(19)
(11)EP 3 290 705 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 17179950.5

(22)Date of filing:  06.07.2017
(51)International Patent Classification (IPC): 
F04B 43/04(2006.01)

(54)

FLUID CONTROL DEVICE

FLUIDSTEUERUNGSVORRICHTUNG

DISPOSITIF DE RÉGULATION DE FLUIDES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.09.2016 TW 105128589

(43)Date of publication of application:
07.03.2018 Bulletin 2018/10

(73)Proprietor: Microjet Technology Co., Ltd
Hsinchu (TW)

(72)Inventors:
  • Chen, Shih-Chang
    Hsinchu (TW)
  • Huang, Chi-Feng
    Hsinchu (TW)
  • Han, Yung-Lung
    Hsinchu (TW)
  • Chen, Shou-Hung
    Hsinchu (TW)
  • Liao, Hung-Hsin
    Hsinchu (TW)

(74)Representative: 2K Patentanwälte Blasberg Kewitz & Reichel 
Partnerschaft mbB Schumannstrasse 27
60325 Frankfurt am Main
60325 Frankfurt am Main (DE)


(56)References cited: : 
EP-A1- 3 109 472
CN-U- 205 383 064
DE-A1- 19 918 694
US-A1- 2013 209 279
US-A1- 2015 114 222
CN-B- 102 536 755
CN-U- 206 092 351
US-A1- 2013 178 752
US-A1- 2014 377 099
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to a fluid control device according to the preamble of claim 1.

    BACKGROUND OF THE INVENTION



    [0002] With the advancement of science and technology, fluid control devices are widely used in many sectors such as pharmaceutical industries, computer techniques, printing industries or energy industries. Moreover, the fluid control devices are developed toward elaboration and miniaturization. The fluid control devices are important components that are used in for example micro pumps, micro atomizers, printheads or industrial printers for transporting fluid. Therefore, it is important to provide an improved structure of the fluid control device.

    [0003] FIG. 1A is a schematic cross-sectional view illustrating a portion of a conventional fluid control device. FIG 1B is a schematic cross-sectional view illustrating an assembling shift condition of the conventional fluid control device. The main components of the conventional fluid control device 100 comprise a substrate 101 and a piezoelectric actuator 102. The substrate 101 and the piezoelectric actuator 102 are stacked on each other, assembled by any well known assembling means such as adhesive, and separated from each other by a gap 103. In an ideal situation, the gap 103 is maintained at a specified depth. More particularly, the gap 103 specifies the interval between an alignment central portion of the substrate 101 and a neighborhood of a central aperture of the piezoelectric actuator 102. In response to an applied voltage, the piezoelectric actuator 102 is subjected to deformation and a fluid is driven to flow through various chambers of the fluid control device 100. In such way, the purpose of transporting the fluid is achieved.

    [0004] The piezoelectric actuator 102 and the substrate 101 of the fluid control device 100 are both flat-plate structures with certain rigidities. Thus, it is difficult to precisely align these two flat-plate structures to make the specified gap 103 and maintain it. If the gap 103 was not maintained in the specific depth, an assembling error would occur. Further explanation is exemplified as below. Referring to FIG. 1B, the piezoelectric actuator 102 is inclined at an angle θ by one side as a pivot. Most regions of the piezoelectric actuator 102 deviate from the expected horizontal position by an offset, and the offset of each point of the regions is correlated positively with its parallel distance to the pivot. In other words, slight deviation can cause a certain amount of deviation. As shown in FIG. 1B, one indicated region of the piezoelectric actuator 102 deviates from the standard by d while another indicated region can deviate by d'. As the fluid control device is developed toward miniaturization, miniature components are adopted. Consequently, the difficulty of maintaining the specified depth of the gap 103 has increased. The failure of maintaining the depth of the gap 103 causes several problems. For example, if the gap 103 is increased by d', the fluid transportation efficiency is reduced. On the other hand, if the gap 103 is decreased by d', the distance of the gap 103 is shortened and is unable to prevent the piezoelectric actuator 102 from readily being contacted or interfered by other components during operation. Under this circumstance, noise is generated, and the performance of the fluid control device is reduced.

    [0005] Since the piezoelectric actuator 102 and the substrate 101 of the fluid control device 100 are flat-plate structures with certain rigidities, it is difficult to precisely align these two flat-plate structures. Especially when the sizes of the components are gradually decreased, the difficulty of precisely aligning the miniature components is largely enhanced. Under this circumstance, the performance of transferring the fluid is deteriorated, and the unpleasant noise is generated,

    [0006] US 20140377099A1 discloses a fluid control device according to the preamble of claim 1, as shown in FIGS. 2A and 2B, the fluid control device 2 includes a miniature gas transportation module 2A and a miniature valve module 2B. The miniature gas transportation module 2A includes a gas inlet plate 20, a fluid channel plate 21, a resonance membrane 22 and a piezoelectric actuator 23. A first chamber 222 is defined between the resonance membrane 22 and the piezoelectric actuator 23. After the piezoelectric actuator 23 is activated to feed a gas through the gas inlet plate 20, the gas is transferred to the first chamber222 through the fluid channel plate 21 and the resonance membrane 22 and then transferred downwardly. Consequently, a pressure gradient is generated to continuously push the gas. The miniature valve module 2B includes a gas collecting plate 26, a valve membrane 27 and a gas outlet plate 28. After the gas is transferred from the miniature gas transportation module 2A to the gas-collecting chamber 262, the gas is transferred in one direction, so that a pressure-collecting operation or a pressure-releasing operation is selectively performed.

    [0007] CN 205383064U discloses a miniature gas pressure power unit, as shown in FIGS. 1A to 2B, miniature gas pressure power unit 1 includes a miniature gas transfer device 1A and a miniature valve means 1B. The miniature gas transfer device 1A including an air inlet plate 11, a resonant piece 12 and a piezoelectric actuator 13, a first chamber 121 formed between the resonant piece 12 and the piezoelectric actuator 13. After the piezoelectric actuator 13 is activated to feed a gas through the air inlet plate 11, the gas is transferred to the first chamber 121, through the resonant piece 12 and then transferred downwardly. The miniature valve means 1B includes a current gas plate 16, a valve plate 17 and an outlet plate 18. After the gas is transferred from the miniature gas transfer device 1A to the miniature valve means 1B, the gas is transferred to a plenum chamber 162, and then transferred into miniature valve means 1B, and controls a valve bore 170 of the valve plate 17 to be opened and closed, thereby to achieve a pressure-collecting operation or a pressure-releasing operation.

    [0008] US 20130178752A1 discloses a fluid control device, as shown in FIG 1, the fluid control device 100 comprises a piezoelectric pump 101, a check valve 102 and an exhaust valve 103. The check valve 102 includes a first valve housing 21 and a first diaphragm 108A. The first diaphragm 108A defines a first valve chamber 23 and a second valve chamber 26. The exhaust valve 103 includes a second valve housing 31 and a second diaphragm 108B. The second diaphragm 108B defines a third valve chamber 33 and a fourth valve chamber 36. The check valve 102 is opened and closed by a difference in pressure between the first valve chamber 23 and the second valve chamber 26. The exhaust valve 103 is opened and closed by a difference in pressure between the third valve chamber 33 and the fourth valve chamber 36.

    [0009] EP 3109472A1 discloses a fluid control device and pump, as shown in FIGS. 1 and 2, the pump 1 includes a vibrating plate 15 that has a central part 21, a frame part 22, and connecting parts 23-26, a piezoelectric element 16 that is stacked over the central part 21 and configured to cause flexural vibrations to occur concentrically from the central part 21 to the connecting parts 23-26, and an opposed plate 13 that is stacked over the frame part 22 and positioned facing each of the connecting parts 23-26 with a spacing therebetween. The vibrating plate 15 has such a resonant mode that an antinode occurs in each of the central part 21 and the connecting parts 23-26. The opposed plate 13 has, at positions facing the connecting parts 23-26, a plurality of channel holes 39-43 through which a fluid flows.

    [0010] Therefore, there is a need of providing an improved fluid control device in order to eliminate the above drawbacks.

    SUMMARY OF THE INVENTION



    [0011] The present invention provides a fluid control device according to claim 1. The fluid control device has a miniature substrate and a miniature piezoelectric actuator. Since the substrate is deformable, a specified depth between a flexible plate of the substrate and a vibration plate of the piezoelectric actuator is maintained. Consequently, the assembling error is reduced, the efficiency of transferring the fluid is enhanced, and the noise is reduced. That is, the fluid control device of the present invention is more user-friendly.

    [0012] In accordance with the present invention, there is provided a fluid control device. The fluid control device includes a piezoelectric actuator and a deformable substrate. The piezoelectric actuator includes a piezoelectric element and a vibration plate having a first surface and an opposing second surface. The piezoelectric element is attached on the first surface of the vibration plate. The piezoelectric element is subjected to deformation in response to an applied voltage. The vibration plate is subjected to a curvy vibration in response to the deformation of the piezoelectric element. A bulge is formed on the second surface of the vibration plate. The deformable substrate includes a flexible plate and a communication plate. The flexible plate is stacked and coupled with the communication plate and then the deformable substrate is subjected to synchronous deformation. Consequently, a synchronously-deformed structure is formed on and defined by the flexible plate and the communication plate collaboratively. The deformable substrate is combined with and positioned on the vibration plate of the piezoelectric actuator, and the synchronously-deformed structure of the deformable substrate is bent in the direction toward the vibration plate. Consequently, a specified depth is defined between the flexible plate of the deformable substrate and the bulge of the vibration plate. The flexible plate includes a movable part corresponding to the bulge of the vibration plate.

    [0013] The above contents of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] 

    FIG. 1A is a schematic cross-sectional view illustrating a portion of a conventional fluid control device;

    FIG. 1B is a schematic cross-sectional view illustrating an assembling shift condition of the conventional fluid control device;

    FIG. 2A is a schematic exploded view illustrating a fluid control device according to an embodiment of the present invention and taken along a first viewpoint;

    FIG. 2B is a schematic perspective view illustrating the assembled structure of the fluid control device of FIG 2A;

    FIG. 3 is a schematic exploded view illustrating the fluid control device of FIG 2A and taken along a second viewpoint;

    FIG 4A is a schematic cross-sectional view of the fluid control device of FIG. 2A;

    FIGS. 4B and 4C are schematic cross-sectional views illustrating the actions of the fluid control device of FIG. 2A;

    FIG. 5A is a schematic cross-sectional view illustrating a first example of the synchronously-deformed structure of the deformable substrate of the fluid control device;

    FIG. 5B is a schematic cross-sectional view illustrating a second example of the synchronously-deformed structure of the deformable substrate of the fluid control device;

    FIG 6A is a schematic cross-sectional view illustrating a third example of the synchronously-deformed structure of the deformable substrate of the fluid control device;

    FIG. 6B is a schematic cross-sectional view illustrating a fourth example of the synchronously-deformed structure of the deformable substrate of the fluid control device;

    FIG. 7A is a schematic cross-sectional view illustrating a fifth example of the synchronously-deformed structure of the deformable substrate of the fluid control device;

    FIG. 7B is a schematic cross-sectional view illustrating a sixth example of the synchronously-deformed structure of the deformable substrate of the fluid control device; and

    FIG. 8 is a schematic cross-sectional view illustrating a seventh example of the synchronously-deformed structure of the deformable substrate of the fluid control device.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT



    [0015] The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.

    [0016] The present invention provides a fluid control device. The fluid control device can be used in many sectors such as pharmaceutical industries, energy industries computer techniques or printing industries for transporting fluids.

    [0017] Please refer to FIGS. 2A, 2B, 3 and 4A. FIG. 2A is a schematic exploded view illustrating a fluid control device according to an embodiment of the present invention and taken along a first viewpoint. FIG. 2B is a schematic perspective view illustrating the assembled structure of the fluid control device of FIG. 2A. FIG 3 is a schematic exploded view illustrating the fluid control device of FIG. 2A and taken along a second viewpoint. FIG. 4A is a schematic cross-sectional view of the fluid control device of FIG. 2A.

    [0018] As shown in FIGS. 2A and 3, the fluid control device 2 comprises a deformable substrate 20, a piezoelectric actuator 23, a first insulating plate 241, a conducting plate 25, a second insulating plate 242 and a housing 26. The deformable substrate 20 comprises a communication plate 21 and a flexible plate 22. The piezoelectric actuator 23 is aligned with the flexible plate 22. The piezoelectric actuator 23 comprises a vibration plate 230 and a piezoelectric element 233. Moreover, the deformable substrate 20, the piezoelectric actuator 23, the first insulating plate 241, the conducting plate 25 and the second insulating plate 242 are sequentially stacked on each other, and received within the housing 26.

    [0019] Please refer to FIGS. 2A, 2B, 3 and 4A again. The communication plate 21 has an inner surface 21b and an outer surface 21a. The inner surface 21b and the outer surface 21a are opposed to each other. As shown in FIG. 3, at least one inlet 210 is formed on the outer surface 21a of the communication plate 21. In this embodiment, four inlets 210 are formed on the outer surface 21a of the communication plate 21. It is noted that the number of the inlets 210 may be varied according to the practical requirements. The inlets 210 run through the inner surface 21b and the outer surface 21a of the communication plate 21. In response to the action of the atmospheric pressure, the fluid can be introduced into the fluid control device 2 through the at least one inlet 210. As shown in FIG. 2A, at least one convergence channel 211 is formed on the inner surface 21b of the communication plate 21. The at least one convergence channel 211 is in communication with the at least one inlet 210 running through the outer surface 21a of the communication plate 21. Moreover, a central cavity 212 is formed on the inner surface 21b of the communication plate 21. The central cavity 212 is in communication with the at least one convergence channel 211. After an external fluid is introduced into the fluid control device 2 via the at least one inlet 210, the fluid is guided to the central cavity 212 through the at least one convergence channel 211. Consequently, the fluid can be further transferred downwardly. In this embodiment, the at least one inlet 210, the at least one convergence channel 211 and the central cavity 212 of the communication plate 21 are integrally formed. The central cavity 212 forms a convergence chamber for temporarily storing the fluid. Preferably but not restricted, the communication plate 21 is made of stainless steel, and the flexible plate 22 is made of a flexible material. The flexible plate 22 comprises a central aperture 220 corresponding to the central cavity 212 of the communication plate 21. Consequently, the fluid can be transferred downwardly through the central aperture 220. Preferably but not exclusively, the flexible plate 22 is made of copper. The flexible plate 22 is coupled with the communication plate 21 and comprises a movable part 22a and a fixed part 22b. The fixed part 22b is fixed on the communication plate 21, whereas the movable part 22a is aligned with the central cavity 212. The central aperture 220 is formed in the movable part 22a.

    [0020] Please refer to FIGS. 2A, 2B and 3 again. The piezoelectric actuator 23 comprises a piezoelectric element 233, a vibration plate 230, an outer frame 231 and at least one bracket 232. In this embodiment, the vibration plate 230 has a square flexible film structure. The vibration plate 230 has a first surface 230b and an opposing second surface 230a. The piezoelectric element 233 has a square shape. The side length of the piezoelectric element 233 is not larger than the side length of the vibration plate 230. Moreover, the piezoelectric element 233 is attached on the first surface 230b of the vibration plate 230. By applying a voltage to the piezoelectric element 233, the piezoelectric element 233 is subjected to deformation to result in curvy vibration of the vibration plate 230. Moreover, a bulge 230c is formed on the second surface 230a of the vibration plate 230. For example, the bulge 230c is a circular convex structure. The vibration plate 230 is enclosed by the outer frame 231. The profile of the outer frame 231 matches the profile of the vibration plate 230. That is, the outer frame 231 is a square hollow frame. Moreover, the at least one bracket 232 is connected between the vibration plate 230 and the outer frame 231 for elastically supporting the vibration plate 230.

    [0021] As shown in FIGS. 2A, 2B and FIG. 3, the housing 26 comprises at least one outlet 261. The housing 26 comprises a bottom plate and a sidewall structure 260. The sidewall structure 260 protrudes from the peripheral of the bottom plate. An accommodation space 26a is defined by the bottom plate and the sidewall 260 structure collaboratively. The piezoelectric actuator 23 is disposed within the accommodation space 26a. After the fluid control device 2 is assembled, the assembled structure of the fluid control device 2 is shown in FIGS. 2B and 4A. The piezoelectric actuator 23 and the deformable substrate 20 are covered by the housing 26. In addition, a temporary storage chamber A is formed between the housing 26 and the piezoelectric actuator 23 for temporarily storing the fluid. The outlet 261 is in communication with the temporary storage chamber A. Consequently, the fluid can be discharged from the housing 26 through the outlet 261.

    [0022] FIG 4A is a schematic cross-sectional view of the fluid control device of FIG. 2A. FIGS. 4B and 4C are schematic cross-sectional views illustrating the actions of the fluid control device of FIG. 2A. For succinctness, the first insulating plate 241, the conducting plate 25 and the second insulating plate 242 are not shown in FIGS. 4A, 4B and 4C. Moreover, the deformable substrate 20 shown in FIGS. 4A, 4B and 4C has not subjected to synchronous deformation yet. These drawings are employed to indicate the relationship and interactions between the communication plate 21 and the flexible plate 22 of the deformable substrate 20 and the piezoelectric actuator 23.

    [0023] Please refer to FIG. 4A. After the communication plate 21, the flexible plate 22 and the piezoelectric actuator 23 are assembled, a convergence chamber is defined by partial flexible plate 22 including the central aperture 220 and the central cavity 212 of the communication plate 21 collaboratively. There is a gap h between the flexible plate 22 and the outer frame 231 of the piezoelectric actuator 23. Preferably but not exclusively, a medium (e.g., a conductive adhesive) is filled in the gap h. Consequently, the flexible plate 22 and the outer frame 231 of the piezoelectric actuator 23 are connected with each other through the medium and form a compressible chamber B therebetween. At the same time, there is a specified depth δ between the flexible plate 22 and the bulge 230c of the piezoelectric actuator 23. When the vibration plate 230 of the piezoelectric actuator 23 vibrates, the fluid in the compressible chamber B is compressed and the specified depth δ reduces. Consequently, the pressure and the flow rate of the fluid increases. In addition, the specified depth δ is a proper distance that is sufficient to prevent the contact interference between the flexible plate 22 and the piezoelectric actuator 23, therefore reducing the noise generation. Moreover, the convergence chamber defined by the flexible plate 22 and the central cavity 212 of the communication plate 21 is in communication with the compressible chamber B.

    [0024] When the fluid control device 2 is enabled, the piezoelectric actuator 23 is actuated in response to an applied voltage. Consequently, the piezoelectric actuator 23 vibrates along a vertical direction in a reciprocating manner. Please refer to FIG. 4B. When the piezoelectric actuator 23 vibrates upwardly, since the flexible plate 22 is light and thin, the flexible plate 22 vibrates simultaneously because of the resonance of the piezoelectric actuator 23. More especially, the movable part 22a of the flexible plate 22 is subjected to a curvy deformation. The central aperture 220 is located near or located at the center of the flexible plate 22. Since the piezoelectric actuator 23 vibrates upwardly, the movable part 22a of the flexible plate 22 correspondingly moves upwardly, making an external fluid introduced by the at least one inlet 210, through the at least one convergence channel 211, into the convergence chamber. After that, the fluid is transferred upwardly to the compressible chamber B through the central aperture 220 of the flexible plate 22. As the flexible plate 22 is subjected to deformation, the volume of the compressible chamber B is compressed so as to enhance the kinetic energy of the fluid therein and make the fluid flow to the bilateral sides, then transferred upwardly through the vacant space between the vibration plate 230 and the bracket 232.

    [0025] Please refer to FIG. 4C. As the piezoelectric actuator 23 vibrates downwardly, the movable part 22a of the flexible plate 22 correspondingly moves downwardly and subjected to the downward curvy deformation because of the resonance of the piezoelectric actuator 23. Meanwhile, less fluid is converged to the convergence chamber in the central cavity 212 of the communication plate 21. Since the piezoelectric actuator 23 vibrates downwardly, the volume of the compressible chamber B increases.

    [0026] The step of FIG. 4B and the step of FIG. 4C are repeatedly done so as to expand or compress the compressible chamber B, thus enlarging the amount of inhalation or discharge of the fluid.

    [0027] The deformable substrate 20 comprises the communication plate 21 and the flexible plate 22. The communication plate 21 and the flexible plate 22 are stacked on each other and subjected to synchronously deformation so that forming a synchronously-deformed structure, which is defined by the communication plate 21 and the flexible plate 22 collaboratively. Specifically, the synchronously-deformed structure is defined by a synchronously-deformed region of the communication plate 21 and a synchronously-deformed region of the flexible plate 22 collaboratively. When one of the communication plate 21 and the flexible plate 22 is subjected to deformation, another is also subjected to deformation synchronously. Moreover, the deformation shape of the communication plate 21 and the deformation shape of the flexible plate 22 are identical. As a result, after the corresponding surfaces of the communication plate 21 and the flexible plate 22 are contacted with and positioned on each other, there is little interval or parallel offset happened therebetween. Preferably but not exclusively, the communication plate 21 and the flexible plate 22 are contacted with each other through a binder.

    [0028] As mentioned in FIG. 1B, the piezoelectric actuator 102 and the substrate 101 of the conventional fluid control device 100 are flat-plate structures with certain rigidities. Consequently, it is difficult to precisely align these two flat-plate structures and make them separated by the specified gap 103 (i.e., maintain the specified depth). That is, the misalignment of the piezoelectric actuator 102 and the substrate 101 readily occurs. In accordance with the present invention, the synchronously-deformed structure of the deformable substrate 20 is defined in response to the synchronous deformation of the communication plate 21 and the flexible plate 22. Moreover, the function of the synchronously-deformed structure is similar to the function of the substrate 101 of the conventional technology. More especially, the synchronously-deformed structure defined by the communication plate 21 and the flexible plate 22 has various implementation examples. In these implementation examples, a compressible chamber B corresponding to the specified depth δ (i.e., a specified gap between the synchronously-deformed structure and the vibration plate 230 of the piezoelectric actuator 23) is maintained according to the practical requirements. Consequently, the fluid control device 2 is developed toward miniaturization, and the miniature components are adopted. Due to the synchronously-deformed structure, it is easy to maintain the specified gap between the deformable substrate and the vibration plate. As previously described, the conventional technology has to precisely align two large-area flat-plate structures. In accordance with the feature of the present invention, the area to be aligned reduces because the deformable substrate 20 has the synchronously-deformed structure and it is a non-flat-plate structure. The shape of the synchronously-deformed structure is not restricted. For example, the synchronously-deformed structure has a curvy shape, a conical shape, a curvy-surface profile or an irregular shape. Compared with aligning two large areas of the two flat plates, aligning one small area of a non-flat-plate with a flat plate is much easier, and therefore reduces assembling errors. Under this circumstance, the performance of transferring the fluid is enhanced and the noise is reduced.

    [0029] In some embodiments, the synchronously-deformed structure is defined by the entire communication plate 21 and the entire flexible plate 22 collaboratively. In these cases, the synchronously-deformed region of the flexible plate 22 includes the movable part 22a and the region beyond the movable part 22a. In addition, the synchronously-deformed structure of the deformable substrate 20 includes but not limited to a curvy structure, a conical structure and a convex structure. Some examples of the synchronously-deformed structure of the deformable substrate of the fluid control device will be described as follows.

    [0030] Please refer to FIG. 5A, which is a schematic cross-sectional view illustrating a first example of the synchronously-deformed structure of the deformable substrate of the fluid control device. In the example of FIG. 5A, the synchronously-deformed structure is defined by the entire communication plate 21 and the entire flexible plate 22 collaboratively. That is, the synchronously-deformed region of the flexible plate 22 includes the movable part 22a and the region beyond the movable part 22a. As shown in FIG. 5A, the outer surface 21a of the communication plate 21 of the deformable substrate 20' is bent in the direction toward the bulge 230c of the vibration plate 230. Moreover, the movable part 22a and the region beyond the movable part 22a of the flexible plate 22 are also bent in the direction toward the bulge 230c of the vibration plate 230. The bent communication plate 21 and the bent flexible plate 22 define the synchronously-deformed structure of the deformable substrate 20'. Under this circumstance, the specified depth δ is maintained between the flexible plate 22 and the bulge 230c of the vibration plate 230, more particularly between the movable part 22a and the bulge 230c of the vibration plate 230. Consequently, the fluid control device 2 with the synchronously-deformed structure is produced.

    [0031] Please refer to FIG. 6A, which is a schematic cross-sectional view illustrating a third example of the synchronously-deformed structure of the deformable substrate of the fluid control device. In the example of FIG. 6A, the synchronously-deformed structure is a conical synchronously-deformed structure that is defined by the entire communication plate 21 and the entire flexible plate 22 collaboratively. That is, the synchronously-deformed region of the flexible plate 22 includes the region of the movable part 22a and the region beyond the movable part 22a. As shown in FIG. 6A, the outer surface 21a of the communication plate 21 of the deformable substrate 20' is bent in the direction toward the bulge 230c of the vibration plate 230. Moreover, the region of the movable part 22a and the region beyond the movable part 22a of the flexible plate 22 are also bent in the direction toward the bulge 230c of the vibration plate 230. As a consequence, the conical synchronously-deformed structure of the deformable substrate 20' is defined. Under this circumstance, the specified depth δ is maintained between the movable part 22a of the flexible plate 22 and the bulge 230c of the vibration plate 230. Consequently, the fluid control device 2 with the conical synchronously-deformed structure is produced.

    [0032] Please refer to FIG. 7A, which is a schematic cross-sectional view illustrating a fifth example of the synchronously-deformed structure of the deformable substrate of the fluid control device. In the example of FIG. 7A, the synchronously-deformed structure is a convex synchronously-deformed structure that is defined by the entire communication plate 21 and the entire flexible plate 22 collaboratively. That is, the synchronously-deformed region of the flexible plate 22 includes the movable part 22a and the region beyond the movable part 22a. As shown in FIG. 7A, the outer surface 21a of the communication plate 21 of the deformable substrate 20' is bent in the direction toward the bulge 230c of the vibration plate 230. Moreover, the movable part 22a and the region beyond the movable part 22a of the flexible plate 22 are also bent in the direction toward the bulge 230c of the vibration plate 230. As a consequence, the convex synchronously-deformed structure of the deformable substrate 20' is defined. Under this circumstance, the specified depth δ is maintained between the movable part 22a of the flexible plate 22 and the bulge 230c of the vibration plate 230. Consequently, the fluid control device 2 with the convex synchronously-deformed structure is produced.

    [0033] Alternatively, the synchronously-deformed structure is defined by a part of the communication plate 21 and a part of the flexible plate 22 collaboratively. That is, the synchronously-deformed region of the flexible plate 22 includes the region of the movable part 22a only, and the scale of the synchronously-deformed region of the communication plate 21 corresponds to the synchronously-deformed region of the flexible plate 22. In addition, the synchronously-deformed structure of the deformable substrate 20' includes but not limited to a curvy structure, a conical structure and a convex structure.

    [0034] Please refer to FIG. 5B, which is a schematic cross-sectional view illustrating a second example of the synchronously-deformed structure of the deformable substrate of the fluid control device. In the example of FIG. 5B, the synchronously-deformed structure is defined by a part of the communication plate 21 and a part of the flexible plate 22 collaboratively. The synchronously-deformed region of the flexible plate 22 includes the region of the movable part 22a only, and the synchronously-deformed region of the communication plate 21 corresponds to the synchronously-deformed region of the flexible plate 22. That is, the synchronously-deformed structures of FIG. 5B are produced by partially deforming the deformable substrate 20'. As shown in FIG 5B, the outer surface 21a of the communication plate 21 of the deformable substrate 20' is partially bent in the direction toward the bulge 230c of the vibration plate 230. Moreover, the region of the movable part 22a of the flexible plate 22 is also bent in the direction toward the bulge 230c of the vibration plate 230. As a consequence, the partially-bent synchronously-deformed structure of the deformable substrate 20' is defined. Under this circumstance, the specified depth δ is maintained between the movable part 22a of the flexible plate 22 and the bulge 230c of the vibration plate 230. Consequently, the fluid control device 2 with the partially-bent synchronously-deformed structure is produced.

    [0035] Please refer to FIG. 6B, which is a schematic cross-sectional view illustrating a fourth example of the synchronously-deformed structure of the deformable substrate of the fluid control device. In the example of FIG. 6B, the synchronously-deformed structure is defined by a part of the communication plate 21 and a part of the flexible plate 22 collaboratively. The synchronously-deformed region of the flexible plate 22 includes the region of the movable part 22a only, and the synchronously-deformed region of the communication plate 21 corresponds to the synchronously-deformed region of the flexible plate 22. That is, the synchronously-deformed structure of FIG. 6B is produced by partially deforming the deformable substrates 20' to a conical synchronously-deformed structure. As shown in FIG. 6B, the outer surface 21a of the communication plate 21 of the deformable substrate 20' is partially bent in the direction toward the bulge 230c of the vibration plate 230. Moreover, the region of the movable part 22a of the flexible plate 22 is also partially bent in the direction toward the bulge 230c of the vibration plate 230. As a consequence, the conical synchronously-deformed structure of the deformable substrate 20' is defined. Under this circumstance, the specified depth δ is maintained between the movable part 22a of the flexible plate 22 and the bulge 230c of the vibration plate 230. Consequently, the fluid control device 2 with the conical synchronously-deformed structure is produced.

    [0036] Please refer to FIG. 7B, which is a schematic cross-sectional view illustrating a sixth example of the synchronously-deformed structure of the deformable substrate of the fluid control device. In the example of FIG. 7B, the synchronously-deformed structure is defined by a part of the communication plate 21 and a part of the flexible plate 22 collaboratively. The synchronously-deformed region of the flexible plate 22 includes the region of the movable part 22a only, and the synchronously-deformed region of the communication plate 21 corresponds to the synchronously-deformed region of the flexible plate 22. That is, the synchronously-deformed structures of FIG. 7B is produced by partially deforming the deformable substrate 20' to a convex synchronously-deformed structure. As shown in FIG. 7B, the outer surface 21a of the communication plate 21 of the deformable substrate 20' is partially bent in the direction toward the bulge 230c of the vibration plate 230. Moreover, the region of the movable part 22a of the flexible plate 22 is also partially bent in the direction toward the bulge 230c of the vibration plate 230. As a consequence, the convex synchronously-deformed structure of the deformable substrate 20' is defined. Under this circumstance, the specified depth δ is maintained between the movable part 22a of the flexible plate 22 and the bulge 230c of the vibration plate 230. Consequently, the fluid control device 2 with the convex synchronously-deformed structure is produced.

    [0037] Please refer to FIG. 8, which is a schematic cross-sectional view illustrating a seventh example of the synchronously-deformed structure of the deformable substrate of the fluid control device. The synchronously-deformed structure also can be a curvy-surface synchronously-deformed structure, which is composed of plural curvy surfaces with different or identical curvatures. As shown in FIG. 8, the curvy-surface synchronously-deformed structure comprises plural curvy surfaces with different curvatures. One set of the plural curvy surfaces are formed on the outer surface 21a of the communication plate 21 of the deformable substrate 20', while another set of curvy surfaces corresponding to the former set are formed on the flexible plate 22. Under this circumstance, the specified depth δ is maintained between the curvy-surface synchronously-deformed structure and the bulge 230c of the vibration plate 230. Consequently, the fluid control device 2 with the curvy-surface synchronously-deformed structure is produced.

    [0038] In some other embodiments, the synchronously-deformed structure is an irregular synchronously-deformed structure, which is produced by making two sets of identical irregular surfaces on the communication plate 21 and the flexible plate 22 of the deformable substrate 20'. Consequently, the irregular synchronously-deformed structure is defined by the communication plate 21 and the flexible plate 22. Under this circumstance, the specified depth δ is still maintained between the irregular synchronously-deformed structure and the bulge 230c of the vibration plate 230.

    [0039] As mentioned above, the synchronously-deformed structure of the deformable substrate has a curvy structure, a conical structure, a convex structure, a curvy-surface structure or an irregular structure. Under this circumstance, the specified depth δ is maintained between the movable part 22a of the deformable substrate 20 and the bulge 230c of the vibration plate 230. Due to the specified depth δ, the gap would not be too large or too small that causing the assembling errors. Moreover, the specified depth δ is sufficient to reduce the contact interference between the flexible plate 22 and the bulge 230c of the piezoelectric actuator 23. Consequently, the efficiency of transferring the fluid enhances and the noise reduces.

    [0040] From the above descriptions, the present invention provides a fluid control device. The synchronously-deformed structure is formed on and defined by the communication plate and the flexible plate of the deformable substrate. During operation, the synchronously-deformed structure is moved in the direction toward or away from the piezoelectric actuator. Consequently, the specified depth between the flexible plate and the bulge of the vibration plate is maintained. The specified depth is sufficient to reduce the contact interference between the flexible plate and the bulge of the piezoelectric actuator. Consequently, the efficiency of transferring the fluid is enhanced, and the noise is reduced. Since the specified depth is advantageous for increasing the efficiency of transferring the fluid and reducing the noise, the performance of the product is increased and the quality of the fluid control device is significantly enhanced.

    [0041] While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements included within the scope of the appended claims.


    Claims

    1. A fluid control device (2), comprising:

    a piezoelectric actuator (23) comprising a piezoelectric element (233) and a vibration plate (230) having a first surface (230b) and an opposing second surface (230a), wherein the piezoelectric element (233) is attached on the first surface (230b) of the vibration plate (230) and is subjected to deformation in response to an applied voltage, and the vibration plate (230) is subjected to a curvy vibration in response to the deformation of the piezoelectric element (233), wherein a bulge (230c) is formed on the second surface (230a) of the vibration plate (230); and

    a deformable substrate (20) comprising a flexible plate (22) and a communication plate (21), wherein the flexible plate (22) and the communication plate (21) are stacked on each other,

    wherein the deformable substrate (20) is combined with and positioned on the vibration plate (230) of the piezoelectric actuator (23), characterized in that the flexible plate (22) and the communication plate (21) are subjected to a synchronous deformation to form a synchronously-deformed structure collaboratively, and the synchronously-deformed structure of the deformable substrate (20) is bent in the direction toward the vibration plate (230), so that a specified depth (δ) is defined between the flexible plate (22) of the deformable substrate (20) and the bulge (230c) of the vibration plate (230), wherein the flexible plate (22) comprises a movable part (22a) corresponding to the bulge (230c).


     
    2. The fluid control device (2) according to claim 1, wherein a synchronously-deformed region of the flexible plate (22) for defining the synchronously-deformed structure includes the movable part (22a) of the flexible plate (22), and the specified depth (δ) is maintained between the synchronously-deformed structure and the bulge (230c) of the vibration plate (230).
     
    3. The fluid control device (2) according to claim 1 or 2, wherein a synchronously-deformed region of the flexible plate (22) for defining the synchronously-deformed structure includes the movable part (22a) of the flexible plate (22), the synchronously-deformed structure is a curvy synchronously-deformed structure, and the specified depth (δ) is maintained between the curvy synchronously-deformed structure and the bulge (230c) of the vibration plate (230).
     
    4. The fluid control device (2) according to any of the claims 1 to 3, wherein a synchronously-deformed region of the flexible plate (22) for defining the synchronously-deformed structure includes the movable part (22a) of the flexible plate (22), the synchronously-deformed structure is a conical synchronously-deformed structure, and the specified depth (δ) is maintained between the conical synchronously-deformed structure and the bulge (230c) of the vibration plate (230).
     
    5. The fluid control device (2) according to any of the claims 1 to 4, wherein a synchronously-deformed region of the flexible plate (22) for defining the synchronously-deformed structure includes the movable part (22a) of the flexible plate (22), the synchronously-deformed structure is a convex synchronously-deformed structure, and the specified depth (δ) is maintained between the convex synchronously-deformed structure and the bulge (230c) of the vibration plate (230).
     
    6. The fluid control device (2) according to any of the claims 1 to 5, wherein a synchronously-deformed region of the flexible plate (22) for defining the synchronously-deformed structure includes the movable part (22a) and a region beyond the movable part (22a) of the flexible plate (22), and the specified depth (δ) is maintained between the synchronously-deformed structure and the bulge (230c) of the vibration plate (230).
     
    7. The fluid control device (2) according to any of the claims 1 to 6, wherein a synchronously-deformed region of the flexible plate (22) for defining the synchronously-deformed structure includes the movable part (22a) and a region beyond the movable part (22a) of the flexible plate (22), the synchronously-deformed structure is a curvy synchronously-deformed structure, and the specified depth (δ) is maintained between the curvy synchronously-deformed structure and the bulge (230c) of the vibration plate (230).
     
    8. The fluid control device (2) according to any of the claims 1 to 7, wherein a synchronously-deformed region of the flexible plate (22) for defining the synchronously-deformed structure includes the movable part (22a) and a region beyond the movable part (22a) of the flexible plate (22), the synchronously-deformed structure is a conical synchronously-deformed structure, and the specified depth (δ) is maintained between the conical synchronously-deformed structure and the bulge (230c) of the vibration plate (230).
     
    9. The fluid control device (2) according to any of the claims 1 to 8, wherein a synchronously-deformed region of the flexible plate (22) for defining the synchronously-deformed structure includes the movable part (22a) and a region beyond the movable part (22a) of the flexible plate (22), the synchronously-deformed structure is a convex synchronously-deformed structure, and the specified depth (δ) is maintained between the convex synchronously-deformed structure and the bulge (230c) of the vibration plate (230).
     
    10. The fluid control device (2) according to any of the claims 1 to 9, wherein the synchronously-deformed structure of the deformable substrate (20, 20') is a curvy-surface synchronously-deformed structure composed of the communication plate (21) and the flexible plate (22), the curvy-surface synchronously-deformed structure comprises plural curvy surfaces with different curvatures, and the specified depth (δ) is maintained between the curvy-surface synchronously-deformed structure and the bulge (230c) of the vibration plate (230).
     
    11. The fluid control device (2) according to any of the claims 1 to 10, wherein the synchronously-deformed structure of the deformable substrate (20, 20') is a curvy-surface synchronously-deformed structure composed of the communication plate (21) and the flexible plate (22), the curvy-surface synchronously-deformed structure comprises plural curvy surfaces with an identical curvature, and the specified depth (δ) is maintained between the curvy-surface synchronously-deformed structure and the bulge (230c) of the vibration plate (230).
     
    12. The fluid control device (2) according to any of the claims 1 to 11, wherein the synchronously-deformed structure of the deformable substrate (20, 20') is an irregular synchronously-deformed structure composed of the communication plate (21) and the flexible plate (22), and the specified depth (δ) is maintained between the irregular synchronously-deformed structure and the bulge (230c) of the vibration plate (230).
     
    13. The fluid control device (2) according to any of the claims 1 to 12, wherein the vibration plate (230) of the piezoelectric actuator (23) has a square shape, and the piezoelectric actuator (23) further comprises:

    an outer frame (231) arrange around the vibration plate (230); and

    at least one bracket (232) connected between the vibration plate (230) and the outer frame (231) for elastically supporting the vibration plate (230).


     
    14. The fluid control device (2) according to any of the claims 1 to 13, wherein the fluid control device (2) further comprises a housing (26) covering the piezoelectric actuator (23), and a temporary storage chamber (A) is formed between the housing (26) and the piezoelectric actuator (23), wherein the housing (26) comprises at least one outlet (261), and the temporary storage chamber (A) is in communication with an exterior of the housing (26) through the at least one outlet (261).
     
    15. The fluid control device (2) according to any of the claims 1 to 14, wherein the flexible plate (22) comprises a central aperture (220), wherein the central aperture (220) is located at or located near a center of the movable part (22a) of the flexible plate (22) for allowing a fluid to go through.
     


    Ansprüche

    1. Eine Fluidsteuerungsvorrichtung (2), umfassend:

    einen piezoelektrischen Aktuator (23), der ein piezoelektrisches Element (233) und eine Vibrationsplatte (230) mit einer ersten Oberfläche (230b) und einer gegenüberliegenden zweiten Oberfläche (230a) umfasst, wobei das piezoelektrische Element (233) an der ersten Oberfläche (230b) der Vibrationsplatte (230) befestigt ist und als Reaktion auf eine angelegte Spannung einer Verformung unterworfen wird, und die Vibrationsplatte (230) als Reaktion auf die Verformung des piezoelektrischen Elements (233) einer gekrümmten Schwingung ausgesetzt ist, wobei eine Ausbuchtung (230c) auf der zweiten Oberfläche (230a) der Vibrationsplatte (230) ausgebildet ist; und

    ein verformbares Substrat (20) umfassend eine flexible Platte (22) und eine Kommunikationsplatte (21), wobei die flexible Platte (22) und die Kommunikationsplatte (21) aufeinander gestapelt sind,

    wobei das verformbare Substrat (20) mit der Vibrationsplatte (230) des piezoelektrischen Aktuators (23) kombiniert und auf dieser positioniert wird, dadurch gekennzeichnet,
    dass die flexible Platte (22) und die Kommunikationsplatte (21) einer synchronen Verformung unterworfen werden, um zusammenwirkend eine synchron verformte Struktur zu bilden, und die synchron verformte Struktur des verformbaren Substrats (20) in Richtung auf die Vibrationsplatte (230) gebogen ist, so dass eine bestimmte Tiefe (δ) zwischen der flexiblen Platte (22) des verformbaren Substrats (20) und der Ausbuchtung (230c) der Vibrationsplatte (230) definiert ist, wobei die flexible Platte (22) einen beweglichen Teil (22a) umfasst, der der Ausbuchtung (230c) entspricht.


     
    2. Die Fluidsteuerungsvorrichtung (2) nach Anspruch 1, wobei ein synchron verformter Bereich der flexiblen Platte (22) zum Definieren der synchron verformten Struktur den beweglichen Teil (22a) der flexiblen Platte (22) einschließt und die spezifizierte Tiefe (δ) zwischen der synchron verformten Struktur und der Ausbuchtung (230c) der Vibrationsplatte (230) beibehalten wird.
     
    3. Die Fluidsteuerungsvorrichtung (2) nach Anspruch 1 oder 2, wobei ein synchron verformter Bereich der flexiblen Platte (22) zum Definieren der synchron verformten Struktur den beweglichen Teil (22a) der flexiblen Platte (22) einschließt, die synchron verformte Struktur eine gekrümmte synchron verformte Struktur ist und die spezifizierte Tiefe (δ) zwischen der gekrümmten synchron verformten Struktur und der Ausbuchtung (230c) der Vibrationsplatte (230) beibehalten wird.
     
    4. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 3, wobei ein synchron verformter Bereich der flexiblen Platte (22) zum Definieren der synchron verformten Struktur den beweglichen Teil (22a) der flexiblen Platte (22) einschließt, die synchron verformte Struktur eine konische synchron verformte Struktur ist und die spezifizierte Tiefe (δ) zwischen der konischen synchron verformten Struktur und der Ausbuchtung (230c) der Vibrationsplatte (230) beibehalten wird.
     
    5. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 4, wobei ein synchron verformter Bereich der flexiblen Platte (22) zum Definieren der synchron verformten Struktur den beweglichen Teil (22a) der flexiblen Platte (22) einschließt, die synchron verformte Struktur eine konvexe synchron verformte Struktur ist, und die spezifizierte Tiefe (δ) zwischen der konvexen synchron verformten Struktur und der Ausbuchtung (230c) der Vibrationsplatte (230) beibehalten wird.
     
    6. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 5, wobei ein synchron verformter Bereich der flexiblen Platte (22) zum Definieren der synchron verformten Struktur den beweglichen Teil (22a) und einen Bereich jenseits des beweglichen Teils (22a) der flexiblen Platte (22) umfasst und die spezifizierte Tiefe (δ) zwischen der synchron verformten Struktur und der Ausbuchtung (230c) der Vibrationsplatte (230) beibehalten wird.
     
    7. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 6, wobei ein synchron verformter Bereich der flexiblen Platte (22) zum Definieren der synchron verformten Struktur den beweglichen Teil (22a) und einen Bereich jenseits des beweglichen Teils (22a) der flexiblen Platte (22) aufweist, die synchron verformte Struktur eine gekrümmte synchron verformte Struktur ist und die spezifizierte Tiefe (δ) zwischen der gekrümmten synchron verformten Struktur und der Ausbuchtung (230c) der Vibrationsplatte (230) beibehalten wird.
     
    8. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 7, wobei ein synchron verformter Bereich der flexiblen Platte (22) zum Definieren der synchron verformten Struktur den beweglichen Teil (22a) und einen Bereich jenseits des beweglichen Teils (22a) der flexiblen Platte (22) umfasst, die synchron verformte Struktur eine konische synchron verformte Struktur ist und die spezifizierte Tiefe (δ) zwischen der konischen synchron verformten Struktur und der Ausbuchtung (230c) der Vibrationsplatte (230) beibehalten wird.
     
    9. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 8, wobei ein synchron verformter Bereich der flexiblen Platte (22) zum Definieren der synchron verformten Struktur den beweglichen Teil (22a) und einen Bereich jenseits des beweglichen Teils (22a) der flexiblen Platte (22) aufweist, die synchron verformte Struktur eine konvex synchron verformte Struktur ist und die spezifizierte Tiefe (δ) zwischen der konvex synchron verformten Struktur und der Ausbuchtung (230c) der Vibrationsplatte (230) beibehalten wird.
     
    10. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 9, wobei die synchron verformte Struktur des verformbaren Substrats (20, 20') eine synchron verformte Struktur mit gekrümmter Oberfläche ist, die aus der Kommunikationsplatte (21) und der flexiblen Platte (22) besteht, die synchron verformte Struktur mit gekrümmter Oberfläche mehrere gekrümmter Oberflächen mit unterschiedlichen Krümmungen aufweist und die spezifizierte Tiefe (δ) zwischen der synchron verformten Struktur mit gekrümmter Oberfläche und der Ausbuchtung (230c) der Vibrationsplatte (230) beibehalten wird.
     
    11. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 10, wobei die synchron verformte Struktur des verformbaren Substrats (20, 20') eine synchron verformte Struktur mit gekrümmter Oberfläche ist, die aus der Kommunikationsplatte (21) und der flexiblen Platte (22) besteht, die synchron verformte Struktur mit gekrümmter Oberfläche mehrere gekrümmte Oberflächen mit identischer Krümmung aufweist und die spezifizierte Tiefe (δ) zwischen der synchron verformten Struktur mit gekrümmter Oberfläche und der Ausbuchtung (230c) der Vibrationsplatte (230) beibehalten wird.
     
    12. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 11, wobei die synchron verformte Struktur des verformbaren Substrats (20, 20') eine unregelmäßige synchron verformte Struktur ist, die aus der Kommunikationsplatte (21) und der flexiblen Platte (22) besteht, und die spezifizierte Tiefe (δ) zwischen der unregelmäßigen synchron verformten Struktur und der Ausbuchtung (230c) der Vibrationsplatte (230) beibehalten wird.
     
    13. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 12, wobei die Vibrationsplatte (230) des piezoelektrischen Aktuators (23) eine quadratische Form hat und der piezoelektrische Aktuator (23) ferner umfasst:

    einem äußeren Rahmen (231), der um die Vibrationsplatte (230) herum angeordnet ist; und

    mindestens eine Halterung (232), die zwischen der Vibrationsplatte (230) und dem Außenrahmen (231) verbunden ist, um die Vibrationsplatte (230) elastisch zu stützen.


     
    14. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 13, wobei die Fluidsteuerungsvorrichtung (2) ferner ein Gehäuse (26) umfasst, das den piezoelektrischen Aktor (23) abdeckt, und eine temporäre Speicherkammer (A) zwischen dem Gehäuse (26) und dem piezoelektrischen Aktor (23) ausgebildet ist, wobei das Gehäuse (26) mindestens einen Auslass (261) umfasst und die temporäre Speicherkammer (A) durch den mindestens einen Auslass (261) mit einem Äußeren des Gehäuses (26) in Verbindung steht.
     
    15. Die Fluidsteuerungsvorrichtung (2) nach einem der Ansprüche 1 bis 14, wobei die flexible Platte (22) eine zentrale Öffnung (220) aufweist, wobei die zentrale Öffnung (220) an oder nahe der Mitte des beweglichen Teils (22a) der flexiblen Platte (22) angeordnet ist, um den Durchtritt eines Fluids zu ermöglichen.
     


    Revendications

    1. Un dispositif de régulation de fluide (2), comprenant:

    un actionneur piézoélectrique (23) comprenant un élément piézoélectrique (233) et une plaque vibrante (230) ayant une première surface (230b) et une seconde surface opposée (230a), dans lequel l'élément piézoélectrique (233) est fixé sur la première surface (230b) de la plaque vibrante (230) et est soumis à une déformation en réponse à l'application d'une tension, et la plaque vibrante (230) est soumise à une vibration sinueuse en réponse à la déformation de l'élément piézoélectrique (233), dans lequel un renflement (230c) est formé sur la seconde surface (230a) de la plaque vibrante (230); et

    un substrat déformable (20) comprenant une plaque flexible (22) et une plaque de communication (21), dans lequel la plaque flexible (22) et la plaque de communication (21) sont empilées l'une sur l'autre,

    dans lequel le substrat déformable (20) est combiné avec et positionné sur la plaque vibrante (230) de l'actionneur piézoélectrique (23),

    caractérisé en ce que la plaque flexible (22) et la plaque de communication (21) sont soumises à une déformation synchrone pour former une structure déformée de manière synchrone en collaboration, et

    la structure déformée de manière synchrone en collaboration (20) est courbée dans la direction vers la plaque vibrante (230), de sorte qu'une profondeur spécifiée (δ) est définie entre la plaque flexible (22) du substrat déformable (20) et le renflement (230c) de la plaque vibrante (230), dans lequel la plaque flexible (22) comprend une partie mobile (22a) correspondant au renflement (230c).


     
    2. Le dispositif de régulation de fluide (2) selon la revendication 1, dans lequel une région déformée de manière synchrone de la plaque flexible (22) pour définir la structure déformée de manière synchrone comprend la partie mobile (22a) de la plaque flexible (22), et la profondeur spécifiée (δ) est maintenue entre la structure déformée de manière synchrone et le renflement (230c) de la plaque vibrante (230).
     
    3. Le dispositif de régulation de fluide (2) selon la revendication 1 ou 2, dans lequel une région déformée de manière synchrone de la plaque flexible (22) pour définir la structure déformée de manière synchrone comprend la partie mobile (22a) de la plaque flexible (22), la la structure déformée de façon synchrone est une structure déforme de manière synchrone sinueuse, et la profondeur spécifiée (δ) est maintenue entre la structure déforme de façon synchrone sinueuse et le renflement (230c) de la plaque vibrante (230).
     
    4. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 3, dans lequel une région déformée de façon synchrone de la plaque flexible (22) pour définir la structure déformée de façon synchrone comprend la partie mobile (22a) de la plaque flexible (22), la structure déformée de façon synchrone est une structure déformée de façon synchrone conique, et la profondeur spécifiée (δ) est maintenue entre la structure déformée de façon synchrone conique et le renflement (230c) de la plaque vibrante (230).
     
    5. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 4, dans lequel une région déformée de manière synchrone de la plaque flexible (22) pour définir la structure déformée de manière synchrone comprend la partie mobile (22a) de la plaque flexible (22), la structure déformée de manière synchrone est une structure déformée de manière synchrone convexe, et la profondeur spécifiée (δ) est maintenue entre la structure déforme de manière synchrone convexe et le renflement (230c) de la plaque vibrante (230).
     
    6. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 5, dans lequel une région déformée de manière synchrone de la plaque flexible (22) pour définir la structure déformée de manière synchrone comprend la partie mobile (22a) et une région au-delà de la partie mobile (22a) de la plaque flexible (22), et la profondeur spécifiée (δ) est maintenue entre la structure déformée de manière synchrone et le renflement (230c) de la plaque vibrante (230).
     
    7. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 6, dans lequel une région déformée de manière synchrone de la plaque flexible (22) pour définir la structure déformée de manière synchrone comprend la partie mobile (22a) et une région au-delà de la partie mobile (22a) de la plaque flexible (22), la structure déformée de manière synchrone est une structure déformée de manière synchrone sinueuse, et la profondeur spécifiée (δ) est maintenue entre la structure déformée de manière synchrone sinueuse et le renflement (230c) de la vibration plaque (230).
     
    8. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 7, dans lequel une région déformée de manière synchrone de la plaque flexible (22) pour définir la structure déformée de manière synchrone comprend la partie mobile (22a) et une région au-delà de la partie mobile (22a) de la plaque flexible (22), la structure déformée de façon synchrone est une structure déformée de manière synchrone conique, et la profondeur spécifiée (δ) est maintenue entre la structure déformée de manière synchrone conique et le renflement (230c) de la plaque vibrante (230).
     
    9. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 8, dans lequel une région déformée de manière synchrone de la plaque flexible (22) pour définir la structure déformée de manière synchrone comprend la partie mobile (22a) et une région au-delà de la partie mobile (22a) de la plaque flexible (22), la structure déformée de manière synchrone est une structure déformée de manière synchrone convexe, et la profondeur spécifiée (δ) est maintenue entre la structure déformée de manière synchrone convexe et le renflement (230c) de la plaque vibrante (230).
     
    10. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 9, dans lequel la structure déformée de manière synchrone du substrat déformable (20, 20') est une structure déformée de manière synchrone à surface sinueuse composée de la plaque de communication (21) et de la plaque flexible (22), la structure déformée de façon synchrone à surface sinueuse comprend plusieurs surfaces courbes ayant différentes courbures, et la profondeur spécifiée (δ) est maintenue entre la structure déformée de manière synchrone à surface sinueuse et le renflement (230c) du plaque vibrante (230).
     
    11. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 10, dans lequel la structure déformée de manière synchrone du substrat déformable (20, 20') est une structure déformée de manière synchrone à surface sinueuse composée de la plaque de communication (21) et de la plaque flexible (22), la structure déformée de manière synchrone à surface sinueuse comprend plusieurs surfaces courbes de courbure identique, et la profondeur spécifiée (δ) est maintenue entre la structure déformée de manière synchrone à surface sinueuse et le renflement (230c) de la plaque vibrante (230).
     
    12. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 11, dans lequel la structure déformée de manière synchrone du substrat déformable (20, 20') est une structure déformée de manière synchrone irrégulière composée de la plaque de communication (21) et de la plaque flexible (22), et la profondeur spécifiée (δ) est maintenue entre la structure déformée de manière synchrone irrégulière et le renflement (230c) de la plaque vibrante (230).
     
    13. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 12, dans lequel la plaque vibrante (230) de l'actionneur piézoélectrique (23) a une forme carrée, et l'actionneur piézoélectrique (23) comprend en outre:

    un cadre extérieur (231) disposé autour de la plaque vibrante (230); et

    au moins un support (232) connecté entre la plaque vibrante (230) et le cadre extérieur (231) pour supporter élastiquement la plaque vibrante (230).


     
    14. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 13, dans lequel le dispositif de régulation de fluide (2) comprend en outre un boîtier (26) couvrant l'actionneur piézoélectrique (23), et une chambre de stockage temporaire (A) est formée entre le boîtier (26) et l'actionneur piézoélectrique (23), dans lequel le boîtier (26) comprend au moins une sortie (261), et la chambre de stockage temporaire (A) est en communication avec l'extérieur du boîtier (26) à travers la ou les sortie(s) (261).
     
    15. Le dispositif de régulation de fluide (2) selon l'une quelconque des revendications 1 à 14, dans lequel la plaque flexible (22) comprend une ouverture centrale (220), dans lequel l'ouverture centrale (220) est située au niveau ou proche d'un centre de la partie mobile (22a) de la plaque flexible (22) pour permettre le passage d'un fluide.
     




    Drawing









































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description