(19)
(11)EP 3 297 396 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 16888971.5

(22)Date of filing:  31.05.2016
(51)Int. Cl.: 
H05B 6/06  (2006.01)
H03K 5/1536  (2006.01)
(86)International application number:
PCT/CN2016/084172
(87)International publication number:
WO 2017/133150 (10.08.2017 Gazette  2017/32)

(54)

ELECTROMAGNETIC HEATING DEVICE AND HEATING CONTROL CIRCUIT THEREOF, AND LOW POWER HEATING CONTROL METHOD

VORRICHTUNG ZUM ELEKTROMAGNETISCHEN HEIZEN UND HEIZUNGSSTEUERUNGSSCHALTUNG DAFÜR SOWIE NIEDRIGLEISTUNGSHEIZSTEUERUNGSVERFAHREN

DISPOSITIF DE CHAUFFAGE ÉLECTROMAGNÉTIQUE ET SON CIRCUIT DE COMMANDE DE CHAUFFAGE, ET PROCÉDÉ DE COMMANDE DE CHAUFFAGE BASSE PUISSANCE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.02.2016 CN 201610074432
02.02.2016 CN 201620106928 U

(43)Date of publication of application:
21.03.2018 Bulletin 2018/12

(73)Proprietor: Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co., Limited
Beijiao, Shunde Foshan Guangdong 528311 (CN)

(72)Inventors:
  • JIANG, Deyong
    Foshan Guangdong 528311 (CN)
  • WANG, Yunfeng
    Foshan Guangdong 528311 (CN)
  • ZENG, Lutian
    Foshan Guangdong 528311 (CN)

(74)Representative: Lam, Alvin et al
Maucher Jenkins 26 Caxton Street
London SW1H 0RJ
London SW1H 0RJ (GB)


(56)References cited: : 
CN-A- 101 048 019
CN-U- 202 425 086
CN-Y- 201 323 669
US-A- 4 467 165
CN-U- 201 550 029
CN-Y- 201 001 206
CN-Y- 201 323 669
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The present disclosure relates to an electromagnetic heating technology field, and more particularly to a heating control circuit of an electromagnetic heating apparatus, a low power heating control method of an electromagnetic heating apparatus and an electromagnetic heating apparatus.

    BACKGROUND



    [0002] At present, an electromagnetic resonance circuit with a single insulated gate bipolar transistor (IGBT for short) generally adopts a parallel resonance mode, and when resonance parameters for realizing a high power operation of an electromagnetic oven are used, there may be following problems if the electromagnetic oven continuously operates at a range of low power.
    1. (1) The IGBT is turned on with a leading voltage, and a high instant current peak value may be caused at the moment of the IGBT is turned on, which is likely to exceed a specification limit of the current peak value of the IGBT, thus damaging the IGBT.
    2. (2) The IGBT may emit heat greatly, and it is required to strengthen heat dissipation (such as to enlarge cooling fins, to improve the rotate speed of the fan) of the IGBT, so as to satisfy a temperature rise demand of the IGBT.
    3. (3) If the low power is realized under a duty ratio heating mode, i.e. if a discontinuous heating mode is used, there is a hard turn-on phenomenon when the IGBT turns on in a next period because of the existence of a filter capacitor, which is likely to damage the IGBT. CN201001206Y describes an electromagnetic heating circuit for providing stable, low-power heating. US4467165A describes a transistor switched high-frequency induction heating apparatus. CN201323669Y describes a control means for low-power, continuous electromagnetic heating. CN201550029U describes an SoC based digital control power convertor for high frequency heating apparatus.

    SUMMARY



    [0003] Embodiments of the present disclosure seek to solve at least one of the problems existing in the related art to at least some extent. Accordingly, a first objective of the present disclosure is to provide a heating control circuit of an electromagnetic heating apparatus, by adding a driving and transforming unit to control a power switch transistor to perform voltage-changing turn-on when the electromagnetic heating apparatus is working, thus reducing a risk of damaging the power switch transistor, reducing noise when turning on the power switch transistor.

    [0004] A second objective of the present disclosure is to provide a low power heating control method of an electromagnetic heating apparatus. A third objective of the present disclosure is to provide an electromagnetic heating apparatus.

    [0005] To achieve above objectives, a first aspect of embodiments of the present disclosure provides a heating control circuit of an electromagnetic heating apparatus, including: a voltage zero-crossing detecting unit, in which the voltage zero-crossing detecting unit is configured to detect a voltage zero-crossing signal of an alternating current power source input to the electromagnetic heating apparatus; a resonance heating unit; a rectifier and filter unit, in which the rectifier and filter unit is configured to perform rectifying and filtering processing on the alternating current power source which is provided to the resonance heating unit; a power switch transistor configured to control the resonance heating unit to perform resonance work; a driving unit, in which the driving unit is coupled to a driving end of the power switch transistor so as to drive the power switch transistor to turn on or to turn off; a driving and transforming unit, in which the driving and transforming unit is coupled to the driving end of the power switch transistor so as to change a driving voltage of the power switch transistor; and a main control unit, in which the main control unit is coupled to the voltage zero-crossing detection unit, the driving unit, and the driving and transforming unit respectively, and the main control unit is configured to control the driving unit and the driving and transforming unit to make the power switch transistor work under a driving of a first driving voltage before a zero-crossing point of the alternating current power source judged according to the voltage zero-crossing signal, to control the driving and transforming unit to stop working when a voltage of a collector of the power switch transistor oscillates to a minimum, and to control the driving unit to make the power switch transistor work under a driving of a second driving voltage, in which the second driving voltage is larger than the first driving voltage.

    [0006] With the heating control circuit of an electromagnetic heating apparatus according to the embodiments of the present disclosure, the driving and transforming unit is added to change the driving voltage of the power switch transistor, such that the main control unit controls the driving unit and the driving and transforming unit to make the power switch transistor work under the driving of the first driving voltage before the zero-crossing point of the alternating current power source judged according to the voltage zero-crossing signal, and controls the driving and transforming unit to stop working when the voltage of the collector of the power switch transistor oscillates to the minimum, and controls the driving unit to make the power switch transistor work under the driving of the second driving voltage, thus realizing starting and turn-on of the power switch transistor via a voltage-changing driving manner when the electromagnetic heating apparatus is working, reducing an open current of the power switch transistor, and reducing the damage caused by hard turn-on of the power switch transistor, meanwhile, reducing noise of turn-on, avoiding a large heating emitted from the power switch transistor, improving operation reliability of the electromagnetic heating apparatus, and broadening a range of heating power of the electromagnetic heating apparatus.

    [0007] According to an embodiment of the present disclosure, a working process of the power switch transistor includes a first period and a second period, in which, in the first period, an amplitude value of the first driving voltage remains constant or increases linearly, a pulse width of the first driving voltage increases progressively or is a constant width; in the second period, an amplitude value of the second driving voltage remains constant, a pulse width of the second driving voltage increases progressively or is a constant width.

    [0008] In addition, in the first period, the power switch transistor works in an amplification state; in the second period, the power switch transistor works in a switch state.

    [0009] According to an embodiment of the present disclosure, the voltage of the collector of the power switch transistor oscillates to the minimum at the zero-crossing point of the alternating current power source.

    [0010] According to an embodiment of the present disclosure, in the first period, the main control unit is configured to output a first control signal to the driving unit and to output a second control signal to the driving and transforming unit, such that the power switch transistor works under a driving of the first driving voltage with a constant amplitude value, and the voltage of the collector of the power switch transistor oscillates and decreases; in the second period, the main control unit is configured to output a first control signal to the driving unit, such that the power switch transistor works under the driving of the second driving voltage, and configured to output a third control signal to the driving and transforming unit, such that the driving and transforming unit stops working.

    [0011] In detail, the power switch transistor is an IGBT, the first control signal is a PPG pulse, the second control signal is a high level signal, and the third control signal is a low level signal.

    [0012] According to an embodiment of the present disclosure, the driving and transforming unit includes: a first resistor, in which a first end of the first resistor is coupled to the main control unit; a first transistor, in which a base of the first transistor is coupled to a second end of the first resistor, and an emitter of the first transistor is grounded; a second resistor, in which the second resistor is coupled between the base and the emitter of the first transistor; and a third resistor, in which a first end of the third resistor is coupled to a collector of the first transistor, and a second end of the third resistor is coupled to the driving end of the power switch transistor.

    [0013] In addition, the driving unit includes: a fourth resistor, in which a first end of the fourth resistor is coupled to the main control unit; a fifth resistor, in which a first end of the fifth resistor is coupled to the first end of the fourth resistor and the main control unit respectively, and a second end of the fifth resistor is grounded; a second transistor, in which a base of the second transistor is coupled to a second end of the fourth resistor, an emitter of the second transistor is grounded, and a collector of the second transistor is coupled to a power source of a preset voltage via a sixth resistor; a third transistor, in which a base of the third transistor is coupled to the collector of the second transistor, an emitter of the third transistor is grounded, and a collector of the third transistor is coupled to the power source of the preset voltage via a seventh resistor; a fourth transistor, in which a base of the fourth transistor is coupled to the collector of the third transistor, and a collector of the fourth transistor is coupled to the power source of the preset voltage via an eighth resistor; a fifth transistor, in which a base of the fifth transistor is coupled to the base of the fourth transistor, and a collector of the fifth transistor is grounded; a ninth resistor, in which a first end of the ninth resistor is coupled to an emitter of the fifth transistor, and a second end of the ninth resistor is coupled to an emitter of the fourth transistor; and a tenth resistor, in which a first end of the tenth resistor is coupled to the emitter of the fourth transistor and the second end of the ninth resistor respectively, and a second end of the tenth resistor is coupled to the driving end of the power switch transistor.

    [0014] According to an embodiment of the present disclosure, the heating control circuit of an electromagnetic heating apparatus further includes a first zener diode and an eleventh resistor, in which an anode of the first zener diode is coupled to an emitter of the IGBT and is grounded, a cathode of the first zener diode is coupled to a gate of the IGBT, and the eleventh resistor and the first zener diode are coupled in parallel.

    [0015] To achieve above objectives, a second aspect of embodiments of the present disclosure provides a low power heating control method of an electromagnetic heating apparatus. The electromagnetic heating apparatus includes a resonance heating unit, a power switch transistor configured to control the resonance heating unit to perform resonance work, a driving unit configured to drive the power switch transistor to turn on or to turn off, and a driving and transforming unit configured to change a driving voltage of the power switch transistor. The method includes following acts: when a low power heating instruction is received, controlling the power switch transistor in a wave-losing manner such that the electromagnetic heating apparatus performs discontinuous heating; detecting a voltage zero-crossing signal of an alternating current power source input to the electromagnetic heating apparatus; when controlling the electromagnetic heating apparatus to switch from an interval of stop heating to an interval of heating, controlling the driving unit and the driving and transforming unit to make the power switch transistor work under a driving of a first driving voltage before a zero-crossing point of the alternating current power source judged according to the voltage zero-crossing signal, controlling the driving and transforming unit to stop working when a voltage of a collector of the power switch transistor oscillates to a minimum, and controlling the driving unit to make the power switch transistor work under a driving of a second driving voltage, in which the second driving voltage is larger than the first driving voltage.

    [0016] With the low power heating control method of an electromagnetic heating apparatus according to the embodiments of the present disclosure, when the low power heating instruction is received, the power switch transistor is controlled in the wave-losing manner such that the electromagnetic heating apparatus performs discontinuous heating, when the electromagnetic heating apparatus is controlled to switch from the stop-heating interval to the heating interval, the driving unit and the driving and transforming unit are controlled to make the power switch transistor work under the driving of the first driving voltage before the zero-crossing point of the alternating current power source judged according to the voltage zero-crossing signal, the driving and transforming unit is controlled to stop working when the voltage of the collector of the power switch transistor oscillates to the minimum, and the driving unit is controlled to make the power switch transistor work under the driving of the second driving voltage, thus realizing starting and turn-on of the power switch transistor via a voltage-changing driving manner when the electromagnetic heating apparatus enters the heating interval, reducing an open current of the power switch transistor, and reducing the damage caused by hard turn-on of the power switch transistor, meanwhile, reducing noise of turn-on, avoiding a large heating emitted from the power switch transistor, improving operation reliability of the electromagnetic heating apparatus, and broadening a range of heating power of the electromagnetic heating apparatus.

    [0017] According to an embodiment of the present disclosure, a working process of the power switch transistor includes a first period and a second period, in which, in the first period, an amplitude value of the first driving voltage remains constant or increases linearly, a pulse width of the first driving voltage increases progressively or is a constant width; in the second period, an amplitude value of the second driving voltage remains constant, a pulse width of the second driving voltage increases progressively or is a constant width.

    [0018] In addition, in the first period, the power switch transistor works in an amplification state; in the second period, the power switch transistor works in a switch state.

    [0019] According to an embodiment of the present disclosure, the voltage of the collector of the power switch transistor oscillates to the minimum at the zero-crossing point of the alternating current power source.

    [0020] According to an embodiment of the present disclosure, in the first period, outputting a first control signal to the driving unit and outputting a second control signal to the driving and transforming unit, such that the power switch transistor works under a driving of the first driving voltage with a constant amplitude value, and the voltage of the collector of the power switch transistor oscillates and decreases; in the second period, outputting a first control signal to the driving unit, such that the power switch transistor works under the driving of the second driving voltage, and outputting a third control signal to the driving and transforming unit, such that the driving and transforming unit stops working.

    [0021] Specifically, the first control signal is a PPG pulse, the second control signal is a high level signal, and the third control signal is a low level signal.

    [0022] In addition, embodiments of the present disclosure further provide an electromagnetic heating apparatus, including the above-mentioned heating control circuit of an electromagnetic heating apparatus.

    [0023] With the electromagnetic heating apparatus, the driving and transforming unit is added in the heating control circuit to change the driving voltage of the power switch transistor, such that starting and turn-on of the power switch transistor may be realised via a voltage-changing driving manner when the electromagnetic heating apparatus enters the heating interval, thus reducing an open current of the power switch transistor, and reducing the damage caused by hard turn-on of the power switch transistor, meanwhile, reducing noise of turn-on, avoiding a large heating emitted from the power switch transistor, improving operation reliability, and broadening a range of heating power.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0024] 

    Fig. 1 is a schematic diagram illustrating a heating control circuit of an electromagnetic heating apparatus according to an embodiment of the present disclosure;

    Fig. 2 is a schematic diagram illustrating a waveform of an electromagnetic heating apparatus operating with low power heating according to an embodiment of the present disclosure;

    Fig. 3 is a schematic diagram illustrating a waveform of an electromagnetic heating apparatus operating with low power heating according to another embodiment of the present disclosure;

    Fig. 4A is a schematic diagram illustrating changes of a first driving voltage VI and a second driving voltage V2 according to an embodiment of the present disclosure;

    Fig. 4B is a schematic diagram illustrating changes of a first driving voltage VI and a second driving voltage V2 according to another embodiment of the present disclosure;

    Fig. 5 is a circuit schematic diagram illustrating a driving unit and a driving and transforming unit according to a particular embodiment of the present disclosure;

    Fig. 6 is a flow chart of a low power heating control method of an electromagnetic heating apparatus according to embodiments of the present disclosure.


    DETAILED DESCRIPTION



    [0025] Reference will be made in detail to embodiments of the present disclosure. The same or similar elements and the elements having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to drawings are explanatory, illustrative, and used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure.

    [0026] In the following, a heating control circuit of an electromagnetic heating apparatus, a low power heating control method of an electromagnetic heating apparatus and an electromagnetic heating apparatus provided according to embodiments of the present disclosure are described with reference to drawings.

    [0027] Fig. 1 is a schematic diagram illustrating a heating control circuit of an electromagnetic heating apparatus according to an embodiment of the present disclosure. As illustrated in Fig. 1, the heating control circuit of an electromagnetic heating apparatus includes a voltage zero-crossing detecting unit 10, a resonance heating unit 20, a rectifier and filter unit 30, a power switch transistor 40, a driving unit 50, a driving and transforming unit 60, and a main control unit 70.

    [0028] The voltage zero-crossing detecting unit 10 is configured to detect a voltage zero-crossing signal of an alternating current power source (L, N) input to the electromagnetic heating apparatus. For example, as illustrated in Fig. 1, the voltage zero-crossing detecting unit 10 is coupled to the alternating current power source (L, N). The rectifier and filter unit 30 is configured to perform rectifying and filtering processing on the alternating current power source which is provided to the resonance heating unit 20. As illustrated in Fig. 1, the rectifier and filter unit 30 includes a rectifier bridge 301, a filter inductor L1 and a filter capacitor C1. The resonance heating unit 20 includes a resonance coil L2 and a resonance capacitor C2. The resonance coil L2 and the resonance capacitor C2 are coupled in parallel. The power switch transistor 40 is configured to control the resonance heating unit 20 to perform resonance work, in which the power switch transistor 40 may be an IGBT, and a collector of the IGBT is coupled to the resonance coil L2 and the resonance capacitor C2 coupled in parallel.

    [0029] As illustrated in Fig. 1, the driving unit 50 is coupled to a driving end of the power switch transistor 40 (such as a gate of the IGBT) so as to drive the power switch transistor 40 to turn on or to turn off. The driving and transforming unit 60 is coupled to the driving end of the power switch transistor 40 (such as the gate of the IGBT) so as to change a driving voltage of the power switch transistor 40. The main control unit 70, such as a main control chip, is coupled to the voltage zero-crossing detection unit 10, the driving unit 50, and the driving and transforming unit 60 respectively. The main control unit 70 controls the driving unit 50 and the driving and transforming unit 60 to make the power switch transistor 40 work under a driving of a first driving voltage VI before a zero-crossing point of the alternating current power source judged according to the voltage zero-crossing signal. The main control unit 70 controls the driving and transforming unit 60 to stop working when a voltage of a collector of the power switch transistor 40 oscillates to a minimum, and controls the driving unit 50 to make the power switch transistor 40 work under a driving of a second driving voltage V2. The second driving voltage V2 is larger than the first driving voltage V1.

    [0030] Further, according to an embodiment of the present disclosure, as illustrated in Fig. 2, which is a schematic diagram illustrating a waveform of an electromagnetic heating apparatus operating with low power heating, an alternating current mains waveform, a low power heating (for example, performing discontinuous heating in a wave-losing manner with a duty ratio of 1/2) waveform, a collector (C electrode) voltage waveform of the IGBT when the electromagnetic heating apparatus heating at a low power, a driving waveform of the IGBT are successively shown from top to bottom. The voltage waveforms of the C electrode of the IGBT corresponding to a stop-heating interval BC and a CD interval of heating stage refer to envelope waveforms formed by a peak voltage in an oscillating procedure of the voltage of the C electrode. It can be seen from Fig. 2, If the wave-losing manner, i.e., the discontinuous heating manner (for example, the duty ratio is 1/2) is used for the electromagnetic heating apparatus to perform the low power heating, when it is switched from the stop-heating interval to the heating interval, the main control unit 70 outputs a first control signal to the driving unit 50 and outputs a second control signal to the driving and transforming unit 60, so as to make the IGBT turn on or turn off under the driving of the first driving voltage, realizing oscillation of the voltage of the C electrode of the IGBT. When the voltage of the C electrode of the IGBT oscillates to the minimum, the main control unit 70 outputs a third control signal to the driving and transforming unit 60 at the same time when it outputs the first control signal to the driving unit 50, so as to make the IGBT turn on or turn off under the driving of the second driving voltage, thus realizing voltage-changing turn-on of the IGBT, that is, turning on the IGBT by changing the driving voltage of the IGBT.

    [0031] According to another embodiments of the present disclosure, as illustrated in Fig. 3, which is a schematic diagram illustrating a waveform of an electromagnetic heating apparatus operating with low power heating, an alternating current mains waveform, a low power heating (for example, performing discontinuous heating in a wave-losing manner with a duty ratio of 2/3) waveform, a voltage of the C electrode waveform of the IGBT when the electromagnetic heating apparatus heating at a low power, a driving waveform of the IGBT are successively shown from top to bottom. It can be seen from Fig. 3, If the wave-losing manner, i.e., the discontinuous heating manner (for example, the duty ratio is 2/3) is used for the electromagnetic heating apparatus to perform the low power heating, similarly, when it is switched from the stop-heating interval to the heating interval, the main control unit 70 outputs a first control signal to the driving unit 50 and outputs a second control signal to the driving and transforming unit 60, so as to make the IGBT turn on or turn off under the driving of the first driving voltage, realizing oscillation of the voltage of the C electrode of the IGBT. When the voltage of the C electrode of the IGBT oscillates to the minimum, the main control unit 70 outputs a third control signal to the driving and transforming unit 60 at the same time when it outputs the first control signal to the driving unit 50, so as to make the IGBT turn on or turn off under the driving of the second driving voltage, thus realizing the voltage-changing turn-on of the IGBT, that is, turning on the IGBT by changing the driving voltage of the IGBT.

    [0032] As illustrated in Fig. 2 or 3, a working process of the power switch transistor 40 (such as the IGBT) includes a first period T1 and a second period T2. In the first period T1, an amplitude value of the first driving voltage VI remains constant or increases linearly, and a pulse width of the first driving voltage VI increases progressively or is a constant width. In the second period T2, an amplitude value of the second driving voltage V2 remains constant, and a pulse width of the second driving voltage V2 increases progressively or is a constant width. In other words, according to an effect of the driving unit 50 and the driving and transforming unit 60, the driving voltage of the IGBT may be changed from VI with a constant amplitude value to V2 with a constant amplitude value, as illustrated in Fig. 4A, may also be changed linearly from VI to V2, as illustrated in Fig. 4B, or, the driving voltage of the IGBT may be a changed value of a plurality of points between VI and V2. In addition, by controlling the pulse widths of the first driving voltage and the second driving voltage to increase progressively or to be constant widths, current of the IGBT is gently controlled, thus reducing impulse current of the IGBT as much as possible, avoiding damage to the IGBT.

    [0033] In addition, when the driving voltage of the gate of the IGBT is V1, the IGBT works in an amplification state, that is, in the first period T1, the power switch transistor, such as the IGBT, works in the amplification state. When the driving voltage of the gate of the IGBT is V2, the IGBT works in a switch state, that is, in the second period T2, the power switch transistor, such as the IGBT, works in the switch state. When the driving voltage of the gate of the IGBT is V1, the IGBT works in an amplification state, at this time, a current passing through the IGBT is related to the size of the driving voltage V1.

    [0034] In embodiments of the present disclosure, as illustrated in Fig. 2 or 3, the voltage of the collector of the power switch transistor, such as the IGBT, oscillates to the minimum at the zero-crossing point of the alternating current power source.

    [0035] In detail, in the first period T1, the main control unit 70 outputs a first control signal to the driving unit 50 and to output a second control signal to the driving and transforming unit 60, such that the power switch transistor works under a driving of the first driving voltage VI with a constant amplitude value. The voltage of the collector of the power switch transistor oscillates and decreases. In the second period T2, the main control unit 70 outputs a first control signal to the driving unit 50, such that the power switch transistor works under the driving of the second driving voltage V2, at the same time, outputs a third control signal to the driving and transforming unit 60. A transistor in the driving and transforming unit 60 is turned off, such that the driving and transforming unit stops working.

    [0036] According to an embodiment of the present disclosure, the first control signal may be a PPG pulse, the second control signal may be a high level signal, and the third control signal may be a low level signal.

    [0037] In detail, as illustrated in Fig. 5, the driving and transforming unit 60 includes a first resistor R1, a first transistor Q1, a second resistor R2, and a third resistor R3. A first end of the first resistor R1 is coupled to the main control unit 70. A base of the first transistor Q1 is coupled to a second end of the first resistor R1, and an emitter of the first transistor Q1 is grounded. The second resistor R2 is coupled between the base and the emitter of the first transistor Q1. A first end of the third resistor R3 is coupled to a collector of the first transistor Q1, and a second end of the third resistor R3 is coupled to the driving end of the power switch transistor, such as the gate of the IGBT.

    [0038] In addition, as illustrated in Fig. 5, the driving unit 50 includes a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, an eighth resistor R8, a ninth resistor R9, a tenth resistor R10, a second transistor Q2, a third transistor Q3, a fourth transistor Q4, a fifth transistor Q5. A first end of the fourth resistor R4 is coupled to the main control unit 70. A first end of the fifth resistor R5 is coupled to the first end of the fourth resistor R4 and the main control unit 70 respectively, and a second end of the fifth resistor R5 is grounded. A base of the second transistor Q2 is coupled to a second end of the fourth resistor R4, an emitter of the second transistor Q2 is grounded, and a collector of the second transistor Q2 is coupled to a power source VDD of a preset voltage via the sixth resistor R6. A base of the third transistor Q3 is coupled to the collector of the second transistor Q2, an emitter of the third transistor Q3 is grounded, and a collector of the third transistor Q3 is coupled to the power source VDD of the preset voltage via the seventh resistor R7. A base of the fourth transistor Q4 is coupled to the collector of the third transistor Q3, and a collector of the fourth transistor Q4 is coupled to the power source VDD of the preset voltage via the eighth resistor R8. A base of the fifth transistor Q5 is coupled to the base of the fourth transistor Q4, and a collector of the fifth transistor Q5 is grounded. A first end of the ninth resistor R9 is coupled to an emitter of the fifth transistor Q5, and a second end of the ninth resistor R9 is coupled to an emitter of the fourth transistor Q4. A first end of the tenth resistor RIO is coupled to the emitter of the fourth transistor Q4 and the second end of the ninth resistor R9 respectively, and a second end of the tenth resistor RIO is coupled to the driving end of the power switch transistor 40, such as the gate of the IGBT.

    [0039] In detail, in embodiments of the present disclosure, by adding the driving and transforming unit 60, i.e., adding the resistors R1, R2, R3 and the third transistor Q3, when the IGBT is controlled to start and turn on such that the electromagnetic heating apparatus performs heating, the main control chip sends a PPG pulse to the driving unit 50 in the first period T1, and sends the high level signal to the first resistor R1 to turn on Q1, at this time, a driving voltage at point Ⓐ is V1, the IGBT turns on or off under the driving of VI because of voltage division of the resistor R3, such that the voltage of the C electrode of the IGBT oscillates. In the second period T2, the main control chip sends a PPG pulse to the driving unit 50, and sends the low level signal to the first resistor R1 to turn off Q1, the driving and transforming unit 60 stops impacting on the driving voltage of the IGBT, at this time, the driving voltage at point Ⓐ is V2, and the electromagnetic heating apparatus performs heating with the driving voltage of the IGBT remaining at a level of V2 in the second period.

    [0040] Therefore, with the heating control circuit of an electromagnetic heating apparatus according to embodiments of the present disclosure, by adding the driving and transforming unit 60, the IGBT is driven to work by the first driving voltage VI in the starting T1 period, and is driven to work by the second driving voltage V2 in the T2 period. When the IGBT is turned on, because of existence of the filter capacitor C1, the voltage of C electrode of the IGBT is a voltage value obtained by rectifying and filtering the alternating current power source rather than 0, which is about 1.4 times of the voltage of the alternating current power source. When the driving voltage of the IGBT is V1, the IGBT works in the amplification state, at this time, a value of a current passing through the IGBT is much less than a current value in the switch state of the IGBT driven under a voltage condition of V2, that is, an amplified current passing through the IGBT is much less than a switch current. Therefore, in the present disclosure, by using the voltage-changing turn-on of the IGBT, the turn-on current of the IGBT is reduced, reducing the damage caused by hard turn-on of the IGBT, and reducing turn-on noise of the IGBT at the same time.

    [0041] According to an embodiment of the present disclosure, as illustrated in Fig. 5, the above-mentioned heating control circuit of an electromagnetic heating apparatus further includes a first zener diode Z1 and an eleventh resistor R11. An anode of the first zener diode Z1 is coupled to an emitter of the IGBT and is grounded, a cathode of the first zener diode Z1 is coupled to a gate of the IGBT, and the eleventh resistor R11 and the first zener diode Z1 are coupled in parallel.

    [0042] In embodiments of the present disclosure, the electromagnetic heating apparatus may be electromagnetic products such as an electromagnetic oven, an electromagnetic pressure cooker, an electromagnetic rice cooker, or the like.

    [0043] With the heating control circuit of an electromagnetic heating apparatus according to the embodiments of the present disclosure, the driving and transforming unit is added to change the driving voltage of the power switch transistor, such that the main control unit controls the driving unit and the driving and transforming unit to make the power switch transistor work under the driving of the first driving voltage before the zero-crossing point of the alternating current power source judged according to the voltage zero-crossing signal, and controls the driving and transforming unit to stop working when the voltage of the collector of the power switch transistor oscillates to the minimum, and controls the driving unit to make the power switch transistor work under the driving of the second driving voltage, thus realizing starting and turn-on of the power switch transistor via a voltage-changing driving manner when the electromagnetic heating apparatus is working, reducing an open current of the power switch transistor, and reducing the damage caused by hard turn-on of the power switch transistor, meanwhile, reducing noise of turn-on, avoiding a large heating emitted from the power switch transistor, improving operation reliability of the electromagnetic heating apparatus, and broadening a range of heating power of the electromagnetic heating apparatus.

    [0044] Fig. 6 is a flow chart of a low power heating control method of an electromagnetic heating apparatus according to embodiments of the present disclosure. The electromagnetic heating apparatus includes a resonance heating unit, a power switch transistor configured to control the resonance heating unit to perform resonance work, a driving unit configured to drive the power switch transistor to turn on or to turn off, and a driving and transforming unit configured to change a driving voltage of the power switch transistor. As illustrated in Fig. 6, the low power heating control method of an electromagnetic heating apparatus includes following acts.

    [0045] At block S1, when a low power heating instruction is received, the power switch transistor is controlled in a wave-losing manner such that the electromagnetic heating apparatus performs discontinuous heating.

    [0046] According to an embodiment of the present disclosure, as illustrated in Fig. 2 or 3, the wave-losing manner may be used to control the electromagnetic heating apparatus to perform low power heating, with a duty ratio of 1/2 or 1/3. For example, when a heating power is lower than or equal to 1000W, the main control chip defaults to be in a low power state, otherwise to be in a high power state. When a user controls the electromagnetic heating apparatus to operate with a certain low power (for example 600W) heating, the main control chip uses the wave-losing manner for processing, abandoning 1/2 or 1/3 of waveform of an alternating current power source to realize the low power heating of the electromagnetic heating apparatus.

    [0047] At block S2, a voltage zero-crossing signal of an alternating current power source input to the electromagnetic heating apparatus is detected. For example, the voltage zero-crossing signal of the alternating current power source may be detected by a voltage zero-crossing detecting unit.

    [0048] At block S3, when the electromagnetic heating apparatus is controlled to switch from an interval of stop heating to an interval of heating, the driving unit and the driving and transforming unit are controlled to make the power switch transistor work under a driving of a first driving voltage before a zero-crossing point of the alternating current power source judged according to the voltage zero-crossing signal, the driving and transforming unit is controlled to stop working when a voltage of a collector of the power switch transistor oscillates to a minimum, and the driving unit is controlled to make the power switch transistor work under a driving of a second driving voltage, in which the second driving voltage is larger than the first driving voltage. That is, each time it switches from the stop-heating interval to the heating interval, a manner of changing the driving voltage of the power switch transistor, such as the IGBT, is used to turn on the IGBT to performing heating, which can reduce the impulse current of the IGBT, and reduce switch noise.

    [0049] According to an embodiment of the present disclosure, as illustrated in Fig. 2 or 3, a working process of the power switch transistor, such as the IGBT, includes a first period T1 and a second period T2. In the first period T1, an amplitude value of the first driving voltage VI remains constant or increases linearly, and a pulse width of the first driving voltage VI increases progressively or is a constant width. In the second period T2, an amplitude value of the second driving voltage V2 remains constant, and a pulse width of the second driving voltage V2 increases progressively or is a constant width. In other words, according to an effect of the driving unit 50 and the driving and transforming unit 60, the driving voltage of the IGBT may be changed from VI with a constant amplitude value to V2 with a constant amplitude value, as illustrated in Fig. 4A, may also be changed linearly from VI to V2, as illustrated in Fig. 4B, or the driving voltage of the IGBT may be a changed value of a plurality of points between VI and V2. In addition, by controlling the pulse widths of the first driving voltage and the second driving voltage to increase progressively or to be constant widths, current of the IGBT is gently controlled, thus reducing impulse current of the IGBT as much as possible, avoiding damage to the IGBT.

    [0050] In addition, when the driving voltage of the gate of the IGBT is V1, the IGBT works in an amplification state, that is, in the first period T1, the power switch transistor, such as the IGBT, works in the amplification state. When the driving voltage of the gate of the IGBT is V2, the IGBT works in a switch state, that is, in the second period T2, the power switch transistor, such as the IGBT, works in the switch state. When the driving voltage of the gate of the IGBT is V1, the IGBT works in an amplification state, at this time, a current passing through the IGBT is related to the size of the driving voltage V1.

    [0051] In embodiments of the present disclosure, as illustrated in Fig. 2 or 3, the voltage of the collector of the power switch transistor, such as the IGBT, oscillates to the minimum at the zero-crossing point of the alternating current power source.

    [0052] In detail, in the first period T1, a first control signal is outputted to the driving unit and a second control signal is outputted to the driving and transforming unit, such that the power switch transistor works under a driving of the first driving voltage VI with a constant amplitude value. The voltage of the collector of the power switch transistor oscillates and decreases. In the second period T2, a first control signal is outputted to the driving unit, such that the power switch transistor works under the driving of the second driving voltage V2, at the same time, a third control signal is outputted to the driving and transforming unit. A transistor in the driving and transforming unit is turned off, such that the driving and transforming unit stops working.

    [0053] According to an embodiment of the present disclosure, the first control signal may be a PPG pulse, the second control signal may be a high level signal, and the third control signal may be a low level signal.

    [0054] In other words, in embodiments of the present disclosure, when the electromagnetic heating apparatus is controlled to operate with a certain heating power, for example 600W, the discontinuous heating manner is used to realize the low power heating. In the stop-heating interval, because of existence of the filter capacitor C1, the voltage of C electrode of the IGBT remains at a voltage value obtained by rectifying and filtering the alternating current power source. When starting at point B before the voltage zero-crossing point of the alternating current power source, the driving voltage VI is used to turn on the IGBT, a plurality of PPG pulses makes an oscillating circuit generate oscillation, and the voltage of the C electrode of the IGBT oscillates and decreases. An amplitude value of a driving pulse of the IGBT is V1, and a pulse width of the driving pulse of the IGBT is a pulse width of the PPG. It can be set that width of the PPG is constant or increases regularly, after a plurality of oscillations, when the voltage zero-crossing point C is reached, i.e., when the voltage of the C electrode of the IGBT oscillates to the minimum, a voltage of the capacitor C1 is close to 0V, at this time, the starting stage T1 ends, and T2 stage begins, the driving voltage of the IGBT is changed to V2, the IGBT is in a normal switch state. Hereafter, the driving voltage of the IGBT remains V2, with a pulse width remaining constant or regularly increasing or decreasing. When a next zero-crossing point D is reached, driving of the IGBT is turned off.

    [0055] Therefore, when the wave-losing manner is used to control the electromagnetic heating apparatus to perform low power heating, a manner of changing starting voltage of the IGBT is used to start the IGBT for heating. In a stage (T1 stage) of starting the IGBT, the amplitude value of the driving voltage of the IGBT is constant or changeable, and the pulse width is constant or increases regularly. In the formal heating stage (T2 stage), the amplitude value of the driving voltage of the IGBT is always V2, and the pulse width is constant or regularly increases or decreases. Starting point of the IGBT is before the voltage zero-crossing point of the alternating current power source, such that it can ensure the voltage of the capacitor C1 may be reduced to the minimum, i.e., the voltage of the C electrode oscillates to close to 0V, when the voltage of the alternating current power source crosses zero. At the same time, the driving voltage of the IGBT is V2 after the voltage zero-crossing point of the alternating current power source, therefore, such that the open current of the IGBT may be reduced, the damage caused by hard turn-on of the IGBT may be reduced, and noise of turning on the IGBT may be reduced.

    [0056] With the low power heating control method of an electromagnetic heating apparatus according to the embodiments of the present disclosure, when the low power heating instruction is received, the power switch transistor is controlled in the wave-losing manner such that the electromagnetic heating apparatus performs discontinuous heating, when the electromagnetic heating apparatus is controlled to switch from the stop-heating interval to the heating interval, the driving unit and the driving and transforming unit are controlled to make the power switch transistor work under the driving of the first driving voltage before the zero-crossing point of the alternating current power source judged according to the voltage zero-crossing signal, the driving and transforming unit is controlled to stop working when the voltage of the collector of the power switch transistor oscillates to the minimum, and the driving unit is controlled to make the power switch transistor work under the driving of the second driving voltage, thus realizing starting and turn-on of the power switch transistor via a voltage-changing driving manner when the electromagnetic heating apparatus enters the heating interval, reducing an open current of the power switch transistor, reducing the damage caused by hard turn-on of the power switch transistor, meanwhile, meanwhile, reducing noise of turn-on, avoiding a large heating emitted from the power switch transistor, improving operation reliability of the electromagnetic heating apparatus, and broadening a range of heating power of the electromagnetic heating apparatus.

    [0057] In addition, embodiments of the present disclosure further provide an electromagnetic heating apparatus, including the above-mentioned heating control circuit of an electromagnetic heating apparatus.

    [0058] With the electromagnetic heating apparatus, the driving and transforming unit is added in the heating control circuit to change the driving voltage of the power switch transistor, such that starting and turn-on of the power switch transistor may be realised via a voltage-changing driving manner when the electromagnetic heating apparatus enters the heating interval, thus reducing an open current of the power switch transistor, and reducing the damage caused by hard turn-on of the power switch transistor, meanwhile, reducing noise of turn-on, avoiding a large heating emitted from the power switch transistor, improving operation reliability, and broadening a range of heating power.

    [0059] In the specification, it is to be understood that terms such as "central," "longitudinal," "lateral," "length," "width," "thickness," "upper," "lower," "front," "rear," "left," "right," "vertical," "horizontal," "top," "bottom," "inner," "outer," "clockwise," and "counterclockwise" should be construed to refer to the orientation as then described or as shown in the drawings under discussion. These relative terms are for convenience of description and do not require that the present invention be constructed or operated in a particular orientation.

    [0060] In addition, terms such as "first" and "second" are used herein for purposes of description and are not intended to indicate or imply relative importance or significance. Thus, the feature defined with "first" and "second" may comprise one or more this feature. In the description of the present disclosure, "a plurality of' means two or more than two, for example, two or three, unless specified otherwise.

    [0061] In the present invention, unless specified or limited otherwise, the terms "mounted", "connected", "coupled", "fixed" and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements, which can be understood by those skilled in the art according to specific situations.

    [0062] In the present invention, unless specified or limited otherwise, a structure in which a first feature is "on" or "below" a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are contacted via an additional feature formed therebetween. Furthermore, a first feature "on," "above," or "on top of' a second feature may include an embodiment in which the first feature is right or obliquely "on," "above," or "on top of' the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature "below," "under," or "on bottom of' a second feature may include an embodiment in which the first feature is right or obliquely "below," "under," or "on bottom of' the second feature, or just means that the first feature is at a height lower than that of the second feature.

    [0063] Reference throughout this specification to "an embodiment," "some embodiments," "an example," "a specific example," or "some examples," means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases such as "in some embodiments," "in one embodiment", "in an embodiment", "in another example," "in an example," "in a specific example," or "in some examples," in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples. In addition, in the absence of contradiction, those skilled in the art can combine the different embodiments or examples described in this specification, or combine the features of different embodiments or examples.


    Claims

    1. A heating control circuit of an electromagnetic heating apparatus, comprising:

    a voltage zero-crossing detecting unit (10) configured to detect a voltage zero-crossing signal of an alternating current power source input to the electromagnetic heating apparatus;

    a resonance heating unit (20);

    a rectifier and filter unit (30) configured to perform rectifying and filtering processing on the alternating current power source which is provided to the resonance heating unit (20);

    a power switch transistor (40) configured to control the resonance heating unit (20) to perform resonance work;

    a driving unit (50), wherein the driving unit (50) is coupled to a driving end of the power switch transistor (40) so as to drive the power switch transistor (40) to turn on or to turn off;

    characterized by

    a driving and transforming unit (60), wherein the driving and transforming unit (60) is coupled to the driving end of the power switch transistor (40) so as to change a driving voltage of the power switch transistor (40); and

    a main control unit (70), wherein the main control unit (70) is coupled to the voltage zero-crossing detection unit (10), the driving unit (50), and the driving and transforming unit (60) respectively, and the main control unit (70) is configured to control the driving unit (50) and the driving and transforming unit (60) to make the power switch transistor (40) work under a driving of a first driving voltage before a zero-crossing point of the alternating current power source judged according to the voltage zero-crossing signal, to control the driving and transforming unit (60) to stop working when a voltage of a collector of the power switch transistor (40) oscillates to a minimum, and to control the driving unit (50) to make the power switch transistor work (40) under a driving of a second driving voltage, wherein the second driving voltage is larger than the first driving voltage.


     
    2. The heating control circuit of the electromagnetic heating apparatus according to claim 1, wherein a working process of the power switch transistor (40) comprises a first period and a second period, wherein,
    in the first period, an amplitude value of the first driving voltage remains constant or increases linearly, a pulse width of the first driving voltage increases progressively or is a constant width;
    in the second period, an amplitude value of the second driving voltage remains constant, a pulse width of the second driving voltage increases progressively or is a constant width.
     
    3. The heating control circuit of the electromagnetic heating apparatus according to claim 2, wherein, in the first period, the power switch transistor (40) works in an amplification state; in the second period, the power switch transistor (40) works in a switch state.
     
    4. The heating control circuit of the electromagnetic heating apparatus according to claim 1, wherein the voltage of the collector of the power switch transistor (40) oscillates to the minimum at the zero-crossing point of the alternating current power source.
     
    5. The heating control circuit of the electromagnetic heating apparatus according to claim 2, wherein,
    in the first period, the main control unit (70) is configured to output a first control signal to the driving unit (50) and to output a second control signal to the driving and transforming unit (60), such that the power switch transistor (40) works under a driving of the first driving voltage with a constant amplitude value, and the voltage of the collector of the power switch transistor (40) oscillates and decreases;
    in the second period, the main control unit (70) is configured to output a first control signal to the driving unit (50), such that the power switch transistor (40) works under the driving of the second driving voltage, and configured to output a third control signal to the driving and transforming unit (60), such that the driving and transforming unit (60) stops working.
     
    6. The heating control circuit of the electromagnetic heating apparatus according to claim 5, wherein the power switch transistor (40) is an IGBT, the first control signal is a PPG pulse, the second control signal is a high level signal, and the third control signal is a low level signal.
     
    7. The heating control circuit of the electromagnetic heating apparatus according to any one of claims 1-6, wherein the driving and transforming unit (60) comprises:

    a first resistor, wherein a first end of the first resistor is coupled to the main control unit (70);

    a first transistor, wherein a base of the first transistor is coupled to a second end of the first resistor, and an emitter of the first transistor is grounded;

    a second resistor, wherein the second resistor is coupled between the base and the emitter of the first transistor; and

    a third resistor, wherein a first end of the third resistor is coupled to a collector of the first transistor, and a second end of the third resistor is coupled to the driving end of the power switch transistor (40).


     
    8. The heating control circuit of the electromagnetic heating apparatus according to claim 7, wherein the driving unit (50) comprises:

    a fourth resistor, wherein a first end of the fourth resistor is coupled to the main control unit (70);

    a fifth resistor, wherein a first end of the fifth resistor is coupled to the first end of the fourth resistor and the main control unit (70) respectively, and a second end of the fifth resistor is grounded;

    a second transistor, wherein a base of the second transistor is coupled to a second end of the fourth resistor, an emitter of the second transistor is grounded, and a collector of the second transistor is coupled to a power source of a preset voltage via a sixth resistor;

    a third transistor, wherein a base of the third transistor is coupled to the collector of the second transistor, an emitter of the third transistor is grounded, and a collector of the third transistor is coupled to the power source of the preset voltage via a seventh resistor;

    a fourth transistor, wherein a base of the fourth transistor is coupled to the collector of the third transistor, and a collector of the fourth transistor is coupled to the power source of the preset voltage via an eighth resistor;

    a fifth transistor, wherein a base of the fifth transistor is coupled to the base of the fourth transistor, and a collector of the fifth transistor is grounded;

    a ninth resistor, wherein a first end of the ninth resistor is coupled to an emitter of the fifth transistor, and a second end of the ninth resistor is coupled to an emitter of the fourth transistor; and

    a tenth resistor, wherein a first end of the tenth resistor is coupled to the emitter of the fourth transistor and the second end of the ninth resistor respectively, and a second end of the tenth resistor is coupled to the driving end of the power switch transistor.


     
    9. The heating control circuit of the electromagnetic heating apparatus according to claim 6, further comprising a first zener diode and an eleventh resistor, wherein an anode of the first zener diode is coupled to an emitter of the IGBT and is grounded, a cathode of the first zener diode is coupled to a gate of the IGBT, and the eleventh resistor and the first zener diode are coupled in parallel.
     
    10. An electromagnetic heating apparatus, comprising a heating control circuit of an electromagnetic heating apparatus according any one of claims 1-9.
     
    11. A low power heating control method of an electromagnetic heating apparatus, wherein the electromagnetic heating apparatus comprises a resonance heating unit (20), a power switch transistor (40) configured to control the resonance heating unit to perform resonance work, a driving unit (50) configured to drive the power switch transistor to turn on or to turn off, and a driving and transforming unit (60) configured to change a driving voltage of the power switch transistor, the method comprises following acts:

    when a low power heating instruction is received (S1), controlling the power switch transistor in a wave-losing manner such that the electromagnetic heating apparatus performs discontinuous heating;

    detecting (S2) a voltage zero-crossing signal of an alternating current power source input to the electromagnetic heating apparatus;

    when the electromagnetic heating apparatus is controlled (S3) to switch from a stop-heating interval to a heating interval, controlling the driving unit (50) and the driving and transforming unit (60) to make the power switch transistor (40) work under a driving of a first driving voltage before a zero-crossing point of the alternating current power source judged according to the voltage zero-crossing signal, controlling the driving and transforming unit (60) to stop working when a voltage of a collector of the power switch transistor (40) oscillates to a minimum, and controlling the driving unit (50) to make the power switch transistor (40) work under a driving of a second driving voltage, wherein the second driving voltage is larger than the first driving voltage.


     
    12. The method according to claim 11, wherein a working process of the power switch transistor (40) comprises a first period and a second period, wherein,
    in the first period, an amplitude value of the first driving voltage remains constant or increases linearly, a pulse width of the first driving voltage increases progressively or is a constant width;
    in the second period, an amplitude value of the second driving voltage remains constant, a pulse width of the second driving voltage increases progressively or is a constant width.
     
    13. The method according to claim 12, wherein, in the first period, the power switch transistor (40) works in an amplification state; in the second period, the power switch transistor (40) works in a switch state.
     
    14. The method according to claim 11, wherein the voltage of the collector of the power switch transistor (40) oscillates to the minimum at the zero-crossing point of the alternating current power source.
     
    15. The method according to claim 12, further comprising:

    in the first period, outputting a first control signal to the driving unit (50) and outputting a second control signal to the driving and transforming unit (60), such that the power switch transistor (40) works under a driving of the first driving voltage with a constant amplitude value, and the voltage of the collector of the power switch transistor (40) oscillates and decreases;

    in the second period, outputting a first control signal to the driving unit (50), such that the power switch transistor (40) works under the driving of the second driving voltage, and outputting a third control signal to the driving and transforming unit (60), such that the driving and transforming unit (60) stops working; and optionally:

    wherein the first control signal is a PPG pulse, the second control signal is a high level signal, and the third control signal is a low level signal.


     


    Ansprüche

    1. Heizsteuerschaltung einer elektromagnetischen Heizvorrichtung, die Folgendes umfasst:

    eine Spannungsnulldurchgangserkennungseinheit (10), konfiguriert zum Erkennen eines Spannungsnulldurchgangssignals eines Wechselstromquelleneingangs in die elektromagnetische Heizvorrichtung;

    eine Resonanzheizeinheit (20);

    eine Gleichrichtungs- und Filtereinheit (30), konfiguriert zum Durchführen von Gleichrichtungs- und Filterungsverarbeitung an der Wechselstromquelle, die der Resonanzheizeinheit (20) bereitgestellt wird;

    einen Leistungsschalttransistor (40), konfiguriert zum Steuern der Resonanzheizeinheit (20) zum Durchführen von Resonanzarbeit;

    eine Ansteuereinheit (50), wobei die Ansteuereinheit (50) mit einem Ansteuerende des Leistungsschalttransistors (40) gekoppelt ist, um den Leistungsschalttransistor (40) zum Ein- oder Ausschalten anzusteuern;

    gekennzeichnet durch

    eine Ansteuer- und Transformationseinheit (60), wobei die Ansteuer- und Transformationseinheit (60) mit dem Ansteuerende des Leistungsschalttransistors (40) gekoppelt ist, um eine Ansteuerspannung des Leistungsschalttransistors (40) zu ändern; und

    eine Hauptsteuereinheit (70), wobei die Hauptsteuereinheit (70) jeweils mit der Spannungsnulldurchgangserkennungseinheit (10), der Ansteuereinheit (50) und der Ansteuer- und Transformationseinheit (60) gekoppelt ist und die Hauptsteuereinheit (70) zum Steuern der Ansteuereinheit (50) und der Ansteuer- und Transformationseinheit (60) konfiguriert ist, um zu bewirken, dass der Leistungsschalttransistor (40) unter Ansteuerung einer ersten Ansteuerspannung vor einem Nulldurchgangspunkt der Wechselstromquelle arbeitet, beurteilt gemäß dem Spannungsnulldurchgangssignal, zum Steuern der Ansteuer- und Transformationseinheit (60), so dass sie zu arbeiten aufhört, wenn eine Spannung eines Kollektors des Leistungsschalttransistors (40) auf ein Minimum oszilliert, und zum Steuern der Ansteuereinheit (50), um zu bewirken, dass der Leistungsschalttransistor (40) unter Ansteuerung einer zweiten Ansteuerspannung arbeitet, wobei die zweite Ansteuerspannung höher ist als die erste Ansteuerspannung.


     
    2. Heizsteuerschaltung der elektromagnetischen Heizvorrichtung nach Anspruch 1, wobei ein Arbeitsprozess des Leistungsschalttransistors (40) eine erste Periode und eine zweite Periode umfasst, wobei in der ersten Periode ein Amplitudenwert der ersten Ansteuerspannung konstant bleibt oder linear zunimmt, eine Pulsbreite der ersten Ansteuerspannung progressiv zunimmt oder eine konstante Breite hat;
    in der zweiten Periode ein Amplitudenwert der zweiten Ansteuerspannung konstant bleibt, eine Pulsbreite der zweiten Ansteuerspannung progressiv zunimmt oder eine konstante Breite hat.
     
    3. Heizsteuerschaltung der elektromagnetischen Heizvorrichtung nach Anspruch 2, wobei in der ersten Periode der Leistungsschalttransistor (40) in einem Verstärkungszustand arbeitet; in der zweiten Periode der Leistungsschalttransistor (40) in einem Schaltzustand arbeitet.
     
    4. Heizsteuerschaltung der elektromagnetischen Heizvorrichtung nach Anspruch 1, wobei die Spannung des Kollektors des Leistungsschalttransistors (40) am Nulldurchgangspunkt der Wechselstromquelle auf das Minimum oszilliert.
     
    5. Heizsteuerschaltung der elektromagnetischen Heizvorrichtung nach Anspruch 2, wobei in der ersten Periode die Hauptsteuereinheit (70) zum Ausgeben eines ersten Steuersignals an die Ansteuereinheit (50) und zum Ausgeben eines zweiten Steuersignals an die Ansteuer- und Transformationseinheit (60) konfiguriert ist, so dass der Leistungsschalttransistor (40) unter Ansteuerung der ersten Ansteuerspannung mit einem konstanten Amplitudenwert arbeitet und die Spannung des Kollektors des Leistungsschalttransistors (40) oszilliert und abnimmt;
    in der zweiten Periode die Hauptsteuereinheit (70) zum Ausgeben eines ersten Steuersignals an die Ansteuereinheit (50) konfiguriert ist, so dass der Leistungsschalttransistor (40) unter der Ansteuerung der zweiten Ansteuerspannung arbeitet und zum Ausgeben eines dritten Steuersignals an die Ansteuer- und Transformationseinheit (60) konfiguriert ist, so dass die Ansteuer- und Transformationseinheit (60) zu arbeiten aufhört.
     
    6. Heizsteuerschaltung der elektromagnetischen Heizvorrichtung nach Anspruch 5, wobei der Leistungsschalttransistor (40) ein IGBT ist, das erste Steuersignal ein PPG-Puls ist, das zweite Steuersignal ein Hochpegel-Signal ist und das dritte Steuersignal ein Niedrigpegel-Signal ist.
     
    7. Heizsteuerschaltung der elektromagnetischen Heizvorrichtung nach einem der Ansprüche 1-6, wobei die Ansteuer- und Transformationseinheit (60) Folgendes umfasst:

    einen ersten Widerstand, wobei ein erstes Ende des ersten Widerstands mit der Hauptsteuereinheit (70) gekoppelt ist;

    einen ersten Transistor, wobei eine Basis des ersten Transistors mit einem zweiten Ende des ersten Widerstands gekoppelt ist und ein Emitter des ersten Transistors geerdet ist;

    einen zweiten Widerstand, wobei der zweite Widerstand zwischen der Basis und dem Emitter des ersten Transistors gekoppelt ist; und

    einen dritten Widerstand, wobei ein erstes Ende des dritten Widerstands mit einem Kollektor des ersten Transistors gekoppelt ist und ein zweites Ende des dritten Widerstands mit dem Ansteuerende des Leistungsschalttransistors (40) gekoppelt ist.


     
    8. Heizsteuerschaltung der elektromagnetischen Heizvorrichtung nach Anspruch 7, wobei die Ansteuereinheit (50) Folgendes umfasst:

    einen vierten Widerstand, wobei ein erstes Ende des vierten Widerstands mit der Hauptsteuereinheit (70) gekoppelt ist;

    einen fünften Widerstand, wobei ein erstes Ende des fünften Widerstands mit dem ersten Ende des vierten Widerstands bzw. der Hauptsteuereinheit (70) gekoppelt ist und ein zweites Ende des fünften Widerstands geerdet ist;

    einen zweiten Transistor, wobei eine Basis des zweiten Transistors mit einem zweiten Ende des vierten Widerstands gekoppelt ist, ein Emitter des zweiten Transistors geerdet ist und ein Kollektor des zweiten Transistors mit einer Leistungsquelle einer voreingestellten Spannung über einen sechsten Widerstand gekoppelt ist;

    einen dritten Transistor, wobei eine Basis des dritten Transistors mit dem Kollektor des zweiten Transistors gekoppelt ist, ein Emitter des dritten Transistors geerdet ist und ein Kollektor des dritten Transistors mit der Leistungsquelle der voreingestellten Spannung über einen siebten Widerstand gekoppelt ist;

    einen vierten Transistor, wobei eine Basis des vierten Transistors mit dem Kollektor des dritten Transistors gekoppelt ist und ein Kollektor des vierten Transistors mit der Leistungsquelle der voreingestellten Spannung über einen achten Widerstand gekoppelt ist;

    einen fünften Transistor, wobei eine Basis des fünften Transistors mit der Basis des vierten Transistors gekoppelt ist und ein Kollektor des fünften Transistors geerdet ist;

    einen neunten Widerstand, wobei ein erstes Ende des neunten Widerstands mit einem Emitter des fünften Transistors gekoppelt ist und und ein zweites Ende des neunten Widerstands mit einem Emitter des vierten Transistors gekoppelt ist; und

    einen zehnten Widerstand, wobei ein erstes Ende des zehnten Widerstands mit dem Emitter des vierten Transistors bzw. dem zweiten Ende des neunten Widerstands gekoppelt ist und und ein zweites Ende des zehnten Widerstands mit dem Ansteuerende des Leistungsschalttransistors gekoppelt ist.


     
    9. Heizsteuerschaltung der elektromagnetischen Heizvorrichtung nach Anspruch 6, die ferner eine erste Zener-Diode und einen elften Widerstand umfasst, wobei eine Anode der ersten Zener-Diode mit einem Emitter des IGBT gekoppelt und geerdet ist, eine Kathode der ersten Zener-Diode mit einem Gate des IGBT gekoppelt ist und der elfte Widerstand und die erste Zener-Diode parallel gekoppelt sind.
     
    10. Elektromagnetische Heizvorrichtung, die eine Heizsteuerschaltung einer elektromagnetischen Heizvorrichtung nach einem der Ansprüche 1-9 umfasst.
     
    11. Verfahren zum Steuern einer Niedrigleistungsheizung einer elektromagnetischen Heizvorrichtung, wobei die elektromagnetische Heizvorrichtung eine Resonanzheizeinheit (20), einen Leistungsschalttransistor (40), konfiguriert zum Steuern der Resonanzheizeinheit zum Durchführen von Resonanzarbeit, eine Ansteuereinheit (50), konfiguriert zum Ansteuern des Leistungsschalttransistors zum Ein- oder Ausschalten, und eine Ansteuer- und Transformationseinheit (60) umfasst, die zum Ändern einer Ansteuerspannung des Leistungsschalttransistors konfiguriert ist, wobei das Verfahren die folgenden Schritte beinhaltet:

    Steuern, wenn ein Niedrigleistungsheizbefehl empfangen (S1) wird, des Leistungsschalttransistors auf eine wellenverlierende Weise, so dass die elektromagnetische Heizvorrichtung diskontinuierliche Heizung durchführt;

    Erkennen (S2) einer Spannungsnulldurchgangssignals eines Wechselstromquelleneingangs in die elektromagnetische Heizvorrichtung;

    Steuern, wenn die elektromagnetische Heizvorrichtung zum Umschalten von einem Heizstoppintervall auf ein Heizintervall gesteuert (S3) wird, der Ansteuereinheit (50) und der Ansteuer- und Transformationseinheit (60), um zu bewirken, dass der Stromschalttransistor (40) unter Ansteuerung einer ersten Ansteuerspannung vor einem Nulldurchgangspunkt der Wechselstromquelle arbeitet, beurteilt gemäß dem Spannungsnulldurchgangssignal, Steuern der Ansteuer- und Transformationseinheit (60) zum Aufhören des Arbeitens, wenn eine Spannung eines Kollektors des Leistungsschalttransistors (40) auf ein Minimum oszilliert, und Steuern der Ansteuereinheit (50), um zu bewirken, dass der Leistungsschalttransistor (40) unter Ansteuerung einer zweiten Ansteuerspannung arbeitet, wobei die zweite Ansteuerspannung höher ist als die erste Ansteuerspannung.


     
    12. Verfahren nach Anspruch 11, wobei ein Arbeitsprozess des Leistungsschalttransistors (40) eine erste Periode und eine zweite Periode umfasst, wobei in der ersten Periode ein Amplitudenwert der ersten Ansteuerspannung konstant bleibt oder linear zunimmt, eine Pulsbreite der ersten Ansteuerspannung progressiv zunimmt oder eine konstante Bereite hat;
    in der zweiten Periode ein Amplitudenwert der zweiten Ansteuerspannung konstant bleibt, eine Pulsbreite der zweiten Ansteuerspannung progressiv zunimmt oder eine konstante Breite hat.
     
    13. Verfahren nach Anspruch 12, wobei in der ersten Periode der Leistungsschalttransistor (40) in einem Verstärkungszustand arbeitet; in der zweiten Periode der Leistungsschalttransistor (40) in einem Schaltzustand arbeitet.
     
    14. Verfahren nach Anspruch 11, wobei die Spannung des Kollektors des Leistungsschalttransistors (40) am Nulldurchgangspunkt der Wechselstromquelle auf das Minimum oszilliert.
     
    15. Verfahren nach Anspruch 12, das ferner Folgendes beinhaltet:

    Ausgeben, in der ersten Periode, eines ersten Steuersignals an die Ansteuereinheit (50) und Ausgeben eines zweiten Steuersignals an die Ansteuer- und Transformationseinheit (60), so dass der Leistungsschalttransistor (40) unter Ansteuerung der ersten Ansteuerspannung mit einem konstanten Amplitudenwert arbeitet und die Spannung des Kollektors des Leistungsschalttransistors (40) oszilliert und abnimmt;

    Ausgeben, in der zweiten Periode, eines ersten Steuersignals an die Ansteuereinheit (50), so dass der Leistungsschalttransistor (40) unter Ansteuerung der zweiten Ansteuerspannung arbeitet, und Ausgeben eines dritten Steuersignals an die Ansteuer- und Transformationseinheit (60), so dass die Ansteuer- und Transformationseinheit (60) zu arbeiten aufhört; und optional:
    wobei das erste Steuersignal ein PPG-Puls ist, das zweite Steuersignal ein Hochpegel-Signal ist und das dritte Steuersignal ein Niedrigpegel-Signal ist.


     


    Revendications

    1. Circuit de commande de chauffage d'un appareil de chauffage électromagnétique, comprenant :

    une unité de détection de passage à zéro de la tension (10) configurée pour détecter un signal de passage à zéro de la tension d'une entrée de source d'alimentation en courant alternatif dans l'appareil de chauffage électromagnétique ;

    une unité de chauffage par résonance (20) ;

    une unité de redressement et de filtrage (30) configurée pour effectuer un traitement de redressement et de filtrage sur la source d'alimentation en courant alternatif qui est fournie à l'unité de chauffage par résonance (20) ;

    un transistor de commutation de puissance (40) configuré pour commander l'unité de chauffage par résonance (20) afin de réaliser un travail de résonance ;

    une unité d'attaque (50), l'unité d'attaque (50) étant couplée à une extrémité d'attaque du transistor de commutation de puissance (40) de manière à attaquer le transistor de commutation de puissance (40) pour le rendre passant ou le bloquer ;

    caractérisé par

    une unité d'attaque et de transformation (60), l'unité d'attaque et de transformation (60) étant couplée à l'extrémité d'attaque du transistor de commutation de puissance (40) de manière à modifier une tension d'attaque du transistor de commutation de puissance (40) ; et

    une unité de commande principale (70), l'unité de commande principale (70) étant couplée à l'unité de détection de passage à zéro de la tension (10), l'unité d'attaque (50), et l'unité d'attaque et de transformation (60) respectivement, et l'unité de commande principale (70) est configurée pour commander l'unité d'attaque (50) et l'unité d'attaque et de transformation (60) afin de faire fonctionner le transistor de commutation de puissance (40) sous l'action d'une première tension d'attaque avant un point de passage à zéro de la source d'alimentation en courant alternatif jugé conformément au signal de passage à zéro de la tension, commander l'unité d'attaque et de transformation (60) afin qu'elle arrête de fonctionner quand une tension d'un collecteur du transistor de commutation de puissance (40) oscille jusqu'à un minimum, et commander l'unité d'attaque (50) afin de faire fonctionner le transistor de commutation de puissance (40) sous l'action d'une seconde tension d'attaque, la seconde tension d'attaque étant supérieure à la première tension d'attaque.


     
    2. Circuit de commande de chauffage de l'appareil de chauffage électromagnétique selon la revendication 1, dans lequel un processus de fonctionnement du transistor de commutation de puissance (40) comprend une première période et une seconde période, dans lequel,
    dans la première période, une valeur d'amplitude de la première tension d'attaque reste constante ou augmente linéairement, une largeur d'impulsion de la première tension d'attaque augmente progressivement ou est une largeur constante ;
    dans la seconde période, une valeur d'amplitude de la seconde tension d'attaque reste constante, une largeur d'impulsion de la seconde tension d'attaque augmente progressivement ou est une largeur constante.
     
    3. Circuit de commande de chauffage de l'appareil de chauffage électromagnétique selon la revendication 2, dans lequel, dans la première période, le transistor de commutation de puissance (40) fonctionne dans un état d'amplification ; dans la seconde période, le transistor de commutation de puissance (40) fonctionne dans un état de commutation.
     
    4. Circuit de commande de chauffage de l'appareil de chauffage électromagnétique selon la revendication 1, dans lequel la tension du collecteur du transistor de commutation de puissance (40) oscille jusqu'au minimum au point de passage à zéro de la source d'alimentation en courant alternatif.
     
    5. Circuit de commande de chauffage de l'appareil de chauffage électromagnétique selon la revendication 2, dans lequel,
    dans la première période, l'unité de commande principale (70) est configurée pour produire en sortie un premier signal de commande à destination de l'unité d'attaque (50) et produire en sortie un deuxième signal de commande à destination de l'unité d'attaque et de transformation (60), de telle sorte que le transistor de commutation de puissance (40) fonctionne sous l'action de la première tension d'attaque avec une valeur d'amplitude constante, et la tension du collecteur du transistor de commutation de puissance (40) oscille et diminue ;
    dans la seconde période, l'unité de commande principale (70) est configurée pour produire en sortie un premier signal de commande à destination de l'unité d'attaque (50), de telle sorte que le transistor de commutation de puissance (40) fonctionne sous l'action de la seconde tension d'attaque, et configurée pour produire en sortie un troisième signal de commande à destination de l'unité d'attaque et de transformation (60), de telle sorte que l'unité d'attaque et de transformation (60) arrête de fonctionner.
     
    6. Circuit de commande de chauffage de l'appareil de chauffage électromagnétique selon la revendication 5, dans lequel le transistor de commutation de puissance (40) est un IGBT, le premier signal de commande est une impulsion PPG, le deuxième signal de commande est un signal d'un niveau haut, et le troisième signal de commande est un signal d'un niveau bas.
     
    7. Circuit de commande de chauffage de l'appareil de chauffage électromagnétique selon l'une quelconque des revendications 1 à 6, dans lequel l'unité d'attaque et de transformation (60) comprend :

    une première résistance, dans lequel une première extrémité de la première résistance est couplée à l'unité de commande principale (70) ;

    un premier transistor, dans lequel une base du premier transistor est couplée à une seconde extrémité de la première résistance, et un émetteur du premier transistor est relié à la masse ;

    une deuxième résistance, dans lequel la deuxième résistance est couplée entre la base et l'émetteur du premier transistor ; et

    une troisième résistance, dans lequel une première extrémité de la troisième résistance est couplée à un collecteur du premier transistor, et une seconde extrémité de la troisième résistance est couplée à l'extrémité d'attaque du transistor de commutation de puissance (40).


     
    8. Circuit de commande de chauffage de l'appareil de chauffage électromagnétique selon la revendication 7, dans lequel l'unité d'attaque (50) comprend :

    une quatrième résistance, dans lequel une première extrémité de la quatrième résistance est couplée à l'unité de commande principale (70) ;

    une cinquième résistance, dans lequel une première extrémité de la cinquième résistance est couplée à la première extrémité de la quatrième résistance et à l'unité de commande principale (70) respectivement, et une seconde extrémité de la cinquième résistance est reliée à la masse ;

    un deuxième transistor, dans lequel une base du deuxième transistor est couplée à une seconde extrémité de la quatrième résistance, un émetteur du deuxième transistor est relié à la masse, et un collecteur du deuxième transistor est couplé à une source d'alimentation d'une tension préétablie par l'intermédiaire d'une sixième résistance ;

    un troisième transistor, dans lequel une base du troisième transistor est couplée au collecteur du deuxième transistor, un émetteur du troisième transistor est relié à la masse, et un collecteur du troisième transistor est couplé à la source d'alimentation de la tension préétablie par l'intermédiaire d'une septième résistance ;

    un quatrième transistor, dans lequel une base du quatrième transistor est couplée au collecteur du troisième transistor, et un collecteur du quatrième transistor est couplé à la source d'alimentation de la tension préétablie par l'intermédiaire d'une huitième résistance ;

    un cinquième transistor, dans lequel une base du cinquième transistor est couplée à la base du quatrième transistor, et un collecteur du cinquième transistor est relié à la masse ;

    une neuvième résistance, dans lequel une première extrémité de la neuvième résistance est couplée à un émetteur du cinquième transistor, et une seconde extrémité de la neuvième résistance est couplée à un émetteur du quatrième transistor ; et

    une dixième résistance, dans lequel une première extrémité de la dixième résistance est couplée à l'émetteur du quatrième transistor et à la seconde extrémité de la neuvième résistance respectivement, et une seconde extrémité de la dixième résistance est couplée à l'extrémité d'attaque du transistor de commutation de puissance.


     
    9. Circuit de commande de chauffage de l'appareil de chauffage électromagnétique selon la revendication 6, comprenant en outre une première diode Zener et une onzième résistance, dans lequel une anode de la première diode Zener est couplée à un émetteur de l'IGBT et est reliée à la masse, une cathode de la première diode Zener est couplée à une grille de l'IGBT, et la onzième résistance et la première diode Zener sont couplées en parallèle.
     
    10. Appareil de chauffage électromagnétique, comprenant un circuit de commande de chauffage de l'appareil de chauffage électromagnétique selon l'une quelconque des revendications 1 à 9.
     
    11. Procédé de commande de chauffage basse puissance d'un appareil de chauffage électromagnétique, dans lequel l'appareil de chauffage électromagnétique comprend une unité de chauffage par résonance (20), un transistor de commutation de puissance (40) configuré pour commander l'unité de chauffage par résonance afin de fonctionner en résonance, une unité d'attaque (50) configurée pour attaquer le transistor de commutation de puissance pour le rendre passant ou le bloquer, et une unité d'attaque et de transformation (60) configurée pour modifier une tension d'attaque du transistor de commutation de puissance, le procédé comprenant les étapes suivantes :

    quand une instruction de chauffage basse puissance est reçue (S1), la commande du transistor de commutation de puissance dans une mode à perte d'onde de telle sorte que l'appareil de chauffage électromagnétique produise un chauffage discontinu ;

    la détection (S2) d'un signal de passage à zéro de la tension d'une entrée de source d'alimentation en courant alternatif à destination de l'appareil de chauffage électromagnétique ;

    quand l'appareil de chauffage électromagnétique est commandé (S3) afin de commuter d'un intervalle d'arrêt de chauffage à un intervalle de chauffage, la commande de l'unité d'attaque (50) et de l'unité d'attaque et de transformation (60) pour amener le transistor de commutation de puissance (40) à fonctionner sous l'action d'une première tension d'attaque avant un point de passage à zéro de la source d'alimentation en courant alternatif jugé conformément au signal de passage à zéro de la tension, la commande de l'unité d'attaque et de transformation (60) pour qu'elle arrête de fonctionner quand une tension d'un collecteur du transistor de commutation de puissance (40) oscille jusqu'à un minimum, et la commande de l'unité d'attaque (50) pour amener le transistor de commutation de puissance (40) à fonctionner sous l'action d'une seconde tension d'attaque, la seconde tension d'attaque étant supérieure à la première tension d'attaque.


     
    12. Procédé selon la revendication 11, dans lequel un processus de fonctionnement du transistor de commutation de puissance (40) comprend une première période et une seconde période, dans lequel,
    dans la première période, une valeur d'amplitude de la première tension d'attaque reste constante ou augmente linéairement, une largeur d'impulsion de la première tension d'attaque augmente progressivement ou est une largeur constante ;
    dans la seconde période, une valeur d'amplitude de la seconde tension d'attaque reste constante, une largeur d'impulsion de la seconde tension d'attaque augmente progressivement ou est une largeur constante.
     
    13. Procédé selon la revendication 12, dans lequel, dans la première période, le transistor de commutation de puissance (40) fonctionne dans un état d'amplification ; dans la seconde période, le transistor de commutation de puissance (40) fonctionne dans un état de commutation.
     
    14. Procédé selon la revendication 11, dans lequel la tension du collecteur du transistor de commutation de puissance (40) oscille jusqu'au minimum au point de passage à zéro de la source d'alimentation en courant alternatif.
     
    15. Procédé selon la revendication 12, comprenant en outre :

    dans la première période, la production en sortie d'un premier signal de commande à destination de l'unité d'attaque (50) et la production en sortie d'un deuxième signal de commande à destination de l'unité d'attaque et de transformation (60), de telle sorte que le transistor de commutation de puissance (40) fonctionne sous l'action de la première tension d'attaque avec une valeur d'amplitude constante, et la tension du collecteur du transistor de commutation de puissance (40) oscille et diminue ;

    dans la seconde période, la production en sortie d'un premier signal de commande à destination de l'unité d'attaque (50), de telle sorte que le transistor de commutation de puissance (40) fonctionne sous l'attaque de la seconde tension d'attaque, et la production en sortie d'un troisième signal de commande à destination de l'unité d'attaque et de transformation (60), de telle sorte que l'unité d'attaque et de transformation (60) arrête de fonctionner ; et facultativement :
    dans lequel le premier signal de commande est une impulsion PPG, le deuxième signal de commande est un signal d'un niveau haut, et le troisième signal de commande est un signal d'un niveau bas.


     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description