(19)
(11)EP 3 296 922 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 16893194.7

(22)Date of filing:  29.06.2016
(51)International Patent Classification (IPC): 
G06K 9/00(2006.01)
G06T 5/00(2006.01)
G06K 9/56(2006.01)
(86)International application number:
PCT/CN2016/087778
(87)International publication number:
WO 2017/152549 (14.09.2017 Gazette  2017/37)

(54)

FINGERPRINT IDENTIFICATION METHOD AND TERMINAL

FINGERABDRUCKIDENTIFIZIERUNGSVERFAHREN UND -ENDGERÄT

PROCÉDÉ D'IDENTIFICATION D'EMPREINTE DIGITALE, ET TERMINAL


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 10.03.2016 CN 201610137655

(43)Date of publication of application:
21.03.2018 Bulletin 2018/12

(73)Proprietor: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD.
Wusha, Chang'an Dongguan, Guangdong 523860 (CN)

(72)Inventor:
  • ZHOU, Yibao
    Dongguan, Guangdong 523860 (CN)

(74)Representative: Mewburn Ellis LLP 
City Tower 40 Basinghall Street
London EC2V 5DE
London EC2V 5DE (GB)


(56)References cited: : 
EP-A1- 1 530 147
CN-A- 101 499 130
US-A1- 2014 333 328
US-B2- 8 379 943
CN-A- 1 480 896
CN-A- 101 790 165
US-A1- 2015 169 932
  
  • NAM ET AL: "Design and implementation of a capacitive fingerprint sensor circuit in CMOS technology", SENSORS AND ACTUATORS A: PHYSICAL, ELSEVIER BV, NL, vol. 135, no. 1, 28 March 2007 (2007-03-28), pages 283-291, XP005928279, ISSN: 0924-4247, DOI: 10.1016/J.SNA.2006.07.009
  • CHIN KIM ON ET AL: "Fingerprint feature extraction based discrete cosine transformation (DCT)", COMPUTING&INFORMATICS, 2006. ICOCI '06. INTERNATIONAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 6 June 2006 (2006-06-06), pages 1-5, XP031539394, ISBN: 978-1-4244-0219-9
  • UNG-KEUN CHO ET AL: "Evolutionary Singularity Filter Bank Optimization for Fingerprint Image Enhancement", 1 January 2006 (2006-01-01), APPLICATIONS OF EVOLUTIONARY COMPUTING LECTURE NOTES IN COMPUTER SCIENCE;;LNCS, SPRINGER, BERLIN, DE, PAGE(S) 380 - 390, XP019029841, ISBN: 978-3-540-33237-4 * Sections 2.2 and 4 *
  • HAMID AINUL AZURA ET AL: "Analysis of Proposed Noise Detection & Removal Technique in Degraded Fingerprint Images", 3D RESEARCH, 3D DISPLAY RESEARCH CENTER, SEOUL, vol. 6, no. 4, 13 October 2015 (2015-10-13), pages 1-7, XP035968579, DOI: 10.1007/S13319-015-0067-2
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present disclosure relates to the field of communications, and particularly to a fingerprint identification method and a terminal.

BACKGROUND



[0002] At present, as technical development of mobile phones and other terminal devices is increasingly mature, fingerprint identification technology has become one standard configuration of flagships of mainstream terminal devices. The fingerprint identification technology can not only be configured for functions such as waking up or unlocking of a terminal, but also be one important part of mobile payment. In the fingerprint identification technology, a fingerprint identification process can include fingerprint feature data extraction, fingerprint feature data storing, fingerprint match, and other processes.

[0003] The paper "DESIGN AND IMPLEMENTATION OF A CAPACITIVE FINGERPRINT SENSOR CIRCUIT IN CMOS TECHNOLOGY" discloses a technique in which a sensing amplifier employed by the sensing circuit enlarges a voltage difference between a ridge and valley.

[0004] The paper "FINGERPRINT FEATURE EXTRACTION BASED DISCRETE COSINE TRANSFORMATION (DCT)" discloses an algorithm for fingerprint image recognition. The algorithm involves two stages, which are pre-processing the fingerprint image, and feature extraction based DCT. The extracted DCT data is used as input for the back propagation neural network training for personal identification.

[0005] The paper "EVOLUTIONARY SINGULARITY FILTER BANK OPTIMIZATION FOR FINGERPRINT IMAGE ENHANCEMENT" relates to a technique that uses a genetic algorithm to find filters for superior performance of singularity extraction.

[0006] US 2015/169932A1 relates to a method of determining a representation of a fingerprint pattern. The method includes the steps of acquiring a reference signal indicative of an electric coupling between a hand surface having friction ridges and a reference sensing structure extending across a plurality of the friction ridges; and determining the representation of the fingerprint pattern based on the reference signal and a capacitive coupling between the finger and each of a plurality of sensing elements. The acquired reference signal can, for example, be used for controlling the sensing elements so that the sensing performed by the sensing elements is carried out using favorable timing, when the signal quality is good. Alternatively, or in combination, the acquired reference signal may be used for post-processing, whereby the signals/signal values obtained by the sensing elements are modified depending on the corresponding values of the reference signal.

SUMMARY



[0007] Embodiments of the present disclosure provide a fingerprint identification method and a terminal, so as to reduce difficulty of fingerprint identification, improve efficiency of fingerprint identification, and improve user experience of a terminal.

[0008] According to the invention, there is provided a fingerprint identification method as set out in claim 1, and a terminal as set out in claim 3.

[0009] In the method, source fingerprint data for fingerprint identification is acquired, and fingerprint data to be processed, whose fingerprint data value is in a preset threshold range, is extracted from the source fingerprint data.

[0010] A feature amplifying process is performed on the fingerprint data to be processed and fingerprint data obtained through the amplifying process is repaired to obtain target fingerprint data.

[0011] Fingerprint simulation data is generated according to the target fingerprint data and the fingerprint simulation data is matched with pre-stored fingerprint verification data.

[0012] The source fingerprint data is determined to be identified successfully, when the fingerprint simulation data matches the pre-stored fingerprint verification data successfully.

BRIEF DESCRIPTION OF THE DRAWINGS



[0013] To illustrate the technical solutions of embodiments of the present disclosure more clearly, drawings used in the embodiments will be briefly described below. Apparently, the drawings described in the following are merely some embodiments of the present disclosure, and it will be apparent to those skilled in the art that other drawings can be obtained from the drawings without creative efforts.

FIG.1 is a schematic flowchart illustrating a fingerprint identification method according to an embodiment of the present disclosure.

FIG.2 is a structural schematic diagram illustrating a terminal according to an embodiment of the present disclosure.

FIG.3 is a structural schematic diagram illustrating another terminal according to an embodiment of the present disclosure.


DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS



[0014] Technical solutions of the embodiments of the present disclosure will be described below clearly and completely in conjunction with the accompanying drawings of the embodiments of the present disclosure. Obviously, the described embodiments are merely some rather than all of the embodiments of the present disclosure. On the basis of the embodiments of the present disclosure, all other embodiments obtained by person skilled in the art without creative efforts shall fall within the protection scope of the present disclosure.

[0015] In specific implementations, a terminal referred to in the embodiments of the present disclosure can include a mobile phone, a tablet computer, a personal digital assistant (PDA), a mobile internet device (MID), an intelligent wearable device (such as an intelligent watch or an intelligent bracelet), and other devices. The present disclosure is not limited thereto. A fingerprint identification method and a terminal provided in the embodiments of the present disclosure will be described in detail by taking a mobile phone as an example.

[0016] In the related art, when fingerprint identification is performed, fingerprint feature data needs to be extracted first, the fingerprint feature data is processed preliminarily to obtain more legible fingerprint feature data, and then a feature point (also known as minutiae) matching is performed between the fingerprint feature data obtained and a pre-stored fingerprint template. When the fingerprint feature data obtained matches the pre-stored fingerprint template, the fingerprint identification is accomplished, and then waking up, unlocking, and other operations can be performed on the terminal. In the related art, the fingerprint feature data is extracted to obtain a fingerprint image, and the fingerprint image is processed to obtain a more legible fingerprint image. Fingerprint features in the image are not processed. The manner of processing is simple. When fingerprint matching is performed, image matching between the fingerprint image and a fingerprint template image is performed for fingerprint identification. Since fingerprint data processing relates only to image processing and the fingerprint features are not processed, integrity of the fingerprint features obtained cannot be guaranteed, an error identification rate of fingerprint matching is large, and matching efficiency is low.

[0017] Referring to FIG.1, FIG.1 is a schematic flowchart illustrating a fingerprint identification method according to an embodiment of the present disclosure. The method described in the embodiment of the present disclosure can include the follows.

[0018] At S101, source fingerprint data for fingerprint identification is acquired, and fingerprint data to be processed, whose fingerprint data value is in a preset threshold range, is extracted from the source fingerprint data.

[0019] In some possible implementations, the fingerprint identification can include overall feature identification of fingerprints and local feature identification of fingerprints. Overall features of fingerprints refer to features that can be observed directly by human eyes, including basic ridge patterns such as loop ridges, arch ridges, whorl ridges, and the like. Local features of fingerprints refer to minutia features such as breakpoints, bifurcation points, turning points, and the like of a fingerprint pattern. The local features of fingerprints provide confirmation point characteristic of fingerprint uniqueness.

[0020] In some possible implementations, fingerprint data of a user finger can be acquired via a built-in fingerprint module. The fingerprint module includes a fingerprint chip. The fingerprint chip includes mn queue-like pixels inside, where m and n are natural numbers. In specific implementations, when detecting that the user finger presses the fingerprint module (to be specific, a surface of the fingerprint module), the mobile phone can acquire capacitance values corresponding to each pixel in an image acquisition queue of the fingerprint module. The image acquisition queue refers to the above-mentioned pixel queue formed by mn pixels. When the user finger presses the fingerprint module surface, a capacitor (can be regarded as a capacitance) is formed between the finger and each pixel. The capacitance value corresponding to each pixel changes due to difference between fingerprint ridge points and fingerprint valley points of the fingerprint pattern. The mobile phone can acquire capacitance values of each capacitor formed by each pixel and each fingerprint ridge point of the fingerprint pattern. The capacitor formed by one pixel and one fingerprint ridge point has one capacitance value. Since the fingerprint of the finger has multiple fingerprint ridge points and each fingerprint ridge point corresponds to a capacitance value, each capacitance value corresponding to each fingerprint ridge point can be set as a first capacitance value. Further, the mobile phone can also acquire a capacitance value of each capacitor formed by each pixel and each fingerprint valley point of the fingerprint pattern. The capacitor formed between one pixel and one fingerprint valley point has one capacitance value. Since the finger fingerprint has multiple fingerprint valley points and each fingerprint valley point corresponds to a capacitance value, each capacitance value corresponding to each fingerprint valley point can be set as a second capacitance value.

[0021] In specific implementations, after the first capacitance value and the second capacitance value are acquired, they can be set as the source fingerprint data for forming a simulated fingerprint. Based on the source fingerprint data, fingerprint match and identification can be conducted. The form of the source fingerprint data can be the fingerprint pattern. Since fingerprint ridge points are closer to pixels of the fingerprint module than the fingerprint valley points, there will be a big difference between the first capacitance value (that is, capacitance values corresponding to each fingerprint ridge point) and the second capacitance value (capacitance values corresponding to each fingerprint valley point). When the fingerprint module of the mobile phone forms a simulated fingerprint on the basis of the first capacitance value and the second capacitance value, an uneven three-dimensional surface can be formed and further used to simulate a fingerprint image.

[0022] In some possible implementations, since bad pixels may appear in pixels in the image acquisition queue of the fingerprint module surface, the fingerprint is in poor contact with the fingerprint module, thereby causing abnormal data in the fingerprint data. In an implementation, based on each capacitance value of the source fingerprint data acquired, a threshold range of capacitance values can be set. The threshold range of the capacitance values may cover capacitances corresponding to more than 98% pixels. The mobile phone can extract, from the source fingerprint data, fingerprint data to be processed whose fingerprint data value is in the preset threshold range. The above-mentioned fingerprint data value can refer to capacitance values formed by the fingerprint and each pixel of the fingerprint module. By extracting from the source fingerprint the fingerprint data to be processed, whose fingerprint data value is in a preset threshold range, the abnormal data can be removed, so as to reduce the workload of subsequent processing of the fingerprint data to be processed, and thereby improving efficiency of the fingerprint identification.

[0023] At S102, a feature amplifying process is performed on the fingerprint data to be processed and fingerprint data obtained through the amplifying process is repaired to obtain target fingerprint data.

[0024] In some possible implementations, after extracting, from the source fingerprint data, the fingerprint data to be processed, whose fingerprint data value is in the preset threshold range, the fingerprint data to be processed can be subjected to the feature amplifying process, so as to amplify features of the fingerprint data and enhance fingerprint identification degree. Feature amplification of the fingerprint data may be an amplification of the fingerprint pattern. In specific implementations, the fingerprint data to be processed can include a first capacitance value and a second capacitance value in the preset threshold range after being screened. The first capacitance value corresponds to the fingerprint ridge points and the second capacitance value corresponds to the fingerprint valley points. A median of the first capacitance value and the second capacitance value can be determined according to each capacitance value contained in the first capacitance value and the second capacitance of the fingerprint data to be processed, that is, 50 quartile of each capacitance value of the fingerprint data to be processed. After the median of the first capacitance value and the second capacitance value are determined, the median can be set as an amplification reference value. The amplification reference value is configured to process the fingerprint data to be processed into a series of data fluctuating around the median, so as to enhance the difference of features.

[0025] In some possible implementations, after setting the above-mentioned amplification reference value, the mobile phone can subtract the amplification reference value from the fingerprint data to be processed to obtain fingerprint data to be amplified, and then amplify the fingerprint data to be amplified, thereby highlighting various fingerprint features. In one implementation, the mobile phone can multiply the fingerprint data to be amplified by a designated coefficient, and then add the amplification reference value to the fingerprint data after multiplying, to obtain amplified fingerprint data. The designated coefficient is a magnification of the fingerprint feature and can be determined according to practical application scenes, and the present disclosure is not limited thereto. By re-adding the amplification reference value to the fingerprint data to be processed after amplifying to obtain the amplified fingerprint data, difference of features of the fingerprint data can be much larger than that of the fingerprint data before amplifying.

[0026] In the embodiments of the present disclosure, the amplification reference value is subtracted from the fingerprint data to be processed before amplifying, to make the fingerprint ridge points and fingerprint valley points of the fingerprint pattern clearer. Transitional lines (pixel locations corresponding to the median of the capacitance values) between the fingerprint ridge points and fingerprint valley points of the fingerprint pattern become grey areas to enhance difference of the fingerprint pattern. When the fingerprint data to be processed is amplified directly, all of the fingerprint ridge points, fingerprint valley points, and the intermediate transitional lines are amplified, as a result, difference of features cannot be highlighted and clearer fingerprint data cannot be obtained.

[0027] In some possible implementations, when the finger presses the fingerprint module and there is dirt or other obstacle on the surface of the fingerprint module, blank areas will appear in the fingerprint pattern presented by the fingerprint data obtained through the fingerprint module. At this time, if the fingerprint data is not repaired, the fingerprint identification will fail. In one implementation, after obtaining the amplified fingerprint data, the mobile phone can detect fingerprint data of each pixel area and determine whether it is fingerprint data of normal pattern. Specifically, all pixels of the fingerprint module can be divided into multiple pixel areas, and each pixel area is a designated area. Each pixel area includes xy pixels, where x and y are natural numbers and can be set according to practical application scenes, and the present disclosure is not limited thereto. After dividing all the pixels into multiple pixel areas, a capacitance value of each pixel in each pixel area can be obtained. The capacitance value of each pixel includes a capacitance value corresponding to a fingerprint ridge point and a capacitance value corresponding to a fingerprint valley point. After obtaining capacitance values corresponding to the fingerprint ridge points and capacitance values corresponding to the fingerprint valley points in each pixel area, the difference between a capacitance value corresponding to a fingerprint ridge point and a capacitance value corresponding to a fingerprint valley point adjacent to the fingerprint ridge point can be determined. When the difference between capacitance values corresponding to fingerprint ridge points and capacitance values corresponding to fingerprint valley points in some pixel area are in a maximum theoretical difference range, it can be determined that the pixel area is a normal fingerprint area and there is no need to repair the fingerprint data. The above-mentioned maximum theoretical difference range can be determined through multiple experiments in advance, that is, the maximum difference range of the capacitance values corresponding to fingerprint ridge points and capacitance values corresponding to fingerprint valley points in a normal fingerprint pattern determined through multiple experiments. The present disclosure is not limited thereto.

[0028] For some pixel area, when any difference between a capacitance value corresponding to a fingerprint ridge point and a capacitance value corresponding to a fingerprint valley point adjacent to the fingerprint ridge point is greater than a preset difference threshold (that is, the above-mentioned maximum theoretical difference range), it can be determined that the above-mentioned pixel area is an abnormal area and the fingerprint data needs to be repaired. When repairing the fingerprint data in the abnormal area, the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley point can be deleted when the difference of these two capacitance values is larger than the preset difference threshold, and then set the median of capacitance values corresponding to pixels in the pixel area as the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley point, so as to fill the abnormal fingerprint area completely and obtain the target fingerprint data of a complete fingerprint pattern.

[0029] At S103, fingerprint simulation data is generated according to the target fingerprint data, and then match the fingerprint simulation data with pre-stored fingerprint verification data.

[0030] In some possible implementations, after the target fingerprint data of a complete fingerprint pattern is obtained through amplifying and repairing, a three-dimensional surface can be generated according to capacitance values of pixels of the target fingerprint data. Since capacitance values of pixels are different, the three-dimensional surface generated according to the target fingerprint data will be an uneven three-dimensional surface, which can be used to simulate the fingerprint image. After simulating the fingerprint image via the three-dimensional surface, the mobile phone can match the simulated fingerprint image with the pre-stored fingerprint verification data, to determine whether the simulated fingerprint image matches the fingerprint image presented by the fingerprint verification data. The pre-stored fingerprint verification data refers to fingerprint image and other fingerprint data that the user registers and stores in a designated memory space of the mobile phone in advance.

[0031] At S104, the source fingerprint data is determined to be identified successfully, when the fingerprint simulation data matches the pre-stored fingerprint verification data successfully.

[0032] In some possible implementations, when determining that the simulated fingerprint image or other fingerprint simulation data matches a registered fingerprint image or other fingerprint verification data successfully, the fingerprint data identification can be determined successful and correspondingly, the mobile phone can be unlocked or waken up.

[0033] In the embodiments of the present disclosure, source fingerprint data for fingerprint identification can be acquired, fingerprint data to be processed whose fingerprint data value is in a preset threshold range can be extracted from the source fingerprint data. Then, an amplifying process can be performed on the fingerprint data to be processed and a repairing process can be performed on the amplified fingerprint data, to obtain target fingerprint data. Further, fingerprint simulation image can be generated according to the target fingerprint data. The mobile phone can determine whether fingerprint identification is successful by matching the fingerprint simulation image with a registered fingerprint image or other fingerprint verification data. Correspondingly, functions of the mobile phone can be enabled when the fingerprint identification is successful. In the embodiments of the present disclosure, the amplifying process and the repairing process are performed on the fingerprint data to obtain more complete target fingerprint data, so as to reduce a workload of the follow-up amplifying process and repairing process on the fingerprint data, thereby reducing energy consumption of the fingerprint identification. Based on the target fingerprint data that has undergone the amplifying process and the repairing process, the mobile phone can generate the simulated fingerprint data, which can improve accuracy, efficiency, and applicability of the fingerprint identification, and user experience of a terminal can be enhanced.

[0034] Referring to FIG.2, FIG.2 is a structural schematic diagram illustrating a terminal according to an embodiment of the present disclosure. The terminal described in the embodiment of the present disclosure can include an extracting unit 10, a processing unit 20, a matching unit 30, and a determining unit 40.

[0035] The extracting unit 10 is configured to acquire source fingerprint data for fingerprint identification and extract from the source fingerprint data fingerprint data to be processed, whose fingerprint data value is in a preset threshold range.

[0036] The processing unit 20 is configured to perform a feature amplifying process on the fingerprint data to be processed that is extracted (or acquired) by the extracting unit 10 and repair fingerprint data obtained through the amplifying process (that is, amplified fingerprint data), to obtain target fingerprint data.

[0037] The matching unit 30 is configured to generate fingerprint simulation data according to the target fingerprint data obtained by the processing unit 20 and match the fingerprint simulation data with pre-stored fingerprint verification data.

[0038] The determining unit 40 is configured to determine that the source fingerprint data is identified successfully, when the fingerprint simulation data matches the pre-stored fingerprint verification data successfully.

[0039] In some possible implementation, the extracting unit 10 is further configured to: acquire a first capacitance value of a first capacitor and a second capacitance value of a second capacitor, when detecting that a finger is pressing a fingerprint module surface; set the first capacitance value and the second capacitance value as the source fingerprint data for forming a simulated fingerprint. The first capacitor (can be deemed as a capacitance) is formed by each pixel in an image acquisition queue of the fingerprint module surface and a fingerprint ridge point of the finger, and the second capacitor is formed by each pixel in the image acquisition queue of the fingerprint module surface and a fingerprint valley point of the finger.

[0040] In some possible implementations, the fingerprint data to be processed is the first capacitance value and the second capacitance value in the preset threshold range. The processing unit 20 is further configured to: acquire a median of the first capacitance value and the second capacitance value and set the median as an amplification reference value; subtract the amplification reference value from the fingerprint data to be processed to obtain fingerprint data to be amplified; multiply the fingerprint data to be amplified by a designated coefficient and then add the amplification reference value, to obtain fingerprint data after the amplifying process.

[0041] In some possible implementations, the processing unit 20 is further configured to: obtain, for each fingerprint ridge in a designated area of the fingerprint data after the amplifying process, the difference between a capacitance value corresponding to a fingerprint ridge point and a capacitance value corresponding to a fingerprint valley point adjacent to the fingerprint ridge point; substitute the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley point adjacent to the fingerprint ridge point with a median of capacitance values corresponding to pixels in the designated area, when the difference between the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley point adjacent to the fingerprint ridge point is greater than a difference threshold.

[0042] In some possible implementations, the matching unit 30 is further configured to generate a three-dimensional surface according to capacitance values of pixels of the target fingerprint data and simulate a fingerprint image via the three-dimensional surface, to perform fingerprint matching via the simulated fingerprint image.

[0043] In some possible implementations, the fingerprint identification can include overall feature identification of fingerprints and local feature identification of fingerprints. Overall features of fingerprints refer to features that can be observed directly by human eyes, including basic ridge patterns such as loop ridges, arch ridges, whorl ridges, and the like. Local features of fingerprints refer to minutia features such as breakpoints, bifurcation points, turning points, and the like of a fingerprint pattern. The local features of fingerprints provide confirmation point characteristic of fingerprint uniqueness.

[0044] In some possible implementations, the exacting unit 10 of a mobile phone can acquire fingerprint data of a user finger via a built-in fingerprint module. The fingerprint module includes a fingerprint chip. The fingerprint chip includes mn queue-like pixels inside, where m and n are natural numbers. In specific implementations, when detecting that the user finger presses the surface of the fingerprint module (hereinafter, fingerprint module surface), the exacting unit 10 can acquire capacitance values corresponding to each pixel in an image acquisition queue of the fingerprint module surface. The image acquisition queue refers to the above-mentioned pixel queue formed by mn pixels. When the user finger presses the fingerprint module surface, a capacitor (can be deemed as a capacitance) is formed between the finger and each pixel. The capacitance value corresponding to each pixel varies due to difference between fingerprint ridge points and fingerprint valley points of the fingerprint pattern. The exacting unit 10 can acquire capacitance values of each capacitor formed by each pixel and each fingerprint ridge point of the fingerprint pattern. The capacitor formed by one pixel and one fingerprint ridge point has one capacitance value. Since the fingerprint of the finger has multiple fingerprint ridge points and each fingerprint ridge point corresponds to a capacitance value, the exacting unit 10 can set each capacitance value corresponding to each fingerprint ridge point as a first capacitance value. Further, the exacting unit 10 can also acquire a capacitance value of each capacitor formed by each pixel and each fingerprint valley point of the fingerprint pattern, the capacitor formed by one pixel and one fingerprint valley point has one capacitance value. Since the finger fingerprint has multiple fingerprint valley points and each fingerprint valley point corresponds to a capacitance value, the exacting unit 10 can set each capacitance value corresponding to each fingerprint valley point as a second capacitance value.

[0045] In specific implementations, after acquiring the first capacitance value and the second capacitance value, the exacting unit 10 can set the first capacitance value and the second capacitance value as the source fingerprint data for forming a simulated fingerprint. Based on the source fingerprint data, fingerprint match and identification can be conducted. The form of the source fingerprint data can be the fingerprint pattern. Since fingerprint ridge points are closer to pixels of the fingerprint module than the fingerprint valley points, there will be a big difference between the first capacitance value (that is, capacitance values corresponding to each fingerprint ridge point) and the second capacitance value (capacitance values corresponding to each fingerprint valley point). When the fingerprint module of the mobile phone generates a simulated fingerprint on the basis of the first capacitance value and the second capacitance value, an uneven three-dimensional surface can be generated and further used to simulate a fingerprint image.

[0046] In some possible implementations, since bad pixels may appear in pixels in the image acquisition queue of the fingerprint module surface, the fingerprint is in a poor contact with the fingerprint module, thereby causing abnormal data in the fingerprint data. In an implementation, based on each capacitance value of the source fingerprint data acquired, the exacting unit 10 can set a threshold range of the capacitance values. The threshold range of the capacitance values may cover more than 98% pixels. The exacting unit 10 can extract, from the source fingerprint data, fingerprint data to be processed, whose fingerprint data value is in the preset threshold range. The above-mentioned fingerprint data value can refer to capacitance values formed by the fingerprint and each pixel of the fingerprint module. By extracting, from the source fingerprint, the fingerprint data to be processed, whose fingerprint data value is in a preset threshold range, the abnormal data can be removed, so as to reduce the workload of subsequent processing of the fingerprint data to be processed, and thereby improving efficiency of the fingerprint identification.

[0047] In some possible implementations, after the extracting unit 10 extracts, from the source fingerprint data, the fingerprint data to be processed, whose fingerprint data value is in the preset threshold range, the processing unit 20 can perform the feature amplifying process on the fingerprint data to be processed so as to amplify features of the fingerprint data and enhance fingerprint identification degree. Feature amplification of the fingerprint data may be an amplification of a fingerprint pattern. In some implementations, the fingerprint data to be processed can include a first capacitance value and a second capacitance value in the preset threshold range after being screened. The first capacitance value corresponds to the fingerprint ridge points and the second capacitance value corresponds to the fingerprint valley points. The processing unit 20 can determine a median of the first capacitance value and the second capacitance value according to each capacitance value contained in the first capacitance value and the second capacitance value of the fingerprint data to be processed, that is, 50 quartile of each capacitance value of the fingerprint data to be processed. After determining the median of the first capacitance value and the second capacitance value, the processing unit 20 can set the median as an amplification reference value. The amplification reference value is configured to process the fingerprint data to be processed into a series of data fluctuating around the median, so as to enhance the difference of features.

[0048] In some possible implementations, after setting the above-mentioned amplification reference value, the processing unit 20 can subtract the amplification reference value from the fingerprint data to be processed to obtain fingerprint data to be amplified, and then amplify the fingerprint data to be amplified, thereby highlighting various fingerprint features. In one implementation, the processing unit 20 can multiply the fingerprint data to be amplified by a designated coefficient, and then add the amplification reference value to the fingerprint data after multiplying, to obtain amplified fingerprint data. The designated coefficient is a magnification of the fingerprint feature and can be determined according to practical application scenes, and the present disclosure is not limited thereto. The processing unit 20 re-adds the amplification reference value to the fingerprint data to be processed after amplifying, to obtain the amplified fingerprint data, difference of features of the fingerprint data can be much larger than that of the fingerprint data before amplifying.

[0049] In the embodiments of the present disclosure, before magnifying, the processing unit 20 subtracts the amplification reference value from the fingerprint data to be processed, to make the fingerprint ridge points and fingerprint valley points of the fingerprint pattern clearer. Transitional lines (pixel locations corresponding to the median of the capacitance values) between the fingerprint ridge points and fingerprint valley points of the fingerprint pattern become grey areas to enhance difference of the fingerprint pattern. When the processing unit 20 magnifies the fingerprint data to be processed directly, all of the fingerprint ridge points, fingerprint valley points, and the middle transitional lines are amplified, as a result, difference of features cannot be highlighted and clearer fingerprint data cannot be obtained.

[0050] In some possible implementations, when the finger presses the fingerprint module and there is dirt or other obstacle on the surface of the fingerprint module, blank areas will appear in the fingerprint pattern presented by the fingerprint data obtained through the fingerprint module by the extracting unit 10. At this time, if the fingerprint data is not repaired, the fingerprint identification will fail. In specific implementations, after obtaining the amplified fingerprint data, the processing unit 20 can detect fingerprint data of each pixel area and determine whether it is fingerprint data of normal pattern. Specifically, the processing unit 20 can divide all pixels of the fingerprint module into multiple pixel areas, and each pixel area is a designated area. Each pixel area includes xy pixels, where x and y are natural numbers and can be set according to practical application scenes, and the present disclosure is not limited thereto. After dividing all the pixels into multiple pixel areas, the processing unit 20 can obtain a capacitance value of each pixel in each pixel area. The capacitance value of each pixel includes a capacitance value corresponding to a fingerprint ridge point and a capacitance value corresponding to a fingerprint valley point. After obtaining capacitance values corresponding to the fingerprint ridge points and capacitance values corresponding to the fingerprint valley points in each pixel area, the processing unit 20 can determine the difference between a capacitance value corresponding to a fingerprint ridge point and a capacitance value corresponding to a fingerprint valley point adjacent to the fingerprint ridge point. When the difference between capacitance values corresponding to fingerprint ridge points and capacitance values corresponding to fingerprint valley points in some pixel area are in a maximum theoretical difference range, it can be determined that the pixel area is a normal fingerprint area and there is no need to repair the fingerprint data. The above-mentioned maximum theoretical difference range can be determined through multiple experiments in advance, that is, the maximum difference range of the capacitance values corresponding to fingerprint ridge points and capacitance values corresponding to fingerprint valley points in a normal fingerprint pattern determined through multiple experiments. The present disclosure is not limited thereto.

[0051] For some pixel areas, when the processing unit 20 determines that any difference between a capacitance value corresponding to a fingerprint ridge point and a capacitance value corresponding to a fingerprint valley point adjacent to the fingerprint ridge point is greater than a preset difference threshold (that is, the above-mentioned maximum theoretical difference range), the processing unit 20 can determine that the above-mentioned pixel area is an abnormal area and the fingerprint data needs to be repaired. When repairing the fingerprint data in the abnormal area, the processing unit 20 can delete the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley point when the difference of these two capacitance values is larger than the preset difference threshold, and then set the median of capacitance values corresponding to pixels in the pixel area as the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley, so as to fill the abnormal fingerprint area completely and obtain the target fingerprint data of a complete fingerprint pattern.

[0052] In some possible implementations, after the processing unit 20 obtains the target fingerprint data of a complete fingerprint pattern through amplifying and repairing, the matching unit 30 can generate a three-dimensional surface according to capacitance values of pixels of the target fingerprint data. Since capacitance values of pixels are different, the three-dimensional surface generated according to the target fingerprint data will be an uneven three-dimensional surface, which can be used to simulate the fingerprint image. After simulating the fingerprint image via the three-dimensional surface, the matching unit 30 can match the simulated fingerprint image with the pre-stored fingerprint verification data, to determine whether the simulated fingerprint image matches the fingerprint image presented by the fingerprint verification data. The pre-stored fingerprint verification data refers to fingerprint image and other fingerprint data that the user registers and stores in a designated memory space of the mobile phone in advance.

[0053] In some possible implementations, when the matching unit 30 determines that the simulated fingerprint image or other fingerprint simulation data matches a registered fingerprint image or other fingerprint verification data successfully, the determining unit 40 can determine that fingerprint data identification is successful and correspondingly, the mobile phone can be unlocked or waken up.

[0054] In the embodiments of the present disclosure, source fingerprint data for fingerprint identification can be acquired, fingerprint data to be processed whose fingerprint data value is in a preset threshold range can be extracted from the source fingerprint data. Then, an amplifying process can be performed on the fingerprint data to be processed and a repairing process can be performed on the amplified fingerprint data, to obtain target fingerprint data. Further, fingerprint simulation image can be generated according to the target fingerprint data. The mobile phone can determine whether fingerprint identification is successful by matching the fingerprint simulation image with a registered fingerprint image or other fingerprint verification data. Correspondingly, functions of the mobile phone can be enabled when the fingerprint identification is successful. In the embodiments of the present disclosure, the amplifying process and the repairing process are performed on the fingerprint data to obtain more complete target fingerprint data, so as to reduce a workload of the follow-up amplifying process and repairing process on the fingerprint data, thereby reducing energy consumption of the fingerprint identification. Based on the target fingerprint data that has undergone the amplifying process and the repairing process, the mobile phone can generate the simulated fingerprint data, which can improve accuracy, efficiency, and applicability of the fingerprint identification, and user experience of a terminal can be enhanced.

[0055] Referring to FIG.3, FIG.3 is a structural schematic diagram illustrating another terminal according to an embodiment of the present disclosure. The terminal described in the embodiment of the present disclosure can include a processor 1000 and a memory 2000. The processor 1000 and the memory 2000 are connected via a bus 3000.

[0056] The memory 2000 can be a high-speed RAM memory, or a non-volatile memory, such as a disk memory.

[0057] The memory 2000 is configured to store a set of executable program codes and the processor 1000 is configured to invoke the executable program codes stored in the memory 2000 to: acquire source fingerprint data for fingerprint identification and extract, from the source fingerprint data, fingerprint data to be processed, whose fingerprint data to be processed has a fingerprint data value in a preset threshold range; perform a feature amplifying process on the fingerprint data to be processed and repair fingerprint data obtained through the amplifying process to obtain target fingerprint data; generate fingerprint simulation data according to the target fingerprint data and match the fingerprint simulation data with pre-stored fingerprint verification data; determine that the source fingerprint data is identified successfully, when the fingerprint simulation data matches the pre-stored fingerprint verification data successfully.

[0058] In some possible implementations, the processor 1000 is further configured to: acquire a first capacitance value of a first capacitor and a second capacitance value of a second capacitor, when detecting that a finger is pressing a fingerprint module surface, where the first capacitor is formed by each pixel in an image acquisition queue of the fingerprint module surface and a fingerprint ridge point of the finger, and the second capacitor is formed by each pixel in the image acquisition queue of the fingerprint module surface and a fingerprint valley point of the finger; set the first capacitance value and the second capacitance value as the source fingerprint data for forming a simulated fingerprint.

[0059] In some possible implementations, the fingerprint data to be processed is the first capacitance value and the second capacitance value in the preset threshold range.

[0060] The processor 1000 is further configured to: acquire a median of the first capacitance value and the second capacitance value and set the median as an amplification reference value; subtract the amplification reference value from the fingerprint data to be processed to obtain fingerprint data to be amplified; multiply the fingerprint data to be amplified by a designated coefficient and then add the amplification reference value, to obtain fingerprint data after the amplifying process.

[0061] In some possible implementations, the processor 1000 is further configured to: obtain, for each fingerprint pattern in a designated area of the fingerprint data after the amplifying process, the difference between a capacitance value corresponding to a fingerprint ridge point and a capacitance value corresponding to a fingerprint valley point adjacent to the fingerprint ridge point; substitute the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley point adjacent to the fingerprint ridge point with a median of capacitance values corresponding to pixels in the designated area, when the difference between the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley point adjacent to the fingerprint ridge point is greater than a difference threshold.

[0062] In some possible implementations, the processor 1000 is further configured to: generate a three-dimensional surface according to capacitance values of pixels of the target fingerprint data and simulate a fingerprint image via the three-dimensional surface, to perform fingerprint matching via the simulated fingerprint image.

[0063] In some possible implementations, with aid of built-in components (for example, memory 2000, processor 1000, and the like), the terminal described in the embodiments of the present disclosure can achieve implementations descried in the embodiments of the fingerprint identification method, and can also achieve implementations descried in the embodiments of the terminal. Specific implementation can be referred to the above-mentioned embodiments, and will not be repeated here.

[0064] The embodiments of the present disclosure also provide a computer storage medium. The computer storage medium may store a program(s), and the program is configured to execute some or all of the steps of any fingerprint identification method in the method embodiment when invoked.

[0065] It will be understood by those of ordinary skill in the art that, implementation of all or part of the processes in the method of the embodiments described above can be accomplished by a computer program to instruct the associated hardware; the computer program can be stored in a computer-readable storage medium. The storage medium can be a flash disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, an optical disk, or the like.

[0066] The foregoing disclosed is merely exemplary embodiments and it is not intended to limit the scope of the present disclosure; equivalents changes made on the basis of the claims of the present disclosure shall fall into the scope of the present disclosure.


Claims

1. A fingerprint identification method, comprising:

acquiring (S101) source fingerprint data for fingerprint identification and extracting, from the source fingerprint data, fingerprint data to be processed, wherein the fingerprint data to be processed has a fingerprint data value in a preset threshold range;

performing (S102) a feature amplifying process on the fingerprint data to be processed and repairing (S102) fingerprint data obtained through the amplifying process to obtain target fingerprint data;

generating (S103) fingerprint simulation data according to the target fingerprint data and matching the fingerprint simulation data with pre-stored fingerprint verification data; and

determining (SI04) that the source fingerprint data is identified successfully, when the fingerprint simulation data matches the pre-stored fingerprint verification data successfully,

wherein acquiring (S101) the source fingerprint data for the fingerprint identification comprises:

obtaining a plurality of first capacitance values of a plurality of first capacitors and a plurality of second capacitance values of a plurality of second capacitors, when detecting that a finger is pressing a surface of a fingerprint module, wherein the first capacitance values correspond to the fingerprint ridge points and the second capacitance values correspond to the fingerprint valley points of the finger; and

setting the plurality of first capacitance values and the plurality of second capacitance values as the source fingerprint data for forming a simulated fingerprint,

wherein the fingerprint data to be processed is a subset of the plurality of first capacitance values and a subset of the plurality of second capacitance values that lie within the preset threshold range, and

characterized in that

performing (S102) the feature amplifying process on the fingerprint data to be processed comprises:

acquiring a median of the subset of first capacitance values and the subset of second capacitance values and setting the median as an amplification reference value;

subtracting the amplification reference value from the fingerprint data to be processed to obtain fingerprint data to be amplified; and

multiplying the fingerprint data to be amplified by a designated coefficient and then adding the amplification reference value, to obtain amplified fingerprint data.


 
2. The method of claim 1, wherein repairing (S102) the fingerprint data obtained through the amplifying process comprises:

for each fingerprint pattern in a designated area of the fingerprint data after the amplifying process, obtaining the difference between a capacitance value corresponding to a fingerprint ridge point and a capacitance value corresponding to a fingerprint valley point adjacent to the fingerprint ridge point; and

replacing the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley point adjacent to the fingerprint ridge point with a median of capacitance values corresponding to pixels in the designated area, when the difference between the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley point adjacent to the fingerprint ridge point is greater than a difference threshold.


 
3. A terminal, comprising:

an extracting unit (10), configured to acquire source fingerprint data for fingerprint identification and extract, from the source fingerprint data, fingerprint data to be processed, whose fingerprint data value is in a preset threshold range;

a processing unit (20), configured to perform a feature amplifying process on the fingerprint data to be processed extracted by the extracting unit and repair fingerprint data obtained through the amplifying process to obtain target fingerprint data;

a matching unit (30), configured to generate fingerprint simulation data according to the target fingerprint data obtained by the processing unit and match the fingerprint simulation data with pre-stored fingerprint verification data; and

a determining unit (40), configured to determine that the source fingerprint data is identified successfully, when the fingerprint simulation data matches the pre-stored fingerprint verification data successfully,

wherein the extracting unit (10) is further configured to:

obtain a plurality of first capacitance values of a plurality of first capacitors and a plurality of second capacitance values of a plurality of second capacitors, when detecting that a finger is pressing a surface of a fingerprint module, wherein the first capacitance values correspond to the fingerprint ridge points and the second capacitance values correspond to the fingerprint valley points of the finger; and

set the plurality of first capacitance values and the plurality of second capacitance values as the source fingerprint data for forming a simulated fingerprint,

wherein the fingerprint data to be processed is a subset of the plurality of first capacitance values and a subset of the plurality of second capacitance values that lie within the preset threshold range, and

characterized in that the processing unit (20) is further configured to:

acquire a median of the subset of first capacitance values and the subset of second capacitance values and set the median as an amplification reference value;

subtract the amplification reference value from the fingerprint data to be processed to obtain fingerprint data to be amplified; and

multiply the fingerprint data to be amplified by a designated coefficient and then add the amplification reference value, to obtain amplified fingerprint data.


 
4. The terminal of claim 3, wherein the processing unit (20) is further configured to:

obtain the difference between a capacitance value corresponding to a fingerprint ridge point and a capacitance value corresponding to a fingerprint valley point adjacent to the fingerprint ridge point, for each fingerprint pattern in a designated area of the fingerprint data after the amplifying process; and

substitute the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley point adjacent to the fingerprint ridge point with a median of capacitance values corresponding to pixels in the designated area, when the difference between the capacitance value corresponding to the fingerprint ridge point and the capacitance value corresponding to the fingerprint valley point adjacent to the fingerprint ridge point is greater than a difference threshold.


 
5. A computer-readable storage medium storing instructions which, when executed by a computer, cause the computer to perform a method according to claim 1 or 2.
 


Ansprüche

1. Fingerabdruck-Identifikationsverfahren, das Folgendes umfasst:

Erfassen (S101) von Fingerabdruck-Quelldaten zur Fingerabdruck-Identifikation und Extrahieren von zu verarbeitenden Fingerabdruckdaten aus den Fingerabdruck-Quelldaten, wobei die zu verarbeitenden Fingerabdruckdaten einen Fingerabdruckdatenwert in einem vorbestimmten Schwellenbereich aufweisen;

Durchführen (S102) eines Merkmalverstärkungsprozesses auf den zu verarbeitenden Fingerabdruckdaten und Reparieren (S102) von durch den Verstärkungsprozess erhaltenen Fingerabdruckdaten, um Fingerabdruck-Zieldaten zu erhalten;

Erstellen (S103) von Fingerabdruck-Simulationsdaten gemäß den Fingerabdruck-Zieldaten und Abgleichen der Fingerabdruck-Simulationsdaten mit vorgespeicherten Fingerabdruck-Verifikationsdaten; und

Bestimmen (S104), dass die Fingerabdruck-Quelldaten erfolgreich identifiziert wurden, wenn die Fingerabdruck-Simulationsdaten erfolgreich mit den vorgespeicherten Fingerabdruck-Verifikationsdaten abgeglichen wurden,

wobei das Erfassen (S101) der Fingerabdruckdaten für die Fingerabdruck-Identifikation Folgendes umfasst:
Erhalten einer Vielzahl von ersten Kapazitätswerten von einer Vielzahl von ersten Kondensatoren und einer Vielzahl von zweiten Kapazitätswerten von einer Vielzahl von zweiten Kondensatoren, wenn detektiert wird, dass ein Finger auf eine Oberfläche eines Fingerabdruckmoduls drückt, wobei die ersten Kapazitätswerte den Fingerabdruck-Erhebungspunkten entsprechen und die zweiten Kapazitätswerte den Fingerabdruck-Talpunkten des Fingers entsprechen;

Einstellen der Vielzahl von ersten Kapazitätswerten und der Vielzahl von zweiten Kapazitätswerten als Fingerabdruck-Quelldaten zum Bilden eines simulierten Fingerabdrucks,

wobei die zu verarbeitenden Fingerabdruckdaten eine Teilmenge der Vielzahl von ersten Kapazitätswerten und eine Teilmenge der Vielzahl von zweiten Kapazitätswerten sind, die innerhalb des voreingestellten Schwellenbereichs liegen, und

dadurch gekennzeichnet, dass:
das Durchführen (S102) des Merkmalverstärkungsprozesses auf den zu verarbeitenden Fingerabdruckdaten Folgendes umfasst:

Erfassen eines Medians der Teilmenge der ersten Kapazitätswerte und der Teilmenge der zweiten Kapazitätswerte und Einstellen des Medians als Verstärkungsreferenzwert;

Subtrahieren des Verstärkungsreferenzwerts von den zu verarbeitenden Fingerabdruckdaten, um zu verstärkende Fingerabdruckdaten zu erhalten; und

Multiplizieren der zu verstärkenden Fingerabdruckdaten mit einem festgelegten Koeffizienten und dann Addieren des Verstärkungsreferenzwerts, um verstärkte Fingerabdruckdaten zu erhalten.


 
2. Verfahren nach Anspruch 1, wobei das Reparieren (S102) der durch den Verstärkungsprozess erhaltenen Fingerabdruckdaten Folgendes umfasst:

Erhalten der Differenz zwischen einem Kapazitätswert, der einem Fingerabdruck-Erhebungspunkt entspricht, und dem Kapazitätswert, der dem Fingerabdruck-Talpunkt benachbart zu dem Fingerabdruck-Erhebungspunkt entspricht, für jedes Fingerabdruckmuster in einem festgelegten Bereich der Fingerabdruckdaten nach dem Verstärkungsprozess; und

Ersetzen des Kapazitätswerts, der dem Fingerabdruck-Erhebungspunkt entspricht, und des Kapazitätswerts, der dem Fingerabdruck-Talpunkt benachbart zu dem Fingerabdruck-Erhebungspunkt entspricht, durch einen Median von Kapazitätswerten, der Pixeln in dem festgelegten Bereich entspricht, wenn die Differenz zwischen dem Kapazitätswert, der dem Fingerabdruck-Erhebungspunkt entspricht, und dem Kapazitätswert, der dem Fingerabdruck-Talpunkt benachbart zu dem Fingerabdruck-Erhebungspunkt entspricht, größer ist als eine Differenzschwelle.


 
3. Endgerät, das Folgendes umfasst:

eine Extraktionseinheit (10), die konfiguriert ist, Fingerabdruck-Quelldaten zur Fingerabdruck-Identifikation zu erfassen und aus den Fingerabdruck-Quelldaten zu verarbeitende Fingerabdruckdaten zu extrahieren, deren Fingerabdruckdatenwert sich in einem voreingestellten Schwellenbereich befindet;

eine Verarbeitungseinheit (20), die konfiguriert ist, einen Merkmalverstärkungsprozess auf den zu verarbeitenden Fingerabdruckdaten, die von der Extraktionseinheit extrahiert wurden, durchzuführen und durch den Verstärkungsprozess erhaltene Fingerabdruckdaten zu reparieren, um Fingerabdruck-Zieldaten zu erhalten;

eine Abgleichungseinheit (30), die konfiguriert ist, Fingerabdruck-Simulationsdaten gemäß den von der Verarbeitungseinheit erhaltenen Fingerabdruck-Zieldaten zu erzeugen und die Fingerabdruck-Simulationsdaten mit vorgespeicherten Fingerabdruck-Verifikationsdaten abzugleichen; und

eine Bestimmungseinheit (40), die konfiguriert ist, zu bestimmen, dass die Fingerabdruck-Quelldaten erfolgreich identifiziert wurden, wenn die Fingerabdruck-Simulationsdaten erfolgreich mit den vorgespeicherten Fingerabdruck-Verifikationsdaten abgeglichen wurden,

wobei die Extraktionseinheit (10) ferner konfiguriert ist:
eine Vielzahl von ersten Kapazitätswerten von einer Vielzahl von ersten Kondensatoren und eine Vielzahl von zweiten Kapazitätswerten von einer Vielzahl von zweiten Kondensatoren zu erhalten, wenn detektiert wird, dass ein Finger auf eine Oberfläche eines Fingerabdruckmoduls drückt, wobei die ersten Kapazitätswerte den Fingerabdruck-Erhebungspunkten entsprechen und die zweiten Kapazitätswerte den Fingerabdruck-Talpunkten des Fingers entsprechen; und

Einstellen der Vielzahl von ersten Kapazitätswerten und der Vielzahl von zweiten Kapazitätswerten als Fingerabdruck-Quelldaten zum Bilden eines simulierten Fingerabdrucks,

wobei die zu verarbeitenden Fingerabdruckdaten eine Teilmenge der Vielzahl von ersten Kapazitätswerten und eine Teilmenge der Vielzahl von zweiten Kapazitätswerten sind, die innerhalb des voreingestellten Schwellenbereichs liegen, und

dadurch gekennzeichnet, dass:
die Verarbeitungseinheit (20) ferner konfiguriert ist:

einen Median der Teilmenge von ersten Kapazitätswerten und der Teilmenge von zweiten Kapazitätswerten zu erfassen und den Median als einen Verstärkungsreferenzwert einzustellen;

den Verstärkungsreferenzwert von den zu verarbeitenden Fingerabdruckdaten zu subtrahieren, um zu verstärkende Fingerabdruckdaten zu erhalten; und

die zu verstärkenden Fingerabdruckdaten mit einem festgelegten Koeffizienten zu multiplizieren, dann den Verstärkungsreferenzwert zu addieren, um verstärkte Fingerabdruckdaten zu erhalten.


 
4. Endgerät nach Anspruch 3, wobei die Verarbeitungseinheit (20) ferner konfiguriert ist:

die Differenz zwischen einem Kapazitätswert, der einem Fingerabdruck-Erhebungspunkt entspricht, und einem Kapazitätswert, der einem Fingerabdruck-Talpunkt benachbart zu dem Fingerabdruck-Erhebungspunkt entspricht, für jedes Fingerabdruckmuster in einem festgelegten Bereich der Fingerabdruckdaten nach dem Verstärkungsprozess zu erhalten; und

den Kapazitätswert, der dem Fingerabdruck-Erhebungspunkt entspricht, und den Kapazitätswert, der dem Fingerabdruck-Talpunkt benachbart zu dem Fingerabdruck-Erhebungspunkt entspricht, durch einen Median von Kapazitätswerten, der Pixeln in dem festgelegten Bereich entspricht, zu ersetzen, wenn die Differenz zwischen dem Kapazitätswert, der dem Fingerabdruck-Erhebungspunkt entspricht, und dem Kapazitätswert, der dem Fingerabdruck-Talpunkt benachbart zu dem Fingerabdruck-Erhebungspunkt entspricht, größer als eine Differenzschwelle ist.


 
5. Computerlesbares Speichermedium, das Befehle speichert, die, wenn sie von einem Computer ausgeführt werden, bewirken, dass der Computer ein Verfahren gemäß Anspruch 1 oder 2 durchführt.
 


Revendications

1. Procédé d'identification d'empreinte digitale, comprenant :

l'acquisition (S101) de données d'empreinte digitale sources pour l'identification d'empreinte digitale et l'extraction, à partir des données d'empreinte digitale sources, de données d'empreinte digitale à traiter, dans lequel les données d'empreinte digitale à traiter ont une valeur de données d'empreinte digitale dans une plage seuil prédéfinie ;

la conduite (S102) d'un processus d'amplification de caractéristique sur les données d'empreinte digitale à traiter et la réparation (S102) des données d'empreinte digitale obtenues par le processus d'amplification pour obtenir des données d'empreinte digitale cibles ;

la génération (S103) de données de simulation d'empreinte digitale en fonction des données d'empreinte digitale cibles et la mise en correspondance des données de simulation d'empreinte digitale avec des données de vérification d'empreinte digitale préstockées ; et

la détermination (S104) que les données d'empreinte digitale sources sont identifiées avec succès, lorsque les données de simulation d'empreinte digitale correspondent aux données de vérification d'empreinte digitale préstockées avec succès,

dans lequel l'acquisition (S101) des données d'empreinte digitale sources pour l'identification d'empreinte digitale comprend :

l'obtention d'une pluralité de premières valeurs de capacité d'une pluralité de premiers condensateurs et d'une pluralité de deuxièmes valeurs de capacité d'une pluralité de deuxième condensateurs, lors de la détection qu'un doigt appuie sur une surface d'un module d'empreinte digitale, dans lequel les premières valeurs de capacité correspondent aux points de crête papillaire et les deuxièmes valeurs de capacité correspondent aux points de vallée papillaire du doigt ; et

la définition de la pluralité de premières valeurs de capacité et la pluralité de deuxièmes valeurs de capacité en tant que données d'empreinte digitale sources pour former une empreinte digitale simulée,

dans lequel les données d'empreinte digitale à traiter constituent un sous-ensemble de la pluralité de premières valeurs de capacité et un sous-ensemble de la pluralité de deuxièmes valeurs de capacité qui est situé dans la plage seuil prédéfinie, et

caractérisé en ce que
la conduite (S102) du processus d'amplification de caractéristique sur les données d'empreinte digitale à traiter comprend :

l'acquisition d'une médiane du sous-ensemble de premières valeurs de capacité et du sous-ensemble de deuxièmes valeurs de capacité et la définition de la médiane en tant que valeur de référence d'amplification ;

la soustraction de la valeur de référence d'amplification des données d'empreinte digitale à traiter pour obtenir des données d'empreinte digitale à amplifier ; et

la multiplication des données d'empreinte digitale à amplifier par un coefficient désigné, puis l'ajout de la valeur de référence d'amplification, pour obtenir des données d'empreinte digitale amplifiées.


 
2. Procédé selon la revendication 1, dans lequel la réparation (S102) des données d'empreinte digitale obtenues par le processus d'amplification comprend :

pour chaque motif d'empreinte digitale dans une zone désignée des données d'empreinte digitale après le processus d'amplification, l'obtention de la différence entre une valeur de capacité correspondant à un point de crête papillaire et une valeur de capacité correspondant à un point de vallée papillaire adjacent au point de crête papillaire ; et

le remplacement de la valeur de capacité correspondant au point de crête papillaire et la valeur de capacité correspondant au point de vallée papillaire adjacent au point de crête papillaire par une médiane de valeurs de capacité correspondant à des pixels dans la zone désignée, lorsque la différence entre la valeur de capacité correspondant au point de crête papillaire et la valeur de capacité correspondant au point de vallée papillaire adjacent au point de crête papillaire est supérieure à un seuil de différence.


 
3. Terminal, comprenant :

une unité d'extraction (10), configurée pour acquérir des données d'empreinte digitale sources pour l'identification d'empreinte digitale et extraire, à partir des données d'empreinte digitale sources, des données d'empreinte digitale à traiter, dont la valeur de données d'empreinte digitale est dans une plage seuil prédéfinie ;

une unité de traitement (20), configurée pour effectuer un processus d'amplification de caractéristique sur les données d'empreinte digitale à traiter extraites par l'unité d'extraction et réparer les données d'empreinte digitale obtenues par le processus d'amplification pour obtenir des données d'empreinte digitale cibles ;

une unité de mise en correspondance (30), configurée pour générer des données de simulation d'empreinte digitale en fonction des données d'empreinte digitale cibles obtenues par l'unité de traitement et mettre en correspondance les données de simulation d'empreinte digitale avec les données de vérification d'empreinte digitale préstockées ; et

une unité de détermination (40), configurée pour déterminer que les données d'empreinte digitale sources sont identifiées avec succès, lorsque les données de simulation d'empreinte digitale correspondent aux données de vérification d'empreinte digitale préstockées avec succès,

dans lequel l'unité d'extraction (10) est en outre configurée pour :

obtenir une pluralité de premières valeurs de capacité d'une pluralité de premiers condensateurs et une pluralité de deuxièmes valeurs de capacité d'une pluralité de deuxième condensateurs, lors de la détection qu'un doigt appuie sur une surface d'un module d'empreinte digitale,
dans lequel
les premières valeurs de capacité correspondent aux points de crête papillaire et les deuxièmes valeurs de capacité correspondent aux points de vallée papillaire du doigt ;
et

définir la pluralité de premières valeurs de capacité et la pluralité de deuxièmes valeurs de capacité comme étant les données d'empreinte digitale sources pour former une empreinte digitale simulée, dans lequel les données d'empreinte digitale à traiter sont un sous-ensemble de la pluralité de premières valeurs de capacité et un sous-ensemble de la pluralité de deuxièmes valeurs de capacité qui sont situées dans la plage seuil prédéfinie, et

caractérisé en ce que
l'unité de traitement (20) est en outre configurée pour :

acquérir une médiane du sous-ensemble de premières valeurs de capacité et du sous-ensemble de deuxièmes valeurs de capacité et définir la médiane en tant que valeur de référence d'amplification ;

soustraire la valeur de référence d'amplification des données d'empreinte digitale à traiter pour obtenir des données d'empreinte digitale à amplifier ; et

multiplier les données d'empreinte digitale à amplifier par un coefficient désigné, puis ajouter la valeur de référence d'amplification, pour obtenir des données d'empreinte digitale amplifiées.


 
4. Terminal selon la revendication 3, dans lequel l'unité de traitement (20) est en outre configurée pour :

obtenir la différence entre une valeur de capacité correspondant à un point de crête papillaire et une valeur de capacité correspondant à un point de vallée papillaire adjacent au point de crête papillaire, pour chaque motif d'empreinte digitale dans une zone désignée des données d'empreinte digitale après le processus d'amplification ; et

substituer la valeur de capacité correspondant au point de crête papillaire et la valeur de capacité correspondant au point de vallée papillaire adjacent au point de crête papillaire par une médiane de valeurs de capacité correspondant aux pixels dans la zone désignée, lorsque la différence entre la valeur de capacité correspondant au point de crête papillaire et la valeur de capacité correspondant au point de vallée papillaire adjacent au point de crête papillaire est supérieure à un seuil de différence.


 
5. Support de stockage lisible par ordinateur stockant des instructions qui, lorsqu'elles sont exécutées par un ordinateur, amènent l'ordinateur à conduire un procédé selon la revendication 1 ou 2.
 




Drawing











Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description