(19)
(11)EP 3 304 663 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 15737959.5

(22)Date of filing:  01.06.2015
(51)International Patent Classification (IPC): 
H01T 21/02(2006.01)
H01T 13/34(2006.01)
H01T 13/39(2006.01)
H01T 13/46(2006.01)
H01T 13/38(2006.01)
(86)International application number:
PCT/CZ2015/000055
(87)International publication number:
WO 2016/192689 (08.12.2016 Gazette  2016/49)

(54)

A METHOD OF FORMING A METAL ELECTRODE ON THE CERAMIC INSULATOR OF A SPARK PLUG

VERFAHREN ZUR HERSTELLUNG EINER METALLELEKTRODE AUF DEM KERAMIKISOLATOR EINER ZÜNDKERZE

PROCÉDÉ DE FORMATION D'UNE ÉLECTRODE MÉTALLIQUE SUR L'ISOLATEUR EN PORCELAINE D'UNE BOUGIE D'ALLUMAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
11.04.2018 Bulletin 2018/15

(73)Proprietor: Brisk Tábor, A.S.
390 11 Tábor (CZ)

(72)Inventor:
  • MOJMÍR, Capka
    110 00 Praha 1 (CZ)

(74)Representative: Reichel, Pavel 
Lopatecka 14
147 00 Praha 4
147 00 Praha 4 (CZ)


(56)References cited: : 
US-A1- 2012 013 239
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] The subject of the invention is the method of forming a metal electrode on the ceramic insulator of s spark plug with the deposit of additional material using the laser weld deposition method.

    Background art



    [0002] For the preparation of metallic electrodes on the ceramic insulator, the PVD deposition method (physical vapour deposition) is currently used. The deposition of the electrode material takes place by spraying the target in an inert or reactive atmosphere and subsequent condensing of the forming layer on the insulator's surface. Due to its high sensitivity to deposition parameters, the PVD method has a relatively high scrap rate in industrial conditions. As deposition of layers cannot be localised precisely, the deposited layer is deposited on the entire tip of the insulator. Thus grinding must follow the deposition, during which the conductive layer is removed from undesirable areas, which makes the entire production process even more expensive. Moreover, such deposited layers show limited adhesion to ceramic insulators and thus decreased spark plug service life.

    [0003] Electrode deposition using a laser combines several advantages. The additional material is applied in the form of a wire to a precisely localised place on the insulator. This operation is final and therefore no further grinding or cleaning operation on the insulator has to follow the weld deposition. Another advantage of this method is the possibility of very quick exchange of the weld deposition material and the insulator shape. The additional material is melted during weld depositing. Upon contact of the molten metal with the ceramics, its capillary action into the porous structure of the ceramics and very good mechanical anchoring of the layer takes place. This significantly improves the adhesion of the deposited layers against the layers prepared using the PVD method, thus also improving the service life of the spark plug. The use of the weld deposit material in the form of a wire leads to the elimination of losses of often very expensive materials (on the basis of Pt, W, Ir, etc.).

    [0004] US 2012/013239 A1 discloses a method of creating a metal electrode on the ceramic insulator of a spark plug with a deposit of additional material, where this metal electrode is in the shape of a ring in the end part of the insulator body around the central electrode of the spark plug, where the spark plug insulator is first of all exposed to rotation, and then the wire feeding into the area of the created electrode is activated.

    [0005] The goal of the presented invention is to increase the service life of spark plugs with an electrode deposited on the insulator by creating a diffusion interface between the insulator and the electrode, to decrease the scrap rate of the spark plugs and the time demands and price of the deposition process.

    Summary of the invention



    [0006] The subject of this invention is the method of creating a metallic electrode on the ceramic insulator of a spark plug with a deposit of additional material using the laser weld deposition method, where this metallic electrode, formed by a diffusion metallic layer of the joint between the weld deposit of the smelted wire and the insulator, is in the shape of a ring in the end part of the insulator body around the central electrode of the spark plug. The substance of the invention consists in first preheating the spark plug insulator by resistance heating to the temperature of 500 to 700°C at the rate of 100 to 150°C/min to prevent the creation of thermal stresses, and subsequently exposing it to rotation at the speed depending on the required wire weld deposit thickness, where the end part of the insulator, at the distance of 12 to 15 mm from its margin, is preheated to the temperature of the wire weld deposition determined below the temperature of phase transformation of the insulator material by the action of a laser beam swept into a rectangular area homogenously at the power density of laser preheating within the range of 3,500 to 4,000 W/sq. cm. After achieving the weld depositing temperature of the wire, the wire feeding into the area of the created electrode is activated, with the feed speed from 0.5 to 3 mm / 360°, and together with the wire feeding activation, the laser output decreases to the power density of 700 to 900 W/sq. cm, while throughout the weld deposition, the end part of the insulator is simultaneously heated at the distance of 12 to 15 mm from its margin and after weld depositing an overlap of 360° + 30° of the insulator, the wire feeding is deactivated and the laser output is decreased to zero.

    [0007] During the laser preheating, the temperature of the ceramic insulator in the area is 100°C below the temperature of phase transformation of its ceramic material.

    [0008] The weld deposited wire is advantageously a steel wire with a diameter of 0.6 mm, while the ring-shaped metallic electrode with a height of 0.5 to 5 mm on the ceramic insulator is situated in a preformed groove on the insulator, where the deposit depth of this electrode or its ring thickness is within the range of 0.01 to 1.5 mm.

    Brief description of the drawings



    [0009] In the attached drawings, an example of creating a metallic electrode on the ceramic insulator of a spark plug using the laser weld deposition method with additional material in the form of a wire is depicted. In Fig. 1A, the end part of the spark plug insulator is exposed to resistance preheating. In Fig. 1B, immediately afterwards, it is exposed to laser preheating, and in Fig. 1C, it is already fitted with the diffusion conductive metallic layer between the ceramic material of the insulator and the additional metallic material of the weld deposited electrode. In Fig. 2, in a partial vertical section, a detail of the spark plug end part layout with a metallic electrode created by laser weld deposition on the ceramic insulator is shown. In Fig. 3, the time course of the power density during weld depositing ceramic insulators of a spark plug for various metallic materials is displayed. In Figs. 4 and 5, there are photographs of a cut of a metallic electrode weld deposited on an insulator with a diffusion layer between the electrode and the insulator.

    Detailed description of the invention



    [0010] The principle of the method is intensive heating of the insulator and the additional wire of the Autrod alloy by a laser beam so that only the fed wire of the spark plug insulator ceramics layer with the thickness of 50 to 100 µm is melted. During this process, a diffusion metallic layer 3 between the ceramic material of the insulator 1, formed by 95 to 99% of Al2O3, and the additional metallic wire of the weld deposited electrode in the form of the Autrod 12.58 steel wire alloyed by Mn-Si (with a copper surface layer) with the diameter of 0.6 mm, made by ESAB, is created. Meanwhile, the ambient material of the insulator 1 remains unaffected. The welded electrode is in the shape of a ring with a height of 0.5 to 5 mm (depending on the diameter of the wire used) with a deposit depth (ring thickness) from 0.01 to 1.5 mm, situated in a premade groove on the insulator 1 around the central electrode 2 of the spark plug.

    [0011] A high-performance fibre laser was used, emitting radiation with a wavelength of 1,070 nm, which worked in the continuous mode (CW). The laser beam was led from the laser source via an optic fibre into the scanning head, where it was swept using a system of moving mirrors into a rectangular area with a size of 14 x 4 mm, with homogenous power distribution. The scanning speed was 100 m/s. This intensive heat source was utilised to preheat the insulator 1 to the weld deposition temperature and for the actual weld deposition process, which is the smelting of the additional wire and creation of the diffusion joint (the deposit of the conductive metallic layer 3 between the weld deposit and the insulator 1).

    [0012] In order to prevent the creation of thermal stresses in the ceramic insulator 1 due to fast and uneven heating during the additional wire weld deposition, and also in order to increase the speed of the entire process, the insulators 1 are preheated in a continuous resistance furnace to the temperature of 500 to 700°C at the rate of 100 to 150°C per minute. After this resistance heating, it is placed into a rotary positioning mechanism, which secures homogenous heating of the tip of the insulator 1 by the laser (the resistance preheating area 4) and rotary motion of the insulator 1 during the wire weld depositing. The rotation speed is chosen as high as possible, depending on the required weld deposit thickness, usually from 50 to 150° per second.

    [0013] Immediately after the resistance preheating, laser preheating follows. Using the laser and the scanning head, the insulator 1 tip, in the laser preheating area 5 at the distance of 12 to 15 mm from the margin, is homogenously heated from the resistance preheating temperature to the weld deposition temperature, which is determined approximately 100°C below the value of the phase transformation of the insulator 1 material. The output of the laser during the additional heating of the insulator 1 up to the weld deposition temperature is 2,100 W. The power density during the laser preheating is 3,500 to 4,000 W/sq. cm. After achieving the weld deposition temperature, wire feeding is activated, and the feeding speed is 0.5 to 3 mm / 360°. Together with the wire activation, the laser output is decreased to the power density of 700 to 900 W/sq. cm (the laser output during wire weld depositing is 420 W). Throughout the weld depositing, the tip of the insulator 1 is also heated (approximately 12 to 15 mm from the margin), in order to prevent creation of large thermal gradients. After weld depositing an overlap of 360° + 30° of the insulator 1, the wire feed is deactivated and the laser output decreases to zero.

    [0014] It is necessary to discern the temperature of the weld deposition wire and the temperature of the insulator, which differ despite being heated from one source. The wire temperature during weld depositing must always be above its melting point (1,550°C for steel), while the temperature of the ceramic insulator 1 must be, on the contrary, below the temperature of the phase transformation of the ceramics (approximately by 100 ° C).

    [0015] In Fig. 3, the time courses of laser output during weld depositing of ceramic insulators 1 are shown for various materials of the welding wire, for example for welding wires of the Autrod 12.58 steel with a wire diameter of 0.6 mm (steel alloyed by Mn-Si with a copper surface layer), and AISi 316 with a wire diameter of 0.6 mm, and NiCr2MnSi with a diameter of 0.4 mm.

    [0016] Furthermore, two photographs (Figs. 4 and 5) of the cut through the metallic layer 3 on the insulator 1 with the intermediate diffusion layer are attached.


    Claims

    1. The method of creating a metal electrode on the ceramic insulator of a spark plug with a deposit of additional material using the laser weld deposition method, where this metal electrode, formed by a diffusion metallic layer (3) of the joint between the weld deposit of the smelted wire and the insulator (1), is in the shape of a ring in the end part of the insulator body (1) around the central electrode (2) of the spark plug, characterized in that first, the spark plug insulator (1) is preheated by resistance heating to the temperature of 500 to 700°C at the rate of 100 to 150°C/min to prevent the creation of thermal stresses, and subsequently it is exposed to rotation at the speed depending on the required wire weld deposit thickness, where the end part of the insulator (1), at the distance of 12 to 15 mm from its margin, is preheated to the temperature of the wire weld deposition determined below the temperature of phase transformation of the insulator (1) material by the action of a laser beam swept into a rectangular area homogenously at the power density of laser preheating within the range of 3,500 to 4,000 W/sq. cm, after achieving the weld depositing temperature of the wire, the wire feeding into the area of the created electrode is activated, with a feed speed from 0.5 to 3 mm / 360°, and together with the wire feeding activation, the laser output decreases to the power density of 700 to 900 W/sq. cm, while throughout the weld deposition, the end part of the insulator is simultaneously heated at a distance of 12 to 15 mm from its margin and after weld depositing an overlap of 360° + 30° of the insulator (1), the wire feeding is deactivated and the laser output is decreased to zero.
     
    2. The method according to claim 1, characterized in that during laser preheating the temperature of the ceramic insulator (1) in the area is 100°C below the temperature of the phase transformation of the ceramic material.
     
    3. The method according to claim 1, characterized in that that the weld deposited wire is a steel wire with the diameter of 0.6 mm, while the ring-shaped metallic electrode with the height of 0.5 to 5 mm on the ceramic insulator (1) is situated in a preformed groove on the insulator (1), where the deposit depth of this electrode or the ring thickness of this electrode is within the range of 0.01 to 1.5 mm.
     


    Ansprüche

    1. Das Verfahren zur Ausbildung einer Metallelektrode auf dem keramischen Isolator der Zündkerze mit Zusatzmaterial-Beschichtung mittels des Verfahrens der Laseraufschweißung, wobei diese Metallelektrode durch die aus einer diffundierten Metallschicht (3) der Verbindung zwischen der Aufschweißung des aufzuschmelzenden Drahtes und dem Isolator (1) in Form eines Ringes im Abschlussbereich des Körpers des Isolators (1) um die mittlere Elektrode (2) der Zündkerze ausgebildet ist, ist dadurch gekennzeichnet, dass zur Vermeidung der Bildung von Wärmespannungen der Isolator (1) der Zündkerze zuerst mit der Widerstandsheizung auf die Temperatur von 500 bis 700 °C mit einer Geschwindigkeit von 100 bis 150 °C/min vorgewärmt wird, nachfolgend wird er in Rotation mit von der geforderten Aufschweißungsdicke des Drahts abhängiger Geschwindigkeit versetzt, wobei der Abschlussbereich des Isolators (1) im Abstand von 12 bis 15 mm von seinem Rand durch die Wirkung des bei einer Leistungsdichte der Laservorwärmung im Bereich von 3500 bis 4000 W/cm2 in eine Rechteckfläche gewobbelten Laserstrahls auf die Temperatur der Aufschweißung des Drahts, die unter der Temperatur der Phasenumwandlung des Materials des Isolators (1) festgesetzt ist, homogen vorgewärmt wird. Nach dem Erreichen der Aufschweißungsdicke des Drahts wird die Zuführung des Drahts zum auszubildenden Bereich der Elektrode bei einer Zuführgeschwindigkeit von 0,5 bis 3 mm/360° aktiviert und zusammen mit der Aktivierung der Drahtzuführung wird die Laserleistung auf eine Leistungsdichte von 700 bis 900 W/cm2 reduziert, wobei während der Gesamtdauer der Aufschweißung der Abschlussbereich der Isolators (1) im Abstand von 12 bis 15 mm von dessen Rand gleichzeitig erwärmt wird. Nach dem Aufschweißen der Abdeckung von 360° + 30° des Isolators (1) wird die Drahtzuführung deaktiviert und die Leistung des Lasers bis auf null reduziert.
     
    2. Das Verfahren nach Anspruch 1 ist dadurch gekennzeichnet, dass bei der Laservorwärmung die Temperatur des keramischen Isolators (1) im Bereich von 100 °C unter der Temperatur der Phasenumwandlung seines keramischen Materials liegt.
     
    3. Das Verfahren nach Anspruch 1 ist dadurch gekennzeichnet, dass der aufgeschweißte Draht ein Stahldraht mit 0,6 mm Durchmesser ist, wobei die Metallelektrode in Form eines Ringes mit einer Höhe von 0,5 bis 5 mm auf dem keramischen Isolator (1) in einer im Voraus ausgebildeten Nut auf dem Isolator (1) angeordnet ist, wo die Tiefe der Beschichtung dieser Elektrode bzw. die Stärke des Ringes dieser Elektrode im Bereich von 0,01 bis 1,5 mm liegt.
     


    Revendications

    1. Procédé de formation d'une électrode métallique sur un isolant céramique de bougie d'allumage avec une couche de matériau d'addition déposé par un procédé de soudage au laser, dans lequel l'électrode métallique formée par une couche de métal de diffusion (3) de la liaison entre le cordon de soudure et l'isolant (1) a une forme annulaire dans l'extrémité du corps de l'isolant (1) autour de l'électrode centrale (2) de la bougie d'allumage caractérisé en ce que l'isolant de la bougie d'allumage (1) est préalablement préchauffé par résistance à une température de 500 à 700 °C à une vitesse de 100 à 150 °C/min afin de prévenir les contraintes thermiques, puis est soumis à une rotation dont la vitesse dépend de l'épaisseur de soudage du fil requise, où l'extrémité de l'isolant (1) située entre 12 et 15 mm de son bord par application d'un faisceau laser balayé de manière homogène sur une surface rectangulaire à une densité de puissance du préchauffage laser comprise entre 3 500 et 4 000 W/cm2 est préchauffée à une température de soudage du fil déterminée en-dessous de la température de transformation de phase du matériau de l'isolant (1) ; une fois la température de soudage du fil atteinte, l'alimentation en fil vers la zone de l'électrode en cours de création est activée à une vitesse de 0,5 à 3 mm/360° et, parallèlement à l'activation de l'alimentation en fil, la puissance du laser est réduite à une densité de puissance de 700 à 900 W/cm2, tandis que l'extrémité de l'isolant (1) à une distance de 12 à 15 mm de son bord est chauffée simultanément, et une fois que le soudage du chevauchement à 360° + 30° de l'isolant (1) est achevé, l'alimentation en fil est désactivée et la puissance du laser est réduite à zéro.
     
    2. Procédé selon la revendication 1 caractérisé en ce que, lors du préchauffage au laser, la température de l'isolant céramique (1) est de l'ordre de 100 °C en-dessous de la température de transformation de phase de son matériau céramique.
     
    3. Procédé selon la revendication 1 caractérisé en ce que le fil à souder est un fil d'acier de 0,6 mm de diamètre et que l'électrode annulaire en métal, de 0,5 à 5 mm de hauteur sur l'isolant en céramique (1), est située dans la rainure formée au préalable sur l'isolant (1), où la profondeur de dépôt de cette électrode, respectivement l'épaisseur de l'anneau de cette électrode, est comprise entre 0,01 et 1,5 mm.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description