeffizienten zum Unterdrücken von vom Sender gesendeten Signalen konfiguriert ist, die zum Empfänger zurückgekoppeltwerden; und

    eine Datenschnittstelle (110), die mehrere Kanäle umfasst, die die Vorrichtung mit einem Signalprozessor (116) verbinden, wobei der Signalprozessor einen DPD-Koeffizientensucher(36) umfasst, konfiguriert zum:

    Abtasten des Eingangssignals vor und nach der Verstärkung zum Bereitstellen eines abgetasteten Eingangssignals (tx_rf0) und eines abgetasteten Ausgangssignals (tx_rf);

    Darstellen des abgetasteten Ausgangssignals (tx_rf) als:



    wobei H1 die Kanaleffekte der Vor-Netzwerk-Schaltung (56) repräsentiert, H2 die Kanaleffekte der Nach-Netzwerk-Schaltung (58) repräsentiert, f(.) eine nichtlineare Funktion ist, die die Nichtlinearität des Verstärkers (30) repräsentiert, und * eine Faltung repräsentiert;

    zeitlichen Synchronisieren des abgetasteten Ausgangssignals (tx_rf) und des abgetasteten Eingangssignals (tx_rf0), um eine Anzeige der nichtlinearen Funktion (f(.)) durch Finden eines Vektors w bereitzustellen, der die folgende objektive Funktion minimiert:



    wobei w die Kombination der Kanaleffekte (H1 und H2) der Vor-Netzwerk-Schaltung(56) und der Nach-Netzwerk-Schaltung(58) repräsentiert und wobei jede Differenz zwischen wtx_fr0 und tx_rf die Nichtlinearität des Verstärkers repräsentiert;

    Unterziehendesabgetasteten Eingangssignals (tx_rf) einemerstenVektor(f-1(.)), der die Umkehr der nichtlinearen Funktion (f(.)) repräsentiert, um eine Referenz (tx_rf1) bereitzustellen;

    Falten (64) der Referenz(tx_rf1) mit einem zweiten Vektor(W1);

    Einführen (66) einer Zeitverzögerung (τ) zum Bereitstellen eines verzögerten abgetasteten Eingangssignals (tx_rf0(t-τ)), wobei die Zeitverzögerung τ auf einer Schätzung einer Verzögerung zwischen tx_rf1W1 und tx_rf basiert;

    Durchführen von Optimierung (62) durch Minimieren der Differenz zwischen dem abgetasteten Ausgangssignal (tx_rf) und dem verzögerten abgetasteten Eingangssignal (tx_rf0(t-τ)) durch Bestimmen einer objektiven Funktion:



    wobei, da die objektive Funktion auch geschrieben werden kann als:

    die Optimierung im zweiten Vektor (W1) resultiert, der die Umkehr (H1-1) des Kanaleffekts(H1) der Vor-Netzwerk-Schaltung(56) approximiert; und

    Bereitstellen, dem DPD-Aktuator (26), der DPD-Koeffizienten (42), die den ersten Vektor (f-1(.)) und den zweiten Vektor(W1) umfassen,

    wobei die Ausgangssignale Linearität relativ zu den Eingangssignalen beibehalten.


     
    11. Verfahren nach Anspruch 10, wobei die Datenschnittstelle (110) wenigstens vier Kanäle zum Bereitstellen, dem Signalprozessor, von Daten von der integrierten Schaltung umfasst, wobei die wenigstens vier Kanäle Folgendes umfassen: einen ersten Kanal (D1) zum Bereitstellen, dem DPD-Aktuator, von Samples der Signale auf dem ersten Pfad, einen zweiten Kanal (D2) zum Bereitstellen von Samples der Signale aus dem Verstärker auf dem ersten Pfad, einen dritten Kanal (D3) zum Bereitstellen eines Basisband-BB-Teils der Signale auf dem ersten Pfad, und einen vierten Kanal (D4) zum Bereitstellen eines BB-Teils von Signalen auf dem zweiten Pfad, wobei die Datenschnittstelle optional wenigstens drei Kanäle zum Bereitstellen, der integierten Schaltung, von Daten vom Signalprozessor umfasst, wobei die drei Kanäle Folgendes umfassen: einen fünften Kanal (C1) zum Bereitstellen eines ersten Teils der DPD-Koeffizienten, berechnet anhand der über den ersten Kanal und den zweiten Kanal bereitgestellten Daten, einen sechsten Kanal (C2) zum Bereitstellen eines zweiten Teils der DPD-Koeffizienten, berechnet anhand der über den ersten Kanal und den zweiten Kanal bereitgestellten Daten, und einen siebten Kanal (C3) zum Bereitstellen der EC-Koeffizienten und der Verzögerungsparameter anhand der über den dritten Kanal und den vierten Kanal bereitgestellten Daten.
     
    12. Verfahren nach Anspruch 10 oder 11, wobei die Datenschnittstelle (110) wenigstens fünf Kanäle zum Bereitstellen, dem Signalprozessor, von Daten von der integrierten Schaltung umfasst, wobei die fünf Kanäle Folgendes umfassen: einen ersten Kanal (D1) zum Bereitstellen, dem DPD-Aktuator, von Samples der Signale auf dem ersten Pfad, einen zweiten Kanal (D2) zum Bereitstellen von Samples der Signale aus dem Verstärker auf dem ersten Pfad, einen dritten Kanal (D3) zum Bereitstellen eines BB-Teils der Signale auf dem ersten Pfad, einen vierten Kanal (D4) zum Bereitstellen eines BB-Teils von Signalen auf einem dritten Pfad und einen fünften Kanal (D5) zum Bereitstellen eines BB-Teils von Signalen auf dem zweiten Pfad, wobei sich ein ADC auf dem dritten Pfad zwischen einem Ausgang des Verstärkers und dem EC-Aktuator befindet.
     
    13. Verfahren nach Anspruch 12, wobei die Datenschnittstelle (110) wenigstens zwei Kanäle zum Bereitstellen, der Vorrichtung, von Daten von dem Signalprozessor umfasst, wobei die zwei Kanäle Folgendes umfassen: einen sechsten Kanal (D6) zum Bereitstellen der DPD-Koeffizienten, berechnet anhand der über den ersten Kanal und den zweiten Kanal bereitgestellten Daten, und einen siebten Kanal (D7) zum Bereitstellen der EC-Koeffizienten und der Verzögerungsparameter anhand der über den dritten Kanal, den vierten Kanal und den fünften Kanal bereitgestellten Daten.
     
    14. Verfahren nach Anspruch 10, 11, 12 oder 13, wobei:

    der Signalprozessor (116) die DPD-Koeffizienten, EC-Koeffizienten und Verzögerungsparameteranhand der Samples berechnet; und/oder

    die Samples dem Signalprozessor bereitgestellt werden, wenn ein Trigger von der integrierten Schaltung empfangen wird, wobei das Vorverzerren durch den DPD-Aktuator und das Reduzieren von Interferenzen durch den EC-Aktuator vorzugsweise in Echtzeit durchgeführt werden, während die Signale die integrierte Schaltung durchlaufen, und/oder wobei der Signalprozessor die DPD-Koeffizienten, die EC-Koeffizienten und die Verzögerungsparameteroffline anhand der Samples periodisch berechnet.


     
    15. Computerprogrammprodukt wie ein nichtflüchtiges, materielles, computerlesbares Medium, das Befehle zur Ausführung beinhaltet, die bei Ausführung durch eine integrierte Schaltung die Aufgabe haben, Operationen durchzuführen, die Folgendes umfassen:
    das Verfahren nach einem der Ansprüche 10 bis 14.
     


    Revendications

    1. Appareil de réseau câblé, comprenant :

    un premier chemin d'émission (24) configuré pour fournir des signaux de sortie à un émetteurde l'appareil ;

    un deuxième chemin de réception (80) configuré pour recevoir des signaux d'entrée (40) en provenance d'un récepteur de l'appareil ;

    ledit chemin d'émission comprenant

    un actionneur de prédistorsion numérique, DPD, (26) configuré pour prédéformer des signaux d'entrée sur le chemin d'émission à l'aide de coefficients DPD,

    un circuit pré-réseau (56) connecté à une sortie de l'actionneur DPD (26),

    un amplificateur (30) connecté à une sortie du circuit pré-réseau (56), et

    un circuit post-réseau (58) connecté à une sortie de l'amplificateur (30) pour fournir dessignaux amplifiés à l'émetteur;

    un actionneur de suppression d'écho, EC, (104) situé sur le chemin de réception et configuré pour mettre en œuvre une suppression d'écho à l'aide de coefficients EC afin de supprimer des signaux émis par l'émetteur qui sont recouplés au récepteur; et

    une interface de données (110) comprenant une pluralité de canaux connectant l'appareil à un processeur de signaux (116), le processeur de signaux comprenant un moyen de recherche de coefficients DPD (36) configuré pour :

    échantillonner le signal d'entrée avant et après l'amplification pour fournir un signal d'entrée échantillonné (tx_rf0) et un signal de sortie échantillonné (tx_rf) ;

    représenter le signal de sortie échantillonné (tx_rf), par :



    où H1 représente les effets de canal du circuit pré-réseau (56), H2 représente les effets de canal du circuit post-réseau (58), f(.) est une fonction non linéaire représentant la non-linéarité de l'amplificateur (30), et * représente une convolution ;

    synchroniser le signal de sortie échantillonné (tx_rf) et le signal d'entrée échantillonné (tx_rf0) dans le temps pour fournir une indication de la fonction non linéaire (f(.)) en trouvant un vecteur w qui minimise la fonction objective suivante :



    où w représente la combinaison des effets de canal (H1 et H2) du circuit pré-réseau (56) et du circuit post-réseau (58) et dans lequel toute différence entre wtx_fr0 et tx_rf représente la non-linéarité de l'amplificateur ;

    soumettre le signal d'entrée échantillonné (tx_rf) à un premier vecteur (f-1(.)) représentant l'inverse de la fonction non linéaire (f(.)) pour fournir une référence (tx_rf1);

    convoluer (64) la référence (tx_rf1) avec un second vecteur (W1) ;

    introduire (66) un retard de temps (τ) pour fournir un signal d'entrée échantillonné retardé (tx_rf0(t-τ)), le retard de temps τ étant basé sur une estimation d'un retard entre tx_rf1W1 et tx_rf;

    réaliser une optimisation (62) en minimisant la différence entre le signal de sortie échantillonné (tx_rf) et le signal d'entrée échantillonné retardé (tx_rf0(t-τ)) en déterminant une fonction objective



    dans lequel, comme la fonction objective peut également être écrite sous la forme

    l'optimisation donne le second vecteur (Wl) qui approxime l'inverse (H1-1) de l'effetde canal (Hl) du circuit pré-réseau (56) ; et

    fournir à l'actionneur DPD (26) les coefficients DPD(42) comprenant le premier vecteur (f-1(.)) et le second vecteur(Wl),

    dans lequel les signaux de sortie conservent la linéarité relativement aux signaux.


     
    2. Appareil selon la revendication 1, dans lequel le processeur de signaux (116) comprend en outre un moyen de recherche de coefficients EC (112), et un moyen de recherche de coefficients de retard (114), et dans lequel le moyen de recherche de coefficients DPD (36) est agencé en outre pour calculer les coefficients DPD, dans lequel le moyen de recherche de coefficients EC (112) est agencé pour calculer les coefficients EC et le moyen de recherche de coefficients de retard (114) est agencé pour calculer les paramètres de retard.
     
    3. Appareil selon la revendication 1 ou 2, l'appareil étant agencé pour traiter des signaux en temps réel dans le domaine numérique, dans lequel le traitement comprend une prédistorsion de signaux sur le premier chemin par l'actionneur DPD (26), dans lequel le traitement comprend en outre la réduction d'interférences dans des signaux sur le deuxième chemin par l'actionneur EC (104).
     
    4. Appareil selon la revendication 1, 2 ou 3, dans lequel le processeur de signaux (116) est agencé pour échantillonner périodiquement les signaux traversant l'appareil et calculer les coefficients DPD, coefficients EC et paramètres de retard hors ligne.
     
    5. Appareil selon n'importe quelle revendication précédente, dans lequel l'interface de données (110) comprend au moins quatre canaux fournissant des données en provenance de l'appareil au processeur de signaux, dans lequel les au moins quatre canaux comprennent: un premier canal (D1) fournissant des échantillons des signaux dans l'actionneur DPD sur le premierchemin, un deuxième canal (D2) fournissant des échantillons des signaux sortant de l'amplificateur sur le premier chemin, un troisième canal (D3) fournissant une partie en bande de base (BB) des signaux sur le premier chemin, et un quatrième canal (D4) fournissant une partie BB de signaux sur le deuxième chemin.
     
    6. Appareil selon la revendication 5, dans lequel l'interface de données (110) comprend au moins trois canaux fournissant des données en provenance du processeur de signaux à l'appareil, les trois canaux comprenant : un cinquième canal (C1) fournissant une première partie des coefficients DPD calculés à l'aide des données fournies sur le premier canal et le deuxième canal, un sixième canal (C2) fournissant une seconde partie des coefficients DPD calculés à l'aide des données fournies sur le premier canal et le deuxième canal, et un septième canal (C3) fournissant les coefficients EC et les paramètres de retard à l'aide des données fournies sur le troisième canal et le quatrième canal.
     
    7. Appareil sur l'une quelconque des revendications 1 à 4, comprenant en outre un convertisseurA/N situé sur un troisième chemin entre une sortie de l'amplificateur (30) et l'actionneur EC (104), facultativement dans lequel l'interface de données (110) comprend au moins cinq canaux fournissant des données en provenance de l'appareil au processeur de signaux, dans lequel les cinq canaux comprennent : un premier canal (D1) fournissant des échantillons des signaux dans l'actionneur DPD sur le premier chemin, un deuxième canal (D2) fournissant des échantillons des signaux sortant de l'amplificateur sur le premier chemin, un troisième canal (D3) fournissant une partie BB des signaux sur le premier chemin, un quatrième canal (D4) fournissant une partie BB de signaux sur le troisième chemin, et un cinquième canal (D5) fournissant une partie BB de signaux sur le deuxième chemin, facultativement dans lequel l'interface de données comprend au moins deux canaux fournissant des données en provenance du processeurde signaux à l'appareil, dans lequel les deux canaux comprennent: un sixième canal (D6) fournissant les coefficients DPD calculés à l'aide des données fournies sur le premier canal et le deuxième canal, et un septième canal (D7) fournissant les coefficients EC et les paramètres de retard à l'aide des donnéesfournies sur le troisième canal, le quatrième canal et le cinquième canal.
     
    8. Appareil selon n'importe quelle revendication précédente, comprenant en outre : un combineur (79) connecté au premier chemin sur un premier port du combineur (79), au deuxième chemin sur un deuxième port du combineur (79) et à un câble coaxial sur un troisième port du combineur (79), le câble coaxial connectant l'appareil au réseau câblé , dans lequel le câble coaxial est agencé pour transmettre des signaux sur le premier chemin sortant de l'appareil, dans lequel le câble coaxial est agencé pour recevoir les signaux sur le deuxième chemin dans l'appareil.
     
    9. Appareil selon n'importe quelle revendication précédente, comprenant en outre :

    un convertisseur numérique-analogique, DAC, (28) situé entre l'actionneur DPD (26) et l'amplificateur (30) sur le premier chemin, dans lequel le DAC (28) est agencé pour convertir les signaux prédéformés en provenance de l'actionneur DPD (26) du domaine numérique au domaine analogique ; et

    un convertisseur analogique-numérique, ADC, (34) situé sur le deuxième chemin, dans lequel l'ADC (34) est agencé pour convertir des signaux allant à l'actionneur EC (104) du domaine analogique au domaine numérique.


     
    10. Procédé exécuté par un appareil de réseau câblé, comprenant :

    un premier chemin d'émission (24) configuré pour fournir des signaux de sortie à un émetteurde l'appareil ;

    un deuxième chemin de réception (80) configuré pour recevoir des signaux d'entrée (40) en provenance d'un récepteur de l'appareil ;

    ledit chemin d'émission comprenant

    un actionneur de prédistorsion numérique, DPD, (26) configuré pour prédéformer des signaux d'entrée sur le chemin d'émission à l'aide de coefficients DPD,

    un circuit pré-réseau (56) connecté à une sortie de l'actionneur DPD (26),

    un amplificateur (30) connecté à une sortie du circuit pré-réseau (56), et

    un circuit post-réseau (58) connecté à une sortie de l'amplificateur (30) pour fournir des signaux amplifiés à l'émetteur;

    un actionneur de suppression d'écho, EC, (104) situé sur le chemin de réception et configuré pour mettre en œuvre une suppression d'écho à l'aide de coefficients EC afin de supprimer des signaux émis par l'émetteur qui sont recouplés au récepteur; et

    une interface de données (110) comprenant une pluralité de canaux connectant l'appareil à un processeur de signaux (116), le processeur de signaux comprenant un moyen de recherche de coefficients DPD (36), le procédé comprenant :

    l'échantillonnage du signal d'entrée avant et après l'amplification pourfournir un signal d'entrée échantillonné (tx_rf0) et un signal de sortie échantillonné (tx_rf) ;

    la représentation du signal de sortie échantillonné (tx_rf), par :



    où H1 représente les effets de canal du circuit pré-réseau (56), H2 représente les effets de canal du circuit post-réseau (58), f(.) est une fonction non linéaire représentant la non-linéarité de l'amplificateur (30), et * représente une convolution ;

    la synchronisation du signal de sortie échantillonné (tx_rf) et du signal d'entrée échantillonné (tx_rf0) dans le temps pour fournir une indication de la fonction non linéaire (f(.)) en trouvant un vecteur w qui minimise la fonction objective suivante :



    où w représente la combinaison des effets de canal (H1 et H2) du circuit pré-réseau (56) et du circuit post-réseau (58) et dans lequel toute différence entre wtx_fr0 et tx_rf représente la non-linéarité de l'amplificateur ;

    la soumission du signal d'entrée échantillonné (tx_rf) à un premier vecteur(f-1(.)) représentant l'inverse de la fonction non linéaire (f(.)) pour fournir une référence (tx_rf1);

    la convolution (64) de la référence (tx_rf1) avec un second vecteur(W1) ;

    l'introduction (66) d'un retard de temps (τ) pour fournir un signal d'entrée échantillonné retardé (tx_rf0(t-τ)), le retard de temps τ étant basé sur une estimation d'un retard entre tx_rf1W1 et tx_rf;

    la réalisation d'une optimisation (62) en minimisant la différence entre le signal de sortie échantillonné (tx_rf) et le signal d'entrée échantillonné retardé (tx_rf0(t-τ)) en déterminant une fonction objective



    dans lequel, comme la fonction objective peut également être écrite sous la forme

    l'optimisation donne le second vecteur (Wl) qui approxime l'inverse (H1-1) de l'effetde canal (Hl) du circuit pré-réseau (56) ; et

    la fourniture à l'actionneur DPD (26) des coefficients DPD (42) comprenant le premier vecteur (f-1(.)) et le second vecteur(Wl),

    dans lequel les signaux de sortie conservent la linéarité relativement aux signaux d'entrée.


     
    11. Procédé selon la revendication 10, dans lequel l'interface de données (110) comprend au moins quatre canaux fournissant desdonnéesen provenance du circuit intégré au processeur de signaux, dans lequel les au moins quatre canaux comprennent: un premier canal (D1) fournissant des échantillons des signaux dans l'actionneur DPD sur le premier chemin, un deuxième canal (D2) fournissant des échantillons des signaux sortant de l'amplificateur sur le premierchemin, untroisième canal (D3) fournissant une partie en bande de base (BB) des signaux sur le premier chemin, et un quatrième canal (D4) fournissant une partie BB de signaux sur le deuxième chemin, facultativement dans lequel l'interface de données comprend trois canaux fournissant des données en provenance du processeur de signaux au circuit intégré, les trois canaux comprenant : un cinquième canal (C1) fournissant une première partie des coefficients DPD calculés à l'aide des données fournies sur le premier canal et le deuxième canal, un sixième canal (C2) fournissant une seconde partie des coefficients DPD calculés à l'aide des données fournies sur le premier canal et le deuxième canal, et un septième canal (C3) fournissant les coefficients EC et les paramètres de retard à l'aide des données fournies sur le troisième canal et le quatrième canal.
     
    12. Procédé selon la revendication 10 ou 11, dans lequel l'interface de données (110) comprend au moins cinq canaux fournissant des données en provenance du circuit intégré au processeur de signaux, dans lequel les cinq canaux comprennent : un premier canal (D1) fournissant des échantillons des signaux dans l'actionneur DPD sur le premier chemin, un deuxième canal (D2) fournissant des échantillons des signaux sortant de l'amplificateur sur le premier chemin, un troisième canal (D3) fournissant une partie BB des signaux sur le premier chemin, un quatrième canal (D4) fournissant une partie BB de signaux sur un troisième chemin, et un cinquième canal (D5) fournissant une partie BB de signaux sur le deuxième chemin, dans lequel un ADC est situé sur le troisième chemin entre une sortie de l'amplificateur et l'actionneur EC.
     
    13. Procédé selon la revendication 12, dans lequel l'interface de données (110) comprend au moins deux canaux fournissant des données en provenance du processeur de signaux à l'appareil, dans lequel les deux canaux comprennent: un sixième canal (D6) fournissant les coefficients DPD calculés à l'aide des données fournies sur le premier canal et le deuxième canal, et un septième canal (D7) fournissant les coefficients EC et les paramètres de retard à l'aide des données fournies sur le troisième canal, le quatrième canal et le cinquième canal.
     
    14. Procédé selon la revendication 10, 11, 12 ou 13, dans lequel :

    le processeur de signaux (116) calcule les coefficients DPD, coefficients EC et paramètres de retard à l'aide des échantillons ; et/ou

    les échantillons sont fournis au processeur de signaux quand le circuit intégré reçoit un déclencheur, facultativement dans lequel la prédistorsion par l'actionneur DPD et la réduction des interférences par l'actionneur EC sont réalisées en temps réel lorsque les signaux traversent le circuit intégré et/ou dans lequel le processeur de signaux calcule périodiquement les coefficients DPD, les coefficients EC et les paramètres de retard hors ligne à l'aide des échantillons.


     
    15. Produit de programmation informatique, tel qu'un support non transitoire tangible lisible par ordinateur, qui comporte des instructions destinées à être exécutées qui, à leur exécution par un circuit intégré, sont exploitables pour réaliser des opérations comprenant :
    le procédé selon l'une quelconque des revendications 10 à 14.
     




    Drawing










































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description