(19)
(11)EP 3 288 328 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 17177170.2

(22)Date of filing:  25.12.2012
(51)International Patent Classification (IPC): 
H04W 72/04(2009.01)
H04L 1/16(2006.01)
H04L 1/00(2006.01)
H04L 1/18(2006.01)

(54)

METHOD AND APPARATUS FOR ENCODING UPLINK CONTROL INFORMATION

VERFAHREN UND VORRICHTUNG ZUR CODIERUNG VON UPLINK-STEUERINFORMATIONEN

PROCÉDÉ ET APPAREIL DE CODAGE D'INFORMATIONS DE COMMANDE EN LIAISON MONTANTE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.12.2011 CN 201110452336

(43)Date of publication of application:
28.02.2018 Bulletin 2018/09

(62)Application number of the earlier application in accordance with Art. 76 EPC:
12863750.1 / 2775770

(73)Proprietor: Huawei Technologies Co., Ltd.
Longgang District Shenzhen, Guangdong 518129 (CN)

(72)Inventor:
  • TANG, Zhenfei
    Shenzhen, Guangdong 518129 (CN)

(74)Representative: Isarpatent 
Patent- und Rechtsanwälte Behnisch Barth Charles Hassa Peckmann & Partner mbB Friedrichstrasse 31
80801 München
80801 München (DE)


(56)References cited: : 
US-A1- 2011 269 490
  
  • LG ELECTRONICS: "Simultaneous Transmission of HARQ-ACK and CSI on PUCCH Format 3", 3GPP DRAFT; R1-113904_A-N AND CSI FOR FORMAT3, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. San Francisco, USA; 20111114 - 20111118, 9 November 2011 (2011-11-09), XP050562262,
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present application claims the priority to Chinese Patent Application No. CN 201110452336.8 filed with Chinese Patent Office on December 29, 2011, and entitled "Method and Apparatus for Encoding Uplink Control Information".

TECHNICAL FIELD



[0002] The embodiments of the present invention relate to communications filed, and more particularly to a method and an apparatus for encoding uplink control information as well as a method and an apparatus for transmitting uplink control information on a physical uplink control channel.

BACKGROUND



[0003] In LTE Release-8/Release-9/Release-10, a plurality of PUCCHs (Physical Uplink Control Channel) is defined, such as a PUCCH Format 3 channel. Among them, the PUCCH Format 3 channel is used for transmitting hybrid automatic repeat request acknowledgement (HARQ-ACK) information, and thus can support the transmission of 1 to 20 information bits. However, when schedule request (SR) information and HARQ-ACK information are transmitted in one subframe at the same time, the PUCCH Format 3 channel can at most support the transmission of 21 information bits.

[0004] Here, the PUCCH Format 3 channel is taken as an example. User equipment (UE) firstly performs RM (reed-muller) channel encoding on bits of the HARQ-ACK information and those of possible SR information (that is, the bits of hybrid automatic repeat request acknowledgement and schedule request information (HARQ-ACK/SR information), including the HARQ-ACK information or the HARQ-ACK information and the SR information), and then performs scrambling, Quadrature Phase Shift Keying (QPSK) modulation, block-wise spread using an orthogonal sequence, cyclically shifting, transform precoder (also called as DFT precoder), and mapping of Physical Resource Block (PRB). A baseband sending signal obtained through Single Carrier Frequency Division Multiplexing Access (SC-FDMA) baseband signal generation (also called as IFFT transformation) is emitted via medium radio frequency. An evolved Node B (eNB) receives an emitted signal and performs demodulation according to the above process, thereby obtaining bits of the HARQ-ACK/SR information through decoding.

[0005] The UE measures a downlink channel, and obtains Channel State Information (CSI) of the downlink channel, wherein the CSI includes information such as Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), and Rank Indication (RI). The UE feeds the CSI back to the eNB which employs the CSI to perform downlink data scheduling. Specifically, the fed CSI can be divided into periodic CSI and non-periodic CSI, or can be divided into the CSI fed on the PUCCH and the CSI fed on the PUSCH (Physical Uplink Shared Channel).

[0006] In some configurations, when the periodic CSI and the HARQ-ACK/SR information are transmitted in one subframe at the same time, the periodic CSI will be discarded because the greater the number of downlink carriers, the larger the number of the periodic CSI to be configured, and the greater the number of subframes occupied by the periodic CSI, the higher the possibility that the periodic CSI and the HARQ-ACK/SR information are transmitted in one subframe, and the more frequent the periodic CSI is discarded under the circumstance where the number of the subframe occupied by the HARQ-ACK/SR information is constant. Therefore, such situations shall be taken into consideration in case of eNB scheduling, the scheduling complexity is increased and a downlink throughput capacity is lost.

[0007] To this end, there has been proposed a scheme which supports the simultaneous transmission of the periodic CSI and the HARQ-ACK/SR information on the PUCCH Format 3 so as to reduce the situation where the periodic CSI is discarded and enhances downlink transmission performance. There are mainly two schemes: joint encoding and independent encoding. As shown in Fig.1, the so-called "joint encoding scheme" means to cascade-multiplex the periodic CSI and the HARQ-ACK/SR information before channel encoding, and then perform joint encoding uniformly, finally make the periodic CSI and the HARQ-ACK/SR information subjected to the above processing of the PUCCH Format 3 channel. As shown in Fig.2, the so-called "independent encoding scheme" means to independently perform channel encoding and rate matching on the period CSI and the HARQ-ACK/SR information, and then interweave the periodic CSI and the HARQ-ACK/SR information after channel encoding by an interweaver, finally make the periodic CSI and the HARQ-ACK/SR information subjected to the above processing of the PUCCH Format 3 channel. Since the PUCCH Format 3 channel can only transmit 48 encoded bits (that is, 24 symbols after QPSK encoding modulation), how to respectively perform channel encoding on the periodic CSI and the HARQ-ACK/SR information is a problem to be solved.

[0008] Known methods are disclosed in US2011/269490 and R1-113904: "Simultaneous Transmission of HARQ-ACK and CSI on PUCCH Format 3" by LG ELECTRONICS.

SUMMARY



[0009] The embodiment of the present invention provides a method and an apparatus for encoding uplink control information as well as a method and an apparatus for transmitting uplink control information on a physical uplink control channel, which can solve the problem of performing channel encoding on first uplink control information or second uplink control information.

[0010] The invention is defined and limited by the scope of appended claims. In the following description, any embodiments referred to and not falling within the scope of the appended claims, are merely examples useful to the understanding of the invention.

[0011] The method and the apparatus for encoding uplink control information as well as the method and the apparatus for transmitting uplink control information on a physical uplink control channel of the embodiment of the present invention can ensure that the demodulating performances of the first uplink control information (for example, the periodic CSI) and the second uplink control information (for example, the HARQ-ACK/SR information) are at relatively approximate operating points, so as to achieve the best channel encoding performance.

BRIEF DESCRIPTION OF THE DRAWINGS



[0012] In order to more clearly describe the technical solutions of the embodiments of the present invention, the drawings to be used in the descriptions of the embodiments or the prior art are briefly introduced as follows. Obviously, the following drawings just illustrate some embodiments of the present invention, and a person skilled in the art can obtain other drawings from these drawings without paying any creative effort.

Fig. 1 is a schematic diagram of the joint encoding scheme in the prior art.

Fig. 2 is a schematic diagram of the independent encoding scheme in the prior art.

Fig. 3 is a flow chart of the method for encoding uplink control information according to the embodiment of the present invention.

Fig. 4 is a flow chart of the method for encoding uplink control information according to another embodiment of the present invention.

Fig. 5 is a flow chart of the method for transmitting uplink control information on a physical uplink control channel according to yet another embodiment of the present invention.

Fig. 6 is a structure schematic diagram of the apparatus for encoding uplink control information according to the embodiment of the present invention.

Fig. 7 is a structure schematic diagram of the apparatus for encoding uplink control information according to the embodiment of the present invention.

Fig. 8 is a structure schematic diagram of the apparatus for encoding uplink control information according to another embodiment of the present invention.

Fig. 9 is a structure schematic diagram of the apparatus for encoding uplink control information according to another embodiment of the present invention.

Fig. 10 is a structure schematic diagram of the apparatus for transmitting uplink control information on a physical uplink control channel according to yet another embodiment of the present invention.


DETAILED DESCRIPTION OF THE EMBODIMENTS



[0013] The technical solutions in the embodiments of the present invention will be clearly and completely described as follows with reference to the drawings in the embodiments of the present invention. Obviously, those described herein are just parts of the embodiments of the present invention rather than all the embodiments. Based on the embodiments of the present invention, any other embodiment obtained by a person skilled in the art without paying any creative effort shall fall within the protection scope of the present invention.

[0014] The technical solution of the present invention is applied to various communications systems, such as LTE (Long Term Evolution), LTE-A (LTE-Advanced), etc.

[0015] The user equipment (UE), also called as a Mobile Terminal, mobile user equipment, etc, can communicate with one or more core networks via a wireless access network (such as RAN: Radio Access Network). The user equipment can be a mobile terminal (such as a mobile phone (or called as "cellular" phone)) and a computer with the mobile terminal (such as a portable, pocket, hand-held, computer built-in or vehicle-mounted mobile device), all of which exchange language and/or data with the wireless access network.

[0016] A base station can be an evolved base station in LET (eNB or e-NodeB, evolutional Node B).

[0017] The method for encoding uplink control information according to the embodiment of the present invention will be described in detail in connection with Fig.3. The specific steps are as follows.

[0018] 31: The UE determines the number of bits of first uplink control information or determines the number of bits of the first uplink control information and the number of bits of second uplink control information.

[0019] 32: The UE determines a first parameter for channel encoding of the first uplink control information according to the number of bits of the first uplink control information, or determines a second parameter for channel encoding of the first uplink control information according to the number of bits of the first uplink control information and the number of bits of the second uplink control information.

[0020] For example, the first uplink control information is the periodic channel state information (CSI), and the second uplink control information is the hybrid automatic repeat request acknowledgement and schedule request (HARQ-ACK/SR) information.

[0021] Optionally, a factor related to the parameter for channel encoding of the first uplink control information or the second uplink control information is locally stored in the UE. When receiving a signaling issued by the base station, the UE determines the parameter for channel encoding of the first uplink control information according to the indicator of the signaling as well as the number of bits of the first uplink control information or the number of bits of the second uplink control information. Or, a factor related to the parameter for channel encoding of the first uplink control information or the second uplink control information is locally stored in the UE and corresponds to the number of bits of the first uplink control information or the number of bits of the second uplink control information, thereby determining the parameter for channel encoding of the first uplink control information according to the number of bits of the first uplink control information or the number of bits of the second uplink control information.

[0022] 33: The UE determines the number of encoding symbols or the number of encoding bits of the first uplink control information according to the first parameter and the number of bits of the first uplink control information, or determines the number of encoding symbols or the number of encoding bits of the first uplink control information according to the second parameter and the number of bits of the first uplink control information.

[0023] 34: The UE encodes the first uplink control information according to the number of encoding symbols or the number of encoding bits of the first uplink control information, so as to send the encoded first uplink control information to the base station on the physical uplink control channel.

[0024] Additionally, since the number of encoding symbols or the number of encoding bits of the first uplink control information is determined in the foregoing steps, it is possible to determine the number of encoding symbols or the number of encoding bits of the second uplink control information according to the number of encoding symbols or the number of encoding bits of the first uplink control information, and then to encode the second uplink control information according to the number of encoding symbols or the number of encoding bits of the second uplink control information, so as to send the encoded second uplink control information to the base station on the physical uplink control channel.

[0025] When the first uplink control information is the periodic CSI and the second uplink control information is the HARQ-ACK/SR information, the UE determines that the first parameter for channel encoding of the periodic CSI is

according to the number of bits OCSI of the periodic CSI, wherein

is the first offset value of the periodic CSI and αCSI is a coefficient of the second offset value of the periodic CSI,

and αCSI can be configured by the signaling of the base station; or the UE determines that the second parameter for channel encoding of the periodic CSI is

according to the number of bits OCSI of the periodic CSI and the number of bits OHARQ-ACK of the HARQ-ACK/SR information, wherein

is the first offset value of the periodic CSI, αCSI is the coefficient of the second offset value of the periodic CSI, and αHARQ-ACk is the coefficient of the third offset value of the HARQ-ACK/SR information, and

αCSI and αHARQ-ACK can be configured by the signaling of the base station. Optionally, the UE determines that the first parameter for channel encoding of the periodic CSI is

according to the number of bits OCSI of the periodic CSI, wherein χCSI is an adjusting parameter χCSI of the periodic CSI corresponding to the number of bits OCSI of the periodic CSI, and

can be the first offset value of the periodic CSI which can be configured by the signaling of the base station.

[0026] Under the circumstance where the number of encoding symbols or the number of encoding bits of the periodic CSI is determined, it is possible to determine the number of encoding symbols or the number of encoding bits of the HARQ-ACK/SR information.

[0027] Specifically, upon the transmission of the periodic CSI and the HARQ-ACK/SR information, the steps of determining the number of encoding bits or the number of encoding symbols of the periodic CSI and the HARQ-ACK/SR are as follows. Herein, there does not exist any dependent relationship among part of the steps, and the steps can be performed in a random order.

[0028] In the following embodiments, the number of encoding bits or the number of encoding symbols of the periodic CSI is firstly determined, and then the number of encoding bits or the number of encoding symbols of the HARQ-ACK/SR information is determined.
(1) The eNB informs the UE of determining a offset value set for channel encoding of the periodic CSI and the HARQ-ACK/SR information through the signaling. Herein, the above signaling includes, but not limited to, a high layer signaling or a physical layer signaling, for example, the informing manner of the high layer signaling includes, but not limited to, cell-specific high layer signaling or UE-specific high layer signaling.
As stated above, the offset value set at least contains the first offset value

of the periodic CSI and the coefficient αCSI of the second offset value. According to a table wherein a predefined serial number of the signaling corresponds to the first offset value

and the coefficient αCSI of the second offset value, as shown in Table 1-1 and Table 1-2, the specific first offset value

and the coefficient αCSI of the second offset value are determined.
Further, the offset value set also contains a coefficient αHARQ-ACK of the third offset value. According to a table wherein a predefined serial number of the signaling corresponds to the coefficient αHARQ-ACK of the third offset value, as shown in Table 1-3, the specific coefficient αHARQ-ACK of the third offset value is determined.
When the number of encoding symbolss of the periodic CSI and the HARQ-ACK/SR are determined, as shown in the corresponding Table 1-1, Table 1-2 and Table 1-3, the embodiment of the present invention is not limited to the following values.
Table 1-1 Table wherein

corresponds to the signaling serial number
Signaling serial number of



value
0 2
1 2.25
2 2.5
3 2.75
4 3
5 3.25
6 3.5
7 3.75
8 4
9 4.25
10 4.5
11 4.75
12 5
13 reserved
14 reserved
15 reserved
Table 1-2 Table wherein αSCI corresponds to the signaling serial number
Signaling serial number of αCSIαCSI value
0 0.1
1 0.12
2 0.14
3 0.16
4 0.18
5 0.20
6 0.22
7 0.24
Table 1-3 Table wherein αHARQ-ACK corresponds to the signaling serial number
Signaling serial number of αHARQ-ACKαHARQ-ACK value
0 0.1
1 0.12
2 0.14
3 0.16
4 0.18
5 0.20
6 0.22
7 0.24

Optionally, when the number of encoding bitss of the periodic CSI and the HARQ-ACK/SR are determined, as shown in the corresponding Table 1-4, Table 1-5 and Table 1-6, the embodiment of the present invention is not limited to the following values.
Table 1-4 Table wherein

corresponds to the signaling serial number
Signaling serial number of



value
0 4
1 4.5
2 5
3 5.5
4 6
5 6.5
6 7
7 7.5
8 8
9 8.5
10 9
11 9.5
12 10
13 reserved
14 reserved
15 reserved
Table 1-5 Table wherein αCSI corresponds to the signaling serial number
Signaling serial number of ααCSI value
0 0.2
1 0.24
2 0.28
3 0.32
4 0.36
5 0.40
6 0.44
7 0.48
Table 1-6 Table wherein αHARQ-ACK corresponds to the signaling serial number
Signaling serial number of αHARQ-ACK αHARQ-ACKαHARQ-ACK value
0 0.2
1 0.24
2 0.28
3 0.32
4 0.36
5 0.40
6 0.44
7 0.48

(2) The UE determines the number of bits of the periodic CSI or the HARQ-ACK/SR information in the current subframe.
Specifically, the UE performs encoding and modulation according to the determined number of bits to be sent, and the eNB determines the received number of bits and correspondingly performs demodulation and decoding.
(3) The UE determines the number of encoding bits or the number of encoding symbols of the periodic CSI.
(3-1) With an increase in the number of bits of the periodic CSI and the HARQ-ACK/SR information, the first offset value

will be overlarge, the number of encoding bits or the number of encoding symbols of the periodic CSI is too much, while the number of encoding bits or the number of encoding bits of the HARQ-ACK/SR is much smaller, thereby reducing the performance of the HARQ-ACK/SR. Therefore, it is possible to further introduce a negative adjustment amount based on the number of bits of the periodic CSI and/or the HARQ-ACK/SR information, and the total offset value of the periodic CSI is determined according to the following formula 1.1 or formula 1.2.



wherein, OCSI represents the number of bits of the periodic CSI in the current subframe, and OHARQ-ACK represents the number of bits of the HARQ-ACK/SR information in the current subframe.
(3-2) According to the number of bits of the periodic CSI in the current subframe, the product of the number of bits of the periodic CSI and the total offset value is obtained according to the following formula 1.3 or the formula 1.4.




Since the above product is not usually an integer, it needs to round the product, for example, rounding up or down to an integer. Rounding up to an integer is taken as an example to describe the embodiment of the present invention with reference to the following formula 1.5 or the formula 1.6. The present invention also includes the way of rounding down to an integer or other ways of rounding to an integer, which is similar to the rounding up to an integer, without repetition.




(3-3) In some cases, since the above product after rounding is larger than the maximum number of encoding bits 48 or the maximum number of encoding symbols 24 permitted to be carried by the PUCCH Format 3 information, one maximum threshold value K is preset, so as to ensure that the number of encoding bits or the number of encoding symbols of the periodic CSI after the product is rounded does not exceed K. Additionally, in other cases, since the number of encoding bits or the number of encoding symbols of the periodic CSI after the product is rounded is too small, one minimum threshold value L is preset, so as to ensure that the number of encoding bits or the number of encoding symbols of the periodic CSI after the product is rounded is not lower than L.
Thus, with reference to the formula 1.7 or the formula 1.8, it is possible to obtain that the number of encoding bits or the number of encoding symbols

of the periodic CSI is:



wherein K comprises, but not limited to, 24, 22, 20, etc, or K can be informed or predefined by the signaling; L is equal to, but not limited to, M · OCSI, M is equal to, but not limited to 2, or M can be informed or predefined by the signaling.
Optionally, it is also possible not to limit the maximum value and the minimum value of the rounded product by excluding the situation of going beyond the range because the situation of going beyond the range is considered as invalid, and cannot be supported.
(4) According to the number of encoding bits or the number of encoding symbols

of the periodic CSI, with reference to the following formula 1.9, the UE determines that the number of encoding symbols

of the HARQ-ACK/SR information is that:



[0029] Optionally, according to the number of encoding bits or the number of encoding symbols

of the periodic CSI, with reference to the following formula 1.10, the UE determines that the number of encoding bits

of the HARQ-ACK/SR information is that:



[0030] In another embodiment, the number of encoding bits or the number of encoding symbols of the periodic CSI is also firstly determined, and then the number of encoding bits or the number of encoding symbols of the HARQ-ACK/SR information is determined.
(1) The adjusting parameter χCSI corresponds to the number of bits of the periodic CSI, that is, the number of bits of each kind of periodic CSI corresponds to one value of the adjusting parameter χCSI. Therefore, the eNB informs the UE of the number of bits of each kind of periodic CSI corresponding to one value of the adjusting parameter χCSI by the signaling. When the number of encoding bits of the periodic CSI is determined, the value of χCSI is as shown in the following Table 2-1 or Table 2-2.
1)
Table 2-1 the number of bits of the periodic CSI and the corresponding χCSI value
number of bits of periodic CSIχCSI value
1 1
2 0.5
3 0.5
4 0.5
5 0.8
6 1.2
7 1.5
8 1.2
9 1.2
10 1
11 1

2) 
3)
Table 2-2 the number of bits of the periodic CSI and the corresponding χCSI value
number of bits of periodic CSIχCSI value
1 2
2 1
3 1
4 1
5 1.6
6 2.4
7 3
8 2.4
9 2.4
10 2
11 2

(2) The UE firstly determines the number of bits of the periodic CSI of the current subframe, and the eNB informs the UE of the first offset value

corresponding to the number of bits of each kind of periodic CSI through the signaling; additionally, the UE determines the number of bits of the periodic CSI of the current subframe, and finds the value of χCSI corresponding to the number of bits of the periodic CSI.
(3) The number of encoding bits or the number of encoding symbols

of the periodic CSI is obtained according to the formula 2.1.


(4) According to the number of encoding bits or the number of encoding symbols

of the periodic CSI, with reference to the following formula 2.2, the UE determines that the number of encoding symbols

of the HARQ-ACK/SR information is that:



[0031] Optionally, according to the number of encoding bits or the number of encoding symbols

of the periodic CSI, with reference to the following formula 2.3, the UE determines that the number of encoding bits

of the HARQ-ACK/SR information is that:
4)



[0032] The method and the apparatus for encoding uplink control information of the embodiment of the present invention can ensure that the total symbol number for encoding modulation of the first uplink control information (for example, the periodic CSI) and the second uplink control information (for example, the HARQ-ACK/SR information) does not exceed the number of encoding symbols which can be carried at most; the demodulating performances of the first uplink control information (for example, the periodic CSI) and the second uplink control information (for example, the HARQ-ACK/SR information) are at relatively approximate operating points, so as to achieve the best optimal performance; in different cases, for example, in the case of including channel and information number of bits, the channel encoding manners of the first uplink control information (for example, the periodic CSI) and the second uplink control information (for example, the HARQ-ACK/SR information) can be used universally.

[0033] The method for encoding uplink control information according to another embodiment of the present invention will be described in detail in connection with Fig.4. The specific steps are as follows:

41: the UE determines the number of bits of first uplink control information and the number of bits of second uplink control information;

42: the UE determines a first parameter for channel encoding of the second uplink control information according to the number of bits of the first uplink control information, or determining a second parameter for channel encoding of the second uplink control information according to the number of bits of the first uplink control information and the number of bits of the second uplink control information;

43: the UE determines the number of encoding symbols or the number of encoding bits of the second uplink control information according to the first parameter and the number of bits of the second uplink control information, or determining the number of encoding symbols or the number of encoding bits of the second uplink control information according to the second parameter and the number of bits of the second uplink control information;

44: the UE encodes the second uplink control information according to the number of encoding symbols or the number of encoding bits of the second uplink control information so as to send the encoded second uplink control information to the base station on the physical uplink control channel.



[0034] Additionally, since the number of encoding symbols or the number of encoding bits of the second uplink control information is determined in the foregoing steps, it is possible to determine the number of encoding symbols or the number of encoding bits of the first uplink control information according to the number of encoding symbols or the number of encoding bits of the second uplink control information, and then to encode the first uplink control information according to the number of encoding symbols or the number of encoding bits of the first uplink control information, so as to send the encoded first uplink control information to the base station on the physical uplink control channel.

[0035] When the first uplink control information is the periodic CSI and the second uplink control information is the HARQ-ACK/SR information, the UE determines that the first parameter for channel encoding of the HARQ-ACK/SR information is

according to the number of bits OCSI of the periodic CSI, wherein

is the first offset value of the HARQ-ACK/SR information, αCSI is the coefficient of the second offset value of the periodic CSI,

and αCSI can be configured by the signaling of the base station; or the UE determines that the second parameter for channel encoding of the HARQ-ACK/SR information is

according to the number of bits OCSI of the periodic CSI and the number of bits OHARQ-ACK of the HARQ-ACK/SR information, wherein

is the first offset value of the HARQ-ACK/SR information, αCSI is the coefficient of the second offset value of the periodic CSI, αHARQ-ACK is the coefficient of the third offset value of the HARQ-ACK/SR information, and

, αCSI and αHARQ-ACK can be configured by the signaling of the base station. Optionally, the UE determines that the first parameter for channel encoding of the HARQ-ACK/SR information is

according to the number of bits OCSI of the periodic CSI, wherein χCSI is an adjusting parameter χCSI of the periodic CSI corresponding to the number of bits OCSI of the periodic CSI, and

can be the first offset value of the HARQ-ACK/SR information which can be configured by the signaling of the base station.

[0036] Specifically, upon the simultaneous transmission of the periodic CSI and the HARQ-ACK/SR information, the steps of determining the number of encoding bits or the number of encoding symbols of the periodic CSI and the HARQ-ACK/SR information are as follows. Herein, there does not exist any dependent relationship among part of the steps, and the steps can be performed in a random order.

[0037] In the following embodiments, the number of encoding bits or the number of encoding symbols of the HARQ-ACK/SR information is firstly determined, and then the number of encoding bits or the number of encoding symbols of the periodic CSI is determined.
(1) The eNB informs the UE of determining a offset value set for channel encoding of the periodic CSI and the HARQ-ACK/SR information through the signaling. Herein, the above signaling includes, but not limited to, a high layer signaling or a physical layer signaling, for example, the informing manner of the high layer signaling includes, but not limited to, cell-specific high layer signaling or UE-specific high layer signaling.
As stated above, the offset value set at least contains the first offset value

of the HARQ-ACK/SR information and the coefficient αCSI of the second offset value. According to a table wherein a predefined serial number of the signaling corresponds to the first offset value

and the coefficient αCSI of the second offset value, as shown in Table 3-1 and Table 3-2, the specific first offset value

and the coefficient αCSI of the second offset value are determined.
Further, the offset value set also contains a coefficient αHARQ-ACK of the third offset value. According to a table wherein a predefined serial number of the signaling corresponds to the coefficient αHARQ-ACK of the third offset value, as shown in Table 3-3, the specific coefficient αHARQ-ACK of the third offset value is determined.
When the number of encoding symbolss of the periodic CSI and the HARQ-ACK/SR are determined, as shown in the corresponding Table 3-1, Table 3-2 and Table 3-3, the embodiment of the present invention is not limited to the following values.
Table 3-1 Table wherein

corresponds to the signaling serial number
Signaling serial number of

value

0 8
1 8.5
2 9
3 9.5
4 10
5 10.5
6 11
7 11.5
8 12
9 12.5
10 13
11 13.5
12 14
13 14.5
14 15
15 reserved
Table 3-2 Table wherein αCSI corresponds to the signaling serial number
Signaling serial number of αCSIαCSI value
0 2
1 2.5
2 3
3 3.5
4 4
5 4.5
6 5
7 5.5
Table 3-3 Table wherein αHARQ-ACK corresponds to the signaling serial number
Signaling serial number of αHARQ-ACKαHARQ-ACK value
0 2
1 2.5
2 3
3 3.5
4 4
5 4.5
6 5
7 5.5

Optionally, when the number of encoding bitss of the periodic CSI and the HARQ-ACK/SR are determined, as shown in the corresponding Table 3-4, Table 3-5 and Table 3-6, the embodiment of the present invention is not limited to the following values.
Table 3-4 Table wherein

corresponds to the signaling serial number
Signaling serial number of



value
0 16
1 17
2 18
3 19
4 20
5 21
6 22
7 23
8 24
9 25
10 26
11 27
12 28
13 29
14 30
15 reserved
Table 3-5 Table wherein αCSI corresponds to the signaling serial number
Signaling serial number of αCSIαCSI value
0 4
1 5
2 6
3 7
4 8
5 9
6 10
7 11
Table 3-6 Table wherein αHARQ-ACK corresponds to the signaling serial number
Signaling serial number of αHARQ-ACKαHARQ-ACK value
0 4
1 5
2 6
3 7
4 8
5 9
6 10
7 11

(2) The UE determines the number of bits of the periodic CSI and the HARQ-ACK/SR information in the current subframe.
Specifically, the UE performs encoding and modulation according to the determined number of bits to be sent, and the eNB determines the received number of bits and correspondingly performs demodulation and decoding.
(3) The UE determines the number of encoding bits or the number of encoding symbols of the HARQ-ACK/SR information.
(3-1) The total offset value of the periodic HARQ-ACK/SR information is determined according to the following formula 3.1 or formula 3.2.



wherein, OCSI represents the number of bits of the periodic CSI in the current subframe, and OHARQ-ACK represents the number of bits of the HARQ-ACK/SR information in the current subframe.
(3-2) According to the number of bits of the HARQ-ACK/SR information in the current subframe, the product of the number of bits of the HARQ-ACK/SR information and the total offset value is obtained according to the following formula 3.3 or the formula 3.4.




Since the above product is not usually an integer, it needs to round the product, for example, rounding up or down to an integer. Rounding up to an integer is taken as an example to describe the embodiment of the present invention with reference to the following formula 3.5 or the formula 3.6 and other ways of rounding to an integer are not repeated here.




(3-3) In some cases, since the above product after rounding is larger than the maximum number of encoding bits 48 or the maximum number of encoding symbols 24 permitted to be carried by the PUCCH Format 3 information, one maximum threshold value K is preset, so as to ensure that the number of encoding bits or the number of encoding symbols of the HARQ-ACK/SR information after the product is rounded does not exceed K. Additionally, in other cases, since the number of encoding bits or the number of encoding symbols of the HARQ-ACK/SR information after the product is rounded is too small, one minimum threshold value L is preset, so as to ensure that the number of encoding bits or the number of encoding symbols of the HARQ-ACK/SR information after the product is rounded is not lower than L.
Thus, with reference to the formula 3.7 or the formula 3.8, it is possible to obtain that the number of encoding bits or the number of encoding symbols

of the HARQ-ACK/SR information is:



wherein K is equal to, but not limited to, 24, 22, 20, etc, or K can be informed or predefined by the signaling; L is equal to, but not limited to, M · OCSI, M is equal to, but not limited to 2, or M can be informed or predefined by the signaling.
Optionally, it is also possible not to limit the maximum value and the minimum value of the rounded product by excluding the situation of going beyond the range.
(4) According to the number of encoding bits or the number of encoding symbols

of the HARQ-ACK/SR information, with reference to the following formula 3.9, the number of encoding symbols

of the periodic CSI is determined to be:



[0038] Optionally, according to the number of encoding bits or the number of encoding symbols

of the HARQ-ACK/SR information, with reference to the following formula 3.10, the number of encoding bits

of the periodic CSI is that:



[0039] In another embodiment, the number of encoding bits or the number of encoding symbols of the HARQ-ACK/SR information is also firstly determined, and then the number of encoding bits or the number of encoding symbols of the periodic CSI is determined.
(1) The adjusting parameter χCSI corresponds to the number of bits of the periodic CSI, that is, the number of bits of each kind of periodic CSI corresponds to one value of the adjusting parameter χCSI. Therefore, the eNB informs the UE of the number of bits of each kind of periodic CSI corresponding to one value of χCSI by the signaling. When the number of encoding bits of the HARQ-ACK/SR information is determined, the value of χCSI is as shown in the following Table 4-1 or Table 4-2.
5)
Table 4-1 the number of bits of the periodic CSI and the corresponding χCSI value
number of bits of the periodic CSIχCSI value
1 1
2 2
3 2.5
4 3.5
5 3.5
6 3.5
7 4
8 4.5
9 4.5
10 5
11 5

6)
7)
Table 4-2 the number of bits of the periodic CSI and the corresponding χCSI value
the number of bits of the periodic CSIχCSI value
1 2
2 4
3 5
4 7
5 7
6 7
7 8
8 9
9 9
10 10
11 10

(2) The UE determines the number of bits of the periodic CSI of the current subframe, and finds the value of the adjusting parameter χCSI corresponding to the number of bits of the periodic CSI.

can be obtained with reference to Table 3-1 and Table 3-4.
(3) The number of encoding bits or the number of encoding symbols

of the HARQ-ACK/SR is obtained according to the formula 4.1.


(4) According to the number of encoding bits or the number of encoding symbols

of the HARQ-ACK/SR information, with reference to the following formula 4.2, the number of encoding symbols

of the periodic CSI is that:
8)



[0040] Optionally, according to the number of encoding bits or the number of encoding symbols

of the HARQ-ACK/SR information, with reference to the following formula 4.3, the number of encoding bits

of the periodic CSI is that:



[0041] The method and the apparatus for encoding uplink control information of the embodiment of the present invention can ensure that the total symbol number for encoding modulation of the first uplink control information (for example, the periodic CSI) and the second uplink control information (for example, the HARQ-ACK/SR information) does not exceed the number of encoding symbols which can be carried at most; the demodulating performances of the first uplink control information (for example, the periodic CSI) and the second uplink control information (for example, the HARQ-ACK/SR information) are at relatively approximate operating points, so as to achieve the best optimal performance; in different cases, for example, in the case of including channel and information number of bits, the channel encoding manners of the first uplink control information (for example, the periodic CSI) and the second uplink control information (for example, the HARQ-ACK/SR information) can be used universally.

[0042] Optionally, in the following yet another embodiment, the number of encoding bits or the number of encoding symbols of the HARQ-ACK/SR information are also firstly determined, and then the number of encoding bits or the number of encoding symbols of the periodic CSI are determined.
  1. (1) The coefficient αCSI of the second offset value corresponds to the number of bits of the periodic CSI, that is, the number of bits of each kind of periodic CSI corresponds to the coefficient αCSI of one second offset value.
  2. (2) The UE determines the number of bits of the HARQ-ACK/SR information of the current subframe, and finds the corresponding first offset value

    In addition, the UE determines the number of bits of the periodic CSI of the current subframe, and finds the corresponding coefficient αCSI of the second offset value. Herein, the first offset value

    and the coefficient αCSI of the second offset value are determined with reference to Table 3-1 to Table 3-6.
  3. (3) The number of encoding bits or the number of encoding symbols

    of the HARQ-ACK/SR is obtained according to the formula 5.1.


    Optionally, according to the number of encoding bits or the number of encoding symbols

    of the HARQ-ACK/SR information, with reference to formula 5.3, the number of encoding bits

    of the periodic CSI is determined as follows:

  4. (4) According to the number of encoding bits or the number of encoding symbols

    of the HARQ-ACK/SR information, with reference to the following formula 5.2, the number of encoding bits or the number of encoding symbols

    of the periodic CSI is that:



[0043] When the periodic CSI and the HARQ-ACK/SR information are transmitted at the same time, the resource occupied by the HARQ-ACK/SR information originally is occupied by the periodic CSI, which thus lowers the demodulating performance of the HARQ-ACK/SR information. Through the power control, under the circumstance where the periodic CSI and the HARQ-ACK/SR information are transmitted at the same time, the performance of the HARQ-ACK/SR is equivalent to that of the HARQ-ACK/SR when transmitted separately.

[0044] Like other PUCCH formats, the power control of the PUCCH Format 3 can also be adjusted according to the number of bits of the transmitted information in the current subframe.

[0045] After the number of encoding bits

of the HARQ-ACK/SR information is determined, the power adjusting value h(nCSI,nHARQ,nSR) of the HARQ-ACK/SR information is determined. For example, when the UE is configured to perform transmission at two antenna ports by the high layer or when the UE transmits more than 11 bits,

in other cases,

wherein, h(nCSI,nHARQ,nSR) is a power adjusting value, OCSI is information number of bits of the CSI (including information such as CQI, PMI, RI, etc.); nHARQ is information number of bits of the HARQ-ACK information. If the current subframe is used to transmit the SR information and does not have any transmission block of the associated physical uplink shared channel, nSR = 1; otherwise, nSR = 0.r, p are equal to, but not limited to, the values of 3, 4, 5, 6, etc.

[0046] Optionally, for example, when the UE is configured to perform transmission at two antenna ports by the high layer or when the UE transmits more than 11 bits,

in other cases,

wherein, h(nCSI,nHARQ,nSR) is a power adjusting value, OCSI is information number of bits of the CSI (including information such as CQI, PMI, RI, etc.); nHARQ is information number of bits of the HARQ-ACK information. If the current subframe is used to transmit the SR information and does not have any transmission block of the associated physical uplink shared channel, nSR = 1 ; otherwise, nSR = 0 .r, p are equal to, but not limited to, the values of 1, 1.25, 1.5, 1.75, etc.

[0047] Through the power control, it is ensured that when the periodic CSI and the HARQ-ACK/SR information are transmitted at the same time, the performance of the HARQ-ACK/SR is equivalent to that of the HARQ-ACK/SR when transmitted separately.

[0048] Correspondingly, as shown in Fig. 5, the method for transmitting uplink control information on the physical uplink control channel according to the embodiment of the present invention, realized at the base station side, includes:

51: the base station sends an indicator signaling such that user equipment UE determines a offset value of first uplink control information and second uplink control information for channel encoding according to the indicator signaling;

52: the base station receives the first uplink control information and the second uplink control information sent by the UE on the physical uplink control channel, wherein the first uplink control information and the second uplink control information are obtained according to encoding the number of encoding symbols or the number of encoding bits of the first uplink control information as well as the number of encoding symbols or the number of encoding bits of the second uplink control information, the number of encoding symbols or the number of encoding bits of the first uplink control information as well as the number of encoding symbols or the number of encoding bits of the second uplink control information are determined according to the offset value as well as the first uplink control information and the second uplink control information;

53: the base station performs downlink data scheduling according to the first uplink control information and the second uplink control information.



[0049] Under the circumstance where the first uplink control information is the periodic CSI and the second uplink control information is the HARQ-ACK/SR information, the periodic CSI and the HARQ-ACK/SR information are obtained according to the encoding of the number of encoding symbols or the number of encoding bits

of the periodic CSI as well as the number of encoding symbols or the number of encoding bits

of the HARQ-ACK/SR information, and the number of encoding symbols or the number of encoding bits

of the periodic CSI as well as the number of encoding symbols or the number of encoding bits

of the HARQ-ACK/SR information are determined according to the offset value as well as the number of bits OCSI of the periodic CSI and the number of bits OHARQ-ACK of the HARQ-ACK/SR information.

[0050] The method for transmitting uplink control information on a physical uplink control channel of the embodiment of the present invention can ensure that the total symbol number for encoding modulation of the periodic CSI and the HARQ-ACK/SR information does not exceed the number of encoding symbols which can be carried at most; the demodulating performances of the periodic CSI and the HARQ-ACK/SR information are at relatively approximate operating points, so as to achieve the best optimal performance; in different cases, for example, in the case of including channel and information number of bits, the channel encoding manners of the periodic CSI and the HARQ-ACK/SR information can be used universally.

[0051] The apparatus for encoding uplink control information according to the embodiment of the present invention will be described in detail in connection with Fig.6. As shown in Fig. 6, the apparatus 60 for transmitting uplink control information on physical uplink control channel includes a first determining unit 61, a second determining unit 62, a third determining unit 63 and a first encoding unit 64.

[0052] Herein, the first determining unit 61 is used for determining the number of bits of first uplink control information or determining the number of bits of the first uplink control information and the number of bits of second uplink control information. The second determining unit 62 is used for determining a first parameter for channel encoding of the first uplink control information according to the number of bits of the first uplink control information, or determining a second parameter for channel encoding of the first uplink control information according to the number of bits of the first uplink control information and the number of bits of the second uplink control information. The third determining unit 63 is used for determining the number of encoding symbols or the number of encoding bits of the first uplink control information according to the first parameter and the number of bits of the first uplink control information, or determining the number of encoding symbols or the number of encoding bits of the first uplink control information according to the second parameter and the number of bits of the first uplink control information. The first encoding unit 64 is used for encoding the first uplink control information according to the number of encoding symbols or the number of encoding bits of the first uplink control information determined by the third determining unit.

[0053] Optionally, as shown in Fig. 7, the apparatus 70 for encoding uplink control information further includes: a fourth determining unit 65 and a second encoding unit 66, wherein the fourth determining unit 65 determines the number of encoding symbols or the number of encoding bits of the second uplink control information according to number of encoding symbols or the number of encoding bits of the first uplink control information determined by the third determining unit 63, and the second encoding unit 66 is used for encoding the second uplink control information according to the number of encoding symbols or the number of encoding bits of the second uplink control information.

[0054] Optionally, when the first uplink control information is the periodic CSI and the second uplink control information is the HARQ-ACK/SR information, the second determining unit 62 is specifically used for determining that the first parameter for channel encoding of the periodic CSI is

according to the number of bits OCSI of the periodic CSI, wherein

is the first offset value of the periodic CSI and αCSI is the coefficient of the second offset value of the periodic CSI,

and αCSI can be configured by the signaling of the base station; or determining that the second parameter for channel encoding of the periodic CSI is

according to the number of bits OCSI of the periodic CSI and the number of bits OHARQ-ACK of the HARQ-ACK/SR information, wherein

is the first offset value of the periodic CSI, αCSI is the coefficient of the second offset value of the periodic CSI, and αHARQ-ACK is the coefficient of the third offset value of the HARQ-ACK/SR information, and

αCSI and αHARQ-ACK can be configured by the signaling of the base station.

[0055] Optionally, the second determining unit 62 is further specifically used for determining that the first parameter for channel encoding of the periodic CSI is

according to the number of bits OCSI of the periodic CSI, wherein χCSI is an adjusting parameter χCSI of the periodic CSI corresponding to the number of bits OCSI of the periodic CSI, and

can be the first offset value of the periodic CSI configured by the signaling of the base station.

[0056] Additionally, the process of determining the number of encoding symbols or the number of encoding bits

of the periodic CSI by the third determining unit 63 is as shown in the method flow in Fig. 3. The process of determining the number of encoding symbols or the number of encoding bits

of the HARQ-ACK/SR information by the fourth determining unit 65 is as shown in the method flow in Fig. 3.

[0057] The apparatus for encoding uplink control information according to the embodiment of the present invention will be described in detail in connection with Fig.8. As shown in Fig. 8, the apparatus 80 for transmitting uplink control information on physical uplink control channel includes a first determining unit 81, a second determining unit 82, a third determining unit 83 and a first encoding unit 84.

[0058] Herein, the first determining unit 81 is used for determining the number of bits of first uplink control information and the number of bits of second uplink control information. The second determining unit 82 is used for determining a first parameter for channel encoding of the second uplink control information according to the number of bits of the first uplink control information, or determining a second parameter for channel encoding of the second uplink control information according to the number of bits of the first uplink control information and the number of bits of the second uplink control information. The third determining unit 83 is used for determining the number of encoding symbols or the number of encoding bits of the second uplink control information according to the first parameter and the number of bits of the second uplink control information, or determining the number of encoding symbols or the number of encoding bits of the second uplink control information according to the second parameter and the number of bits of the second uplink control information. The first encoding unit 84 is used for encoding the second uplink control information according to the number of encoding symbols or the number of encoding bits of the second uplink control information.

[0059] Optionally, as shown in Fig. 9, the apparatus 90 for encoding uplink control information further includes: a fourth determining unit 85 and a second encoding unit 86, wherein the fourth determining unit 85 is used for determining the number of encoding symbols or the number of encoding bits of the first uplink control information according to number of encoding symbols or the number of encoding bits of the second uplink control information, and the second encoding unit 86 is used for encoding the first uplink control information according to the number of encoding symbols or the number of encoding bits of the first uplink control information.

[0060] Optionally, when the first uplink control information is the periodic CSI and the second uplink control information is the HARQ-ACK/SR information, the second determining unit 82 is specifically used for determining that the first parameter for channel encoding of the HARQ-ACK/SR information is

according to the number of bits OCSI of the periodic CSI, wherein

is the first offset value of the HARQ-ACK/SR information, αCSI is the coefficient of the second offset value of the periodic CSI,

and αCSI can be configured by the signaling of the base station; or determining that the second parameter for channel encoding of the HARQ-ACK/SR information is

according to the number of bits OCSI of the periodic CSI and the number of bits OHARQ-ACK of the HARQ-ACK/SR information, wherein

is the first offset value of the HARQ-ACK/SR information, αCSI is the coefficient of the second offset value of the periodic CSI, αHARQ-ACK is the coefficient of the third offset value of the HARQ-ACK/SR information, and

αCSI and αHARQ-ACK can be configured by the signaling of the base station.

[0061] Optionally, the second determining unit 82 is further specifically used for determining that the first parameter for channel encoding of the HARQ-ACK/SR information is

according to the number of bits OCSI of the periodic CSI, wherein χCSI is an adjusting parameter χCSI of the periodic CSI corresponding to the number of bits OCSI of the periodic CSI, and

can be the first offset value of the HARQ-ACK/SR information configured by the signaling of the base station.

[0062] Additionally, the process of determining the number of encoding symbols or the number of encoding bits

of the HARQ-ACK/SR information by the third determining unit 83 is as shown in the method flow in Fig. 4. The process of determining the number of encoding symbols or the number of encoding bits

of the periodic CSI by the fourth determining unit 85 is as shown in the method flow in Fig. 4.

[0063] In Fig. 10, the apparatus 100 for transmitting uplink control information on physical uplink control channel includes a sending unit 101, a receiving unit 102 and a scheduling module 103. Herein, the sending unit 101 is used for sending an indicator signaling such that user equipment UE determines a offset value of first uplink control information and second uplink control information for channel encoding according to the indicator signaling. The receiving unit is used for receiving the first uplink control information and the second uplink control information sent by the UE on the physical uplink control channel, wherein the first uplink control information and the second uplink control information are obtained according to the number of encoding symbols or the number of encoding bits of the first uplink control information as well as the number of encoding symbols or the number of encoding bits of the second uplink control information, the number of encoding symbols or the number of encoding bits of the first uplink control information as well as the number of encoding symbols or the number of encoding bits of the second uplink control information are determined according to the offset value as well as the first uplink control information and the second uplink control information. The scheduling module 103 is used for performing downlink data scheduling according to the first uplink control information and the second uplink control information.

[0064] Under the circumstance where the first uplink control information is the periodic CSI and the second uplink control information is the HARQ-ACK/SR information, the base station performs downlink data scheduling according to the periodic CSI and the HARQ-ACK/SR information.

[0065] The apparatus for transmitting uplink control information on a physical uplink control channel of the embodiment of the present invention can ensure that the total symbol number for encoding modulation of the periodic CSI and the HARQ-ACK/SR information does not exceed the number of encoding symbols which can be carried at most; the demodulating performances of the periodic CSI and the HARQ-ACK/SR information are at relatively approximate operating points, so as to achieve the best optimal performance; in different cases, for example, in the case of including channel and information number of bits, the channel encoding manners of the periodic CSI and the HARQ-ACK/SR information can be used universally.

[0066] A person skilled in the art will realize that the units and algorithm steps in respective examples of the embodiments disclosed herein can be implemented by electronic hardware or a combination of computer software and the electronic hardware. Whether those functions are performed by hardware or software depends on the specific application and the designed constraint condition of the technical solution. For each specific application, a person skilled in the art may implement the described functions in different methods, and the implementation shall not be regarded as going beyond the scope of the present invention.

[0067] A person skilled in the art will clearly understand that, in order for convenient and concise descriptions, the concrete working processes of the above system, device and units may refer to corresponding processes in the above method embodiments, which are not repeated herein.

[0068] To be noted, in the above embodiment of the base station, the included respective units are just classified according to the functional logics, but they are not limited thereto so long as corresponding functions can be implemented. In addition, the specific names of the respective units are also only used to distinguish the units from each other, rather than limiting the protection scope of the present invention.

[0069] In the embodiments provided by the present application, it shall be appreciated that the disclosed system, device and method may be implemented in other ways. For example, the above device embodiments are just exemplary. For example, the unit division is just a logical function division, and other division mode may be used in the implementation, e.g., multiple units or components may be combined or integrated into another system, or some features may be omitted or not executed. Another point is that the displayed or discussed mutual coupling, direct coupling or communication connection may be implemented through indirect coupling or communication connection between some interfaces, devices or units in electrical, mechanical or other forms.

[0070] The units described as separate parts may be or may not be physically separated, and the parts displayed as units may be or may not be physical units, i.e., they may be located at the same place or distributed to at least two network elements. The object of the solution of the embodiment may be achieved by selecting parts or all of units upon actual demand.

[0071] In addition, various functional units in the embodiments of the present invention may be integrated into one processing unit, or existed as individual physical units, or two or more units may be integrated into one unit.

[0072] When the functions are implemented in the form of software functional units and sold or used as individual products, they may be stored in a computer readable access medium. Based on such understanding, the technical solution of the present invention substantively, a part thereof making a contribution to the prior art, or a part of the technical solution, may be reflected in the form of software product which is stored in a storage medium, including several instructions to enable a computer device (e.g., personal computer, server, network facility, etc.) to execute all or a part of the steps of the methods of the respective embodiments. The storage medium includes various mediums capable of storing the program codes, such as U-disc, mobile hard disc, Read-Only Memory (ROM), Random Access Memory (RAM), magnetic disc, optical disc, etc.

[0073] The above descriptions are just preferred embodiments of the present invention, and the protection scope of the present invention is not limited thereto. Any change or substitution easily conceivable to a person skilled in the art within the technical scope disclosed by the present invention shall fall within the protection scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the protection scope of the claims.


Claims

1. A method for encoding uplink control information on physical uplink control channel Format 3, comprising:

determining the number of bits of first uplink control information and the number of bits of second uplink control information;

determining a parameter for channel encoding of the first uplink control information according to the number of bits of the first uplink control information and the number of bits of the second uplink control information;

determining the number of encoding symbols or the number of encoding bits of the first uplink control information according to the parameter and the number of bits of the first uplink control information;

encoding the first uplink control information according to the number of encoding symbols or the number of encoding bits of the first uplink control information;

wherein the first uplink control information is periodic channel state information, CSI, and the second uplink control information is hybrid automatic repeat request acknowledgement, HARQ-ACK.


 
2. The method according to claim 1, wherein the determining a parameter for channel encoding of the first uplink control information according to the number of bits of the first uplink control information and the number of bits of the second uplink control information comprises:
according to the number of bits OCSI of the periodic CSI and the number of bits OHARQ-ACK of the HARQ-ACK, determining the parameter for channel encoding of the periodic CSI to be

wherein

is a first offset value of the periodic CSI, αCSI is a coefficient of a second offset value of the periodic CSI, and αHARQ-ACK is a coefficient of a third offset value of the HARQ-ACK.
 
3. The method according to claim 2, wherein the determining the number of encoding symbols or the number of encoding bits of the first uplink control information according to the parameter and the number of bits of the first uplink control information comprises:
according to the parameter and the number of bits OCSI of the periodic CSI, determining the number of encoding symbols or the number of encoding bits

of the periodic CSI being that:


 
4. The method according to claim 3, wherein the second uplink control information further comprises schedule request, SR.
 
5. The method according to claim 4, further comprising: determining a power adjusting value h(nCSI, nHARQ, nSR) of the HARQ-ACK and the SR:
when the UE is configured to perform transmission at two antenna ports by the high layer or when the UE transmits more than 11 bits,

or

in other cases,

or

wherein nCSI is the number of bits of the periodic CSI, nHARQ is the number of bits of the HARQ-ACK information, nSR is the number of bits of the SR information, r and p are equal to 3, 4, 5 or 6,

is the number of encoding bits of the HARQ-ACK and the SR.
 
6. An apparatus for encoding uplink control information on physical uplink control channel Format 3, comprising:

a determining unit configured to

determine the number of bits of the first uplink control information and the number of bits of second uplink control information;

determining a parameter for channel encoding of the first uplink control information according to the number of bits of the first uplink control information and the number of bits of the second uplink control information; and

determining the number of encoding symbols or the number of encoding bits of the first uplink control information according to the parameter and the number of bits of the first uplink control information; and

a encoding unit configured to encode the first uplink control information according to the number of encoding symbols or the number of encoding bits of the first uplink control information;

wherein the first uplink control information is the periodic channel state information, CSI, and the second uplink control information is hybrid automatic repeat request acknowledgement, HARQ-ACK.


 
7. The apparatus according to claim 6, wherein the determining unit is further configured to:
according to the number of bits OCSI of the periodic CSI and the number of bits OHARQ-ACK of the HARQ-ACK, determining the parameter for channel encoding of the periodic CSI to be

wherein

is a first offset value of the periodic CSI, αCSI is a coefficient of a second offset value of the periodic CSI, and αHARQ-ACK is a coefficient of a third offset value of the HARQ-ACK.
 
8. The apparatus according to claim 7, wherein the determining unit is further configured to:
determine the number of encoding symbols or the number of encoding bits

of the periodic CSI being that:


 
9. The apparatus according to claim 8, wherein the second uplink control information further comprises schedule request, SR.
 
10. The apparatus according to claim 9, wherein the determining unit is further configured to determine a power adjusting value h(nCSI,nHARQ,nSR) of the HARQ-ACK and the SR when the UE is configured to perform transmission at two antenna ports by the high layer or when the UE transmits more than 11 bits,

or

in other cases,

or

wherein OCSI is the number of bits of the periodic CSI, nHARQ is the number of bits of the HARQ-ACK, nSR is the number of bits of the SR information, r and p are equal to 3, 4, 5 or 6,

is the number of encoding bits of the HARQ-ACK and the SR.
 


Ansprüche

1. Verfahren zur Codierung von Uplink-Steuerinformationen auf einem physischen Uplink-Steuerkanal des Formats 3, umfassend:

Bestimmen der Anzahl von Bits von ersten Uplink-Steuerinformationen und der Anzahl von Bits von zweiten Uplink-Steuerinformationen;

Bestimmen eines Parameters für eine Kanalcodierung der ersten Uplink-Steuerinformationen gemäß der Anzahl von Bits der ersten Uplink-Steuerinformationen und der Anzahl von Bits der zweiten Uplink-Steuerinformationen;

Bestimmen der Anzahl von Codierungssymbolen oder der Anzahl von Codierungs-Bits der ersten Uplink-Steuerinformationen gemäß dem Parameter und der Anzahl von Bits der ersten Uplink-Steuerinformationen;

Codieren der ersten Uplink-Steuerinformationen gemäß der Anzahl von Codierungssymbolen oder der Anzahl von Codierungs-Bits der ersten Uplink-Steuerinformationen;

wobei die ersten Uplink-Steuerinformationen periodische

Kanalzustandsinformationen, CSI, sind und die zweiten Uplink-Steuerinformationen eine positive Quittierung einer hybriden automatischen Wiederholungsanforderung, HARQ-ACK, ist.


 
2. Verfahren nach Anspruch 1, wobei das Bestimmen eines Parameters für eine Kanalcodierung der ersten Uplink-Steuerinformationen gemäß der Anzahl von Bits der ersten Uplink-Steuerinformationen und der Anzahl von Bits der zweiten Uplink-Steuerinformationen umfasst:
gemäß der Anzahl von Bits OCSI der periodischen CSI und der Anzahl von Bits OHARQ-ACK der HARQ-ACK, Bestimmen, dass der Parameter für eine Kanalcodierung der periodischen CSI

ist, wobei

ein erster Versatzwert der periodischen CSI ist, αCSI ein Koeffizient eines zweiten Versatzwerts der periodischen CSI ist und αHARQ-ACK ein Koeffizient eines dritten Versatzwerts der HARQ-ACK ist.
 
3. Verfahren nach Anspruch 2, wobei das Bestimmen der Anzahl von Codierungssymbolen oder der Anzahl von Codierungs-Bits der ersten Uplink-Steuerinformationen gemäß dem Parameter und der Anzahl von Bits der ersten Uplink-Steuerinformationen umfasst:
gemäß dem Parameter und der Anzahl von Bits OCSI der periodischen CSI, Bestimmen, dass die Anzahl von Codierungssymbolen oder die Anzahl von Codierungs-Bits O'CSI der periodischen CSI ist:


 
4. Verfahren nach Anspruch 3, wobei die zweiten Uplink-Steuerinformationen ferner eine Planungsanforderung, SR, umfassen.
 
5. Verfahren nach Anspruch 4, ferner umfassend: Bestimmen eines Leistungseinstellungswerts h(nCSI,nHARQ,nSR) der HARQ-ACK und der SR:
wenn die UE dazu ausgelegt ist, eine Übertragung an zwei Antennenanschlüssen durch die hohe Schicht durchzuführen, oder wenn die UE mehr als 11 Bits überträgt,

oder

in anderen Fällen

oder

wobei OCSI die Anzahl von Bits der periodischen CSI ist, nHARQ die Anzahl von Bits der HARQ-ACK-Informationen ist, nSR die Anzahl von Bits der SR-Informationen ist, r und p gleich 3, 4, 5 oder 6 sind, O'HARQ-ACK die Anzahl von Codierungs-Bits der HARQ-ACK und der SR ist.
 
6. Vorrichtung zur Codierung von Uplink-Steuerinformationen auf einem physischen Uplink-Steuerkanal des Formats 3, umfassend:

eine Bestimmungseinheit, die ausgelegt ist zum

Bestimmen der Anzahl von Bits der ersten Uplink-Steuerinformationen und der Anzahl von Bits von zweiten Uplink-Steuerinformationen;

Bestimmen eines Parameters für eine Kanalcodierung der ersten Uplink-Steuerinformationen gemäß der Anzahl von Bits der ersten Uplink-Steuerinformationen und der Anzahl von Bits der zweiten Uplink-Steuerinformationen und

Bestimmen der Anzahl von Codierungssymbolen oder der Anzahl von Codierungs-Bits der ersten Uplink-Steuerinformationen gemäß dem Parameter und der Anzahl von Bits der ersten Uplink-Steuerinformationen und

eine Codiereinheit, die dazu ausgelegt ist, die ersten Uplink-Steuerinformationen gemäß der Anzahl von Codierungssymbolen oder der Anzahl von Codierungs-Bits der ersten Uplink-Steuerinformationen zu codieren;

wobei die ersten Uplink-Steuerinformationen die periodischen Kanalzustandsinformationen, CSI, sind und die zweiten Uplink-Steuerinformationen eine positive Quittierung einer hybriden automatischen Wiederholungsanforderung, HARQ-ACK, ist.


 
7. Vorrichtung nach Anspruch 6, wobei die Bestimmungseinheit ferner ausgelegt ist zum:
gemäß der Anzahl von Bits OCSI der periodischen CSI und der Anzahl von Bits OHARQ-ACK der HARQ-ACK, Bestimmen, dass der Parameter für eine Kanalcodierung der periodischen CSI

ist, wobei

ein erster Versatzwert der periodischen CSI ist, αCSI ein Koeffizient eines zweiten Versatzwerts der periodischen CSI ist und αHARQ-ACK ein Koeffizient eines dritten Versatzwerts der HARQ-ACK ist.
 
8. Vorrichtung nach Anspruch 7, wobei die Bestimmungseinheit ferner ausgelegt ist zum:
Bestimmen, dass die Anzahl von Codierungssymbolen oder die Anzahl von Codierungs-Bits O'CSI der periodischen CSI ist:


 
9. Vorrichtung nach Anspruch 8, wobei die zweiten Uplink-Steuerinformationen ferner eine Planungsanforderung, SR, umfassen.
 
10. Vorrichtung nach Anspruch 9, wobei die Bestimmungseinheit ferner dazu ausgelegt ist, einen Leistungseinstellungswert h(nCSI,nHARQ,nSR) der HARQ-ACK und der SR zu bestimmen, wenn die UE dazu ausgelegt ist, eine Übertragung an zwei Antennenanschlüssen durch die hohe Schicht durchzuführen, oder wenn die UE mehr als 11 Bits überträgt,

oder

in anderen Fällen

oder

wobei OCSI die Anzahl von Bits der periodischen CSI ist, nHARQ die Anzahl von Bits der HARQ-ACK ist, nSR die Anzahl von Bits der SR-Informationen ist, r und p gleich 3, 4, 5 oder 6 sind, O'HARQ-ACK die Anzahl von Codierungs-Bits der HARQ-ACK und der SR ist.
 


Revendications

1. Procédé de codage d'informations de commande de liaison montante sur un canal physique de commande de liaison montante de Format 3, comprenant :

la détermination du nombre de bits de premières informations de commande de liaison montante et du nombre de bits of secondes informations de commande de liaison montante ;

la détermination d'un paramètre de codage de canal des premières informations de commande de liaison montante conformément au nombre de bits des premières informations de commande de liaison montante et au nombre de bits des secondes informations de commande de liaison montante ;

la détermination du nombre de symboles de codage ou du nombre de bits de codage des premières informations de commande de liaison montante conformément au paramètre et au nombre de bits des premières informations de commande de liaison montante ;

le codage des premières informations de commande de liaison montante conformément au nombre de symboles de codage ou au nombre de bits de codage des premières informations de commande de liaison montante ;

dans lequel les premières informations de commande de liaison montante sont des informations d'état de canal, CSI, périodiques et les secondes informations de commande de liaison montante sont un acquittement de demande de répétition automatique hybride, HARQ-ACK.


 
2. Procédé selon la revendication 1, dans lequel la détermination d'un paramètre de codage de canal des premières informations de commande de liaison montante conformément au nombre de bits des premières informations de commande de liaison montante et au nombre de bits des secondes informations de commande de liaison montante comprend :
conformément au nombre de bits OCSI des CSI périodiques et au nombre de bits OHARQ-ACK du HARQ-ACK, la détermination du paramètre de codage de canal des CSI périodiques, comme étant



étant une première valeur de décalage des CSI périodiques, αCSI étant un coefficient d'une deuxième valeur de décalage des CSI périodiques, et αHARQ-ACK étant un coefficient d'une troisième valeur de décalage du HARQ-ACK.
 
3. Procédé selon la revendication 2, dans lequel la détermination du nombre de symboles de codage ou du nombre de bits de codage des premières informations de commande de liaison montante conformément au paramètre et au nombre de bits des premières informations de commande de liaison montante comprend :
conformément au paramètre et au nombre de bits OCSI des CSI périodiques, la détermination du nombre de symboles de codage ou du nombre de bits de codage O'CSI des CSI périodiques comme étant :


 
4. Procédé selon la revendication 3, dans lequel les secondes informations de commande de liaison montante comprennent en outre une demande d'ordonnancement, SR.
 
5. Procédé selon la revendication 4, comprenant en outre : la détermination d'une valeur de réglage de puissance h(nCSI, nHARQ, nSR) du HARQ-ACK et de la SR :
quand l'UE est configuré pour réaliser une transmission au niveau de deux ports d'antenne par la couche supérieure ou quand l'UE transmet plus de 11 bits,

ou

dans d'autres cas,

ou

dans lequel nCSI est le nombre de bits des CSI périodiques, nHARQ est le nombre de bits des informations HARQ-ACK, nSR est le nombre de bits des informations SR, r et P sont égaux à 3, 4, 5 ou 6, O'HARQACK est le nombre de bits de codage du HARQ-ACK et de la SR.
 
6. Appareil de codage d'informations de commande de liaison montante sur un canal physique de commande de liaison de Format 3, comprenant :

une unité de détermination configurée pour

déterminer le nombre de bits des premières informations de commande de liaison montante et le nombre de bits de secondes informations de commande de liaison montante ;

déterminer un paramètre de codage de canal des premières informations de commande de liaison montante conformément au nombre de bits des premières informations de commande de liaison montante et au nombre de bits des secondes informations de commande de liaison montante ; et

déterminer le nombre de symboles de codage ou le nombre de bits de codage des premières informations de commande de liaison montante conformément au paramètre et au nombre de bits des premières informations de commande de liaison montante ; et

une unité de codage configurée pour coder les premières informations de commande de liaison montante conformément au nombre de symboles de codage ou au nombre de bits de codage des premières informations de commande de liaison montante ;

dans lequel les premières informations de commande de liaison montante sont les informations d'état de canal, CSI, périodiques et les secondes informations de commande de liaison montante sont un acquittement de demande de répétition automatique hybride, HARQ-ACK.


 
7. Appareil selon la revendication 6, dans lequel l'unité de détermination est configurée en outre pour :
conformément au nombre de bits OCSI des CSI périodiques et au nombre de bits OHARQ-ACK du HARQ-ACK, déterminer le paramètre de codage de canal des CSI périodiques, comme étant



étant une première valeur de décalage des CSI périodiques, αCSI étant un coefficient d'une deuxième valeur de décalage des CSI périodiques, et αHARQ-ACK étant un coefficient d'une troisième valeur de décalage du HARQ-ACK.
 
8. Appareil selon la revendication 7, dans lequel l'unité de détermination est configurée en outre pour :
déterminer le nombre de symboles de codage ou le nombre de bits de codage O'CSI des CSI périodiques comme étant


 
9. Appareil selon la revendication 8, dans lequel les secondes informations de commande de liaison montante comprennent en outre une demande d'ordonnancement, SR.
 
10. Appareil selon la revendication 9, dans lequel l'unité de détermination est configurée en outre pour déterminer une valeur de réglage de puissance h(nCSI, nHARQ, nSR) du HARQ-ACK et de la SR quand l'UE est configuré pour réaliser une transmission au niveau de deux ports d'antenne par la couche supérieure ou quand l'UE transmet plus de 11 bits

ou

dans d'autres cas,

ou

dans lequel nCSI est le nombre de bits des CSI périodiques, nHARQ est le nombre de bits du HARQ-ACK, nSR est le nombre de bits des informations SR, r et P sont égaux à 3, 4, 5 ou 6, O'HARQ ACK est le nombre de bits de codage du HARQ-ACK et de la SR.
 




Drawing
































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description