(19)
(11)EP 3 302 543 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 16804176.2

(22)Date of filing:  27.05.2016
(51)International Patent Classification (IPC): 
A61K 39/02(2006.01)
A61K 39/104(2006.01)
C07K 14/005(2006.01)
A61K 39/00(2006.01)
A61K 39/10(2006.01)
A61K 39/12(2006.01)
C07K 14/21(2006.01)
(86)International application number:
PCT/US2016/034858
(87)International publication number:
WO 2016/196383 (08.12.2016 Gazette  2016/49)

(54)

VACCINE COMPOSITIONS AGAINST PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME AND PORCINE CIRCOVIRUS ASSOCIATED DISEASES

IMPFSTOFFZUSAMMENSETZUNGEN GEGEN KRANKHEITEN IM ZUSAMMENHANG MIT DEM PORCINEN REPRODUKTIONS- UND ATEMWEGSSYNDROM UND DEM PORCINEN CIRCOVIRUS

COMPOSITIONS DE VACCIN CONTRE LE SYNDROME REPRODUCTEUR ET RESPIRATOIRE PORCIN ET LES MALADIES ASSOCIÉES AU CIRCOVIRUS PORCIN


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.06.2015 US 201562169205 P

(43)Date of publication of application:
11.04.2018 Bulletin 2018/15

(73)Proprietor: Reber Genetics Co., Ltd.
Taipei City, Taiwan 10685 (TW)

(72)Inventors:
  • CHIEN, Yu-Hsin
    Taipei City Taiwan 10685 (TW)
  • TSAI, Meng-Ju
    Taipei City Taiwan 10685 (TW)
  • LAI, Pao-Yen
    Taipei City Taiwan 10685 (TW)
  • CHOU, Wei-I
    Taipei City Taiwan 10685 (TW)
  • CHANG, Hsiu-Kang
    Taipei City Taiwan 10685 (TW)

(74)Representative: Gill, Siân Victoria et al
Venner Shipley LLP 200 Aldersgate
London EC1A 4HD
London EC1A 4HD (GB)


(56)References cited: : 
EP-A1- 1 882 478
WO-A1-2014/089009
CN-B- 101 104 641
US-A1- 2008 008 722
US-A1- 2009 088 556
US-A1- 2012 251 563
US-A1- 2014 154 285
US-B2- 8 968 720
EP-A1- 2 789 627
WO-A2-03/084467
US-A1- 2004 247 617
US-A1- 2008 206 271
US-A1- 2010 316 663
US-A1- 2014 154 285
US-B2- 8 092 809
US-B2- 9 481 714
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates generally to vaccines, and more specifically to subunit vaccines.

    BACKGROUND OF THE INVENTION



    [0002] Viruses that infect immune cells (such as T-cell, B-cell, dendritic cell, monocyte, or macrophage) include porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type II (PCV2), and human immunodeficiency virus (HIV). The immune cells cannot evoke immunization responses but carry the viruses. The animals that have been infected by these viruses can be easily infected by other pathogens. Porcine reproductive and respiratory syndrome virus (PRRSV) results in high losses in animal husbandry every year. Not only swine but ducks can be infected by PRRSV as well. Generally, the animals infected by the virus have no significant symptoms, but the immunity of the infected animals is reduced. This virus infects macrophages (in the alveolar and spleen), brain microglia and monocytes, and can exist in the blood and organs of the infected animals. This leads to a decrease of weight gain and an increase in the death rate due to the secondary infection.

    [0003] U.S. Patent No. 7,595,054 discloses a fusion antigen used as a subunit vaccine, in which a single antigen moiety selected from a region of ORF1b or a region of ORF7 is fused between a Pseudomnoas exotoxin A polypeptide that is devoid of the cytotoxic domain III, i.e., PE (ΔIII), and an endoplasmic reticulum retention sequence.

    [0004] A vaccine composition named "PRRSFREE™" by Reber Genetics Co. Ltd. comprises four separate PRRS antigens, which are designated as D, M, R, and P, respectively. These four PRRS antigens were respectively expressed by four separate vectors using the design disclosed in U.S. Patent No. 7,595,054, and were found effective in inducing cell-mediated and humoral immune responses in animals.

    [0005] EP 1882478 A1, US 2008/0008722 A1 and CN 101104641 B each disclose a porcine reproductive and respiratory syndrome virus (PRRSV) subunit vaccine PE-PQGAB-K3, which comprises Pseudomonas exotoxin A (PE) binding and translocation domains, N-terminal portions of PRRSV ORF5 and ORF6 structural proteins, and a carboxyl terminal domain comprising KDEL-KDEL-KDEL(K3).

    [0006] US 2004/247617 A1 discloses a fusion antigen comprising a ligand moiety capable of binding to a receptor on a target cell, a PE translocation domain, an antigenic moiety and a carboxyl terminal moiety which permits retention of the fusion antigen in the endoplasmic reticulum (ER) membrane of the target cell.

    [0007] US 2014/0154285 discloses fusion proteins for use as immunogenic enhancers for inducing antigen-specific T cell responses.

    [0008] US 2008/0206271 A1 discloses a fusion antigen comprising a ligand moiety capable of binding to a receptor on a target cell, PE translocation domain II, an antigenic moiety and a carboxyl terminal moiety comprising the amino acid sequence of KDEL.

    [0009] EP 2789627 A1 discloses a porcine circovirus type-2 subunit vaccine.

    SUMMARY OF THE INVENTION



    [0010] In one aspect, the invention relates to a porcine reproductive and respiratory syndrome virus (PRRSV) fusion protein comprising:
    1. (a) an antigen-presenting cell (APC)-binding domain located at the N-terminus of the fusion protein, wherein the APC-binding is a Pseudomonas exotoxin A (PE) binding domain Ia;
    2. (b) a translocation peptide having 34-112 amino acid residues in length, comprising the amino acid sequence of SEQ ID NO: 4, 2, 3, or 6, located at the C-terminus of the APC-binding domain;
    3. (c) a fusion antigen comprising:
      1. (i) a porcine reproductive and respiratory syndrome virus (PRRSV) ORF7 antigen;
      2. (ii) a PRRSV ORF1b antigen;
      3. (iii) a PRRSV ORF6 antigen; and
      4. (iv) a PRRSV ORF5 antigen;
    4. (d) a nuclear export signal comprising the amino acid sequence of SEQ ID NO: 13, located at the C-terminus of the fusion antigen or between the translocation peptide and the fusion antigen;
      wherein the fusion antigen does not comprise full-length ORF7, ORF6, ORF5, and ORF1b protein sequences; and
    5. (e) an endoplasmic reticulum retention sequence, located at the C-terminus of the fusion antigen when the nuclear export signal is located at between the translocation peptide and the fusion antigen, or located at the C-terminus of the nuclear export signal when the nuclear export signal is located at the C-terminus of the fusion antigen.


    [0011] In one embodiment of the invention, the ORF7 or ORF1b antigen is located N-terminal to the ORF6 antigen, and the ORF5 antigen is located C-terminal to the ORF6 antigen.

    [0012] In another embodiment of the invention, the ORF6 antigen is located N-terminal to the ORF5 antigen without a bridge or a linker between the ORF6 and ORF5 antigens.

    [0013] In another embodiment of the invention, the fusion antigen comprises two tandem repeats of the ORF7 antigen.

    [0014] In another embodiment of the invention, the ORF5 antigen is located C-terminal to the ORF6 antigen.

    [0015] In another embodiment of the invention, the ORF6 antigen comprises the N-terminal portion amino acid sequence of the PRRSV ORF6 and the ORF5 antigen comprises the N-terminal portion amino acid sequence of the PRRSV ORF5, and the fusion antigen does not comprise the C-terminal portion amino acid sequences of the ORF6 and ORF5.

    [0016] In another embodiment of the invention, the ORF1b antigen comprises the C-terminal portion amino acid sequence of ORF1b NSP 10 and the N-terminal portion amino acid sequence of ORF1b NSP 11, and the fusion antigen is devoid of the N-terminal and C-terminal portion amino acid sequences of the ORF1b.

    [0017] In another embodiment, the fusion protein comprises the amino acid sequence of SEQ ID NO: 27 or 28.

    [0018] In another embodiment of the invention, the endoplasmic reticulum retention sequence comprises the amino acid sequence KDEL (SEQ ID NO: 15) without a tandem repeat of the amino acids KDEL.

    [0019] In another embodiment of the invention, the APC-binding domain is a polypeptide comprising the amino acid sequence of SEQ ID NO: 1 or 32.

    [0020] In another embodiment of the invention, the nuclear export signal and the ER retention sequence forms a fusion peptide that comprises the amino acid sequence of SEQ ID NO: 12.

    [0021] In another aspect, the invention relates to a composition comprising:
    1. (i) the PRRSV fusion protein of the invention; and
    2. (ii) a porcine circovirus type 2 (PCV2) fusion protein, comprising:
      1. (a) an antigen-presenting cell (APC)-binding domain or a CD91 receptor-binding domain, located at the N-terminus of the fusion protein, wherein the APC-binding domain or CD91 receptor-binding domain is selected from the group consisting of receptor-associated protein-1 (RAP1) domain III, alpha-2-macroglobulin receptor-associated protein (A2M), HIV-Tat, heat shock proteins, and Pseudomonas exotoxin A binding domain Ia;
      2. (b) a translocation peptide having 34-112 amino acid residues in length, comprising the amino acid sequence of SEQ ID NO: 4, 2, 3, or 6, located at the C-terminus of the APC-binding domain or the CD91 receptor-binding domain; and
      3. (c) a PCV2 ORF2 antigen;
      4. (d) a nuclear export signal comprising the amino acid sequence of SEQ ID NO: 13, located between the PCV2 ORF2 antigen and the endoplasmic reticulum retention sequence or between the translocation peptide and the PCV2 ORF2 antigen; and
      5. (e) an endoplasmic reticulum retention sequence, located at the C-terminus of the PCV2 fusion protein when the nuclear export signal is located between the translocation peptide and the PCV2 ORF2 antigen, or located at the C-terminus of the nuclear export signal when the nuclear export signal is located at the C-terminus of the PCV2 ORF2 antigen;
    wherein the PCV2 ORF2 antigen comprises the C-terminal portion amino acid sequence of PCV2 ORF 2 protein, and the PCV2 fusion protein does not comprise the N-terminal portion amino acid sequence of the PCV2 ORF2 protein.

    [0022] In another embodiment of the invention, the APC-binding domain or the CD91 receptor-binding domain is free of the amino acid sequence of Pseudomonas exotoxin A (PE) binding domain I.

    [0023] In another embodiment of the invention, the translocation peptide has 34-46 amino acid residues in length.

    [0024] In another embodiment of the invention, the translocation peptide has 34-61 amino acid residues in length.

    [0025] Further in another aspect, the invention relates to a fusion protein of the invention for use in inducing antigen-specific cell-mediated and humoral responses against porcine reproductive and respiratory syndrome virus (PRRSV) in a subject in need thereof.

    [0026] Yet in another aspect, the invention relates to a composition of the invention for use in inducing antigen-specific cell-mediated and humoral responses against porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) in a subject in need thereof.

    [0027] The fusion antigen of the invention comprises neutralization and protective epitopes on ORF7, ORF6, ORF5, and ORF1b without comprising full-length ORF7, ORF6, ORF5, and ORF1b protein sequence.

    [0028] The ORF7 antigen comprises the amino acid sequence of SEQ ID NO: 33, 22, or 23.

    [0029] The ORF1b antigen comprises the amino acid sequence of the C-terminal portion of ORF1b NSP 10 and the N-terminal portion of ORF1b NSP 11 and is devoid of the N-terminal and C-terminal portions of ORF1b. That is, the fusion antigen comprises the amino acid sequence of the C-terminal portion of ORF1b NSP 10 and the N-terminal portion of ORF1b NSP 11 and does not comprise the amino acid sequence of the N-terminal and C-terminal portions of ORF1b.

    [0030] The ORF6 antigen comprises the N-terminal portion amino acid sequence of the PRRSV ORF6 and the ORF5 antigen comprises the N-terminal portion amino acid sequence of the PRRSV ORF5, and the fusion antigen does not comprise the C-terminal portion amino acid sequences of ORF6 and ORF5. In other words, the ORF6 antigen is selected from the N-terminal portion amino acid sequence of the PRRSV ORF6, and the ORF5 antigen is selected from the N-terminal portion amino acid sequence of the PRRSV ORF5.

    [0031] In another embodiment of the invention, the N-terminal portion amino acid sequence of the PRRSV ORF6 is SEQ ID NO: 34, and the N-terminal portion amino acid sequence of the PRRSV ORF5 is 35.

    [0032] Further in another embodiment of the invention, the N-terminal portion amino acid sequence of the PRRSV ORF6 is SEQ ID NO: 36, and the N-terminal portion amino acid sequence of the PRRSV ORF5 is 37. The ORF1b antigen comprises the C-terminal portion amino acid sequence of ORF1b NSP 10 and the N-terminal portion amino acid sequence of ORF1b NSP 11, and the fusion antigen is devoid of the N-terminal and C-terminal portion amino acid sequences of the ORF1b. In one embodiment of the invention, the ORF1b antigen has less than 200 amino acid residues in length and comprises the amino acid sequence of SEQ ID NO: 25. In another embodiment of the invention, the ORF1b antigen comprises an amino acid sequence from amino acid residue 1046 to amino acid residue 1210 of the PRRSV ORF1b. In one embodiment of the invention, the C-terminal amino acid of the SEQ ID NO: 13 is alanine.

    [0033] These and other aspects will become apparent from the following description of the preferred embodiment taken in conjunction with the following drawings. The accompanying drawings illustrate one or more embodiments of the invention and, together with the written description, serve to explain the principles of the invention. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0034] 

    FIG. 1A is a schematic drawing showing a full-length Pseudomonas aeruginosa exotoxin A (PE), and partial fragment of PE.

    FIGs. 1B-C show vector maps.

    FIG. ID is a schematic drawing showing four separate plasmids that are used for preparation of a vaccine composition that is named as PRRSFREE. The vaccine composition PRRSFEE comprises four separate, individual PE fusion proteins. Each individual PE fusion protein in the PRRSFREE vaccine composition comprises a PE(ΔIII) fragment (PE407), a single antigen moiety (designated as M, P, R, or D), and an endoplasmic retention sequence (K3). The term "D" or "DGD" represents an antigen from PRRSV nucleoprotein ORF7. The term "R" or "RSAB" represents a fusion antigen of PRRSV ORF6/Membrane protein and ORF5/ major envelop protein without a bridge/linker sequence in-between. The term "M" or "M12" represents an antigen from PRRSV ORF1b, is an artificial fusion antigen of PRRSV nonstructural proteins NSP 10 and NSP 11. The term "P" or "PQAB" represents a fusion antigen of PRRSV ORF6/Membrane protein and ORF5/ major envelop protein without a bridge/linker sequence in-between. The term " PE(ΔIII) " represents a PE fragment without the cytotoxic domain III. The term "PE407" represents a Pseudomonas exotoxin A (PE) polypeptide from amino acid 1 to amino acid 407.

    FIG. IE is a schematic drawing showing a plasmid that is used for preparation of a PE fusion protein called PE-DRMP-NESK or PRRSFREE 4-in-one. The PE-DRMP-NESK fusion protein comprises a PE(ΔIII) fragment (PE313), a single fusion polypeptide comprising four antigen moieties (designated as DRMP), a nuclear export signal (NES), and an endoplasmic retention sequence (K).

    FIG. 1F is a schematic drawing showing a plasmid encoding a fusion protein comprising a PE(ΔIII) fragment (PE313), a single antigen moiety (designated as PCV2), a nuclear export signal (NES), and an endoplasmic retention sequence (K).

    FIG. 2A is a graph showing antigen-specific cell-mediated immune (CMI) responses in mice immunized with PBS, or the vaccine composition PRRSFREE 4-in-1 or PRRSFREE.

    FIG. 2B is a graph showing antigen specific antibody (IgG) responses for mice immunized with PBS or PBS, or the vaccine composition PRRSFREE 4-in-1 or PRRSFREE.

    FIG. 3A is a graph showing PRRSFREE antigen specific CMI response for mice immunized with PBS or different PRRS/PCV2 combo vaccines.

    FIG. 3B is a graph showing PCV2 ORF2 antigen specific CMI response for mice immunized with PBS or different PRRS/PCV2 ORF2 combo vaccines.

    FIG. 4A is a graph showing PRRSFREE antigen specific antibody (IgG) response for mice immunized with PBS or different PRRS/PCV2 combo vaccines.

    FIG. 4B is a graph showing PCV2 ORF2 antigen specific antibody (IgG) response for mice immunized with PBS or different PRRS/PCV2 combo vaccines.

    FIG. 5 is a graph showing PRRSFREE antigen specific CMI responses in mice immunized with (1) a fusion protein comprising a fusion of two antigens (a fusion of the antigens D and R in PE313-DR-NESK), or (2) a combination of two separate fusion proteins, each fusion protein comprising a fusion of two antigens (a fusion of D and R in PE313-DR-NESK, or a fusion of M and P in PE313-MP-NESK), or (3) a fusion protein comprising a fusion of four antigens (a fusion of D, R, M, and P in PE313-DRMP-NESK).

    FIG. 6 is a schematic drawing showing various fusion proteins used for immunizing swine against PRRSV infection.

    FIG. 7 is a graph showing IFN-γ secreted by PBMC from vaccinated swine after stimulation with respective PRRSV antigens.


    DETAILED DESCRIPTION OF THE INVENTION



    [0035] The present invention is more particularly described in the following examples that are intended as illustrative only. Various embodiments of the invention are now described in detail.

    DEFINITIONS



    [0036] The term "an antigen-presenting cell (APC) or accessory cell" refers to a cell that displays foreign antigens complexed with major histocompatibility complexes (MHC's) on their surfaces. T-cells may recognize these complexes using their T-cell receptors (TCRs). These cells process antigens and present them to T-cells. Main types of professional antigen-presenting cell are dendritic cells (DCs), macrophages, which are also CD4+ and are therefore also susceptible to infection by HIV; monocytes, and certain B-cells.

    [0037] The term "an antigen-presenting cell (APC)-binding domain" refers to a domain (which is a polypeptide) that can bind to an antigen-presenting cell (APC). The APC-binding domain may be a polypeptide comprising an amino acid sequence that is at least 90% identical to the sequence selected from the group consisting of SEQ ID NOs: 1 and 8-11. An APC-binding domain is a ligand that recognizes and binds to a receptor on APC.

    [0038] Cluster of differentiation 91 (CD91) is a protein that forms a receptor in the membrane of cells and is involved in receptor-mediated endocytosis.

    [0039] The term "PEt" refers to a translocation peptide (or a translocation domain) with 34-112 amino acid residues in length. PEt may comprises the amino acid sequence that is at least 90% identical to SEQ ID NO: 2-4 and 6. For example, the amino acid sequence of PEt may be a fragment of a.a. 280 - a.a. 313 (SEQ ID NO: 4), a.a. 268 - a.a. 313 (SEQ ID NO: 3), a.a. 253 - a.a. 313 (SEQ ID NO: 2), or a.a. 253 - a.a. 364 (SEQ ID NO: 6) of PE. That is, the amino acid sequence of PEt may contain any region of the PE domain II (a.a. 253 to a.a. 364; SEQ ID NO: 6) as long as it comprises a.a. 280-a.a. 313 (SEQ ID NO: 4) essential sequence (i.e., the essential fragment).

    [0040] The PE407 (SEQ ID NO. 7) is described in prior patent (US 7,335,361 B2) as PE(ΔIII).

    [0041] The "translocation peptide" can translocate an antigen into the cytoplasm of a target cell.

    [0042] The term "an endoplasmic reticulum (ER) retention sequence" refers to a peptide whose function is to assist translocation of an antigen from the cytoplasm into ER and retains the antigen in the lumen of the ER. An ER retention sequence comprises the sequence of Lys Asp Glu Leu (KDEL; SEQ ID NO: 15) or RDEL. An ER retention sequence may comprise the sequence KDEL, RDEL, KDELKDELKDEL (K3; SEQ ID NO: 16), KKDLRDELKDEL (K3; SEQ ID NO: 17), KKDELRDELKDEL (K3; SEQ ID NO: 18), or KKDELRVELKDEL (K3; SEQ ID NO: 19).

    [0043] A nuclear export signal (NES) refers to a short amino acid sequence of 4 hydrophobic residues in a protein that targets it for export from the cell nucleus to the cytoplasm through the nuclear pore complex using nuclear transport. The NES is recognized and bound by exportins. The most common spacing of the hydrophobic residues to be LxxKLxxLxLx (SEQ ID NO. 13), where "L" is leucine, "K" is lysine and "x" is any naturally occurring amino acid. For example, an artificial NES may comprise the sequence Leu Gln Lys Lys Leu Glu Glu Leu Glu Leu Ala (LQKKLEELELA; SEQ ID NO: 14).

    [0044] The term "NESK" refers to a fusion peptide of a NES and an ER retention signal (i.e., a NES fused to an ER retention signal). It is an artificial peptide possessing the function of a nuclear export signal (NES) and an ER retention sequence. Thus, it can export an antigen from the cell nucleus to the cytoplasm through the nuclear pore complex, and assist translocation of an antigen from the cytoplasm to ER and retain the antigen in the lumen of the ER. For example, the amino acid sequence of NESK may be LQKKLEELELAKDEL (SEQ ID NO: 12).

    [0045] Subunit vaccines are vaccines that use only part of the disease-causing virus. This strategy is used most often when one part of the virus is responsible for creating disease. The part responsible for creating disease is a protein, which we call the antigen.

    [0046] An antigen may be a pathogenic protein, polypeptide or peptide that is responsible for a disease caused by the pathogen, or is capable of inducing an immunological response in a host infected by the pathogen. The antigen may be a fusion antigen from a fusion of two or more antigens selected from one or more pathogenic proteins. For example, a fusion antigen of PRRSV ORF6 and ORF5 fragments, or a fusion of antigenic proteins from PRRSV and PCV2 pathogens.

    [0047] An epitope is a part of antigen. A protective epitope means when the epitope combines with an antibody, it helps in the functioning of the antibody instead of going against it.

    [0048] The presence of neutralizing or neutralization epitopes is the structural basis of prophylactic vaccines. Neutralizing epitopes are critical for viral cell attachment/entry.

    [0049] As used herein, "a porcine reproductive and respiratory syndrome virus (PRRSV) ORF7 antigen" is a peptide that is selected from a portion of PRRSV ORF7 and contains protective epitopes.

    [0050] As used herein, "a PRRSV ORF1b antigen" is a peptide that is selected from a portion of PRRSV ORF1b and contains protective epitopes.

    [0051] As used herein, "a PRRSV ORF6 antigen" is a peptide that is selected from a portion of PRRSV ORF6 and contains protective epitopes.

    [0052] As used herein, "a PRRSV ORF5 antigen" is a peptide that is selected from a portion of PRRSV ORF5 and contains protective epitopes.

    [0053] The term "PRRSFREE" refers to a vaccine composition comprising the four fusion proteins PE407-M-K3, PE407-P-K3, PE407-R-K3, and PE407-D-K3.

    [0054] The terms "M12" and "M" are interchangeable. The term "M12" as used herein refers to a fusion antigen from fusion of PRRSV NSP 10 (C-terminal domain sequence) and NSP 11 (N-terminal domain sequence).

    [0055] The terms "PQAB" and "P" are interchangeable. The term "T" as used herein refers to a fusion antigen from fusion of the N-terminal portion of PRRSV ORF6 and the N-terminal portion of ORF5 without a bridge/linker sequence between the ORF6 and ORF5 sequences.

    [0056] The terms "RSAB" and "R" are interchangeable. The term "R" as used herein refers to a fusion antigen from fusion of the N-terminal portion of PRRSV ORF6 and the N-terminal portion of ORF5 without a bridge/linker sequence between the ORF6 and ORF5 sequences.

    [0057] The terms "DGD" and "D" are interchangeable. The term "D" as used herein refers to an antigen comprising two repeats of the C-terminal portion of PRRSV ORF7.

    [0058] The term "treating" or "treatment" refers to administration of an effective amount of the fusion protein to a subject in need thereof, who has cancer or infection, or a symptom or predisposition toward such a disease, with the purpose of cure, alleviate, relieve, remedy, ameliorate, or prevent the disease, the symptoms of it, or the predisposition towards it. Such a subject can be identified by a health care professional based on results from any suitable diagnostic method.

    [0059] The term "an effective amount" refers to the amount of an active compound that is required to confer a therapeutic effect on the treated subject. Effective doses will vary, as recognized by those skilled in the art, depending on rout of administration, excipient usage, and the possibility of co-usage with other therapeutic treatment.

    EXAMPLES


    Methods


    Synthesis of the fusion antigens DRMP and MDPR



    [0060] DNA sequences encoding the fusion antigens DRMP (SEQ ID NO: 52), MDPR (SEQ ID NO: 53) and PCV2 ORF2 antigen (SEQ ID NO: 20) were respectively synthesized and further cloned into the plasmids pTAC-2-PE313-NESK or pTAC-2-RAPl-PEt268-313-K3. All synthesized sequences were optimized for E. coli growth. Respective forward and reverse primers were used in PCR for DRMP or MDPR DNA amplification. The amplified DNA fragment was digested by EcoRI and XhoI, then was ligated into the indicated vector. The fusion protein PE313-PCV2-NESK was cloned in a similar way.

    [0061] Table 1 shows the sequences of the forward and reverse primers used for cloning into plasmids. Bold letters indicate EcoRI cutting site; Italic letters indicate SalI cutting site; Italic and bold letters indicate XhoI cutting site; Underlined letters indicate antigen sequence.
    Table 1
    PlasmidForward primerReverse primer
    For Cloning DRMP into pTAC-2-PE313-NESK gaattcgtcgaccaccactttaccccgagt (SEQ ID NO: 42) ctcgagagcccagtcgaatttgttagccag (SEQ ID NO: 43)
    For cloning MDPR to pTAC-2-PE313-NESK gaattcaataacaaagaatgcacggttgct (SEQ ID NO: 44) ctcgagagcccagtcaaagtggttagacag (SEQ ID NO: 45)
    For cloning DRMP to pTAC-2-RAP1-PEt268-313-K3 gaattccaccactttaccccgagtgagcgt (SEQ ID NO: 46) ctcgagagcccagtcgaatttgttagccag (SEQ ID NO: 47)
    For cloning MDPR to pTAC-2-RAP1-PEt268-313-K3 gaattcaataacaaagaatgcacggttgct (SEQ ID NO: 48) ctcgagagcccagtcaaagtggttagacag (SEQ ID NO: 49)
    For cloning PCV2 ORF2 to pTAC-2-PE313-NESK gaattcaatggcattttca (SEQ ID NO: 50) ctcgagggggttcaaggg (SEQ ID NO: 51)

    EXAMPLE 1


    Construction of Expression Vectors



    [0062] FIG. 1A shows PE contains 3 domains (I, II, and III). PE407 is the region from a.a. 1 to a.a 407 of PE. PE107 does not contain the cytotoxic domain III and thus contains domains I and II. PE313 is the region from a.a. 1 to a.a. 313 of PE. Thus, PE313 contains only domain la and a partial N-terminal region of domain II of PE.

    [0063] FIGs. 1B-C show constructions of expression vectors, each of which comprises an antigen-presenting cell (APC)-binding domain, a translocation peptide, an antigen, with (bottom panel) or without (top panel) a nuclear export signal (NES); and an endoplasmic reticulum (ER) retention sequence (top panel, K3 or bottom panel, K), the ER retention sequence being located at the C-terminus of the fusion protein. The plasmids pTac-2-PE313-NESK, pTac-2-PE407-K3, pTac-2-RAP1-PE268-313-NESK and pTac-2-RAP1-PE268-313-K3 were generated as follows: The NdeIPE313-(EcoRI,XhoI)-NESKXhoI, NdeIPE407-(EcoRI,XhoI)-K3XhoI,NdeIRAP1-(EcoRI)-PE268-313-(EcoRI), XhoI)-NESKXhoI and NdeIRAP1-(EcoRI)-PE268-313-(EcoRI,XhoI)-K3XhoI fragments were synthesized by a PCR method and then ligated into a pUC18 back bond with kanamycin resistance gene to obtain respective plasmids.

    [0064] A target DNA encoding an antigen or a fusion antigen of a pathogen of interest may then be inserted into the aforementioned plasmids to generate an expression vector for expression of a fusion protein. For example, a DNA fragment encoding an antigen of Porcine Circovirus Type 2 (PCV2) ORF2 (SEQ ID NO: 20) was synthesized and inserted into the plasmids pTac-2-PE313-NESK to generate the expression vector PE313-PCV2-NESK (FIG 1F).

    [0065] The following target DNA fragments were synthesized:
    1. (i) a target DNA encoding an antigen comprising two repeats of the C-terminal portion of PRRSV ORF7. The antigen is designated as "DGD" or "D".
    2. (ii) a target DNA encoding a fusion antigen from fusion of PRRSV NSP 10 (C-terminal domain sequence) and NSP 11 (N-terminal domain sequence). The antigen is designated as "M12" or "M".
    3. (iii) a target DNA encoding a fusion antigen from fusion of The N-terminal portion of PRRSV ORF6 and the N-terminal portion of ORF5 without a bridge/linker sequence between the ORF6 and ORF5 sequences. The antigen is designated as "RSAB" or "R".
    4. (iv) a target DNA encoding a fusion antigen from fusion of the N-terminal portion of PRRSV ORF6 and the N-terminal portion of ORF5 without a bridge/linker sequence between the ORF6 and ORF5 sequences. The antigen is designated as "PQAB" or "P".


    [0066] The above target DNA fragments were inserted into the plasmid shown in FIG 1B upper panel to generate fusion proteins PE407-M-K3. PE407-P-K3, PE407-R-K3, and PE407-D-K3, respectively (FIG. ID).

    [0067] A target DNA fragment encoding a fusion antigen comprising all of the four aforementioned antigens D, R, M, and P (such as DRMP, MDPR, etc.) was synthesized and inserted into the plasmids pTac-2-PE313-NESK to generate an expression vector expressing the fusion protein PE-DRMP-NESK (FIG 1E), which is designates as (also "PRRSFREE 4-in-1").

    EXAMPLE 2


    Protein expression



    [0068] E. coll BL21 cells harboring plasmids for expression of fusion proteins were respectively cultured in Luria Bertani broth containing 25 ppm of kanamycin at 37° C. When the culture reaching early log phase, (A600=0.1 to 0.4), isopropyl-1-thio-β-D-galactopyranoside (IPTG) was added with a final concentration of 0.5 to 2 mM for induction. Cells were harvested after induction after 4 hours and immediately stored at -70° C. The fusion proteins were purified by urea extraction as described previously (Liao et al., 1995. Appl. Microbiol. Biotechnol. 43: 498-507) and then were refolded by dialysis method against 50X. volume of TNE buffer (50mM Tris, 50mM NaCl and ImM EDTA) at 4°C for overnight. The refolded proteins were subjected to SDS-PAGE analyses and quantitative analyses performed using Bradford Protein Assay Kit (Pierce). The results indicated that most of the refolded proteins were monomers under a non-reduced condition, indicating that the fusion proteins refolded easily and were not aggregated.

    EXAMPLE 3


    PRRSV subunit vaccines immunogenicity assay



    [0069] Mice were vaccinated with 200 µl PRRSV subunit vaccine containing 30µg/shot of PRRSFREE 4-in-1 or PRRSFREE and ISA206 adjuvant via s.c. injection once a week for 2 weeks. The control group (placebo) was injected with PBS.

    [0070] All mice were sacrificed 14 days after the last immunization, and the spleens were harvested. The splenocytes were isolated and cultured in 96-well plate (105 cells/100 µ1/well) with or without the stimulant recombinant antigen protein at 37°C for 72 hr. Depending on the vaccine used in immunization, the stimulant recombinant antigen protein used was PRRSFREE antigens, PRRSFRKE-4-in-one chimeric fusion antigen, or PCV2 ORF2 antigen for detecting antigen-specific cell-mediated immune response. The cell culture supernatant was collected and interferon-gamma (IFN-γ) in the supernatant was determined by IFN-γ Mouse Antibody Pair (Invitrogen).

    [0071] Depending on the vaccine used for immunization, PRRSFREE antigens, or PRRSFREE 4-in-one fusion antigen, or PCV2 ORF2 antigen was coated in ELISA plates for detecting humoral immune response. After coating, the plates were washed and blocked before adding diluted mice serum. Then the plates were washed, hybridized with HRP-conjugated secondary antibody followed by adding TMB substrate. After the reaction was stopped, the result was detected by ELISA reader.

    EXAMPLE 4


    Cell-mediated immune response (CMI) and Humoral immune response



    [0072] FIG. 2A shows that the IFN-γ concentration in the vaccinated groups was higher than that in the control group, indicating that a CMI response was induced upon vaccinations. Furthermore, the IFN-γ concentration of the group receiving PRRSFREE 4-in-1 vaccine was dramatically higher than that in the PRRSFREE-treated group. The result demonstrates that PRRSFREE 4-in-1 vaccine, which was composed of one single fused antigen, can surprisingly induce a stronger CMI response than the PRRSFREE vaccines composed of four separate antigens.

    [0073] FIG. 2B shows vaccine-immunized groups had higher antigen-specific antibody titers than the control group. Mice vaccinated with the PRRSFREE 4-in-1 vaccine had a higher antibody titer than the group immunized with the PRRSFREE vaccine. The result shows that PRRSFREE 4-in-1 can induce a stronger humoral immune response than the PRRSFREE vaccine.

    [0074] The data in FIGs. 2A-B indicate that PRRSFREE 4-in-1, which contains a fusion protein comprising one single fusion antigen with fusion of D, M, P, and R antigens, can elicit a stronger cellular and humoral immune responses than the PRRSFREE vaccine, which contains four individual, separate antigens (i.e., the four antigens M, M, P, R are not fused) with each antigen in a respective fusion protein.

    EXAMPLE 5



    [0075] Combination Vaccines with porcine circovirus type 2 (PCV2) ORF2 subunit vaccine Mice were vaccinated with PBS, PRRSFREE 4-in-one plus PE-PCV2-NESK, or PRRSFREE plus PE-PCV2-NESK combo vaccines according to the immunization schedule as described above. The PRRSFREE 4-in-one plus PE-PCV2-NESK combo vaccine contains PE-DRMP-NESK (FIG. ID) and PE-PCV2-NESK (FIG. IF) fusion proteins. The PRRSFREE plus PE-PCV2-NESK combo vaccine contains 5 separate fusion proteins: (1) PE-DGD-K3, PE-M12-K3, PE-PQAB-K3, PE-RSAB-K3 (FIG. ID), and PE-PCV2-NESK (FIG. IF).

    EXAMPLE 6


    Combination Vaccines with PCV2 ORF2 subunit vaccine



    [0076] FIG. 3A shows PRRSV antigen-specific (PRRSFREE 4-in-1 fusion antigen, and PRRSFREE antigens) and FIG. 3B shows PCV2-ORF2-specific CMI responses. The data indicate that the mice group immunized with the combination of PRRSFREE 4-in-1 fusion antigen and PCV2 ORF2 subunit vaccine showed a stronger CMI response than that in the mice group immunized with the combination of PRRSFREE (4 separate antigens) and PCV2 ORF2 subunit vaccine.

    [0077] FIG. 4A shows PRRSV antigen-specific antibody responses. An ELISA method was used to measure antigen-specific antibody titers. For the group treated with the combination of PE-DRMP-NESK and PE-PCV2-NESK (i.e., two fusion proteins), the fusion antigen DRMP was used to measure the antigen-specific antibody titer. For the group treated with the combination of PRRSFREE and PE-PCV2-NESK (i.e., 5 fusion proteins), four antigens D, R, M, and P were used to measure the antigen-specific antibody titer. The data indicate that the mice group immunized with the combination of PRRSFREE 4-in-1 fusion antigen and PCV2 ORF2 subunit vaccine showed a stronger PRRSFREE 4-in-1 fusion antigen-specific humoral response than that in the mice group immunized with the combination of PRRSFREE (4 separate antigens) and PCV2 ORF2 subunit vaccine (FIG. 4A).

    [0078] FIG. 4B shows PCV2-ORF2 antigen-specific antibody responses. Surprisingly, mice immunized with the combination of PRRSFREE (4 separate antigens) and PCV2 ORF2 subunit vaccine (PE-PCV2-NESK) had a higher PCV2-specific antibody titer than the group immunized with the combination of PRRSFREE 4-in-1 fusion antigen (PE-DRMP-NESK) and PCV2 ORF2 subunit vaccine (PE-PCV2-NESK). The results indicate there was a differential PRRSV antigen-specific and PCV2 -specific humoral immune responses between the two PRRSV/PCV2 combo vaccines.

    [0079] It is clear that both approaches are effective in inducing CMI and humoral immune responses. The PRRSV/PCV2 combo vaccine comprising 2 fusion proteins (PE-DRMP-NESK and PE-PCV2-NESK) shows better efficacy in three out of four immune responses examined. This study demonstrates that PRRSV/PCV2 combo vaccine composed of PRRSV chimeric fusion antigen and PCV2 ORF2 antigen is a better choice than the one composed of 5 individual antigens. Nevertheless, both approaches are useful for inducing immune responses in an animal.

    EXAMPLE 7


    Fusion of two antigens v. Fusion of 4 antigens



    [0080] Three groups of 6-weeks-old female C57BL/6 mice (3 mice per group) were injected subcutaneously with (1) 15 µg of PE-DR-NESK protein, (2) a combination of 15 µg PE-DR-NESK and 15 µg of PE-MP-NESK proteins, or (3) 30 µg of PE-DRMP-NESK, in 200 µl of 50% ISA206 at weekly intervals three times. Mice were killed at 1 week after the last immunization, and splenocytes were harvested. Splenocytes were stimulated with 4 PRRSV antigens (M12, DgD, PQAB and RSAB, 2.5 µg/ml of each) for 72 hr, and IFN-γ in the cell-free supernatants of each group were detected using ELISA kit. FIG. 5 shows that mice immunized with PE-DRMP-NESK showed the greatest CMI response among three groups.

    EXAMPLE 8


    Cell-mediated immunity in swine



    [0081] Five-weeks-old SPF swine (2-4 swine per group) were injected intramuscularly with one of the following vaccines: (1) PRRSFREE, (2) PE-DRMP-NESK, (3) PE-MDPR-NESK, (4) RAP1-PE268-313-DRMP-K3, (5) RAP1-PE268-313-MDPR-K3 in 2 ml of 50% ISA206, or (6) PBS as placebo, twice at weekly intervals. FIG. 6 shows designs of these vaccines. The antigen in each injection was 300 µg in 2 ml of 50% ISA206. Peripheral blood mononuclear cells (PBMCs) of vaccinated swine were harvested at week-3 after last immunization. Depending on the vaccine used in immunization, the PBMCs were stimulated with PRRSFREE antigens (M12, DgD, PQAB and RSAB, 2.5 ug/ml of each), PE-DRMP-NESK, PE-MDPR-NESK, RAP1-PE268-313-DRMP-K3, or RAP1-PE268-313-MDPR-K3 for 72 hr, then IFN-γ in the cell-free supernatants of each group were detected using ELISA kit. FIG. 7 shows IFN-γ secreted by PBMC of vaccinated swine after stimulation. It was observed that vaccines comprising fusion antigens could induce higher IFN-γ secretion than placebo group.

    EXAMPLE 9


    Viremia studies in swine



    [0082] Five-weeks-old SPF swine (2-4 swine per group) were injected intramuscularly with one of the following vaccines: (1) PRRSFREE, (2) PE-DRMP-NESK, (3) PE-MDPR-NESK, (4) RAP1-PE268-313-DRMP-K3, (5) RAP1-PE268-313-MDPR-K3 in 2 ml of 50% ISA206, or (6) PBS as placebo, twice at weekly intervals. The antigen in each injection was 300 µg in 2 ml of 50% ISA206. The vaccinated swine were intranasally challenged with 2 × 105 TCID50 of PRRSV at three weeks after the last immunization. Blood sample were collected weekly. Viral RNAs were extracted from the sera and quantified using one-step SYBR® Green real-time PCR to determine the levels of viremia. The experimental results indicated that vaccines comprising fusion antigens could reduce the virus load.

    [0083] Table 2 shows SEQ ID NOs. of peptides used for making various fusion proteins.
    Table 2
    ComponentSEQ ID NO:Length
    Minimum Pseudomonas exotoxin A (PE) binding domain Ia (APC-binding domain, a.a.1- a.a.252 of PE) 1 252
    PE253-313 (translocation domain) 2 61
    PE268-313 (translocation domain)* 3 46
    PEt Core (PE translocation domain core; a.a. 280- a.a. 313 of PE) 4 34
    PE313 (a.a. 1- a.a. 313 of PE) 5 313
    PE253-364 (translocation domain) 6 112
    PE407 (a.a. 1- a.a. 407 of PE) 7 407
    RAP1 Minimum (domain III of RAP1) 8 104
    A2M Minimum 9 153
    HIV-Tat Minimum 10 24
    HSPs Minimum 11 641
    NESK is LQKKLEELELAKDEL ** 12 15
    NES consensus sequence is LXXKLXXLXLX, wherein "L" is leucine, "K" is lysine and "x" is any naturally occurring amino acid. 13 11
    NES is LQKKLEELELA 14 11
    KDEL (K) 15 4
    KDELKDELKDEL (K3) 16 12
    KKDLRDELKDEL (K3) 17 12
    KKDELRDELKDEL (K3) 18 13
    KKDELRVELKDEL (K3) 19 13
    PCV2 ORF2 (truncated porcine circovirus type 2 ORF2; aa 42 -aa 233) 20 192
    Full length PE (Exotoxin A, Pseudomonas aeruginosa) 21 613
    DGD (ORF7 antigen with a tandem repeat D) 22 220
    D (ORF7 antigen without a tandem repeat D) 23 60


     
       
    R (RSAB) 24 62
    M (M12)*** 25 165
    P (PQAB)**** 26 58
    PF313-DRMP-NFSK (or PE-DRMP-NESK) 27 841
    PE313-MDPR-NESK (or PE-MPDR-NESK) 28 746
    RAP1-PE263-313DRMP-K3 29 677
    RAP1-PE268-313MDPR-K3 30 584
    PE313-PCV2-NESK (or PE-PCV2-NESK) 31 525
    PE 1-267 (PE binding domain) 32 267
    Alternative D (ORF7 antigen, without a tandem repeat D) 33 59


     
       
    N-terminal portion of ORF6 [from a PRRSV isolate in Taiwan] 34 25
    GSSLDDFCYDSTAPQKVLLAFSITY    
    N-terminal portion of ORF5 [from a PRRSV isolate in Taiwan] 35 33
    ASNDSSSHLQLIYNLTLCELNGTDWLANKFDWA    
    N-terminal portion of ORF6 36 28
    MGSLDDFCNDSTAAQKLVLAFSITYTPI    
    N-terminal portion of ORF5 37 34
    FVAGGSSSTYQYIYNLTICELNGTDWLSNHFDWA    
    PRRSV ORF5, Type 1 (European) PRRSV strain 38 200


     
       
    PRRSV ORF6, Type 1 (European) PRRSV strain 39 173


     
       
    PRRSV ORF5, Type 2 (North America) PRRSV strain 40 200


     
       
    PRRSV ORF6: Type 2 (North America) PRRSV strain 41 174


     
       


     
       
    *: PE268-313 is a.a. 268- a.a. 313 of full-length PE; PE313 is a.a. 1- a.a. 313 of full-length PE; PE407 is a.a. 1- a.a. 407 of full-length PE.
    **: The bold letters represents the amino acid sequence of an artificial nuclear exporting signal; the underlined letters represents the amino acid sequence of an endoplasmic reticulum retention signal.
    ***: M (M12) is a fusion polypeptide prepared by fusion of PRRSV NSP 10 (C-terminal domain sequence) and NSP 11 (N-terminal domain sequence). That is, the polypeptide is derived from the nonstructural proteins ORF1b NSP 10 C-terminal portion and NSP 11 N-terminal portion.)
    ****: P (PQAB) is a polypeptide prepared by fusion of PRRSV ORF6 a.a. 2 - a.a. 26 and ORF5 aa 31- aa 63. See U.S. Patent No. 7465455. The sequence in regular letters derives from PRRSV ORF6/matrix protein sequence, and the sequence in bold letters derives from PRRSV ORF 5 sequence. The major envelope protein (GP5) encoded by the ORF5 of PRRSV has a critical role in inducing virus neutralizing (VN) antibody and cross protection among different strains of PRRSV. Since there are sequence variations among different strains, the sequences herein are disclosed for illustration purpose.

    SEQUENCE LISTING



    [0084] 

    <110> Reber Genetics Co., Ltd.

    <120> VACCINE COMPOSITIONS AGAINST PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME AND PORCINE CIRCOVIRUS ASSOCIATED DISEASES

    <130> 10025-00002

    <150> 62169205
    <151> 2015-06-01

    <160> 53

    <170> PatentIn version 3.5

    <210> 1
    <211> 252
    <212> PRT
    <213> Pseudomonas aeruginosa

    <400> 1



    <210> 2
    <211> 61
    <212> PRT
    <213> Pseudomonas aeruginosa

    <400> 2

    <210> 3
    <211> 46
    <212> PRT
    <213> Pseudomonas aeruginosa

    <400> 3



    <210> 4
    <211> 34
    <212> PRT
    <213> Pseudomonas aeruginosa

    <400> 4

    <210> 5
    <211> 313
    <212> PRT
    <213> Pseudomonas aeruginosa

    <400> 5



    <210> 6
    <211> 112
    <212> PRT
    <213> Pseudomonas aeruginosa

    <400> 6



    <210> 7
    <211> 407
    <212> PRT
    <213> Pseudomonas aeruginosa

    <400> 7





    <210> 8
    <211> 104
    <212> PRT
    <213> Homo sapiens

    <400> 8

    <210> 9
    <211> 153
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> A2M Minimum

    <400> 9



    <210> 10
    <211> 24
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> HIV-Tat Minimum

    <400> 10

    <210> 11
    <211> 641
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> HSPs Minimum

    <400> 11







    <210> 12
    <211> 15
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> NESK

    <400> 12

    <210> 13
    <211> 11
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> NES consensus sequence

    <220>
    <221> misc_feature
    <222> (2)..(3)
    <223> Xaa can be any naturally occurring amino acid

    <220>
    <221> misc_feature
    <222> (6)..(7)
    <223> Xaa can be any naturally occurring amino acid

    <220>
    <221> misc_feature
    <222> (9) .. (9)
    <223> Xaa can be any naturally occurring amino acid

    <220>
    <221> misc_feature
    <222> (11)..(11)
    <223> Xaa can be any naturally occurring amino acid

    <400> 13

    <210> 14
    <211> 11
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> NES C'-terminal is Ala

    <400> 14

    <210> 15
    <211> 4
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> ER retention sequence

    <400> 15

    <210> 16
    <211> 12
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> ER retention sequence

    <400> 16

    <210> 17
    <211> 12
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> ER retention sequence

    <400> 17

    <210> 18
    <211> 13
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> ER retention sequence

    <400> 18

    <210> 19
    <211> 13
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> ER retention sequence

    <400> 19

    <210> 20
    <211> 192
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> truncated PCV2 ORF2

    <400> 20



    <210> 21
    <211> 613
    <212> PRT
    <213> Pseudomonas aeruginosa

    <400> 21







    <210> 22
    <211> 220
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> DGD (ORF7 partial fragment with a tandem repeat D)

    <400> 22



    <210> 23
    <211> 60
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> D (ORF7 partial fragment without a tandem repeat D)

    <400> 23

    <210> 24
    <211> 62
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> R (RSAB)

    <400> 24

    <210> 25
    <211> 165
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> M (M12) antigen derived from PRRSV ORF1b

    <400> 25

    <210> 26
    <211> 58
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> antigen PQGAB (P)

    <400> 26



    <210> 27
    <211> 841
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> PE313-DRMP-NESK

    <400> 27







    <210> 28
    <211> 746
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> PE313-MDPR-NESK

    <400> 28







    <210> 29
    <211> 677
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> RAP1-PE268-313-DRMP-K3

    <400> 29





    <210> 30
    <211> 584
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> RAP1-PE268-313-MDPR-K3

    <400> 30







    <210> 31
    <211> 525
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> PE313-PCV2-NESK

    <400> 31





    <210> 32
    <211> 267
    <212> PRT
    <213> Pseudomonas aeruginosa

    <400> 32



    <210> 33
    <211> 59
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> Alternative D (ORF7 antigen, without a tandem repeat D)

    <400> 33



    <210> 34
    <211> 25
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> N-terminal portion of ORF6 [from a PRRSV isolate in Taiwan]

    <400> 34

    <210> 35
    <211> 33
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> N-terminal portion of ORF5 [from a PRRSV isolate in Taiwan]

    <400> 35

    <210> 36
    <211> 28
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> N-terminal portion of ORF6

    <400> 36



    <210> 37
    <211> 34
    <212> PRT
    <213> Artificial Sequence

    <220>
    <223> N-terminal portion of ORF5

    <400> 37

    <210> 38
    <211> 200
    <212> PRT
    <213> Porcine reproductive and respiratory syndrome virus

    <400> 38



    <210> 39
    <211> 173
    <212> PRT
    <213> Porcine reproductive and respiratory syndrome virus

    <400> 39



    <210> 40
    <211> 200
    <212> PRT
    <213> Porcine reproductive and respiratory syndrome virus

    <400> 40



    <210> 41
    <211> 174
    <212> PRT
    <213> Porcine reproductive and respiratory syndrome virus

    <400> 41

    <210> 42
    <211> 30
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> Forward primer

    <400> 42
    gaattcgtcg accaccactt taccccgagt   30

    <210> 43
    <211> 30
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> Reverse primer

    <400> 43
    ctcgagagcc cagtcgaatt tgttagccag   30

    <210> 44
    <211> 30
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> Forward primer

    <400> 44
    gaattcaata acaaagaatg cacggttgct   30

    <210> 45
    <211> 30
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> Reverse primer

    <400> 45
    ctcgagagcc cagtcaaagt ggttagacag   30

    <210> 46
    <211> 30
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> Forward primer

    <400> 46
    gaattccacc actttacccc gagtgagcgt   30

    <210> 47
    <211> 30
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> Reverse primer

    <400> 47
    ctcgagagcc cagtcgaatt tgttagccag   30

    <210> 48
    <211> 30
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> Forward primer

    <400> 48
    gaattcaata acaaagaatg cacggttgct   30

    <210> 49
    <211> 30
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> Reverse primer

    <400> 49
    ctcgagagcc cagtcaaagt ggttagacag   30

    <210> 50
    <211> 19
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> Forward primer

    <400> 50
    gaattcaatg gcattttca   19

    <210> 51
    <211> 18
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> Reverse primer

    <400> 51
    ctcgaggggg ttcaaggg   18

    <210> 52
    <211> 1518
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> DRMP coding seqeunce

    <400> 52



    <210> 53
    <211> 1239
    <212> DNA
    <213> Artificial Sequence

    <220>
    <223> MDPR coding seqeunce

    <400> 53






    Claims

    1. A fusion protein comprising:

    (a) an antigen-presenting cell (APC)-binding domain located at the N-terminus of the fusion protein, wherein the APC-binding domain is Pseudomonas exotoxin A (PE) binding domain Ia;

    (b) a translocation peptide having 34-112 amino acid residues in length, comprising the amino acid sequence of SEQ ID NO: 4, 2, 3, or 6, located at the C-terminus of the APC-binding domain;

    (c) a fusion antigen comprising:

    (i) a porcine reproductive and respiratory syndrome virus (PRRSV) ORF7 antigen;

    (ii) a PRRSV ORF1b antigen;

    (iii) a PRRSV ORF6 antigen; and

    (iv) a PRRSV ORF5 antigen;

    (d) a nuclear export signal comprising the amino acid sequence of SEQ ID NO: 13, located at the C-terminus of the fusion antigen or between the translocation peptide and the fusion antigen; and

    (e) an endoplasmic reticulum retention sequence, located at the C-terminus of the fusion antigen when the nuclear export signal is located at between the translocation peptide and the fusion antigen, or located at the C-terminus of the nuclear export signal when the nuclear export signal is located at the C-terminus of the fusion antigen;

    wherein the fusion antigen does not comprise full-length ORF7, ORF6, ORF5, and ORF1b protein sequences.
     
    2. The fusion protein of claim 1, wherein the ORF7 or ORF1b antigen is located N-terminal to the ORF6 antigen, and the ORF5 antigen is located C-terminal to the ORF6 antigen.
     
    3. The fusion protein of claim 1, wherein the fusion antigen comprises two tandem repeats of the ORF7 antigen.
     
    4. The fusion protein of claim 1, wherein the ORF5 antigen is located C-terminal to the ORF6 antigen.
     
    5. The fusion protein of claim 1, wherein the ORF6 antigen comprises the N-terminal portion amino acid sequence of the PRRSV ORF6 and the ORF5 antigen comprises the N-terminal portion amino acid sequence of the PRRSV ORF5, and the fusion antigen does not comprise the C-terminal portion amino acid sequences of the ORF6 and ORF5.
     
    6. The fusion protein of claim 5, wherein the ORF1b antigen comprises the C-terminal portion amino acid sequence of ORF1b NSP 10 and the N-terminal portion amino acid sequence of ORF1b NSP 11, and the fusion antigen is devoid of the N-terminal and C-terminal portion amino acid sequences of the ORF1b.
     
    7. The fusion protein of claim 1, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO: 27 or 28.
     
    8. The fusion protein of claim 1, wherein the translocation peptide has 34-61 amino acid residues in length.
     
    9. The fusion protein of claim 1, wherein the endoplasmic reticulum retention sequence comprises the amino acid sequence KDEL (SEQ ID NO: 15) without a tandem repeat of the amino acids KDEL.
     
    10. The fusion protein of claim 9, wherein the nuclear export signal and the ER retention sequence forms a fusion peptide that comprises the amino acid sequence of SEQ ID NO: 12.
     
    11. A composition comprising:

    (i) the fusion protein of claim 1; and

    (ii) a porcine circovirus type 2 (PCV2) fusion protein, comprising:

    (a) an antigen-presenting cell (APC)-binding domain or a CD91 receptor-binding domain, located at the N-terminus of the fusion protein, wherein the APC-binding domain or CD91 receptor-binding domain is selected from the group consisting of receptor-associated protein-1 (RAP1) domain III, alpha-2-macroglobulin receptor-associated protein (A2M), HIV-Tat, heat shock proteins, and Pseudomonas exotoxin A binding domain Ia;

    (b) a translocation peptide having 34-112 amino acid residues in length, comprising the amino acid sequence of SEQ ID NO: 4, 2, 3, or 6, located at the C-terminus of the APC-binding domain or the CD91 receptor-binding domain; and

    (c) a PCV2 ORF2 antigen;

    (d) a nuclear export signal comprising the amino acid sequence of SEQ ID NO: 13, located between the PCV2 ORF2 antigen and the endoplasmic reticulum retention sequence or between the translocation peptide and the PCV2 ORF2 antigen; and

    (e) an endoplasmic reticulum retention sequence, located at the C-terminus of the PCV2 fusion protein when the nuclear export signal is located between the translocation peptide and the PCV2 ORF2 antigen, or located at the C-terminus of the nuclear export signal when the nuclear export signal is located at the C-terminus of the PCV2 ORF2 antigen;

    wherein the PCV2 ORF2 antigen comprises the C-terminal portion amino acid sequence of PCV2 ORF 2 protein, and the PCV2 fusion protein does not comprise the N-terminal portion amino acid sequence of the PCV2 ORF2 protein.
     
    12. The composition of claim 11, wherein the porcine circovirus type 2 (PCV2) fusion protein comprises the amino acid sequence of SEQ ID NO: 31.
     
    13. A fusion protein as claimed in any one of claims 1-10, wherein the fusion antigen comprises:

    (i) the amino acid sequence of SEQ ID NO: 22, 23 or 33;

    (ii) the amino acid sequence of SEQ ID NO: 24;

    (iii) the amino acid sequence of SEQ ID NO: 25; and

    (iv) the amino acid sequence of SEQ ID NO: 26.


     
    14. A composition comprising a therapeutically effective amount of a fusion protein as claimed in any one of claims 1-10 for use in inducing antigen-specific cell-mediated and humoral responses against porcine reproductive and respiratory syndrome virus (PRRSV) in a subject in need thereof.
     
    15. A composition as claimed in claim 11 or 12 for use in inducing antigen-specific cell-mediated and humoral responses against PRRSV and PCV2 in a subject in need thereof.
     


    Ansprüche

    1. Ein Fusionsprotein, das Folgendes umfasst:

    (a) eine antigenpräsentierende Zellibindungsdomäne (antigen-presenting cell binding, APC-Bindungsdomäne), die sich am N-Terminus des Fusionsproteins befindet, wobei die APC-Bindungsdomäne die Bindungsdomäne Ia von Pseudomonas-Exotoxin A (PE) ist,

    (b) ein Translokationspeptid mit einer Länge von 34 bis 112 Aminosäureresten, umfassend die Aminosäuresequenz von SEQ ID Nr. 4, 2, 3 oder 6, die sich am C-Terminus der APC-Bindungsdomäne befindet,

    (c) ein Fusionsantigen, das Folgendes umfasst:

    (i) ein ORF7-Antigen des porcinen Reproduktions- und Respirationssyndromvirus (PRRSV),

    (ii) ein PRRSV-ORF1b-Antigen,

    (iii) ein PRRSV-ORF6-Antigen, und

    (iv) ein PRRSV-ORF5-Antigen,

    (d) ein Kernexportsignal, das die Aminosäuresequenz von SEQ ID Nr. 13 umfasst, die sich am C-Terminus des Fusionsantigens oder zwischen dem Translokationspeptid und dem Fusionsantigen befindet, und

    (e) eine endoplasmatische Retikulum-Retentionssequenz, die sich am C-Terminus des Fusionsantigens befindet, wenn sich das Kernexportsignal zwischen dem Translokationspeptid und dem Fusionsantigen befindet, oder die sich am C-Terminus des Kernexportsignals befindet, wenn sich das Kernexportsignal am C-Terminus des Fusionsantigens befindet,

    wobei das Fusionsantigen keine Volllängen-Proteinsequenzen ORF7, ORF6, ORF5 und ORF1b umfasst.
     
    2. Fusionsprotein nach Anspruch 1, wobei sich das ORF7- oder ORF1b-Antigen N-terminal zum ORF6-Antigen befindet und das ORF5-Antigen C-terminal zum ORF6-Antigen befindet.
     
    3. Fusionsprotein nach Anspruch 1, wobei das Fusionsantigen zwei Tandem-Wiederholungen des ORF7-Antigens umfasst.
     
    4. Fusionsprotein nach Anspruch 1, wobei sich das ORF5-Antigen C-terminal zum ORF6-Antigen befindet.
     
    5. Fusionsprotein nach Anspruch 1, wobei das ORF6-Antigen den N-terminalen Teil der Aminosäuresequenz von PRRSV ORF6 umfasst und das ORF5-Antigen den N-terminalen Teil der Aminosäuresequenz von PRRSV ORF5 umfasst und das Fusionsantigen nicht den C-terminalen Teil der Aminosäuresequenzen von ORF6 und ORF5 umfasst.
     
    6. Fusionsprotein nach Anspruch 5, wobei das ORF1b-Antigen den C-terminalen Teil der Aminosäuresequenz von ORF1b NSP 10 und den N-terminalen Teil der Aminosäuresequenz von ORF1b NSP 11 umfasst und das Fusionsantigen keinen N-terminalen und C-terminalen Teil der Aminosäuresequenzen von ORF1b aufweist.
     
    7. Fusionsprotein nach Anspruch 1, wobei das Fusionsprotein die Aminosäuresequenz von SEQ ID Nr. 27 oder 28 umfasst.
     
    8. Fusionsprotein nach Anspruch 1, wobei das Translokationspeptid eine Länge von 34 bis 61 Aminosäureresten hat.
     
    9. Fusionsprotein nach Anspruch 1, wobei die Retentionssequenz des endoplasmatischen Retikulums die Aminosäuresequenz KDEL (SEQ ID Nr. 15) ohne eine Tandem-Wiederholung der Aminosäuren KDEL umfasst.
     
    10. Fusionsprotein nach Anspruch 9, wobei das Kernexportsignal und die ER-Retentionssequenz ein Fusionspeptid bilden, das die Aminosäuresequenz von SEQ ID Nr. 12 umfasst.
     
    11. Eine Zusammensetzung, die Folgendes umfasst:

    (i) das Fusionsprotein nach Anspruch 1, und

    (ii) ein Fusionsprotein des porcinen Circovirus Typ 2 (PCV2), umfassend:

    (a) eine antigenpräsentierende Zellbindungsdomäne (antigen-presenting cell binding, APC-Bindungsdomäne) oder eine CD91-Rezeptor-Bindungsdomäne, die sich am N-Terminus des Fusionsproteins befindet, wobei die APC-Bindungsdomäne oder CD91-Rezeptor-Bindungsdomäne ausgewählt ist aus der Gruppe bestehend aus Rezeptor-assoziierter Protein-1-(RAP1)-Domäne III, dem Alpha-2-Makroglobulinrezeptor-assoziierten Protein (A2M), HIV-Tat, Hitzeschockproteinen und der Pseudomonas-Exotoxin-A-Bindungsdomäne Ia,

    (b) ein Translokationspeptid mit einer Länge von 34 bis 112 Aminosäureresten, umfassend die Aminosäuresequenz von SEQ ID Nr. 4, 2, 3 oder 6, die sich am C-Terminus der APC-Bindungsdomäne oder der CD91-Rezeptor-Bindungsdomäne befindet, und

    (c) ein PCV2 ORF2-Antigen,

    (d) ein Kernexportsignal, das die Aminosäuresequenz von SEQ ID Nr. 13 umfasst, die sich zwischen dem PCV2 ORF2-Antigen und der Retentionssequenz des endoplasmatischen Retikulums oder zwischen dem Translokationspeptid und dem PCV2 ORF2-Antigen befindet, und

    (e) eine endoplasmatische Retikulum-Retentionssequenz, die sich am C-Terminus des PCV2-Fusionsproteins befindet, wenn sich das Kernexportsignal zwischen dem Translokationspeptid und dem PCV2-ORF2-Antigen befindet, oder die sich am C-Terminus des Kernexportsignals befindet, wenn sich das Kernexportsignal am C-Terminus des PCV2-ORF2-Antigens befindet,

    wobei das PCV2-ORF2-Antigen den C-terminalen Teil der Aminosäuresequenz von PCV2-ORF2-Protein umfasst und das PCV2-Fusionsprotein nicht den N-terminalen Teil der Aminosäuresequenz des PCV2-ORF2-Proteins umfasst.
     
    12. Zusammensetzung nach Anspruch 11, wobei das Fusionsprotein des porcinen Circovirus Typ 2 (PCV2) die Aminosäuresequenz von SEQ ID Nr. 31 umfasst.
     
    13. Fusionsprotein nach einem der Ansprüche 1 bis 10, wobei das Fusionsantigen Folgendes umfasst:

    (i) die Aminosäuresequenz von SEQ ID Nr. 22, 23 oder 33,

    (ii) die Aminosäuresequenz von SEQ ID Nr. 24,

    (iii) die Aminosäuresequenz von SEQ ID Nr. 25, und

    (iv) die Aminosäuresequenz von SEQ ID Nr. 26.


     
    14. Zusammensetzung, umfassend eine therapeutisch wirksame Menge eines Fusionsproteins nach einem der Ansprüche 1 bis 10 zur Verwendung beim Einleiten antigenspezifischer zellvermittelter und humoraler Reaktionen gegen das porcine reproduktive und respiratorische Syndromvirus (PRRSV) bei einem Patienten, der dessen bedarf.
     
    15. Zusammensetzung nach Anspruch 11 oder 12 zur Verwendung beim Einleiten antigenspezifischer zellvermittelter und humoraler Reaktionen gegen PRRSV und PCV2 bei einem Patienten, der dessen bedarf.
     


    Revendications

    1. Protéine de fusion comprenant :

    (a) un domaine de liaison cellulaire présentant un antigène (APC) situé à l'extrémité N-terminale de la protéine de fusion, dans laquelle le domaine de liaison APC est le domaine de liaison la à Pseudomonas exotoxine A (PE) ;

    (b) un peptide de translocation comportant entre 34 et 112 résidus acides aminés en longueur, comprenant la séquence d'acides aminés de la SEQ ID No : 4, 2, 3, ou 6, situé à l'extrémité C-terminale du domaine de liaison APC ;

    (c) un antigène de fusion comprenant :

    (i) un antigène ORF7 du virus du syndrome dysgénésique et respiratoire porcin (PRRSV) ;

    (ii) un antigène de PRRSV ORF1b ;

    (iii) un antigène de PRRSV ORF6 ; et

    (iv) un antigène de PRRSV ORF5 ;

    (d) un signal d'exportation nucléaire comprenant la séquence d'acides aminés de la SEQ ID No : 13, situé à l'extrémité C-terminale de l'antigène de fusion ou entre le peptide de translocation et l'antigène de fusion ; et

    (e) une séquence de rétention du réticulum endoplasmique, située à l'extrémité C-terminale de l'antigène de fusion lorsque le signal d'exportation nucléaire est situé entre le peptide de translocation et l'antigène de fusion, ou située à l'extrémité C-terminale du signal d'exportation nucléaire lorsque le signal d'exportation nucléaire est situé à l'extrémité C-terminale de l'antigène de fusion ;

    dans laquelle l'antigène de fusion ne comprend pas les séquences protéiques ORF7, ORF6, ORF5, et ORF1b de pleine longueur.
     
    2. Protéine de fusion selon la revendication 1, dans laquelle l'antigène ORF7 ou l'antigène ORF1b est situé à l'extrémité N-terminale de l'antigène ORF6, et l'antigène ORF5 est situé à l'extrémité C-terminale de l'antigène ORF6.
     
    3. Protéine de fusion selon la revendication 1, dans laquelle l'antigène de fusion comprend deux répétitions tandem de l'antigène ORF7.
     
    4. Protéine de fusion selon la revendication 1, dans laquelle l'antigène ORF5 est situé à l'extrémité C-terminale de l'antigène ORF6.
     
    5. Protéine de fusion selon la revendication 1, dans laquelle l'antigène ORF6 comprend la séquence d'acides aminés de portion N-terminale de PRRSV ORF6 et l'antigène ORF5 comprend la séquence d'acides aminés de portion N-terminale de PRRSV ORF5, et l'antigène de fusion ne comprend pas la séquence d'acides aminés de portion C-terminale de ORF6 et ORF5.
     
    6. Protéine de fusion selon la revendication 5, dans laquelle l'antigène ORF1b comprend la séquence d'acides aminés de portion C-terminale de ORF1b NSP 10 et la séquence d'acides aminés de portion N-terminale de ORF1b NSP 11, et l'antigène de fusion est exempt des séquences d'acides aminés de portion N-terminale et C-terminale de ORF1b.
     
    7. Protéine de fusion selon la revendication 1, dans laquelle la protéine de fusion comprend la séquence d'acides aminés de la SEQ ID No : 27 ou de la SEQ ID No : 28.
     
    8. Protéine de fusion selon la revendication 1, dans laquelle le peptide de translocation comprend entre 34 et 61 résidus acides aminés en longueur.
     
    9. Protéine de fusion selon la revendication 1, dans laquelle la séquence de rétention du réticulum endoplasmique comprend la séquence d'acides aminés KDEL (SEQ ID No : 15) sans répétition tandem des acides aminés KDEL.
     
    10. Protéine de fusion selon la revendication 9, dans laquelle le signal d'exportation nucléaire et la séquence de rétention ER forment un peptide de fusion qui comprend la séquence d'acides aminés de la SEQ ID No : 12.
     
    11. Composition comprenant :

    (i) la protéine de fusion selon la revendication 1 ; et

    (ii) une protéine de fusion de circovirus porcin de type 2 (PCV2), comprenant :

    (a) un domaine de liaison cellulaire présentant un antigène (APC) ou un domaine de liaison du récepteur CD91, situé à l'extrémité N-terminale de la protéine de fusion, dans laquelle le domaine de liaison APC ou le domaine de liaison du récepteur CD91 est choisi dans le groupe constitué du domaine III de la protéine 1 associé à un récepteur (RAP1), de la protéine associée au récepteur alpha-2-macroglobuline (A2M), de HIV-Tat, des protéines de choc thermique, et du domaine la de liaison à Pseudomonas exotoxine A ;

    (b) un peptide de translocation ayant entre 34 et 112 résidus acides aminés en longueur, comprenant la séquence d'acides aminés de la SEQ ID No : 4, 2, 3, ou 6, situé à l'extrémité C-terminale du domaine de liaison APC ou du domaine de liaison du récepteur CD91 ; et

    (c) un antigène PCV2 ORF2 ;

    (d) un signal d'exportation nucléaire comprenant la séquence d'acides aminés de la SEQ ID No : 13, situé entre l'antigène PCV2 ORF2 et la séquence de rétention du réticulum endoplasmique ou entre le peptide de translocation et l'antigène PCV2 ORF2 ; et

    (e) une séquence de rétention du réticulum endoplasmique, située à l'extrémité C-terminale de la protéine de fusion PCV2 lorsque le signal d'exportation nucléaire est situé entre le peptide de translocation et l'antigène PCV2 ORF2, ou située à l'extrémité C-terminale du signal d'exportation nucléaire lorsque le signal d'exportation nucléaire est situé à l'extrémité C-terminale de l'antigène PCV2 ORF2 ;

    dans laquelle l'antigène PCV2 ORF2 comprend la séquence d'acides aminés de portion C-terminale de la protéine PCV2 ORF 2, et la protéine de fusion PCV2 ne comprend pas la séquence d'acides aminés de portion N-terminale de la protéine PCV2 ORF2.
     
    12. Composition selon la revendication 11, dans laquelle la protéine de fusion du circovirus porcin de type 2 (PCV2) comprend la séquence d'acides aminés de la SEQ ID No : 31.
     
    13. Protéine de fusion selon l'une quelconque des revendications 1 à 10, dans laquelle l'antigène de fusion comprend :

    (i) la séquence d'acides aminés des SEQ ID No : 22, 23 ou 33 ;

    (ii) la séquence d'acides aminés de la SEQ ID No : 24 ;

    (iii) la séquence d'acides aminés de la SEQ ID No : 25 ; et

    (iv) la séquence d'acides aminés de la SEQ ID No : 26.


     
    14. Composition comprenant une quantité thérapeutiquement efficace d'une protéine de fusion selon l'une quelconque des revendications 1 à 10 destinée à être utilisée dans l'induction des réponses à médiation cellulaire spécifique d'un antigène et des réponses humorales contre le virus du syndrome dysgénésique et respiratoire porcin (PRRSV) chez un sujet qui en a besoin.
     
    15. Composition selon la revendication 11 ou la revendication 12 destinée à être utilisée dans l'induction des réponses à médiation cellulaire spécifique d'un antigène et des réponses humorales contre PRRSV et PCV2 chez un sujet qui en a besoin.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description