(19)
(11)EP 3 296 728 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 16859399.4

(22)Date of filing:  01.09.2016
(51)International Patent Classification (IPC): 
G01N 27/24(2006.01)
G01N 27/20(2006.01)
(86)International application number:
PCT/JP2016/075719
(87)International publication number:
WO 2017/073162 (04.05.2017 Gazette  2017/18)

(54)

BONDING SECTION EVALUATION METHOD OF COMPOSITES

VERFAHREN ZUR BEURTEILUNG VON VERBINDUNGSABSCHNITTEN VON VERBUNDSTOFFEN

PROCÉDÉ D'ÉVALUATION DE SECTION DE LIAISON DE COMPOSITES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.10.2015 JP 2015211949

(43)Date of publication of application:
21.03.2018 Bulletin 2018/12

(73)Proprietor: Mitsubishi Heavy Industries, Ltd.
Tokyo 108-8215 (JP)

(72)Inventors:
  • KAMIHARA, Nobuyuki
    Tokyo 108-8215 (JP)
  • ABE, Toshio
    Tokyo 108-8215 (JP)

(74)Representative: Henkel & Partner mbB 
Patentanwaltskanzlei, Rechtsanwaltskanzlei Maximiliansplatz 21
80333 München
80333 München (DE)


(56)References cited: : 
JP-A- H0 989 825
JP-A- H02 275 349
JP-A- H10 332 619
JP-A- 2008 142 739
US-A- 5 245 293
US-A1- 2011 187 391
JP-A- H1 177 323
JP-A- H08 122 286
JP-A- S51 129 281
JP-B2- H0 360 384
US-A- 5 841 031
  
  • MATSUZAKI R ET AL: "Wireless detection of internal delamination cracks in CFRP laminates using oscillating frequency changes", COMPOSITES SCIENCE AND TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 66, no. 3-4, 2 September 2005 (2005-09-02), pages 407-416, XP027988176, ISSN: 0266-3538 [retrieved on 2006-03-01]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

{Technical Field}



[0001] The present invention relates to a joint evaluation method.

{Background Art}



[0002] In recent years, composites have been used as structure materials for structures, such as aircraft, automobiles, vehicles, and ships (see JP 2013-508722 A). A composite is a material composed of a resin material mixed with a reinforcing material, such as carbon fibers.

[0003] Some structures include a joint structure composed of structure materials joined to each other. Jointing uses fastener members, such as a bolt and a nut, an adhesive, or the like. To ensure reliability, a joint state in a product including a joint structure needs to be inspected. Inspection of joint state traditionally employs a non-destructive technique using ultrasound waves.

[0004] The document US 2011/0187391 A1 refers to a method for detecting detachment of a reinforcing component that is attached to a body skin component of a vehicle body of a vehicle, the body skin component and the reinforcing component forming an electric capacitor together with an intermediate adhesive layer. The capacitor has a capacitance that changes if there is at least partial detachment of the body skin component from the reinforcing component, the capacitance of the capacitor or a change in the capacitance of the capacitor being measured in order to detect detachment of the reinforcing component.

[0005] The document US 5,841,031 A refers to a method and an apparatus for evaluation and inspection of a composite-repaired structure. A frequency-varying electrical signal is generated to test and evaluate the composite-repaired area. The electrical signal is converted into a mechanical signal and transmitted through the composite-repaired area of the structure. The transmitted mechanical signal is received and converted into an electrical signal for processing. The processed signal is compared with a baseline reference signal to determine whether the composite-repaired area is damaged or undamaged. The baseline reference signal is obtained at the time of the composite repair of the structure.

[0006] The document US 5,245,293 A refers to a method and an apparatus for detecting changes in the structural strength of a bonded joint. Changes in one or more dielectric properties of the bonding adhesive, such as resistance and capacitance, are monitored by a microdielectrometer. A change in a dielectric measurement is indicative of a moisture intrusion in the bond and a corresponding weakening of the structural integrity of the bond. A warning or indication of the bond degradation is provided in response to such changes.

[0007] The publication "Wireless detection of internal delamination cracks in CFRP laminates using oscillating frequency changes" refers a study concerning a wireless system using an oscillation circuit for detecting delamination of carbon/epoxy composites. In this system, a tiny oscillation circuit is attached to the composite component. When delamination of the component occurs, electrical resistance changes, which causes a change in the oscillating frequency of the circuit.

{Summary of Invention}


{Technical Problem}



[0008] An adhesive provides a bond between adherends by the anchoring effect (a physical bond) or a chemical bond. When members of composites are bonded to each other with an adhesive, contaminations or the like on the surfaces may cause an extreme reduction in adhesion (joint strength). The state where an adhesive provides low chemical adhesion due to such contaminations or the like on the surfaces is referred to as kissing bond.

[0009] A kissing bond, which is not a reduction in physical adhesion caused by the presence of a gap or the like, cannot be detected by a non-destructive technique using ultrasound waves. A kissing bond can be detected by a technique using lasers but this technique inevitably destroys a bonding interface with lasers. Therefore, product inspection cannot be performed with a technique using lasers.

[0010] A method of evaluating a kissing bond with a non-destructive technique has currently not been established; thus, reliability for a joint structure joined with an adhesive cannot be ensured. In the field of aircraft in which the assurance of reliability is important, a joint structure made only with an adhesive is not allowed to be used in a structure. Accordingly, in a joint structure used in an aircraft, structure materials should be bonded to each other through fastener members.

[0011] The present invention has been made in this background, and it is an object to provide a method of evaluating the joint state of a joint portion through kissing bond inspection using a non-destructive technique.

{Solution to Problem}



[0012] To solve this problem, a joint evaluation method according to the present invention has the features of claim 1.

[0013] The present invention provides a joint evaluation method of evaluating a joint state of a joint portion in a composite including the joint portion in which an adherend and another adherend are joined to each other through an adhesive, the method including the steps of: applying an alternating-current signal to the joint portion; changing frequency in a range of 100 MHz to 10 GHz to measure current and voltage; calculating an evaluation value related to a given electrical characteristic from a current value and a voltage value obtained by the measurement; comparing the evaluation value with a preset criterion related to the given electrical characteristic; and evaluating the joint state of the joint portion according to the amount of deviation of the evaluation value from the criterion.

[0014] In one aspect of the invention, the given electrical characteristic can be a dielectric constant, polarizability, capacitance, alternating-current resistance, or phase difference.

[0015] The present inventors have found after earnest research that the joint state of a joint portion can be evaluated by detection of a kissing bond, using an electrical technique. The joint state of a joint portion (the chemical state of a bonding interface) is reflected to an evaluation value related to given electrical characteristic obtained by changing the frequency. According to this invention, whether the chemical state of the bonding interface is in a normal state can be evaluated by comparing the evaluation value with a criterion (normal value) related to a given electrical characteristic. According to this invention, it can be evaluated that the smaller the amount of deviation of the evaluation value from the criterion, the closer the joint state of the joint portion to the normal state, and that the larger the amount of deviation, the weaker the chemical bonding at the bonding interface.

[0016] In one aspect of the invention, the current and the voltage may be measured while a given pressure is applied to a bonding interface in the joint portion. The pressure is greater than 1 kPa and less than or equal to 100 MPa.

[0017] Applying a pressure to the bonding interface changes the close contact state at the bonding interface. If current and voltage are measured in this state, the evaluation value related to a given electrical characteristic largely changes according to the chemical state at the bonding interface. Since the product may be damaged if the applied pressure is too high, the pressure is preferably less than or equal to 100 MPa.

[0018] In the case where a pressure is applied to the bonding interface, the current and the voltage are measured by bringing the electrodes into electrical contact with both ends of the bonding interface.

[0019] Bringing the electrodes into electrical contact with the bonding interface allows current to flow to the joint portion.

[0020] In one aspect of the invention, current and voltage may be measured by changing frequency without applying a given pressure to a bonding interface of the joint portion, a first evaluation value related to any one of dielectric constant, polarizability, and capacitance may be calculated from a current value and a voltage value obtained by the measurement, the first evaluation value may be compared with the criterion, and the joint state of the joint portion may be subjected to first evaluation according to the amount of deviation; current and voltage may be measured by changing frequency while a given pressure is applied to the bonding interface of the joint portion, a second evaluation value related to alternating-current resistance may be calculated from a current value and a voltage value obtained by the measurement, the second evaluation value may be compared with the criterion, and the joint state of the joint portion may be subjected to second evaluation according to the amount of deviation; and evaluation results of the first evaluation and the second evaluation may be correlated to give overall evaluation of the joint state of the joint portion.

[0021] Correlation of multiple evaluation results leads to accurate evaluation of the joint state.

{Advantageous Effects of Invention}



[0022] According to the present invention, an electrical technique is used, so that the joint state of a joint portion can be evaluated by inspecting a kissing bond without destroying it.

{Brief Description of Drawings}



[0023] 

{Fig. 1}
Fig. 1 is a schematic diagram of a measurement system used for a joint evaluation method according to a first embodiment.

{Fig. 2}
Fig. 2 is a graph showing comparisons of evaluation values with criteria.

{Fig. 3}
Fig. 3 is a schematic diagram of another measurement system used for the joint evaluation method according to the first embodiment.

{Fig. 4}
Fig. 4 is a schematic diagram of a measurement system used for a joint evaluation method according to a second embodiment.

{Fig. 5}
Fig. 5 is a schematic diagram of another measurement system used for the joint evaluation method according to the second embodiment.


{Description of Embodiments}


{First Embodiment}



[0024] An evaluation target to be evaluated by a joint evaluation method according to this embodiment will be first described. The evaluation target in this embodiment includes a joint portion in which an adherend and another adherend are bonded to each other through an adhesive.

[0025] The adherend and the other adherend are composed of different composites. A composite is composed of a bonding material (matrix) and microparticles or a fibrous material. The bonding material is, for example, an epoxy thermosetting resin or a PEEK thermoplastic resin. The microparticles are, for example, silica particles, carbon black, or fullerenes. The fibrous material is, for example, carbon fibers, glass fibers, or aramid fibers. Examples of a composite include, carbon fiber reinforced plastics (CFRPs), glass fiber reinforced plastics (GFRPs), and carbon fiber reinforced plastics (CFRTPs).

[0026] The adhesive is an epoxy adhesive, an acrylic adhesive, or a polyurethane adhesive. The thickness of the adhesive in the joint portion after curing is about 0.2 to 1 mm. The joint portion includes a bonding interface at which the adherend and the other adherend are joined (bonded) to each other.

[0027] A joint evaluation method according to this embodiment involves applying an alternating-current signal to a joint portion (Step S1), measuring the current and voltage by changing the frequency (Step S2), calculating an evaluation value related to a given electrical characteristic from the current value and the voltage value obtained by the measurement (Step S3), comparing the evaluation value with a preset criterion related to a given electrical characteristic (Step S4), and evaluating the joint state of a joint portion according to the amount of deviation of the evaluation value from the criterion (Step S5).

[0028] An alternating-current signal is alternating current or alternating-current voltage. To apply alternating-current signals, an electrical constant measuring instrument (capacitance measuring instrument), such as an LCR meter and an impedance meter, or an alternating current source can be used.

[0029] The frequency is changed in the range of 100 MHz to 10 GHz.

[0030] The given electrical characteristic is at least one preliminarily selected from the group consisting of a dielectric constant, polarizability, capacitance, alternating-current resistance (impedance), and phase difference.

[0031] A criterion is preliminarily set for the selected given electrical characteristic. The criterion is preliminarily set, for example, using composite test pieces satisfying conditions (e.g., materials, shapes, and types of adhesive for the adherend and the other adherend) according to an actual evaluation target. To be specific, multiple composites that include joint portions joined with an adhesive and have similar shapes are prepared. Each composite is applied with an alternating-current signal to determine an evaluation value related to a given electrical characteristic, and inspection for a kissing bond is then performed by a destructive technique. A criterion is set to the average of evaluation values at which no kissing bond is detected or evaluation values at which the detected kissing bond is in an allowable range. A kissing bond can be detected by a technique using laser or other testing involving destruction. An evaluation value at which no kissing bond is detected indicates that a kissing bond is less than or equal to a detection limit. A criterion once set can be used for evaluation of a composite under the same conditions.

[0032]  The allowable range of kissing bond is a range satisfying the bonding strength of the joint portion that the product requires. In setting a criterion, it is preferable to check the bonding strength of a joint portion in a composite and correlate the bonding strength and the amount of kissing bond (the level of chemical joint state) to each other, thereby determining the range of amount of kissing bond that ensures a required strength. The determined amount of kissing bond is correlated to the evaluation value of a given electrical characteristic of a test piece. Accordingly, the strength of the joint portion can be evaluated from the amount of deviation of the evaluation value from the criterion. At this time, it is preferable to set multiple thresholds so that the joint strength can be evaluated in stages with the evaluation value. A bonding strength can be checked by a tensile test, for example.

[0033] An evaluation value related to a given electrical characteristic is calculated by a computation on the current value and the voltage value obtained by the measurement. The evaluation value may be calculated by a computation performed by a function of an instrument for measuring the current and the voltage.

[0034] The calculated evaluation value is compared with the criterion, thereby obtaining the amount of deviation of the evaluation value from the criterion for each frequency. The joint state of a joint portion is evaluated according to the amount of deviation. For example, if the amount of deviation from the criterion exceeds a predetermined value, the evaluation result is poor bonding. For example, even if the evaluation value deviates from the criterion value, the evaluation result is good bonding if the amount of deviation does not exceed a threshold at which required bonding strength can be ensured.

[0035] It should be noted that it is preferable that a composite the evaluation result for which is poor bonding be reinforced with fastener members or the like.

(Example 1)



[0036] Fig. 1 is a schematic diagram of a measurement system used for the joint evaluation method according to the first embodiment. In Fig. 1, two plate-like adherends 1 and 2 composed of composites are joined to each other with an adhesive. Suppose that the given electrical characteristic is capacitance. The capacitance is measured by a capacitance measuring instrument 3. Electrodes 4 and 5 in the capacitance measuring instrument 3 are connected to ends of the adherends 1 and 2 so that a joint portion 6 (both ends of the bonding interface) can be sandwiched therebetween.

[0037] With the capacitance measuring instrument 3, an alternating-current signal is applied to the joint portion 6 and the current value and the voltage value are measured by changing the frequency. The capacitance is calculated by computation performed in the capacitance measuring instrument on the basis of the current value and the voltage value obtained by the measurement. The calculated capacitance is determined to be an evaluation value and the evaluation value is compared with the criterion of the capacitance.

[0038] Fig. 2 shows comparisons of evaluation values with criteria. In the drawing, the horizontal axis indicates frequency, and the vertical axis indicates capacitance values (specification values). Referring to Fig. 2, the capacitance values (evaluation values) at low frequencies barely deviate from the criteria (criteria values), while the evaluation values in a high frequency range (10 MHz to 100 MHz) deviate from the criteria. In Fig. 2, the amount of deviation is large at a high frequency, particularly 100 MHz. At 100 MHz in Fig. 2, the amount of deviation from the criterion, which is assumed to be 100, exceeds the threshold, so that the evaluation result is a poor joint state.

(Example 2)



[0039] Fig. 3 is a schematic view of another measurement system used for a joint evaluation method according to the first embodiment. In Fig. 3, two plate-like adherends 11 and 12 composed of composites are joined to each other with an adhesive. Suppose that the given electrical characteristic is alternating-current resistance. An alternating current source 13 is connected to an ammeter 14 in series. A voltmeter 15 and the ammeter 14 are disposed in parallel. Electrodes 16 and 17 of the voltmeter 15 and the ammeter 14 are connected to ends of the adherends 11 and 12 so that a joint portion 18 (both ends of the bonding interface) can be sandwiched therebetween.

[0040] An alternating-current signal is applied to the joint portion 18 by using the alternating current source 13. The current value and the voltage value are measured by changing the frequency. The alternating-current resistance (impedance = voltage / current) is calculated on the basis of the current value and the voltage value obtained by the measurement. The calculated alternating-current resistance is determined to be an evaluation value, the evaluation value is compared with the criterion of the alternating-current resistance, and the joint state is evaluated on the basis of the amount of deviation from the criterion.

{Second Embodiment}



[0041] This embodiment differs from the first embodiment in that it measures current and voltage while applying a given pressure to a joint portion. The description of the same configuration as in the first embodiment will be omitted.

[0042] For pressurization, a mechanical pressing device or a pressurization means, such as a Langevin type transducer, is used. With a pressurization means disposed adjacent to an adherend or another adherend, a given pressure toward the bonding interface is applied to the joint portion. The given pressure is greater than 1 kPa and less than or equal to 100 MPa. For the pressure, a constant pressure may be continuously applied or a sine-wave pressure may be periodically applied.

[0043] Like in the first embodiment, the given electrical characteristic is at least one preliminarily selected from the group consisting of a dielectric constant, polarizability, capacitance, alternating-current resistance (impedance), and phase difference. The given electrical characteristic is preferably an alternating-current resistance.

[0044] A criterion related to the selected given electrical characteristic is set. The criterion is set in the same manner as in the first embodiment after an evaluation value related to a given electrical characteristic is calculated by applying an alternating-current signal to a joint portion during application of a given pressure thereto.

[0045] An evaluation value related to a given electrical characteristic is calculated by a computation on the current value and the voltage value obtained by the measurement performed during pressurization of a joint portion.

[0046] The calculated evaluation value is compared with the criterion, thereby obtaining the amount of deviation of the evaluation value from the criterion for each frequency. Like in the first embodiment, the joint state of a joint portion is evaluated according to the amount of deviation.

[0047] According to this embodiment, the pressure applied to a joint portion is changed to dynamically change the bonding state of the joint portion so that a change between a normal state and a kissing bond state clearly appears, thereby increasing the evaluation accuracy.

(Example 3)



[0048] Fig. 4 is a schematic diagram of a measurement system used for a joint evaluation method according to the second embodiment. In Fig. 4, two plate-like adherends 21 and 22 composed of composites are joined to each other with an adhesive. Suppose that the given electrical characteristic is alternating-current resistance. An alternating current source 23 is connected to an ammeter 24 in series. A voltmeter 25 and the ammeter 24 are disposed in parallel. Electrodes 26 and 27 of the voltmeter 25 and the ammeter 24 are connected to both ends of a joint portion 28 (bonding interface) such that they can be electrically connected to each other. A pressure probe 29 is disposed on the joint portion.

[0049] With a given pressure applied to the joint portion 28 through the pressure probe 29, an alternating-current signal is applied to the joint portion 28 using the alternating current source 23. The current value and the voltage value are measured by changing the frequency. The alternating-current resistance (impedance = voltage / current) is calculated on the basis of the current value and the voltage value obtained by the measurement. The calculated alternating-current resistance is determined to be an evaluation value, the evaluation value is compared with the criterion of the alternating-current resistance, and the amount of deviation of the evaluation value from the criterion is obtained for each frequency. Like in the first embodiment, the joint state of the joint portion 28 is evaluated according to the amount of deviation.

(Example 4)



[0050] Fig. 5 is a schematic view of another measurement system used for a joint evaluation method according to the second embodiment. In Fig. 5, two plate-like adherends 31 and 32 composed of composites are joined to each other with an adhesive. Suppose that the given electrical characteristic is capacitance. The capacitance is measured by a capacitance measuring instrument 33. Electrodes 34 and 35 of the capacitance measuring instrument 33 are connected to both ends of a joint portion 36 (bonding interface) such that they can be electrically connected to each other. A pressure probe 37 is disposed on the joint portion.

[0051] With a given pressure applied to the joint portion 36 through the pressure probe 37, an alternating-current signal is applied to the joint portion 36 and the current value and the voltage value are measured by changing the frequency with the capacitance measuring instrument 33. The capacitance is calculated by computation performed in the capacitance measuring instrument on the basis of the current value and the voltage value obtained by the measurement. The calculated capacitance is determined to be an evaluation value, the evaluation value is compared with the criterion of the capacitance, and the amount of deviation of the evaluation value from the criterion is obtained for each frequency. Like in the first embodiment, the joint state of the joint portion 28 is evaluated according to the amount of deviation.

{Third Embodiment}



[0052] In this embodiment, the joint state of a joint portion is subjected to first evaluation in accordance with the first embodiment. In addition, the joint state of the joint portion is subjected to second evaluation in accordance with the second embodiment. Overall evaluation of the joint state is performed by correlation of the first evaluation and the second evaluation. For the second evaluation, an electrical characteristic different from a given electrical characteristic selected for the first evaluation is selected.

(First evaluation)



[0053] The given electrical characteristic is at least one selected from the group consisting of a dielectric constant, polarizability, and capacitance. An evaluation value is calculated and a joint state is subjected to first evaluation according to the first embodiment.

(Second evaluation)



[0054] Suppose that the given electrical characteristic is alternating-current resistance. An evaluation value is calculated and the joint state is subjected to second evaluation according to the second embodiment.

[0055] The first evaluation and the second evaluation are correlated for overall evaluation of the joint state of the joint portion. For example, the amount of deviation determined by the first evaluation and the amount of deviation determined by the second evaluation are correlated and are compared with each other for overall evaluation. Correlation of the amounts of deviation determined in each evaluation allows the following evaluation, for example. In the first evaluation, multiple thresholds of the amount of deviation of evaluation value, which are denoted as threshold1, threshold2, threshold3, and threshold4, ... are set. In the second evaluation, multiple thresholds are set in the same manner. If the amounts of deviation determined in each evaluation do not exceed the threshold1, the evaluation result is a good joint state. If the amount of deviation determined in the first evaluation is between the thresholds and the threshold4, but the amount of deviation determined in the second evaluation does not exceed the threshold2, the evaluation result is a good joint state. Meanwhile, if the amount of deviation determined in the first evaluation is between the threshold3 and the threshold4, but the amount of deviation determined in the second evaluation is very close to the threshold4, the evaluation result is a poor joint state. The joint state of a joint portion can be accurately evaluated by setting multiple thresholds for each evaluation so that the amounts of deviation can be correlated for evaluation.

{Reference Signs List}



[0056] 
1, 11, 21, 31
adherend
2, 12, 22, 32
(another) adherend
3, 33
capacitance measuring instrument
4, 5, 16, 17, 26, 27, 34, 35
electrode
6, 18, 28, 36
joint portion
13, 23
alternating current source
14, 24
ammeter
15, 25
voltmeter
29, 37
pressure probe



Claims

1. A joint evaluation method of evaluating a joint state of a joint portion in a composite including the joint portion in which an adherend and another adherend are joined to each other through an adhesive, the method comprising the steps of:

applying an alternating-current signal to the joint portion;

changing frequency in a range of 100MHz to 10 GHz to measure current and voltage;

calculating an evaluation value related to a given electrical characteristic from a current value and a voltage value obtained by the measurement;

comparing the evaluation value with a preset criterion related to the given electrical characteristic; and

evaluating the joint state of the joint portion according to the amount of deviation of the evaluation value from the criterion.


 
2. The joint evaluation method according to Claim 1, wherein the given electrical characteristic is a dielectric constant, polarizability, capacitance, alternating-current resistance, or phase difference.
 
3. The joint evaluation method according to Claim 1 or 2, wherein the current and the voltage are measured while a given pressure is applied to a bonding interface in the joint portion.
 
4. The joint evaluation method according to Claim 3, wherein the pressure is greater than 1 kPa and less than or equal to 100 MPa.
 
5. The joint evaluation method according to Claim 3 or 4, wherein the current and the voltage are measured by bringing electrodes into electrical contact with both ends of the bonding interface.
 
6. The joint evaluation method according to any one of Claims 3 to 5, wherein
current and voltage are measured by changing frequency without applying a given pressure to a bonding interface of the joint portion, a first evaluation value related to any one of dielectric constant, polarizability, and capacitance is calculated from a current value and a voltage value obtained by the measurement, the first evaluation value is compared with the criterion, and the joint state of the joint portion is subjected to first evaluation according to the amount of deviation,
current and voltage are measured by changing frequency while a given pressure is applied to the bonding interface of the joint portion, a second evaluation value related to alternating-current resistance is calculated from a current value and a voltage value obtained by the measurement, the second evaluation value is compared with the criterion, and the joint state of the joint portion is subjected to second evaluation according to the amount of deviation, and
evaluation results of the first evaluation and the second evaluation are correlated to give overall evaluation of the joint state of the joint portion.
 


Ansprüche

1. Ein Verbindungs-Beurteilungsverfahren zum Beurteilen eines Verbindungszustands eines Verbindungsabschnitts in einem Verbundmaterial enthaltend den Verbindungsabschnitt, in dem ein Fügeteil und ein anderes Fügeteil miteinander durch ein Adhäsiv verbunden sind, wobei das Verfahren die folgenden Schritte aufweist:

Anlegen eines Wechselstromsignals an den Verbindungsabschnitt,

Ändern einer Frequenz in einem Bereich von 100MHz bis 10GHz zum Messen von Strom und Spannung,

Berechnen eines Bewertungswerts bezogen auf eine gegebene elektrische Eigenschaft von einem Stromwert und einem Spannungswert, die durch die Messung erhalten werden,

Vergleichen des Bewertungswerts mit einem vorgegebenen Kriterium bezogen auf die gegebene elektrische Eigenschaft, und

Bewertung des Verbindungszustands des Verbindungsabschnitts gemäß dem Betrag einer Abweichung des Bewertungswerts von dem Kriterium.


 
2. Das Verbindungs-Bewertungsverfahren gemäß Anspruch 1, wobei die gegebene elektrische Eigenschaft eine dielektrische Konstante, eine Polarisierbarkeit, eine Kapazität, ein Wechselstromwiderstand oder eine Phasendifferenz ist.
 
3. Das Verbindungs-Bewertungsverfahren gemäß Anspruch 1 oder 2, wobei der Strom und die Spannung gemessen werden, während ein gegebener Druck auf eine Verbindungsschnittstelle in dem Verbindungsabschnitt aufgebracht wird.
 
4. Das Verbindungs-Bewertungsverfahren gemäß Anspruch 3, wobei der Druck größer als 1kPa und kleiner oder gleich 100MPa ist.
 
5. Das Verbindungs-Bewertungsverfahren gemäß Anspruch 3 oder 4, wobei der Strom und die Spannung gemessen werden, indem Elektroden in elektrischen Kontakt mit beiden Enden der Verbindungsschnittstelle gebracht werden.
 
6. Das Verbindungs-Bewertungsverfahren gemäß einem der Ansprüche 3 bis 5, wobei
Strom und Spannung gemessen werden durch Ändern einer Frequenz, ohne dass ein gegebener Drucks auf eine Verbindungsschnittstelle des Verbindungsabschnitts aufgebracht wird, ein erster Bewertungswert bezogen auf irgendeine von einer dielektrischen Konstante, einer Polarisierbarkeit und einer Kapazität aus einem Stromwert und einem Spannungswert berechnet werden, die durch die Messung erhalten werden, der erste Bewertungswert mit dem Kriterium verglichen wird, und der Verbindungszustand des Verbindungsabschnitts einer ersten Bewertung gemäß dem Betrag der Abweichung unterzogen wird,
Strom und Spannung gemessen werden durch Ändern einer Frequenz, während ein vorgegebener Druck auf die Verbindungsschnittstelle des Verbindungsabschnitts aufgebracht wird, ein zweiter Bewertungswert bezogen auf einen Wechselstromwiderstand aus einem Stromwert und einem Spannungswert berechnet wird, die durch die Messung erhalten werden, der zweite Bewertungswert mit dem Kriterium verglichen wird, und der Verbindungszustand des Verbindungsabschnitts einer zweiten Bewertung gemäß dem Betrag der Abweichung unterzogen wird, und
Bewertungsergebnisse der ersten Bewertung und der zweiten Bewertung korreliert werden, um eine Gesamtbewertung des Verbindungszustands des Verbindungsabschnitts zu geben.
 


Revendications

1. Procédé d'évaluation d'un joint dans lequel on évalue l'état de joint d'une partie de joint d'un composite comprenant la partie de joint, dans lequel un adhérent et un autre adhérent sont joints l'un à l'autre par un adhésif, le procédé comprenant les stades dans lesquels :

on applique un signal de courant alternatif à la partie de joint ;

on change la fréquence dans une plage de 100MHz à 10 GHz pour mesurer un courant et une tension ;

on calcule une valeur d'évaluation se rapportant à une caractéristique électrique donnée à partir d'une valeur du courant et d'une valeur de la tension obtenues par la mesure ;

on compare la valeur d'évaluation à un critère fixé à l'avance se rapportant à la caractéristique électrique donnée ; et

on évalue l'état de joint de la partie de joint en fonction du montant de l'écart de la valeur d'évaluation au critère.


 
2. Procédé d'évaluation d'un joint suivant la revendication 1, dans lequel la caractéristique électrique donnée est une constante diélectrique, une polarisabilité, une capacité, une résistance en courant alternatif ou une différence de phase.
 
3. Procédé d'évaluation d'un joint suivant la revendication 1 ou 2, dans lequel on mesure le courant et la tension alors qu'une pression donnée est appliquée à une interface de liaison dans la partie de joint.
 
4. Procédé d'évaluation d'un joint suivant la revendication 3, dans lequel la pression est supérieure à 1 kPa et inférieure ou égale à 100 MPa.
 
5. Procédé d'évaluation d'un joint suivant la revendication 3 ou 4, dans lequel on mesure le courant et la tension en mettant des électrodes en contact électrique avec les deux extrémités de l'interface de liaison.
 
6. Procédé d'évaluation d'un joint suivant l'une quelconque des revendications 3 à 5, dans lequel
on mesure le courant et la tension en changeant de fréquence sans appliquer une pression donnée à l'interface de liaison de la partie de joint, on calcule une première valeur d'évaluation se rapportant à l'une quelconque de la constante électrique, de la polarisabilité et de la capacité à partir d'une valeur du courant et d'une valeur de la tension obtenues par la mesure, on compare la première valeur d'évaluation au critère et on soumet l'état de joint de la partie de joint à une première évaluation en fonction du montant de l'écart,
on mesure le courant et la tension en changeant la fréquence alors que l'on applique une pression donnée à l'interface de liaison de la partie de joint, on calcule une deuxième valeur d'évaluation se rapportant à la résistance en courant alternatif à partir d'une valeur du courant et d'une valeur de la tension obtenues par la mesure, on compare la deuxième valeur d'évaluation au critère et on soumet l'état de joint de la partie de joint à une deuxième évaluation en fonction du montant de l'écart, et
on met en corrélation des résultats d'évaluation de la première évaluation et de la deuxième évaluation pour obtenir une évaluation d'ensemble de l'état de joint de la partie de joint.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description