(11)EP 3 289 174 B1


(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 16787170.6

(22)Date of filing:  28.04.2016
(51)International Patent Classification (IPC): 
E21B 43/02(2006.01)
B07B 1/46(2006.01)
E21B 43/08(2006.01)
(86)International application number:
(87)International publication number:
WO 2016/176479 (03.11.2016 Gazette  2016/44)





(84)Designated Contracting States:

(30)Priority: 29.04.2015 US 201514699634

(43)Date of publication of application:
07.03.2018 Bulletin 2018/10

Houston, TX 77073 (US)

  • MANN, Chance, E.
    Magnolia, TX 77355 (US)
  • RICHARD, Bennett, M.
    Kingwood, TX 77345 (US)
  • JOHNSON, Michael, H.
    Katy, TX 77450 (US)
    Houston, TX 77005 (US)

(74)Representative: Lambacher, Michael et al
V. Füner Ebbinghaus Finck Hano Patentanwälte Mariahilfplatz 3
81541 München
81541 München (DE)

(56)References cited: : 
DE-U1-202013 101 853
US-A- 6 125 932
US-A1- 2009 133 874
US-A1- 2010 224 359
US-A1- 2013 062 269
US-B2- 6 742 586
US-A- 3 709 293
US-A- 6 125 932
US-A1- 2009 283 271
US-A1- 2010 258 300
US-A1- 2013 062 269
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).



    [0001] The field of the invention is wire wrap screens for subterranean use and more particularly where the wire section presents dual gaps with a velocity containment feature in between.


    [0002] Screens are employed in completions to retain solids produced with the desired hydrocarbons. There are many styles for such screens but a popular design is commonly known as a wire wrap screen. The design of such a screen involves using a perforated base pipe and securing axially oriented mounting rods to the exterior of the base pipe. The wire is then helically wrapped over the mounting rods and secured to them at each intersection. The spacing between adjacent windings determines the particle size that is allowed to get through the screen. Sometimes punched openings are provided in outer jackets that cover over the wire wrap to protect the screen during running in.

    [0003] Many optimizations of the performance of such screens have been attempted in the past. Some of these have focused on the cross-sectional shape of the wire with an eye toward keeping the manufacturing process reliable while attempting to control the flow direction for the stated purposes of enhancing throughput or reliability of operation. One issue that affects such screens is the potential for erosion from high velocity fluids that entrain produced solids. Some designs take a triangular cross-section for the wrapped wire and overlay exterior filtering layers for protection as in US 8701757. Another design illustrated in US 20100258300 uses a round section for the wrap wire and varying spacing between the windings along the length of the screen. WO 2010143060 shows triangular or near trapezoidal shapes for wire cross-section with the near trapezoidal formed from taking a triangular shape and trimming one of the angles back to an arc shape. Also of interest regarding the above-mentioned wire cross-sectional shapes are the following references: US 2013/0092391 (note paragraph 36 noting that the wire shape can control flux in the screen); US 2010/0224359 (triangular with a rounded corner or trapezoidal); US 7188687 (keystone shaped cross-section); US 8267169 (FIGS. 3 and 4 showing triangular with rounded outer face or diamond or arrowhead shapes for the wire section); US 8291971 (triangular); US 2014/0158295 (triangular with outer surface coating in FIG. 14B); US 8267169 (triangular with rounded outer surface in FIG. 8); US 2005/0082060 (triangular in FIG. 7) and US 7273106 (triangular in FIG. 11).

    [0004] US 2013/062269 A1 refers to a method of forming a bendable slotted liner with multiple circumferentially overlapping non-axial keystone slots. The method comprises: transversely profiling a rod to form a profiled rod; forming the profiled rod into alternating port and starboard bending members and base pairs; winding the profiled rod to the outer diameter; and bonding axially paired bases together.

    [0005] US 2009/133874 A1 describes a tubular member having a central opening within an internal portion of the tubular member, wherein the central opening allows hydrocarbons to flow through the tubular member. The tubular member includes openings between the central opening and a region external to the tubular member. At least two adjacent wire segments are disposed around the tubular member. The at least two adjacent wire segments create at least two flow paths to the central opening and form at least two openings configured to prevent particles greater than a specific size from entering the openings in the tubular member.

    [0006] US 3 709 293 A describes a well screen in which wire is helically wrapped around a tubular pipe. The wire has accurately formed spacing lugs. The tubular pipe has a plurality of concave arcuate grooves longitudinally formed in the outer surface thereof and a plurality of apertures extending radially through said pipe and intersecting the grooves. In addition to the more conventional keystone wire, there are two sub-species of wire having a cross-section including a concave arcuate segment to increase the transverse flow area between windings and enhance the circumferential flow.

    [0007] What is common to all these designs is that regardless of the shape employed for the wire cross-section, there is but a single gap between windings such that when erosion enlarges this gap the larger particles will get through and the base pipe underneath will also be exposed to erosive effects of high velocity fluids with entrained solids. The present invention seeks to improve the existing designs by offering the spacing that defines the size of the particles screened out in duplicate so that the sizing capability for excluded solids remains if one of the spacings is enlarged by erosive effects. Furthermore the backup spacing is further protected from erosive effects of high velocity fluids by virtue of the enclosed circumferential space between the outer and inner gaps because the enlarged volume between the inner and outer gaps reduces fluid velocity by the turbulence that is created to further protect the inner gap of the wire wrap and add longevity to the screen in subterranean environments. The enlarged volume area can be geometrically designed to move the erosion from the primary or secondary gap to an inner sacrificial area that does not compromise sand control. These and other aspects of the present invention will be more readily understood by those skilled in the art from a review of the detailed description and the associated drawings while recognizing that the full scope of the invention is to be determined by the appended claims.


    [0008] The claimed invention is directed to a wire wrap screen and to a method of screening out produced solids from a subterranean formation as set forth in independent claims 1 and 9, respectively. A wire cross-sectional shape for a wire wrap screen provides a primary and secondary gap with a contained circumferential volume in between. The secondary gap extends screen life by taking the place of the primary gap if erosion opens the primary gap and lets the larger solids get past. The closed space between the primary and secondary gaps also has the effect of reducing velocity due to the enlarged volume before the secondary gap is reached while also creating turbulence between the gaps to slow the fluid velocity to protect the secondary gap. All or parts of the wire outer surface can optionally be coated to extend service life.



    FIG. 1 is a perspective view of adjacent windings of wire wrap screen showing the general I-beam cross-sectional shape;

    FIG. 2 is a section view of another embodiment where the section has the appearance of mirror image homes with sloped roofs and adjacent peaks;

    FIG. 3 is a section view of another embodiment where the section is of dual T-shaped wire where one wire is an inverted T shape and the adjacent is a right side up T-shape;

    FIG. 4 is another alternative design where the passage between inner and outer face gaps makes several turns.


    [0010] FIG. 1 shows in perspective two windings as they would be positioned on a wire wrap screen that is not shown. The windings 10 and 12 define a primary gap 14 and a spaced secondary gap 16. In between, there are facing arcuate surfaces 18 and 20. Flow through the screen progresses from gap 14 to gap 16 and through openings 24 in base pipe 22. The flow in production mode is in the direction of arrow 26. The cross-sectional shape is akin to an I-beam with a circular web. However, a straight web to make the cross-section more akin to a structural I-beam shape is also contemplated. A few support rods 28 and 30 that run axially on the base pipe 22 and are secured with tack welds 32 and 34 are illustrated for reference while those skilled in the art will recognize that additional rod can be used to create the needed structural strength for the assembly. Equipment to continuously wind the windings such as 10 and 12 is also known which also applies the weld or other attachment method to the rods 28 and 30 as the windings make contact in a continuous process. Preferably the gaps 14 and 16 are identical but they can also be different with 14 being larger 16 or 16 being larger than 14. Along the screen length the preferred pitch is constant although gaps 14 or 16 that change along the length of the screen are also contemplated. A coating 36 can be applied to an outer face 38 and if desired the coating can be wrapped around into the rounded circumferential or annular space defined between curved surfaces 18 and 20 for each of the windings that make up the screen or for less than all of the windings, if desired. The coating has the objective of protecting the windings 12 and 14 from the effects of high fluid velocity. Also along those lines the winding material can be made from a hard metal or a composite or a shape memory alloy. The gaps 14 and 16 can change as between the time of manufacturing and when placed in service if for example a shape memory alloy is used. The gaps can be manufactured at a larger dimension that can close up as the transition temperature is reached if the windings are from a shape memory alloy.

    [0011] Those skilled in the art will readily appreciate the differences from known designs. The wire shape creates a primary and a secondary gap so that screening can continue even if there is wear of parts of the primary gap without allowing larger particulates to get through as the secondary gap is still in service to stop such particles. The erosive effects of high fluid velocity are attenuated in two ways. First, the enlargement of the flow area after passing through gap 14 and before reaching gap 16 tends to slow the fluid velocity as does the turbulence that is created due to the change and the enlargement of the flow area between the gaps. Additionally, the enlarged space between the gaps can collect solids that would not have passed through gap 14 but for it wearing during service. Of course if there is a surrounding gravel pack in the annular space around the windings 10 and 12 solids can also accumulate there by design. The provision of multiple gaps provides for a longer service life for excluding solids down to the desired dimension. The enlarged gap creates turbulence and a velocity slowdown from the shape of the space and the fact that the flow area dimension rises either gradually or in a stepwise manner. While straight or arcuate surfaces 18 and 20 have been described, those surfaces can also be smooth or roughened to act more as a velocity deterrent.

    [0012] Referring to FIG. 2 windings 50 and 52 are illustrated on base pipe 54 with the axially oriented support rods omitted for greater clarity. Here again are primary and secondary gaps 56 and 58 with the production flow in the direction of arrow 60. Surfaces 62 and 64 form a V-shape facing another V-shape made of surfaces 66 and 68. These surfaces can be rounded as they extend from a middle region 70 or 72. While regions 70 or 72 look like a narrow ridge, the width of such a ridge can be adjusted for addressing structural integrity issues. Optionally, pass through openings 74 can be provided at the ridges 70 or 72 or offset from those locations to address issues of structural integrity. Cross flow between windings 50 and 52 after gap 56 is contemplated and would occur in the direction of arrow 76. The cross flow ports such as 74 create further turbulence and reduce the erosion effects on gap 58. Such openings can also reduce the pressure drop across the screen for a given flow rate as compared with the same design without such openings. Beyond, this the recited variations described with regard to FIG. 1 are also intended to apply to the design shown in FIG. 2. Although spiral windings are contemplated independent adjacent rings of wire are also contemplated.

    [0013] Referring to FIG. 3 two adjacent windings 80 and 82 that together define an outer gap 84 and an inner gap 86. The wires are preferably the same T-shape with one being upside down and the other being right side up. Together they define an enlarged flow space 88 that is wider than gaps 84 or 86. Gaps 84 and 86 can be the same size or one can be larger than the other in either order. Arrow 90 represents the direction of incoming fluid flow. Arrow 92 represents the continuation of that flow toward gap 86. On the way through gap 86 what erosion effects there will be will occur at corners 94 on wire 82 and corners 96 on wire 80. However, despite erosion at corners 94 and 96 there will still be an original dimension represented by arrow 100 that is the same as the gap 86 initially. Thus as the corners 94 and 96 are sacrificed the original gap 86 dimension is maintained. This extends the longevity of the wire wrap screen that is built according to the FIG. 3 embodiment. Other options as discussed with regard to FIGS. 1 and 2 are equally applicable to the FIGS. 3 and 4 embodiments.

    [0014] FIG. 4 shows two adjacent wraps of a single wire design where the wraps are 110 and 112. Arrow 114 represents flow into the outer face gap 116. Circle 118 is intended to schematically illustrate the size of the gap 116 and to show that it has some depth in the direction of flow indicated by arrow 114. Similarly, circle 120 is intended to show that the inner surface gap 122 has a depth to it as well. In between gaps 116 and 122 there is a tortuous path where the flow is forced to make at two turns after entering in the direction of arrow 114. Some of the flow is turned by surface 124 while the flow pattern is reoriented by surface 126 either of which can be a continuous arc or multiple adjacent flat or curved surfaces that have the result of preferable shooting the flow through gap 122 as close as possible to the skewed orientation of the gap 122 to minimize erosion. Even if erosion removes some of the wire at locations 126 or 128 the effective dimension of the gap 122 is retained as there is a height to the gap between locations 126 and 128 that continues to remain the same despite the onset of erosion at 126 or 128.

    [0015] The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the scope of the claims below.


    1. A wire wrap screen comprising a wire defining a first (84) and second (86) filtration gap on an outer and inner faces thereof on adjacent windings on a support structure (28, 30), wherein at least one flow space (88) is defined between said filtration gaps (84, 86) that is wider than said gaps at said inner and outer faces, and said flow space (88) is configured to change the flow direction (92) between said first (84) and second (86) filtration gaps at least once, characterized in that the cross-sectional shape of said wire is T-shaped (80, 82) and adjacent wires wound together define said first (84) and second (86) filtration gaps where the orientation of said T-shapes in adjacent wire windings is inverted.
    2. The wire wrap screen of claim 1, wherein: said flow space (88) is defined by opposed flat surfaces between adjacent windings.
    3. The wire wrap screen of claim 2, wherein: said flat surfaces are parallel.
    4. The wire wrap screen of claim 1, wherein: a width of said gaps changes in response to heat.
    5. The wire wrap screen of claim 1, wherein: at least a part of said outer face or said flow space is coated (36) to resist erosion.
    6. The wire wrap screen of claim 1, wherein: said windings are a continuous spiral defining a continuous spiral flow space.
    7. The wire wrap screen of claim 1, wherein: said flow space is configured to change the flow direction (92) between said first and second filtration gaps more than once.
    8. The wire wrap screen of claim 1, wherein: said second filtration gap (86) has a predetermined height, said height defines a filtering dimension despite an inlet or an outlet erosion at said second filtration gap.
    9. A method of screening out produced solids from a subterranean formation, comprising:

    winding a pair of adjacent wires (80, 82) on a base pipe such that spaced apart filtration gaps (84, 86) adjacent an inner and outer surfaces of windings of said wire are connected by a flow space (88), wherein the flow space (88) is wider than said filtration gaps (84, 86) at said inner and outer surfaces;

    locating said base pipe at a subterranean location;

    taking fluids through said gaps (84, 86) from a surrounding formation,

    changing the flow direction (92) in said flow space (88) at least once,

    characterized by

    winding two adjacent wires (80, 82) with a T-shape cross-section where one T-shape is inverted with respect to an adjacent cross-section T-shape;

    defining said flow space (88) between said T-shaped adjacent cross-sections.

    10. The method of claim 9, comprising:
    reducing fluid velocity with the shape of said flow space (88).
    11. The method of claim 9, comprising:
    providing flat surfaces to define said flow space (88).
    12. The method of claim 9, comprising:
    coating (36) at least a portion of said wire to control erosion.
    13. The method of claim 9, comprising:
    changing the size of said filtration gaps (84, 86) by using a material for said wire that responds to thermal input at the subterranean location.


    1. Wickeldrahtsieb umfassend einen Draht, der einen ersten (84) und einen zweiten (86) Filtrationsspalt auf einer äußeren und einer inneren Fläche davon auf benachbarten Wicklungen auf einer Stützstruktur (28, 30) definiert, wobei wenigstens ein Strömungsraum (88) zwischen den Filtrationsspalten (84, 86) definiert ist, der breiter als die Spalte an der inneren und der äußeren Fläche ist, und der Strömungsraum (88) derart konfiguriert ist, dass er die Strömungsrichtung (92) zwischen dem ersten (84) und dem zweiten (86) Filtrationsspalt wenigstens einmal ändert,
    dadurch gekennzeichnet, dass
    die Querschnittsform des Drahtes T-förmig (80, 82) ist, und benachbarte, zusammengewickelte Drähte den ersten (84) und den zweiten (86) Filtrationsspalt definieren, wobei die Ausrichtung der T-Formen in benachbarten Drahtwicklungen umgekehrt ist.
    2. Wickeldrahtsieb nach Anspruch 1, wobei:
    der Strömungsraum (88) durch gegenüberliegende flache Oberflächen zwischen benachbarten Wicklungen definiert ist.
    3. Wickeldrahtsieb nach Anspruch 2, wobei:
    die flachen Oberflächen parallel sind.
    4. Wickeldrahtsieb nach Anspruch 1, wobei:
    sich die Breite der Spalte ansprechend auf Wärme verändert.
    5. Wickeldrahtsieb nach Anspruch 1, wobei:
    wenigstens ein Teil der Außenfläche oder des Strömungsraums beschichtet (36) ist, um Erosion zu widerstehen.
    6. Wickeldrahtsieb nach Anspruch 1, wobei:
    die Wicklungen eine kontinuierliche Spirale sind, die einen kontinuierlichen Spiralströmungsraum definieren.
    7. Wickeldrahtsieb nach Anspruch 1, wobei:
    der Strömungsraum derart konfiguriert ist, dass er die Strömungsrichtung (92) zwischen dem ersten und dem zweiten Filtrationsspalt mehr als einmal ändert.
    8. Wickeldrahtsieb nach Anspruch 1, wobei:
    der zweite Filtrationsspalt (86) eine vorbestimmte Höhe hat, wobei die Höhe trotz einer Einlass- oder einer Auslass-Erosion am zweiten Filtrationsspalt eine Filtrierungsdimension definiert.
    9. Verfahren zum Aussieben von produzierten Feststoffen aus einer unterirdischen Formation, umfassend:

    Wickeln eines Paars benachbarter Drähte (80, 82) auf ein Basisrohr, so dass voneinander beabstandete Filtrationsspalte (84, 86) angrenzend an eine innere und eine äußere Oberfläche von Wicklungen des Drahtes durch einen Strömungsraum (88) verbunden sind, wobei der Strömungsraum (88) breiter ist als die Filtrationsspalte (84, 86) an der inneren und der äußeren Oberfläche;

    Anordnen des Basisrohrs an einem unterirdischen Ort;

    Aufnehmen von Fluiden durch die Spalte (84, 86) aus einer umgebenden Formation,

    Ändern der Strömungsrichtung (92) in dem Strömungsraum (88) wenigstens einmal, gekennzeichnet durch

    Wickeln von zwei benachbarten Drähten (80, 82) mit einem T-förmigen Querschnitt, wobei eine T-Form in Bezug auf eine benachbarte Querschnitts-T-Form umgekehrt ist;

    Definieren des Strömungsraums (88) zwischen den T-förmigen benachbarten Querschnitten.

    10. Verfahren nach Anspruch 9, umfassend:
    Reduzieren der Fluidgeschwindigkeit mit der Form des Strömungsraums (88).
    11. Verfahren nach Anspruch 9, umfassend:
    Bereitstellen von flachen Oberflächen, um den Strömungsraum (88) zu definieren.
    12. Verfahren nach Anspruch 9, umfassend:
    Beschichten (36) wenigstens eines Teils des Drahtes, um Erosion zu kontrollieren.
    13. Verfahren nach Anspruch 9, umfassend:
    Ändern der Größe der Filtrationsspalte (84, 86) durch Verwendung eines Materials für den Draht, das auf Wärmezufuhr an der unterirdischen Stelle anspricht.


    1. Tamis à fil d'enrobage comprenant un fil définissant un premier (84) et un second (86) espace de filtration sur ses faces extérieur et intérieur sur des enroulements adjacents sur une structure de support (28, 30), dans lequel au moins un espace d'écoulement (88) défini entre lesdits espaces de filtration (84, 86) est plus large que lesdits espaces au niveau desdites faces intérieure et extérieure et ledit espace d'écoulement (88) est configuré pour changer la direction d'écoulement (92) entre lesdits premier (84) et second (86) espaces de filtration au moins une fois,
    caractérisé en ce que
    ladite forme de section transversale dudit fil est en forme de T (80, 82) et les fils adjacents enroulés ensemble définissent lesdits premier (84) et second (86) espaces de filtration où l'orientation desdites formes de T dans les enroulements de fil adjacents est inversée.
    2. Tamis à fil d'enrobage selon la revendication 1, dans lequel :
    ledit espace d'écoulement (88) est défini par des surfaces planes opposées entre des enroulements adjacents.
    3. Tamis à fil d'enrobage selon la revendication 2, dans lequel :
    lesdites surfaces planes sont parallèles.
    4. Tamis à fil d'enrobage selon la revendication 1, dans lequel :
    une largeur desdits espaces change en réponse à la chaleur.
    5. Tamis à fil d'enrobage selon la revendication 1, dans lequel :
    au moins une partie de ladite face extérieure ou dudit espace d'écoulement est revêtue (36) pour résister à l'érosion.
    6. Tamis à fil d'enrobage selon la revendication 1, dans lequel :
    lesdits enroulements sont une spirale continue définissant un espace d'écoulement en spirale continue.
    7. Tamis à fil d'enrobage selon la revendication 1, dans lequel :
    ledit espace d'écoulement est configuré pour changer la direction d'écoulement (92) entre lesdits premier et second espaces de filtration plus d'une fois.
    8. Tamis à fil d'enrobage selon la revendication 1, dans lequel :
    ledit second espace de filtration (86) a une hauteur prédéterminée, ladite hauteur définit une dimension de filtrage malgré une érosion d'entrée ou de sortie au niveau dudit second espace de filtration.
    9. Procédé d'élimination par tamisage des solides produits par une formation souterraine, comprenant :

    l'enroulement d'une paire de fils adjacents (80, 82) sur un tuyau de base de sorte que les espaces de filtration (84, 86) éloignés les uns des autres adjacents aux surfaces intérieure et extérieur des enroulements dudit fil sont reliés par un espace d'écoulement (88), dans lequel l'espace d'écoulement (88) est plus large que lesdits espaces de filtration (84, 86) au niveau desdites surfaces intérieure et extérieure ;

    le placement dudit tuyau de base au niveau d'un emplacement souterrain ;

    le passage des fluides à travers lesdits espaces (84, 86) depuis une formation environnante,

    le changement de la direction d'écoulement (92) dans ledit espace d'écoulement (88) au moins une fois,

    caractérisé par

    l'enroulement de deux fils adjacents (80, 82) avec une section transversale en forme de T où une forme de T est inversée par rapport à une forme de T de section transversale adjacente ;

    la définition dudit espace d'écoulement (88) entre lesdites sections transversales adjacentes en forme de T.

    10. Procédé selon la revendication 9, comprenant :
    la réduction de la vitesse de fluide avec la forme dudit espace d'écoulement (88).
    11. Procédé selon la revendication 9, comprenant :
    la fourniture de surfaces planes pour définir ledit espace d'écoulement (88).
    12. Procédé selon la revendication 9, comprenant :
    le revêtement (36) d'au moins une partie dudit fil pour contrôler l'érosion.
    13. Procédé selon la revendication 9, comprenant :
    le changement de la taille desdits espaces de filtration (84, 86) en utilisant un matériau pour ledit fil qui répond à l'entrée thermique au niveau de l'emplacement souterrain.


    Cited references


    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description