BACKGROUND
[0001] Gas turbine engines contain structural elements that may be thermally protected. Coatings or liners may be applied as thermal protection. The liner may be a float wall liner that is supported in a floating manner to permit relative expansion and/or contraction of the float wall liner without incurring high stresses. The float wall liner may be provided with a coating that is subject to thermal mechanical fatigue cracking.
[0002] Accordingly, it is desirable to provide a float wall liner that is more robust to minimize thermal mechanical fatigue cracking of the coating.
[0003] WO 2015/047472 discloses a combustor having a wall assembly formed of a liner panel supported by a support shell. Pins extend from the surface of the liner panel extending towards the support shell to aid heat transfer from the liner panel to a flow of cooling air passing between the liner panel and support shell.
BRIEF DESCRIPTION
[0004] According to the present invention, there is provided a gas turbine engine, comprising: an annular shell having an annular shell inner surface and an annular shell outer surface disposed opposite the annular shell inner surface; and a wall panel assembly, having: first and second liner panels operatively connected to the annular shell, the first and second liner panels each having a liner panel inner surface and a liner panel outer surface each extending between a liner panel first end and a liner panel second end, wherein the second liner panel is disposed proximate the first liner panel, the first liner panel including a first arm and a second arm, the first arm being disposed proximate the first liner panel first end and extending towards the annular shell inner surface, the first arm being spaced apart from the annular shell inner surface, and the second arm being disposed proximate the first liner panel second end extending towards the annular shell inner surface, the second arm being spaced apart from the annular shell inner surface; a coating disposed on at least one of the first liner panel inner surface and the first liner panel outer surface, the coating having a first overall thickness disposed proximate the first liner panel first end and a second overall thickness disposed proximate the first liner panel second end, the first overall thickness being different from the second overall thickness; a stud that extends from the first liner panel outer surface through the annular shell inner surface to operatively connect the first liner panel to the annular shell; a plurality of cooling pins that extend from the first liner panel outer surface towards the annular shell inner surface; and a grommet disposed on the first liner panel outer surface, the grommet configured to space the plurality of cooling pins apart from the annular shell and aid in spacing the first arm and the second arm from the shell inner surface.
[0005] An overall thickness of the coating may vary between the first liner panel first end and the first liner panel second end according to a ramp function.
[0006] An overall thickness of the coating may vary between the first liner panel first end and the first liner panel second end according to a sinusoidal function.
[0007] The first liner panel may have a first liner panel first side and a first liner panel second side each extending between the first liner panel first end and the first liner panel second end.
[0008] The first overall thickness may be constant in a direction that extends between the first liner panel first side and the first liner panel second side.
[0009] The second overall thickness may be constant in a direction that extends between the first liner panel first side and the first liner panel second side.
[0010] The annular shell may define at least one cooling hole that extends from the first liner panel outer surface towards the annular shell inner surface.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] The subject matter which is regarded as the present invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the present invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
FIG. 1 is a partial sectional view of a combustor and a turbine section of a gas turbine engine;
FIG. 2 is a partial sectional view of a shell and a wall panel assembly of the gas turbine engine;
FIG. 3 is a partial sectional view of another configuration of the combustor and the turbine section of the gas turbine engine;
FIG. 4 is a partial sectional view of another configuration of the shell and the wall panel assembly of the gas turbine engine;
FIG. 5 is a partial axial sectional view of a first configuration of a wall panel assembly;
FIG. 6 is a partial axial sectional view of a second configuration of a wall panel assembly;
FIG. 7 is a partial axial sectional view of a third configuration of a wall panel assembly; and
FIG. 8 is a partial circumferential sectional view of at least one of the first, second, and third configuration of the wall panel assembly.
DETAILED DESCRIPTION
[0012] Referring now to the Figures, where the present invention will be described with reference to specific embodiments, by way of example only. It is to be understood that the disclosed embodiments are merely illustrative and may be embodied in various and alternative forms. The Figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
[0013] Referring to FIG. 1, a partial sectional view of a portion of gas turbine engine 10 is shown. The portion of the gas turbine engine 10 includes at least a portion of a combustor section 12 and a vane 14 of the combustor section 12 or a turbine section that is disposed downstream of the combustor section 12.
[0014] The combustor section 12 includes an annular shell 20 and a wall panel assembly 22. The annular shell 20 extends axially and circumferentially between a fuel nozzle assembly 30 and the vane 14. The fuel nozzle assembly 30 is configured to mix and ignite compressed air that is delivered to the combustor section 12 with fuel to generate a flame and/or hot combustion gases 32 that are contained within the annular shell 20 and pass through the vane 14 and into the turbine section.
[0015] The annular shell 20 may be formed of the plurality of axially and/or circumferentially arranged shell sections that are contiguous or joined together. The annular shell 20 includes an annular shell inner surface 40 and an annular shell outer surface 42 that is disposed opposite the annular shell inner surface 40. The annular shell inner surface 40 and the outer annular shell surface 42 each extend axially and circumferentially between the fuel nozzle assembly 30 and the vane 14.
[0016] The annular shell 20 defines at least one mounting hole 44 and at least one cooling hole 46. The at least one mounting hole 44 extends from the annular shell outer surface 42 to the annular shell inner surface 40. The at least one cooling hole 46 is spaced apart from the at least one mounting hole 44. The at least one cooling hole 46 is disposed substantially parallel to the at least one mounting hole 44, as shown in FIGS. 1-4. In at least one embodiment, a plurality of cooling holes may be provided in the annular shell 20. The plurality of cooling holes are disposed about and are axially and circumferentially spaced apart from the at least one mounting hole 44.
[0017] The wall panel assembly 22 is operatively connected to the annular shell 20. The wall panel assembly 22 is configured to provide thermal protection for the annular shell 20 from the combustion gases that are contained within the annular shell 20. The wall panel assembly 22 includes a first liner panel 50, a grommet 52 (
see FIGS. 5-7), a stud 54, a coating 56 (
see FIGS. 5-8), and a second liner panel 58.
[0018] The first liner panel 50 includes a first liner panel inner surface 70, a first liner panel outer surface 72, a first liner panel first side 74, and a first liner panel second side 76. The first liner panel inner surface 70 is disposed opposite and is radially spaced apart from the first liner panel outer surface 72. The first liner panel inner surface 70 and the first liner panel outer surface 72 are each disposed substantially parallel to the annular shell inner surface 40. The first liner panel inner surface 70 and the first liner panel outer surface 72 each axially extend between a first liner panel first end 80 and a first liner panel second end 82 that is disposed opposite the first liner panel first end 80. The first liner panel inner surface 70 and the first liner panel outer surface 72 each circumferentially extend between the first liner panel first side 74 and the first liner panel second side 76.
[0019] Cooling air may enter through the at least one cooling hole 46 and impinge on the first liner panel outer surface 72. The cooling air may be fed from a region external to the combustor section 12 having a temperature less than the temperature of the combustion gases contained within the combustor section 12 to cool the first liner panel 50. Referring to FIGS. 1 and 2, a plurality of cooling pins 90 are disposed on the first liner panel outer surface 72. The plurality of cooling pins 90 extend from the first liner panel outer surface 72 towards the annular shell inner surface 40. The plurality of cooling pins 90 are configured to increase the surface area of the first liner panel 50 to improve heat transfer from the first liner panel 50. The plurality of cooling pins 90 are spaced apart from and do not engage the annular shell inner surface 40 by the grommet 52.
[0020] The grommet 52 is disposed on the first liner panel outer surface 72. The grommet 52 is configured to space the plurality of cooling pins 90 apart from the annular shell inner surface 40. The grommet 52 may engage the first liner panel outer surface 72 and the annular shell inner surface 40. The grommet 52 sets a spacing or distance between the first liner panel 50 and the first liner panel outer surface 72 and the annular shell inner surface 40.
[0021] The stud 54 is configured to operatively connect the first liner panel 50 to the annular shell 20. The stud 54 extends from the first liner panel outer surface 72 and is received in the at least one mounting hole 44 of the annular shell 20 such that the stud 54 extends completely through the annular shell inner surface 40 and the annular shell outer surface 42. The stud 54 may be a fastener, a pin, or the like that is secured to the annular shell by a nut or the like that is disposed on the annular shell outer surface 42.
[0022] Referring to FIGS. 3 and 4, the first liner panel 50 is provided with a plurality of liner panel cooling holes 100. The plurality of liner panel cooling holes 100 extend from the first liner panel outer surface 72 towards the first liner panel inner surface 70. The plurality of liner panel cooling holes 100 are configured to receive the cooling air that enters through the at least one cooling hole 46 to aid in cooling the first liner panel 50. At least one liner panel cooling hole of the plurality of liner panel cooling holes 100 is proximately aligned with the at least one cooling hole 46 such that an outlet of the at least one cooling hole 46 directly flows into an inlet of at least one liner panel cooling hole of the plurality of liner panel cooling holes 100. The plurality of liner panel cooling holes 100 are disposed at an angle relative to the at least one cooling hole 46 of the annular shell 20. The plurality of liner panel cooling holes 100 are disposed in a non-parallel relationship relative to the at least one cooling hole 46 of the annular shell 20. The plurality of liner panel cooling holes 100 may be provided in conjunction with the plurality of cooling pins 90 or may be provided as an alternative to the plurality of cooling pins 90.
[0023] With continued reference to FIGS. 3 and 4, the first liner panel 50 includes a first arm 110 and a second arm 112. The first arm 110 is disposed proximate the first liner panel first end 80 and extends towards the annular shell inner surface 40. The first arm 110 is spaced apart from the annular shell inner surface 40. The second arm 112 is disposed proximate the first liner panel second end 82 and extends towards the annular shell inner surface 40. The second arm 112 is spaced apart from the annular shell inner surface 40. The grommet 52 is provided and aids in spacing the first arm 110 and the second arm 112 from the shell inner surface 40.
[0024] Referring to FIGS. 5-8, the coating 56 is applied to the first liner panel 50. The coating 56 is disposed on the first liner panel inner surface 70 and/or the first liner panel outer surface 72. In at least one embodiment, the coating 56 may be applied to at least one of the first liner panel inner surface 70 and the first liner panel outer surface 72 such that at least one of the first liner panel inner surface 70 and the first liner panel outer surface 72 is coated by the coating 56 and the other of the at least one of the first liner panel inner surface 70 and the first liner panel outer surface 72 is uncoated or not coated by the coating 56. The coating 56 is a thermal barrier coating that is configured to provide thermal protection to the first liner panel 50. The combination of the coating 56 and the cooling air that enters through the at least one cooling hole 46 and impinges or flows through the first liner panel 50 controls the temperature of the first liner panel 50 and ultimately the annular shell 20. The constraining of the first liner panel 50 with the annular shell 20 by the stud 54 and temperature differences due to the cooling air that impinges or flows through the first liner panel 50 may result in high thermal stresses that may lead to thermal mechanical fatigue cracking of at least one of the coating 56 and the first liner panel 50. For example, the first liner panel first end 80 may be cooler as compared to the first liner panel second end 82 due to the cooling air provided through the at least one cooling hole 46 impinging closer to the first liner panel first end 80 than the first liner panel second end 82.
[0025] The coating 56 is applied to the first liner panel inner surface 70 and/or the first liner panel outer surface 72 such that it has a varying or variable overall thickness in the axial direction, or in the axial and the circumferential directions, of the first liner panel 50 to control the temperature of the first liner panel 50.
[0026] The overall thickness of the coating 56 may be thinner proximate areas of the first liner panel 50 that are disposed proximate the at least one cooling hole 46 of the annular shell 20 and may be thicker proximate areas of the first liner panel 50 that are spaced apart from the at least one cooling hole 46 of the annular shell 20. Additionally, the overall thickness of the coating 56 may be thicker proximate areas of the first liner panel 50 that are disposed closer to the flame or hot combustion gases and may be thinner proximate areas of the first liner panel 50 that are disposed further from the flame or hot combustion gases.
[0027] The coating 56 may have a variable nominal overall thickness distribution to reduce thermal gradients and results in a more isothermal design of the first liner panel 50. Ultimately, the coating 56 having a variable nominal overall thickness distribution improves service life of the combustor section 12 and the overall gas turbine engine. The coating 56 may also reduce overhaul and repair costs for the gas turbine engine 10.
[0028] The coating 56 shown in Figures 5-7 includes a first coating 120 disposed on the first liner panel inner surface 70 and a second coating 122 disposed on the first coating 120. The first coating 120 is a metallic bond coating to aid in bonding the second coating 122 to at least one of the first coating 120 and the first liner panel inner surface 70. The second coating 122 is an applied ceramic-based coating, a thermal barrier coating, a flame sprayed ceramic, or the like. A combination of the first coating 120 and the second coating 122 defines the overall thickness of the coating 56. The thickness of the second coating 122 is varied axially, or axially and circumferentially, over the first liner panel inner surface 70 to vary the overall thickness of the coating 56 axially, or axially and circumferentially, over the first liner panel inner surface 70.
[0029] The coating 56 defines a first overall thickness, t
1, that is disposed proximate the first liner panel first end 80, a second overall thickness, t
2, that is disposed proximate the first liner panel second end 82, and an overall thickness, t
0, that extends or is disposed between the first liner panel first end 80 and the first liner panel second end 82. The first overall thickness, t
1, is different from the second overall thickness, t
2.
[0030] The first overall thickness, t
1, may be substantially constant circumferentially in a direction that extends between the first liner panel first side 74 and the first liner panel second side 76. As shown in FIG. 8, the first overall thickness, t
1, may vary circumferentially in a direction that extends between the first liner panel first side 74 and the first liner panel second side 76.
[0031] The second overall thickness, t2, may be substantially constant circumferentially in a direction that extends between the first liner panel first side 74 and the first liner panel second side 76. As shown in FIG. 8, the second overall thickness, t
2, may vary circumferentially in a direction that extends between the first liner panel first side 74 and the first liner panel second side 76.
[0032] As shown in FIG. 5, the overall thickness, t
0, of the coating 56 varies between the first liner panel first end 80 and the first liner panel second end 82 according to a ramp function. The ramp function increases the overall thickness, t
0, of the coating 56 in the axial direction from the first liner panel first end 80 and the first liner panel second end 82 such that the second overall thickness, t
2, is greater than the first overall thickness, t
1. In at least one embodiment, the ramp function increases the overall thickness, t
0, of the coating 56 in the circumferential direction from the first liner panel first side 74 and the first liner panel second side 76.
[0033] As shown in FIG. 6, the overall thickness, t
0, of the coating 56 varies between the first liner panel first end 80 and the first liner panel second end 82 according to a sinusoidal or pseudo-sinusoidal function. The sinusoidal or pseudo-sinusoidal function increases and decreases the overall thickness, t
0, of the coating 56 in the axial direction from the first liner panel first end 80 and the first liner panel second end 82 based on a sine or cosine between coating thickness and axial position. In at least one embodiment, the sinusoidal or pseudo-sinusoidal function increases and decreases the overall thickness, t
0, of the coating 56 in the circumferential direction from the first liner panel first side 74 and the first liner panel second side 76 based on a sine or cosine relationship between coating thickness and circumferential position.
[0034] As shown in FIG. 7, the overall thickness, t
0, of the coating 56 varies between the first liner panel first end 80 and the first liner panel second end 82 according to an arbitrary or random function. The arbitrary or random function increases and/or decreases the overall thickness, t
0, of the coating 56 in the axial direction from the first liner panel first end 80 and the first liner panel second end 82. In at least one embodiment, the arbitrary or random function increases and/or decreases the overall thickness, t
0, of the coating 56 in the circumferential direction from the first liner panel first side 74 and the first liner panel second side 76.
[0035] Referring to FIGS. 1-4, the second liner panel 58 is operatively connected to the annular shell 20. The second liner panel 58 is disposed proximate the first liner panel 50. The second liner panel 58 includes a second liner panel inner surface 130, a second liner panel outer surface 132, a second liner panel first side 134, and a second liner panel second side 136. The second liner panel inner surface 130 is disposed opposite and is radially spaced apart from the second liner panel outer surface 132. The second liner panel inner surface 130 and the second liner panel outer surface 132 are each disposed substantially parallel to the annular shell inner surface 40. The second liner panel inner surface 130 and the second liner panel outer surface 132 each axially extend between a second liner panel first end 140 and a second liner panel second end 142 that is disposed opposite the second liner panel first end 140. The second liner panel inner surface 130 and the second liner panel outer surface 132 each circumferentially extend between the second liner panel first side 134 and the second liner panel second side 136. The second liner panel 58 has a substantially similar configuration to the first liner panel 50 and may also include the coating 56 that is disposed on the second liner panel inner surface 130.
[0036] As shown in FIGS. 1 and 2, the second liner panel second end 142 axially overlaps the first liner panel first end 80. The second liner panel second end 142 is radially spaced apart from the first liner panel first end 80 and defines a gap 150 therebetween. The cooling air that enters through the at least one cooling hole 46 may flow through the gap 150 and cool at least one of the second liner panel second end 142 and the first liner panel first end 80.
[0037] As shown in FIGS. 3 and 4, the second liner panel 58 includes a first arm 152 and a second arm 154. The first arm 152 is disposed proximate the second liner panel first end 140 and extends towards the annular shell inner surface 40. The first arm 152 is configured to engage the annular shell inner surface 40. The second arm 154 is disposed proximate the second liner panel second end 142 and extends towards the annular shell inner surface 40. The second arm 154 is configured to engage the annular shell inner surface 40. The second liner panel second end 142 abuts the first liner panel first end 80 such that the second arm 154 of the second liner panel 58 abuts the first arm 110 of the first liner panel 50.
[0038] Throughout this specification, the term "attach," "attachment," "connected", "coupled," "coupling," "mount," or "mounting" shall be interpreted to mean that a structural component or element is in some manner connected to or contacts another element, either directly or indirectly through at least one intervening structural element, or is integrally formed with the other structural element.
[0039] While the present invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present invention is not limited to such disclosed embodiments. Accordingly, the present invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
1. A gas turbine engine, comprising:
an annular shell (20) having an annular shell inner surface (40) and an annular shell outer surface (42) disposed opposite the annular shell inner surface; and
a wall panel assembly (22), having:
first and second liner panels (50, 58) operatively connected to the annular shell, the first and second liner panels each having a liner panel inner surface (70, 130) and a liner panel outer surface (72, 132) each extending between a liner panel first end (80) and a liner panel second end (82, 142), wherein the second liner panel is disposed proximate the first liner panel, the first liner panel (50) including a first arm (110) and a second arm (112), the first arm (110) being disposed proximate the first liner panel first end (80) and extending towards the annular shell inner surface (40), the first arm (110) being spaced apart from the annular shell inner surface (40), and the second arm (112) being disposed proximate the first liner panel second end (82) extending towards the annular shell inner surface (40), the second arm (112) being spaced apart from the annular shell inner surface (40);
a coating (56) disposed on at least one of the first liner panel inner surface and the first liner panel outer surface, the coating having a first overall thickness (t1) disposed proximate the first liner panel first end and a second overall thickness (t2) disposed proximate the first liner panel second end, the first overall thickness being different from the second overall thickness;
a stud (54) that extends from the first liner panel outer surface (72) through the annular shell inner surface (40) to operatively connect the first liner panel (50) to the annular shell (20);
a plurality of cooling pins (90) that extend from the first liner panel outer surface (72) towards the annular shell inner surface (40); and
a grommet disposed on the first liner panel outer surface (72), the grommet configured to space the plurality of cooling pins apart from the annular shell and aid in spacing the first arm (110) and the second arm (112) from the shell inner surface (40).
2. The gas turbine engine of claim 1, wherein an overall thickness (t0) of the coating (56) varies between the first liner panel first end (80) and the first liner panel second end (82) according to a ramp function.
3. The gas turbine engine of claim 1, wherein an overall thickness (t0) of the coating (56) varies between the first liner panel first end (80) and the first liner panel second end (82) according to a sinusoidal function.
4. The gas turbine engine of claim 1, wherein the first liner panel (50) has a first liner panel first side (74) and a first liner panel second side (76) each extending between the first liner panel first end (80) and the first liner panel second end (82).
5. The gas turbine engine of claim 4, wherein the first overall thickness (t1) is constant in a direction that extends between the first liner panel first side (74) and the first liner panel second side (76).
6. The gas turbine engine of claim 4 or 5, wherein the second overall thickness (t2) is constant in a direction that extends between the first liner panel first side (74) and the first liner panel second side (76).
7. The gas turbine engine of any of claims 1 to 6, wherein the annular shell (20) defines at least one cooling hole (46) that extends from the first liner panel outer surface (72) towards the annular shell inner surface (40).
1. Gasturbinenmotor, umfassend:
eine ringförmige Schale (20), die eine ringförmige Schaleninnenoberfläche (40) und eine ringförmige Schalenaußenoberfläche (42), die der ringförmigen Schaleninnenoberfläche entgegengesetzt angeordnet ist, aufweist; und
eine Verkleidungsanordnung (22), die Folgendes aufweist:
eine erste und eine zweite Auskleidungsplatte (50, 58), die operativ mit der ringförmigen Schale verbunden sind, wobei die erste und die zweite Auskleidungsplatte jeweils eine Innenoberfläche (70, 130) der Auskleidungsplatte und eine Außenoberfläche (72, 132) der Auskleidungsplatte aufweisen, die sich jeweils zwischen einem ersten Ende (80) der Auskleidungsplatte und einem zweiten Ende (82, 142) der Auskleidungsplatte erstrecken, wobei die zweite Auskleidungsplatte in der Nähe der ersten Auskleidungsplatte angeordnet ist, und die erste Auskleidungsplatte (50) einen ersten Arm (110) und einen zweiten Arm (112) umfasst, wobei der erste Arm (110) in der Nähe des ersten Endes (80) der ersten Auskleidungsplatte angeordnet ist und sich in Richtung der ringförmigen Schaleninnenoberfläche (40) erstreckt, wobei der erste Arm (110) von der ringförmigen Schaleninnenoberfläche (40) beabstandet ist, und der zweite Arm (112) in der Nähe des zweiten Endes (82) der ersten Auskleidungsplatte angeordnet ist, das sich in Richtung der ringförmigen Schaleninnenoberfläche (40) erstreckt, wobei der zweite Arm (112) von der ringförmigen Schaleninnenoberfläche (40) beabstandet ist;
eine Beschichtung (56), die auf mindestens einer der ersten Innenoberfläche der ersten Auskleidungsplatte und/oder der Außenoberfläche der ersten Auskleidungsplatte angeordnet ist, wobei die Beschichtung eine erste Gesamtdicke (t1), die in der Nähe des ersten Endes der ersten Auskleidungsplatte angeordnet ist, und eine zweite Gesamtdicke ( t2) in der Nähe des zweiten Endes der ersten Auskleidungsplatte angeordnet aufweist, wobei sich die erste Gesamtdicke von der zweiten Gesamtdicke unterscheidet;
einen Bolzen (54), der sich von der Außenoberfläche (72) der ersten Auskleidungsplatte durch die ringförmige Schaleninnenoberfläche (40) erstreckt, um die erste Auskleidungsplatte (50) operativ mit der ringförmigen Schale (20) zu verbinden;
eine Vielzahl von Kühlstiften (90), die sich von der Außenoberfläche (72) der ersten Auskleidungsplatte zu der ringförmigen Schaleninnenoberfläche (40) erstreckt; und
eine Durchführungsdichtung, die auf der Außenoberfläche (72) der ersten Auskleidungsplatte angeordnet ist, wobei die Durchführungsdichtung konfiguriert ist, um die Vielzahl von Kühlstiften von der ringförmigen Schale zu beabstanden und dazu beizutragen, den ersten Arm (110) und den zweiten Arm (112) von der ringförmigen Schaleninnenoberfläche (40) zu beabstanden.
2. Gasturbinenmotor nach Anspruch 1, wobei eine Gesamtdicke (t0) der Beschichtung (56) zwischen dem ersten Ende (80) der ersten Auskleidungsplatte und dem zweiten Ende (82) der ersten Auskleidungsplatte gemäß einer Rampenfunktion variiert.
3. Gasturbinenmotor nach Anspruch 1, wobei eine Gesamtdicke (t0) der Beschichtung (56) zwischen dem ersten Ende (80) der ersten Auskleidungsplatte und dem zweiten Ende (82) der ersten Auskleidungsplatte gemäß einer Sinusfunktion variiert.
4. Gasturbinenmotor nach Anspruch 1, wobei die erste Auskleidungsplatte (50) eine erste Seite (74) der ersten Auskleidungsplatte und eine zweite Seite (76) der ersten Auskleidungsplatte aufweist, die sich jeweils zwischen dem ersten Ende (80) der ersten Auskleidungsplatte und dem zweiten Ende (82) der ersten Auskleidungsplatte erstrecken.
5. Gasturbinenmotor nach Anspruch 4, wobei die erste Gesamtdicke (t1) in einer Richtung konstant ist, die sich zwischen der ersten Seite (74) der ersten Auskleidungsplatte und der zweiten Seite (76) der ersten Auskleidungsplatte erstreckt.
6. Gasturbinenmotor nach Anspruch 4 oder 5, wobei die zweite Gesamtdicke (t2) in einer Richtung konstant ist, die sich zwischen der ersten Seite (74) der ersten Auskleidungsplatte und der zweiten Seite (76) der ersten Auskleidungsplatte erstreckt.
7. Gasturbinenmotor nach einem der Ansprüche 1 bis 6, wobei die ringförmige Schale (20) mindestens ein Kühlloch (46) definiert, das sich von der Außenfläche (72) der ersten Auskleidungsplatte zu der ringförmigen Schaleninnenoberfläche (40) erstreckt.
1. Moteur de turbine à gaz, comprenant :
une coque annulaire (20) ayant une surface interne de coque annulaire (40) et une surface externe de coque annulaire (42) disposée à l'opposé de la surface interne de coque annulaire ; et
un ensemble de panneau (22), ayant :
des premier et second panneaux de chemise (50, 58) reliés fonctionnellement à la coque annulaire, les premier et second panneaux de chemise ayant chacun une surface interne de panneau de chemise (70, 130) et une surface externe de panneau de chemise (72, 132) s'étendant chacune entre une première extrémité de panneau de chemise (80) et une seconde extrémité de panneau de chemise (82, 142), dans lequel le second panneau de chemise est disposé à proximité du premier panneau de chemise, le premier panneau de chemise (50) comportant un premier bras (110) et un second bras (112), le premier bras (110) étant disposé à proximité de la première extrémité (80) de premier panneau de chemise et s'étendant vers la surface interne de coque annulaire (40), le premier bras (110) étant espacé de la surface interne de coque annulaire (40), et le second bras (112) étant disposé à proximité de la seconde extrémité (82) de premier panneau de chemise s'étendant vers la surface interne de coque annulaire (40), le second bras (112) étant espacé de la surface interne de coque annulaire (40) ;
un revêtement (56) disposé sur au moins l'une parmi la surface interne de premier panneau de chemise et la surface externe de premier panneau de chemise, le revêtement ayant une première épaisseur globale (t1) disposée à proximité de la première extrémité de premier panneau de chemise et une seconde épaisseur globale (t2) disposée à proximité de la seconde extrémité de premier panneau de chemise, la première épaisseur globale étant différente de la seconde épaisseur globale ;
un goujon (54) qui s'étend depuis la surface externe de premier panneau de chemise (72) à travers la surface interne de coque annulaire (40) pour relier fonctionnellement le premier panneau de chemise (50) à la coque annulaire (20) ;
une pluralité de broches de refroidissement (90) qui s'étendent de la surface externe de premier panneau de chemise (72) vers la surface interne de coque annulaire (40) ; et
un œillet disposé sur la surface externe de premier panneau de chemise (72), l'œillet étant configuré pour écarter la pluralité de broches de refroidissement de la coque annulaire et aider à écarter le premier bras (110) et le second bras (112) de la surface interne de coque (40).
2. Moteur de turbine à gaz selon la revendication 1, dans lequel une épaisseur globale (t0) du revêtement (56) varie entre la première extrémité (80) de premier panneau de chemise et la seconde extrémité (82) de premier panneau de chemise selon une fonction de rampe.
3. Moteur de turbine à gaz selon la revendication 1, dans lequel une épaisseur globale (t0) du revêtement (56) varie entre la première extrémité (80) de premier panneau de chemise et la seconde extrémité (82) de premier panneau de chemise selon une fonction sinusoïdale.
4. Moteur de turbine à gaz selon la revendication 1, dans lequel le premier panneau de chemise (50) a un premier côté de premier panneau de chemise (74) et un second côté de premier panneau de chemise (76) s'étendant chacun entre la première extrémité (80) de premier panneau de chemise et la seconde extrémité (82) de premier panneau de chemise.
5. Moteur de turbine à gaz selon la revendication 4, dans lequel la première épaisseur globale (t1) est constante dans une direction qui s'étend entre le premier côté (74) de premier panneau de chemise et le second côté (76) de premier panneau de chemise.
6. Moteur de turbine à gaz selon la revendication 4 ou 5, dans lequel la seconde épaisseur globale (t2) est constante dans une direction qui s'étend entre le premier côté (74) de premier panneau de chemise et le second côté (76) de premier panneau de chemise.
7. Moteur de turbine à gaz selon l'une quelconque des revendications 1 à 6, dans lequel la coque annulaire (20) définit au moins un trou de refroidissement (46) qui s'étend de la surface externe de premier panneau de chemise (72) vers la surface interne de coque annulaire (40).