(19)
(11)EP 3 306 952 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 15894241.7

(22)Date of filing:  04.06.2015
(51)International Patent Classification (IPC): 
H03H 9/24(2006.01)
H04R 31/00(2006.01)
H03H 9/17(2006.01)
B06B 1/02(2006.01)
H04R 19/00(2006.01)
(86)International application number:
PCT/JP2015/066236
(87)International publication number:
WO 2016/194208 (08.12.2016 Gazette  2016/49)

(54)

ULTRASONIC TRANSDUCER ELEMENT, METHOD FOR MANUFACTURING SAME, AND ULTRASONIC IMAGE PICKUP DEVICE

ULTRASCHALLWANDLERELEMENT, VERFAHREN ZUR HERSTELLUNG DAVON UND ULTRASCHALLBILDAUFNAHMEVORRICHTUNG

ÉLÉMENT DE TRANSDUCTEUR ULTRASONIQUE, SON PROCÉDÉ DE PRODUCTION ET DISPOSITIF DE CAPTURE D'IMAGE ULTRASONIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
11.04.2018 Bulletin 2018/15

(73)Proprietor: Hitachi, Ltd.
Chiyoda-ku Tokyo 100-8280 (JP)

(72)Inventors:
  • HASEGAWA, Hiroaki
    Tokyo 100-8280 (JP)
  • TAKEZAKI, Taiichi
    Tokyo 100-8280 (JP)
  • MACHIDA, Shuntaro
    Tokyo 100-8280 (JP)
  • RYUZAKI, Daisuke
    Tokyo 100-8280 (JP)

(74)Representative: Strehl Schübel-Hopf & Partner 
Maximilianstrasse 54
80538 München
80538 München (DE)


(56)References cited: : 
WO-A1-2007/046180
WO-A2-2009/097576
JP-A- 2011 507 561
WO-A1-2014/103334
JP-A- 2009 182 838
US-A1- 2009 301 200
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a manufacturing technology of an ultrasonic transducer element, and particularly to a structure of the ultrasonic transducer element manufactured by a MEMS (Micro Electro Mechanical System) technique, and a technology which is effectively applied to the manufacturing method.

    Background Art



    [0002] An ultrasonic transducer is assembled in an ultrasonic probe of an ultrasonic image pickup device to transmit/receive ultrasonic waves, and used in various usages such as diagnosis of tumors in human bodies and inspection of cracks generated in buildings.

    [0003] The ultrasonic transducer equipped with a piezoelectric material has been used so far. In recent years, with the progress of MEMS technologies, a capacitive micromachined ultrasonic transducer (CMUT) is being actively developed for the commercialization in which a vibration portion is formed on a silicon substrate. The CMUT has advantages of a wide frequency range of available ultrasonic waves and of high sensitivity compared to the ultrasonic transducer equipped with the conventional piezoelectric material. In addition, since a technique of processing an LSI is used in the manufacturing, it is possible to perform micromachining, and it is suitable for manufacturing a vibrator for the ultrasonic probe.

    [0004] As a related art, for example, PTLs 1 to 3 disclose a single CMUT element and a CMUT which is disposed in an array.

    Citation List


    Patent Literature



    [0005] 

    PTL 1: JP 2006-319712 A

    PTL 2: JP 2009-182838 A

    PTL 3: JP 2012-004926 A



    [0006] US 2009/0301200 A1 discloses an ultrasonic transducer with the features in the preamble of present claim 1. Another conventional transducer is disclosed in WO 2009/096576 A2.

    Summary of Invention


    Technical Problem



    [0007] A basic structure and operations of a CMUT element will be described using a model of FIG. 1. FIG. 1 illustrates a cross-sectional structure of the basic CMUT element.

    [0008] A cavity layer (cavity portion) 102 is formed with being surrounded by insulating films 106, 103, and 107 in the upper layer of a lower electrode 101. The insulating film 106 is disposed with a gap with the lower electrode 101 and the cavity layer (cavity portion) 102, and a membrane 105 is configured by the insulating film 107 of the upper layer of the cavity layer 102 and an upper electrode 104.

    [0009] The insulating film 107 in the membrane 105 is formed wider than the upper region of the cavity layer 102, and the insulating film 107 and the upper electrode 104 between the vertical tangent lines M and M' of both side surfaces of the cavity layer 102 in FIG. 1 are called the membrane 105 in this specification.

    [0010] The insulating film 103 surrounding the side surface of the cavity layer 102 is configured by a plurality of insulating films, divided from the insulating film 107 of the membrane 105 with the vertical tangent lines M and M' as boundaries, and serves as a fixing portion which supports the vibration of the membrane 105.

    [0011] When a DC voltage and an AC voltage are superimposed between the upper electrode 104 and the lower electrode 101, an electrostatic force works between the upper electrode 104 and the lower electrode 101, the membrane 105 vibrates by a frequency of the applied AC voltage, and the ultrasonic waves are generated. On the contrary, in the case of reception, the membrane 105 vibrates by a pressure of the ultrasonic wave reached the surface of the membrane 105. Then, since a distance between the upper electrode 104 and the lower electrode 101 changes, an electrostatic capacitance changes, and the ultrasonic wave can be detected.

    [0012] As can be seen from the above operation principles, the pressure of the transmitting ultrasonic wave depends on a vibration amplitude of the membrane 105. The outer periphery of the membrane 105 is supported by the fixing portion (insulating film) 103, and the vibration amplitude is generated by a bending caused by an elastic deformation of the membrane. With this configuration, the vibration amplitude of the membrane 105 is continuously distributed such that the vibration amplitude becomes zero at the outer periphery and is maximized at the center. Therefore, even in the CMUT in which the area viewed from the upper surface of the membrane is equal to the maximum amplitude, a generated sound pressure is different according to a distribution shape of the vibration amplitude. In other words, since the sound pressure is maximized in the vibration generated when an inflexible plate translates in a piston shape, it is desirable that the area where the vibration amplitude comes near the maximum amplitude is expanded. However, the outer periphery of the membrane is fixedly supported, and thus the membrane near the fixedly supported point cannot vibrate and does not contribute to transferring sound waves. In such a case, the maximum amplitude of the membrane may be increased in order to increase the pressure of the transferring ultrasonic wave. However, there is a need to increase a drive voltage to vibrate the membrane, and there is a possibility to cause a problem such as a dielectric breakdown of the insulating film interposed between upper and lower electrodes and charging-up of the insulating film due to charges supplied from the electrode to the insulating film during a period when the CMUT is used. When the insulating film is charged up, the electric field between the upper and lower electrodes is blocked by the charges electrified in the insulating film, and the driving may be not appropriately performed.

    [0013] As a structure which increases the sound pressure of the transferring ultrasonic wave while suppressing an increase of the drive voltage, documents PTL 1, PTL 2, and PTL 3 disclose structures in which the peripheral portion of the membrane 105 is easily deformed and the center portion is hardly deformed in consideration of the above problems. As a method of easily deforming the ends of the membrane, PTL 1 employs a structure in which grooves are provided in the ends of the membrane, PTL 2 employs a structure in which a thickness of the center portion of the membrane is increased, and PTL 3 employs a structure in which the ends of the membrane are formed in a corrugate shape. However, about 50% of the area of the membrane can be efficiently used even if these methods are employed.

    [0014] An object of the invention is to provide a structure and a method of manufacturing the structure in which an increase of a drive voltage in the CMUT can be suppressed and a transmission sound pressure of the ultrasonic wave of the CMUT can be increased by expanding the area which can be effectively used by making the vibration of the membrane approach a vibration of a piston shape.

    [0015] Other objects and novel characteristics besides the above description of this invention will be apparent through the explanation and the accompanying drawings of this specification.

    Solution to Problem



    [0016] In order to solve the above problems, the invention provides an ultrasonic transducer element as defined in claim 1. The other claims relate to preferred embodiments and a corresponding manufacturing method. According to an example useful to understand the invention, the ultrasonic transducer element is configured by a substrate, a lower electrode which is formed on a first principal surface of the substrate, a first insulating film which is formed on the lower electrode, a first cavity layer which is formed on the first insulating film, a second insulating film which is formed on the first cavity layer, an upper electrode which is formed on the second insulating film and disposed at a position overlapping with the first cavity layer when viewed from an upper surface, a third insulating film which is formed on the upper electrode, a second cavity layer which is formed on the third insulating film, a fourth insulating film which is formed on the second cavity layer, a fixing portion which is formed by the second to fourth insulating films surrounding an outer periphery of the first cavity layer when viewed from the upper surface of the first principal surface of the substrate, a movable portion which is a region inside the second cavity layer in a membrane which is formed by the second to fourth insulating films formed on the first cavity layer and the upper electrode, a first connection portion and a second connection portion which is stacked with a gap with the first connection portion, the connection portions being configured by the second to fourth insulating films connecting the movable portion and the fixing portion.

    [0017] In addition, in the ultrasonic transducer element according to the example, the second cavity layer is configured between the first connection portion and the second connection portion.

    [0018]  In addition, in the ultrasonic transducer element according to the example , a material layer having an elastic modulus lower than the insulating film is formed on the third insulating film instead of the second cavity layer, the movable portion becomes a region inside the material layer having a low elastic modulus instead of the second cavity layer in the membrane, and the material layer having the low elastic modulus is included between the first connection portion and the second connection portion compared to both the connection portions.

    [0019] In addition, in the ultrasonic transducer element according to the example , the second cavity layer or a material layer having a low elastic modulus compared to both the connection portions is disposed at a continuous position bordering an outer periphery of the first cavity layer and at a position overlapping with the first cavity layer when viewed from the upper surface of the first principal surface of the substrate.

    [0020] In addition, the example provides a method of manufacturing an ultrasonic transducer element which is formed in a first principal surface of a substrate, the method including: (a) forming a first electrode on the first principal surface of the substrate; (b) forming a first insulating film on the electrode; (c) forming a first sacrifice layer at a position overlapping with the first electrode on the first insulating film when viewed from an upper surface; (d) forming a second insulating film on the first sacrifice layer; (e) forming a second electrode at a position which is formed on the second insulating film and overlaps with the first sacrifice layer when viewed from the upper surface; (f) forming a third insulating film on the second electrode; (g) forming a second sacrifice layer on the third insulating film to be overlapped with an outer periphery of the first sacrifice layer; (h) forming a fourth insulating film on the second sacrifice layer and the third insulating film; (i) forming an opening which passes through the fourth insulating film, the second sacrifice layer, the third insulating film, and the second insulating film, and reaches the first sacrifice layer; (j) forming first and second cavity layers by removing the first and second sacrifice layers through the opening to form a first connection portion between the first cavity layer and the second cavity layer and a second connection portion in an upper portion of the second cavity layer; and (k) forming a fifth insulating film on the fourth insulating film to seal the opening.

    Advantageous Effects of Invention



    [0021] An effect obtained by a representative embodiment of the invention disclosed in the present application is as follows.

    [0022] According to the invention, a movable portion of a membrane of a CMUT element is suppressed from being bent, and also it is possible to suppress a drive voltage from being increased and to increase a transmitting sound pressure of an ultrasonic wave by increasing a vibration area of the membrane.

    Brief Description of Drawings



    [0023] 

    [FIG. 1] FIG. 1 is a cross-sectional view of a basic CMUT element.

    [FIG. 2] FIG. 2(a) is a cross-sectional view of the CMUT element in a first embodiment of the invention excepting an insulating film, and FIG. 2(b) is a top view when viewed from the upper surface of a substrate;

    [FIG. 3] FIG. 3(a) is a cross-sectional view taken along line A-A' of FIG. 2(b), and FIG. 3(b) is a cross-sectional view taken along line B-B' of FIG. 2(b).

    [FIG. 4] FIG. 4 is a graph comparing displacement shapes of the membrane in cases where a voltage is applied to the first embodiment of the invention and the conventional CMUT.

    [FIG. 5] FIG. 5(a) is a cross-sectional view illustrating a manufacturing process of the CMUT element in the cross-section taken along line A-A' of FIG. 2(b), and FIG. 5(b) is a cross-sectional view illustrating a manufacturing procedure of the CMUT element in the cross-section taken along line B-B' of FIG. 2(b).

    [FIG. 6] FIG. 6 is a cross-sectional view illustrating a manufacturing procedure of the CMUT element subsequent to FIG. 5.

    [FIG. 7] FIG. 7 is a cross-sectional view illustrating a manufacturing procedure of the CMUT element subsequent to FIG. 6.

    [FIG. 8] FIG. 8 is a cross-sectional view illustrating a manufacturing procedure of the CMUT element subsequent to FIG. 7.

    [FIG. 9] FIG. 9 is a cross-sectional view illustrating a manufacturing view of the CMUT element subsequent to FIG. 8.

    [FIG. 10] FIG. 10 is a cross-sectional view illustrating a manufacturing view of the CMUT element subsequent to FIG. 9.

    [FIG. 11] FIG. 11 is a cross-sectional view illustrating a manufacturing procedure of the CMUT element subsequent to FIG. 10.

    [FIG. 12] FIG. 12 is a cross-sectional view illustrating a manufacturing procedure of the CMUT element subsequent to FIG. 11.

    [FIG. 13] FIG. 13 is a cross-sectional view illustrating a manufacturing procedure of the CMUT element subsequent to FIG. 12.

    [FIG. 14] FIG. 14 is a cross-sectional view illustrating a manufacturing procedure of the CMUT element subsequent to FIG. 13.

    [FIG. 15] FIG. 15 is a cross-sectional view illustrating a manufacturing procedure of the CMUT element subsequent to FIG. 14.

    [FIG. 16] FIG. 16(a) is a cross-sectional view illustrating a CMUT element in a second embodiment of the invention excepting an insulating film, and FIG. 16(b) is a top view when viewed from the upper surface of the substrate.

    [FIG. 17] FIG. 17(a) is a cross-sectional view taken along line C-C' of FIG. 16(b), and FIG. 17(b) is a cross-sectional view taken along line D-D' of FIG. 16(b).

    [FIG. 18] FIG. 18(a) is a cross-sectional view illustrating a CMUT element in a third embodiment of the invention excepting an insulating film, FIG. 18 (b) is a top view when viewed from the upper surface of the substrate.

    [FIG. 19] FIG. 19(a) is a cross-sectional view taken along line E-E' of FIG. 18(b), and FIG. 19(b) is a cross-sectional view taken along line F-F' of FIG. 18(b).

    [FIG. 20] FIG. 20 is a perspective view illustrating the entire configuration of an ultrasonic image pickup device to which the invention is applied.

    [FIG. 21] FIG. 21 is a functional block diagram of the ultrasonic image pickup device to which the invention is applied.


    Description of Embodiments



    [0024] In the following description of embodiments, in order to realize an object of manufacturing a CMUT which can suppress an increase of a drive voltage and expand a transmission sound pressure of the ultrasonic wave, a membrane and a fixing unit of the membrane are connected by a connection portion which is divided into two layers, and the membrane vibrates like a piston vibration while keeping flatness of the center portion of the membrane at the time of transmitting the ultrasonic wave.

    [0025] Further, in the drawings for describing the following embodiments, the same members will be assigned with the same symbol in principle, and the redundant description will be omitted. In addition, the following embodiments will be described by being divided into several sections or examples if needed for the convenience of explanation, and these sections and examples are relevant to each other if not otherwise specified, and some or all of modifications, details, and additional explanations are relevant.

    [0026] In addition, in a case where the numerical data (number, numerical value, amount, range, etc.) of elements is denoted in the following embodiments, the numerical data is not limited to the specified number, and may be equal to or more or less than the specified number if not otherwise specified and the numerical data is not apparently specified in principle. Further, in the following embodiments, it is a matter of course that the components (including elemental steps) are not necessarily essential if not otherwise specified and the components are not necessarily essential in principle.

    [0027] Similarly, in the following embodiments, when it comes to denoting shapes and positional relations of the components, it is a matter of course that any shape may be included as long as it is substantially close or similar to that shape if not otherwise specified and not apparently considered as it is in principle. This is also the same in the numerical values and ranges. Further, some components may be hatched even in a top view in order to help understanding.

    [First embodiment]



    [0028] FIG. 2(b) is a top view illustrating an inner configuration of an ultrasonic transducer (CMUT) element in a first embodiment in which an insulating film is removed and a profile of a cavity layer is depicted by a contour line. In the first embodiment of the invention, the profile of a first cavity layer 102 immediately below the membrane viewed from the upper surface is a rectangular shape. Further, a second cavity layer is disposed in a cylinder region of which the cross-section is a rectangular shape continuous in a rectangular frame when viewed from the upper surface as if bordering the outer periphery of the membrane of the upper portion of the first cavity layer.

    [0029] FIG. 2 (a) illustrates a cross-sectional view taken along line B-B' in FIG. 2(b). An example of a positional relation between a lower electrode 101, an upper electrode 104, and the first and second cavity layers 102 and 305 on a substrate 301 is illustrated.

    [0030] A CMUT element in the first embodiment is configured by a layer-stacked structure of the lower electrode 101 formed on the substrate 301, the first cavity layer 102, the second cavity layer 305 surrounded by contour lines 204 and 205 illustrated in a broken line in FIG. 2(b), and the upper electrode 104. In addition, while being formed to cover the substrate, the respective electrodes, and the respective cavity layers, the insulating film is not illustrated in order to illustrate the structure of the lower layers of the respective insulating films. A wet etching hole 201 is used to form the cavity layer, and protrusions are provided in the first and second cavity layers to be connected to the hole. Pad openings 202 and 203 are formed to apply a voltage to the respective electrodes.

    [0031]  FIG. 3 (a) is a cross-sectional view taken along line A-A' of FIG. 2(b). FIG. 3(b) is a cross-sectional view taken along line B-B' of FIG. 2(b). In FIGS. 3(a) and 3(b), the lower electrode 101 is formed on an insulating film 1031 formed in the substrate 301, as illustrating the CMUT element including the insulating film. The cavity layer 102 is formed in the upper layer of the lower electrode 101 through an insulating film 1032. An insulating film 1033 is formed to surround the cavity portion 102, and the upper electrode 104 is formed in the upper layer of the insulating film 1033. In the upper layer of the upper electrode 104, the second cavity layer 305 is formed through an insulating film 1034, an insulating film 1035 is formed to surround the second cavity layer 305 and the insulating film 1034, and an insulating film 1036 is formed in the upper layer of the insulating film 1035.

    [0032] In addition, the wet etching hole 201 is formed in the insulating films 1035, 1034, and 1033 to pass through these films. The wet etching hole 201 is formed to form the cavity layers 102 and 305, and buried with an insulating film 1036 after the cavity layer is formed. The pad openings 202 and 203 are formed to supply a voltage to the lower electrode 101 and the upper electrode 104, respectively.

    [0033] In FIGS. 2(a) and 2(b) and FIGS. 3(a) and 3(b), the membrane is configured by the insulating films 1033 to 1036 in a region of the upper portion of the first cavity layer 102 and the upper electrode 104. When the membrane vibrates at the time of transceiving an ultrasonic wave, a movable portion is defined as a region which is recognized to have an amplitude equal to or more than a predetermined ratio with respect to a maximum amplitude. The movable portion in the first embodiment is within a rectangular region surrounded by the contour line 204 inside the second cavity layer 305 in FIG. 2(b).

    [0034] In addition, in the first embodiment, the contour line 205 outside the second cavity layer 305 is substantially matched to the contour of the first cavity layer 102. Therefore, the movable portion of the membrane is configured by a fixing portion made of the insulting film surrounding the side surface of the first cavity layer 102, and a connection portion through which the insulating films above and below the region of the second cavity layer surrounded by the contour line 204 and the contour line 205 in FIG. 2(b) connect the movable portion and the fixing portion. The connection portion is elastically deformed to cause the movable portion to vibrate so as to generate the ultrasonic wave.

    [0035] The feature of the first embodiment is in that a movable portion 304 of the membrane inside the contour line 204 when viewed from the upper surface of the substrate is connected to a fixing portion 302 outside the contour line 205 by a first connection portion 3031 and a second connection portion 3032 as illustrated in FIGS. 2(a) and 2(b) and FIGS. 3(a) and 3(b). The first connection portion 3031 and the second connection portion 3032 are stacked with a gap from the second cavity layer 305.

    [0036] The effect obtained by stacking the connection portion is as follows. FIG. 4 is a graph illustrating a bending curve of the insulating film 1033 along the cross-section taken along line A-A' of FIG. 2 when the drive voltage is applied to the ultrasonic transducer element having the structure of FIGS. 2 and 3 to vibrate. A curve 401 shows the first element, and a curve 402 shows a bending amount of the conventional ultrasonic transducer element illustrated in FIG. 1 in which the second connection portion 3032 is not provided. Both ends N and N' of the graph correspond to the ends of both side surfaces of the first cavity layer 102 illustrated in FIGS. 2(b) and 3(a). It can be seen from the comparison between the curves 401 and 402 that the bending shape in the first embodiment is flatter in a region corresponding to the movable portion 304 between both the side surfaces having the same maximum bending amount.

    [0037] The function of the second connection portion 3032 is as follows. When the bending occurs by an electrostatic force, a tension force is generated in an engaging portion with the movable portion 304 by extension of the connection portion 3032. As a result, a bending moment is generated in a direction bending the membrane 105 back, and a bending 403 is generated along the contour line 204 surrounding the movable portion 304. As a result, the bending of the center portion of the movable portion 304 can be suppressed, and it is possible to increase a vibration area having a vibration ratio equal to or more than a predetermined ratio with respect to a maximum amplitude of the membrane.

    [0038] In FIG. 3(a), for more explanation, a parallel link mechanism is configured by the first connection portion 3031, the second connection portion 3032, the movable portion 304, and the fixing portion 302 with the second cavity layer interposed therebetween, and a pulling-up force preventing the center portion of the movable portion from being dented in a parabolic shape is shared by two connection portions even when the movable portion of the membrane is displaced in a vertical direction. Therefore, the displacement is changed from a parabolic shape 402 to a bathtub shape 401 as illustrated in FIG. 4.

    [0039] Further, FIGS. 2(a) and 2(b) illustrate an example that the contour line 205 of the outer periphery of the second cavity layer 305 is substantially matched to the contour of the profile of the first cavity layer 102. However, there is no need to match these contours, the contour line may be positioned outside or inside as long as it is disposed in the vicinity of the contour of the profile of the first cavity layer 102. A position of the boundary between the fixing portion 302 and the connection portion is changed by the position of the contour line 205.

    [0040] In this case, the contour line 204 of the inner periphery of the second cavity layer 305 is needed to be positioned inside the contour of the profile of the first cavity layer 102 when viewed from the upper surface of the first cavity layer 102.

    [0041] Next, a method of manufacturing the CMUT element described in the first embodiment will be described using the drawings. FIGS. 5(a) to 15(a) illustrate cross-sectional views taken along line A-A' in FIG. 2 (b), and FIGS. 5 (b) to 15 (b) illustrate cross-sectional views taken along line B-B' in FIG. 2(b).

    [0042] First, as illustrated in FIGS. 5(a) and 5(b), the insulating film 1031 made of a silicon oxide film is formed on the substrate 301 by 500 nm, and then the lower electrode 101 made of an aluminum alloy film is formed by 100 nm. Then, the insulating film 1032 made of a silicon oxide film is deposited on the lower electrode 101 by 200 nm using a plasma CVD (Chemical Vapor Deposition) method.

    [0043] Next, as illustrated in FIGS. 6(a) and 6(b), a sacrifice layer 501 made of a polycrystalline silicon film is deposited in the upper surface of the insulating film 1032 made of a silicon oxide film by 300 nm using the plasma CVD method. Then, the sacrifice layer 501 made of a polycrystalline silicon film is formed using a photolithography technique and a dry etching technique. The remaining portion will be the first cavity layer 102 in the following procedure.

    [0044] Subsequently, as illustrated in FIGS. 7 (a) and 7(b), the insulating film 1033 made of a silicon oxide film is deposited by 200 nm to cover the sacrifice layer 501 and the insulating film 1032 made of a silicon oxide film using the plasma CVD method.

    [0045] Next, as illustrated in FIGS. 8 (a) and 8(b), an aluminum alloy film is deposited by 100 nm using a sputtering method in order to form the upper electrode 104. Then, the upper electrode 104 is formed using the photolithography technique and the dry etching technique, and subsequently, as illustrated in FIGS. 9(a) and 9(b), the insulating film 1034 made of a silicon oxide film is deposited by 200 nm using the plasma CVD method so as to cover the upper electrode 104 and the insulating film 1033 made of a silicon oxide film.

    [0046] Next, as illustrated in FIGS. 10 (a) and 10 (b), a sacrifice layer 901 made of a polycrystalline silicon film is deposited in the upper surface of the insulating film 1034 made of a silicon oxide film by 200 nm using the plasma CVD method. Then, the sacrifice layer 901 made of a polycrystalline silicon film is formed using the photolithography technique and the dry etching technique. As illustrated in FIG. 2, the sacrifice layer 901 is formed on the insulating film 1034 in a cylinder shape which is continuous in a rectangular shape when viewed from the upper surface. The remaining portion will be the second cavity layer 305 in the following procedure.

    [0047] Then, as illustrated in FIGS. 11(a) and 11(b), the insulating film 1035 made of a silicon oxide film is deposited by 200 nm using the plasma CVD method so as to cover the sacrifice layer 901 and the insulating film 1034 made of a silicon oxide film.

    [0048] Subsequently, as illustrated in FIGS. 12(a) and 12(b), the wet etching hole 201 reaching the sacrifice layer 501 is formed in the insulating films 1035, 1034, and 1033 made of a silicon oxide film and the sacrifice layer 901 interposed by these insulating films using the photolithography technique and the dry etching technique.

    [0049] Thereafter, as illustrated in FIGS. 13(a) and 13(b), the sacrifice layers 901 and 501 are subjected to the wet etching using potassium hydroxide through the wet etching hole 201, so as to form the cavity layers 305 and 102.

    [0050] Next, as illustrated in FIGS. 14(a) and 14(b), the wet etching hole 201 is buried, and an insulating film 1036 made of a silicon nitride film is deposited by 100 nm using the plasma CVD method in order to seal the cavity layers 305 and 102.

    [0051] Then, as illustrated in FIGS. 15(a) and 15(b), the pad openings 202 and 203 are formed using the photolithography technique and the dry etching technique to pass through the insulating films 1036, 1035, 1034, 1033, and 1032 made of a silicon oxide film, and reach the lower electrode 101 and the upper electrode 104. As described above, the CMUT element in the first embodiment can be formed.

    [0052] Further, the CMUT element in FIG. 2(b) has been illustrated to have the first cavity layer in a rectangular shape when viewed from the upper surface of the substrate, but the shape is not limited thereto, and may be a circle or a polygon for example.

    [0053] The materials of the CMUT element illustrated in the first embodiment are given as an exemplary combination, and tungsten or other conductive materials may be used as the materials of the upper and lower electrodes. In addition, there is no need to use the same material as the material of the insulating film. For example, in the first embodiment, only the film of the uppermost layer of the connection portion 3032 is made of a silicon nitride film in order to avoid infiltration of moisture into the inner structure, but other insulating film may be used. In such a case, both film thicknesses may be adjusted to control the rigidity of the connection portions 3031 and 3032 to avoid unbalance in the rigidity of the connection portions 3031 and 3032. Any material may be used for the sacrifice layer as long as a wet etching selectivity with respect to the material surrounding the sacrifice layer is secured. Therefore, an SOG film (Spin-on-Glass) or a metal film may be used besides the polycrystalline silicon film.

    [Second embodiment]



    [0054] FIG. 16(b) is a top view illustrating an inner configuration of an ultrasonic transducer (CMUT) element in a second embodiment in which the insulating film is removed and the profiles of the cavity layer and a flexible member layer are depicted by the contour lines. In the second embodiment, a flexible member 1501 is provided instead of the region of the second cavity layer surrounded by the contour lines 204 and 205 in the first embodiment. FIG. 17 (a) is a cross-sectional view of the CMUT element taken along line C-C' of FIG. 16(b). FIG. 17(b) is a cross-sectional view taken along line D-D' of FIG. 16(b).

    [0055] As illustrated in FIGS. 17(a) and 17(b), the flexible member 1501 fills in the region which has been described as being made of the second cavity layer 305 in the first embodiment. Such configurations have the same effect as that of the second cavity layer as described in the first embodiment, and the first and second connection portions 3031 and 3032 separated by the flexible member layer are deformed like the parallel link mechanism, so that the bending of the movable portion 304 can be suppressed, which is desirable to increase the vibration area to be equal to or more than a predetermined amplitude ratio of the membrane.

    [0056] In the manufacturing process of the CMUT element of the first embodiment, breaking and peeling occur in the insulating films 1035 and 1036 of the upper layer of the second cavity layer 305. Therefore, there is a possibility to lower the yield when the CMUT devices are finished. On the other hand, like the second embodiment, the region for the second cavity layer 305 is filled with the flexible member 1501 in the first embodiment, so that it is possible to suppress the insulating films 1035 and 1036 of the upper layer of the flexible member 1501 from being broken and peeled. In this case, it is preferable that the rigidity (Young's modulus) of the flexible member 1501 is close as that of the cavity, and a material may be employed which has a Young's modulus smaller than those of the insulating films of the connection portions 3031 and 3032, the movable portion 304, and the fixing portion 302. Specifically, an organic material such as polyimide having about 1/10 times of the Young's modulus of the insulating film is preferable.

    [0057] In addition, the method of manufacturing the flexible member layer 1501 of the second embodiment does not need to perform the wet etching using the sacrifice layer, so that there is no connection with the wet etching hole 201.

    [Third embodiment]



    [0058] FIG. 18 is a top view illustrating an inner configuration of an ultrasonic transducer (CMUT) element in a third embodiment in which an insulating film is removed and a profile of a cavity layer is depicted by a contour line. The third embodiment has a structure in which the second cavity layer 305 is provided in the region surrounded by the contour lines 204 and 205 similarly to the first embodiment. FIG. 19(a) is a cross-sectional view taken along line E-E' of FIG. 18 (b) . FIG. 19(b) is a cross-sectional view taken along line F-F' of FIG. 18(b).

    [0059]  The feature of the CMUT element of the third embodiment is that two rows of the second cavity layers 305 are provided with the upper electrode 104 interposed therebetween only in the longitudinal direction of the first cavity layer 102 having a rectangular shape when viewed from the upper surface, and the movable portion 304 of the membrane is supported by the first connection portion 3031 and the second connection portion 3032 formed to be separated by the second cavity layer 305 disposed in parallel.

    [0060] In a case where the first cavity layer 102 has a rectangular shape, the fixing portion regulating the vibration of the movable portion 304 is a fixing portion of both side surfaces in the longitudinal direction of the first cavity layer 102, so that if the second cavity layer is provided only in that portion, the connection portions 3031 and 3032 are deformed, and the bending of the movable portion 304 can be suppressed. Therefore, it is possible to increase the vibration area to be equal to or more than a predetermined amplitude ratio of the membrane.

    [0061] In addition, as illustrated in FIG. 3, in a case where the outer periphery of the first cavity layer 102 is surrounded by the second cavity layer 305 as in the first embodiment, the second cavity layer comes to be provided also in the upper portion of a lead-out line of the upper electrode 104. With such a configuration, film thicknesses of the connection portions 3031 and 3032 of the upper and lower regions of the second cavity layer of the upper portion of the lead-out line lose a balance only by the upper electrode 104, and thus there is a possibility to generate unnecessary vibration when the membrane vibrates. On the other hand, with the configuration described in the third embodiment, as illustrated in FIGS. 19 (a) and 19 (b), it is possible to suppress that unnecessary vibration is generated when the membrane vibrates without providing the second cavity layer 305 in the upper portion of the lead-out line of the upper electrode 104. However, in a case where the first cavity layer has a rotationally symmetric shape such as a circular shape or a regular hexagon, it is a matter of course that the configuration described in the first embodiment is suitable. In the third embodiment, two rows of the second cavity layers 305 are provided in the longitudinal direction of the first cavity layer 102, and there is provided a second cavity layer 306 which connects two rows of the second cavity layers 305 in order to connect the wet etching hole 201.

    [0062] In addition, it is also clear that the second cavity layer may be filled with a flexible material by combining the third embodiment and the above-described second embodiment.

    [0063] Further, the second and third embodiments are also described about an example that the flexible member layer 1501 or the contour line 205 of the outer periphery of the second cavity layer 305 is substantially matched with the contour of the profile of the first cavity layer 102. However, there is no need to match these contours, and the contour line may be positioned outside or inside as long as it is disposed in the vicinity of the contour of the profile of the first cavity layer 102.

    [0064] Note that the flexible member layer 1501 or the contour line 204 of the inner periphery of the second cavity layer 305 is necessarily positioned inside the contour of the profile of the first cavity layer 102 when viewed from the upper surface of the first cavity layer 102.

    [0065] Finally, a configuration example and functions of the ultrasonic image pickup device which includes the CMUT element of the above-described embodiments will be described with reference to FIGS. 20 and 21.

    [0066] First, the configuration of the ultrasonic image pickup device of the embodiment will be described with reference to FIGS. 20 and 21. FIG. 20 is a perspective view illustrating the entire configuration of the ultrasonic image pickup device, and FIG. 21 is a block diagram illustrating the functions of the ultrasonic image pickup device.

    [0067] As illustrated in FIG. 20, the ultrasonic image pickup device 2001 includes a main body 2005 which stores the ultrasonic transceiver circuit which transceives ultrasonic wave, and a signal processing circuit which processes an echo signal received by an ultrasonic transceiver circuit and generates an ultrasonic image of an inspection target, a display 2003 which is connected to the main body 2005 and displays a GUI to interface with the ultrasonic image and an operator, an operation unit 2004 which is used by the operator, and an ultrasonic probe 2002 which is connected to the ultrasonic transceiver circuit through a connection portion 2006 fixed to the main body 2005.

    [0068] The ultrasonic probe 2002 is a device which comes into contact with an object and transceives ultrasonic waves with the object, and includes an ultrasonic transducer 2007 in which a number of transducer elements are arranged in a one-dimensional or two-dimensional array, an acoustic lens, and a backing material. In the ultrasonic image pickup device of the embodiment, the ultrasonic transducer 2007 is, for example, configured by several hundreds to about ten thousands of CMUT elements which are arranged in a one-dimensional or two-dimensional array.

    [0069] Further, FIG. 20 illustrates a movable ultrasonic image pickup device as an example which includes wheels in the bottom of the main body 2005, but the embodiment is able to be applied to an ultrasonic image pickup device fixed in an inspection room, a portable ultrasonic image pickup device of a note-type or a box-type, and other ultrasonic image pickup devices disclosed in public.

    [0070] As illustrated in FIG. 21, the main body 2005 includes an ultrasonic transceiver circuit 2111, a signal processing circuit 2112, a control unit 2113, a memory unit 2114, a power source device 2115, and an auxiliary device 2116.

    [0071] The ultrasonic transceiver circuit 2111 generates a drive voltage to transmit ultrasonic waves from the ultrasonic probe 2002 and to receive an echo signal from the ultrasonic probe 2002, and includes a delay circuit, a filter, and a gain adjusting circuit.

    [0072] The signal processing circuit 2112 performs a correction such as a LOG compression and a depth correction, and a process necessary for creating an image on the received echo signal, and may include a DSC (digital scan converter), a color doppler circuit, and an FFT analysis unit. As the signal processing of the signal processing circuit 2112, analog signal processing and digital signal processing both can be performed, and some part may be realized by software or may be realized by an ASIC (application specific integrated circuit) or an FPGA (field-programmable gate array).

    [0073] The control unit 2113 controls devices which are connected to the respective circuits of the main body 2005 and the main body 2005. The memory unit 2114 stores information and parameters necessary for the signal processing and the control, and the processing results. The power source device 2115 supplies necessary power to the respective portions of the ultrasonic image pickup device. The auxiliary device 2116 is used to realize additional functions of the ultrasonic image pickup device (for example, sound generation) besides the above-described respective units, and is appropriately added as needed.

    [0074] Further, the invention is not limited to the above embodiments, and various modifications can be made. For example, the embodiments are described in a clearly understandable way for the invention, and the invention is not necessarily to provide all the configurations described above. In addition, some configurations of a certain embodiment may be replaced with the configurations of another embodiment, and the configuration of the other embodiment may be added to the configuration of a certain embodiment. Furthermore, additions, omissions, and substitutions may be made on some configurations of each embodiment using other configurations. The invention is defined by the appended claims.

    Reference Signs List



    [0075] 

    101 lower electrode

    102, 305 cavity layer

    103 fixing portion (insulating film)

    104 upper electrode

    105 membrane

    106, 107 insulating film

    201 wet etching hole

    202 opening to lower electrode

    203 opening to upper electrode

    204 contour line of second cavity layer serving as boundary surrounding movable portion

    205 contour line of second cavity layer serving as boundary surrounding connection portion

    301 substrate

    302 fixing portion

    3031, 3032 connection portion

    304 movable portion

    305 second cavity layer

    306 second cavity layer for two rows of connecting second cavity layers in third embodiment

    401 displacement shape of first embodiment when voltage is applied

    402 displacement shape of conventional CMUT when voltage is applied

    403 curve of displacement shape of first embodiment

    501 sacrifice layer

    1031, 1032, 1033, 1034, 1035, 1036 insulating film

    1501 flexible member

    2001 ultrasonic image pickup device

    2002 ultrasonic probe

    2003 display

    2004 operation unit

    2005 main body

    2006 probe connection portion

    2007 ultrasonic transducer

    2111 ultrasonic transceiver unit

    2112 signal processing unit

    2113 control unit

    2114 memory unit

    2115 power source device

    2116 auxiliary device




    Claims

    1. An ultrasonic transducer element, comprising:

    a substrate (301);

    a lower electrode (101) which is formed on a first principal surface of the substrate (301);

    a first insulating film (1032) which is formed on the lower electrode (101);

    a first cavity portion (102) which is formed on the first insulating film (1032);

    a second insulating film (1033) which is formed to surround the first cavity portion (102);

    an upper electrode (104) which is formed on the second insulating film (1033) and disposed at a position overlapping with the first cavity portion (102) when viewed in a top view from an upper surface of the substrate (301);

    a third insulating film (1034) which is formed on the upper electrode (104);

    a second cavity portion (305) or a material layer (1501) having an elastic modulus lower than the third insulating film (1034), wherein the second cavity portion (305) or the material layer (1501) is formed on the third insulating film (1034);

    a fourth insulating film (1035) which is formed to surround the second cavity portion (305) or the material layer (1501);

    wherein the ultrasonic transducer element further comprises, when viewed in the top view:

    a fixing portion (302) which is formed by the second, third, and fourth insulating films (1033-1035) surrounding an outer periphery of the first cavity portion (102);

    a movable portion (304) which is a region inside the second cavity portion (305) or the material layer (1501) in a membrane (105), the membrane (105) being formed by the second, third, and fourth insulating films (1033-1035) and the upper electrode (104) formed on the first cavity portion (102); and

    a first connection portion (3031) and a second connection portion (3032) which is stacked with a gap from the first connection portion (3031), the connection portions (3031, 3032) being formed by the second, third, and fourth insulating films (1033-1035) connecting the movable portion (304) and the fixing portion (302),

    characterised in that the second cavity portion (305) or the material layer (1501) having a low elastic modulus compared to both the first and second connection portions (3031, 3032) is disposed such that an inner periphery thereof is disposed at a position overlapping with the first cavity portion (102) compared to the first cavity portion (102), and part or all of an outer periphery thereof is disposed in a region outside a contour (205) of a profile of the first cavity portion (102) when viewed in the top view.


     
    2. The ultrasonic transducer element according to claim 1, wherein the second cavity portion (305) or the material layer (1501) is provided between the first connection portion (3031) and the second connection portion (3032).
     
    3. The ultrasonic transducer element according to claim 1 or 2, wherein the second cavity portion (305, 306) or the material layer (1501) is disposed at a position bordering two rows of outer peripheries which are continuous in a belt shape along two sides in the longitudinal direction of the first cavity portion (102) when viewed in the top view, and at a position overlapping with the first cavity portion (102).
     
    4. The ultrasonic transducer element according to claim 1, wherein a profile shape of the first cavity portion (102) includes a rectangular shape, a circular shape, or a hexagonal shape when viewed in the top view.
     
    5. A method of manufacturing an ultrasonic transducer element which is formed on a first principal surface of a substrate (301), the method comprising:

    (a) forming a first electrode (101) on the first principal surface of the substrate (301);

    (b) forming a first insulating film (1032) on the first electrode (101);

    (c) forming a first sacrifice layer (501) at a position overlapping with the first electrode (101) on the first insulating film (1032) when viewed in a top view from an upper surface of the substrate (301);

    (d) forming a second insulating film (1033) on the first sacrifice layer (501);

    (e) forming a second electrode (104) at a position which is formed on the second insulating film (1033) and overlaps with the first sacrifice layer (501) when viewed in the top view;

    (f) forming a third insulating film (1034) on the second electrode (104);

    (g) forming a second sacrifice layer (901) or a material layer (1501) on the third insulating film (1034) to be overlapped with an outer periphery of the first sacrifice layer (501), the material layer (1501) having a low elastic modulus compared to the third insulating film (1034);

    (h) forming a fourth insulating film (1035) on the third insulating film (1034) and the second sacrifice layer (901) or the material layer (1501);

    (i) forming an opening (201) which passes through the fourth insulating film (1035), the second sacrifice layer (901) if any, the third insulating film (1034), and the second insulating film (1033), and reaches the first sacrifice layer (501);

    (j) forming first and second cavity portions (102, 305) by removing the first and second sacrifice layers (501, 901) through the opening (201) to form a first connection portion (3031) between the first cavity portion (102) and the second cavity portion (305) and a second connection portion (3032) in an upper portion of the second cavity portion (305), or forming the first cavity portion (102) by removing the first sacrifice layer (501) through the opening (201) to form the first connection portion (3031) between the first cavity portion (102) and the material layer (1501) and the second connection portion (3032) in the upper portion of the material layer (1501); and

    (k) forming a fifth insulating film (1036) on the fourth insulating film (1035) to seal the opening (201),

    wherein the second cavity portion (305) or the material layer (1501) having a low elastic modulus compared to both the first and second connection portions (3031, 3032) is disposed such that an inner periphery thereof is disposed at a position overlapping with the first cavity portion (102) compared to the first cavity portion (102), and part or all of an outer periphery thereof is disposed in a region outside a contour (205) of a profile of the first cavity portion (102) when viewed in the top view.
     
    6. An ultrasonic image pickup device (2001), comprising:
    an ultrasonic probe (2002) which is provided with an ultrasonic transducer (2007) in which the ultrasonic transducer elements according to any one of claims 1 to 4 are arranged in a one-dimensional array or a two-dimensional array.
     


    Ansprüche

    1. Ultraschallwandlerelement, umfassend:

    ein Substrat (301);

    eine untere Elektrode (101), die auf einer ersten Hauptfläche des Substrats (301) ausgebildet ist;

    einen ersten Isolierfilm (1032), der auf der unteren Elektrode (101) ausgebildet ist;

    einen ersten Hohlraumabschnitt (102), der auf dem ersten Isolierfilm (1032) ausgebildet ist;

    einen zweiten Isolierfilm (1033), der so gebildet ist, dass er den ersten Hohlraumabschnitt (102) umgibt;

    eine obere Elektrode (104), die auf dem zweiten Isolierfilm (1033) ausgebildet und an einer Position angeordnet ist, die den ersten Hohlraumabschnitt (102) überlappt, wenn in einer Draufsicht von einer oberen Fläche des Substrats (301) aus betrachtet;

    einen dritten Isolierfilm (1034), der auf der oberen Elektrode (104) ausgebildet ist;

    einen zweiten Hohlraumabschnitt (305) oder eine Materialschicht (1501) mit einem niedrigeren Elastizitätsmodul als der dritte Isolierfilm (1034), wobei der zweite Hohlraumabschnitt (305) oder die Materialschicht (1501) auf dem dritten Isolierfilm (1034) ausgebildet ist;

    einen vierten Isolierfilm (1035), der so ausgebildet ist, dass er den zweiten Hohlraumabschnitt (305) oder die Materialschicht (1501) umgibt;

    wobei das Ultraschallwandlerelement, in der Draufsicht betrachtet, ferner umfasst:

    einen Befestigungsabschnitt (302), der durch den zweiten, den dritten und den vierten Isolierfilm (1033-1035) gebildet ist, die einen Außenumfang des ersten Hohlraumabschnitts (102) umgeben;

    einen beweglichen Abschnitt (304), bei dem es sich um einen Bereich innerhalb des zweiten Hohlraumabschnitts (305) oder der Materialschicht (1501) in einer Membran (105) handelt, wobei die Membran (105) durch den zweiten, den dritten und den vierten Isolierfilm (1033-1035) und die obere Elektrode (104) gebildet wird, die auf dem ersten Hohlraumabschnitt (102) ausgebildet ist; und

    einen ersten Verbindungsabschnitt (3031) und einen zweiten Verbindungsabschnitt (3032), der mit einem Spalt von dem ersten Verbindungsabschnitt (3031) gestapelt ist, wobei die Verbindungsabschnitte (3031, 3032) durch den zweiten, den dritten und den vierten Isolierfilm (1033-1035) gebildet werden, die den beweglichen Abschnitt (304) und den Befestigungsabschnitt (302) verbinden,

    dadurch gekennzeichnet, dass der zweite Hohlraumabschnitt (305) oder die Materialschicht (1501) mit einem niedrigen Elastizitätsmodul im Vergleich zu sowohl dem ersten als auch dem zweiten Verbindungsabschnitt (3031, 3032) so angeordnet ist, dass ein Innenumfang davon an einer Position angeordnet ist, die den ersten Hohlraumabschnitt (102) im Vergleich zu dem ersten Hohlraumabschnitt (102) überlappt, und ein Teil oder der gesamte Außenumfang davon in einem Bereich außerhalb einer Kontur (205) eines Profils des ersten Hohlraumabschnitts (102) angeordnet ist, wenn in der Draufsicht betrachtet.


     
    2. Ultraschallwandlerelement nach Anspruch 1, wobei der zweite Hohlraumabschnitt (305) oder die Materialschicht (1501) zwischen dem ersten Verbindungsabschnitt (3031) und dem zweiten Verbindungsabschnitt (3032) vorgesehen ist.
     
    3. Ultraschallwandlerelement nach Anspruch 1 oder 2, wobei der zweite Hohlraumabschnitt (305, 306) oder die Materialschicht (1501) an einer Position angeordnet ist, die an zwei Reihen von Außenumfängen angrenzt, die in der Draufsicht entlang zweier Seiten in der Längsrichtung des ersten Hohlraumabschnitts (102) gürtelförmig kontinuierlich sind, und an einer Position, die sich mit dem ersten Hohlraumabschnitt (102) überlappt.
     
    4. Ultraschallwandlerelement nach Anspruch 1, wobei eine Profilform des ersten Hohlraumabschnitts (102) in der Draufsicht eine rechteckige Form, eine kreisförmige Form oder eine sechseckige Form aufweist.
     
    5. Verfahren zur Herstellung eines Ultraschallwandlerelements, das auf einer ersten Hauptfläche eines Substrats (301) gebildet wird, wobei das Verfahren umfasst:

    (a) Bilden einer ersten Elektrode (101) auf der ersten Hauptfläche des Substrats (301);

    (b) Bilden eines ersten Isolierfilms (1032) auf der ersten Elektrode (101);

    (c) Bilden einer ersten Opferschicht (501) an einer Position, die mit der ersten Elektrode (101) auf dem ersten Isolierfilm (1032) überlappt, wenn in einer Draufsicht von einer oberen Fläche des Substrats (301) aus betrachtet;

    (d) Bilden eines zweiten Isolierfilms (1033) auf der ersten Opferschicht (501);

    (e) Bilden einer zweiten Elektrode (104) an einer Position, die auf dem zweiten Isolierfilm (1033) gebildet ist und sich bei Betrachtung in der Draufsicht mit der ersten Opferschicht (501) überlappt;

    (f) Bilden eines dritten Isolierfilms (1034) auf der zweiten Elektrode (104);

    (g) Bilden einer zweiten Opferschicht (901) oder einer Materialschicht (1501) auf dem dritten Isolierfilm (1034), die mit einem Außenumfang der ersten Opferschicht (501) zu überlappen ist, wobei die Materialschicht (1501) ein niedrigeres Elastizitätsmodul als der dritte Isolierfilm (1034) aufweist;

    (h) Bilden eines vierten Isolierfilms (1035) auf dem dritten Isolierfilm (1034) und der zweiten Opferschicht (901) oder der Materialschicht (1501);

    (i) Bilden einer Öffnung (201), die durch die vierte Isolierschicht (1035), die zweite Opferschicht (901) sofern vorhanden, die dritte Isolierschicht (1034) und die zweite Isolierschicht (1033) hindurchgeht und die erste Opferschicht (501) erreicht;

    (j) Bilden eines ersten und eines zweiten Hohlraumabschnitts (102, 305) durch Entfernen der ersten und der zweiten Opferschicht (501, 901) durch die Öffnung (201), um einen ersten Verbindungsabschnitt (3031) zwischen dem ersten Hohlraumabschnitt (102) und dem zweiten Hohlraumabschnitt (305) und einen zweiten Verbindungsabschnitt (3032) in einem oberen Abschnitt des zweiten Hohlraumabschnitts (305) zu bilden, oder Bilden des ersten Hohlraumabschnitts (102) durch Entfernen der ersten Opferschicht (501) durch die Öffnung (201), um den ersten Verbindungsabschnitt (3031) zwischen dem ersten Hohlraumabschnitt (102) und der Materialschicht (1501) und den zweiten Verbindungsabschnitt (3032) im oberen Abschnitt der Materialschicht (1501) zu bilden; und

    (k) Bilden einer fünften Isolierschicht (1036) auf der vierten Isolierschicht (1035), um die Öffnung (201) abzudichten,

    wobei der zweite Hohlraumabschnitt (305) oder die Materialschicht (1501) mit einem niedrigeren Elastizitätsmodul im Vergleich zu sowohl dem ersten als auch dem zweiten Verbindungsabschnitt (3031, 3032) so angeordnet ist, dass ein Innenumfang davon an einer Position angeordnet ist, die den ersten Hohlraumabschnitt (102) im Vergleich zu dem ersten Hohlraumabschnitt (102) überlappt, und ein Teil oder der gesamte Außenumfang davon in einem Bereich außerhalb einer Kontur (205) eines Profils des ersten Hohlraumabschnitts (102) angeordnet ist, wenn in der Draufsicht betrachtet.
     
    6. Ultraschall-Bildaufnahmegerät (2001), umfassend:
    eine Ultraschallsonde (2002), die mit einem Ultraschallwandler (2007) versehen ist, in dem die Ultraschallwandlerelemente nach einem der Ansprüche 1 bis 4 in einem eindimensionalen Array oder einem zweidimensionalen Array angeordnet sind.
     


    Revendications

    1. Élément transducteur ultrasonore, comprenant :

    un substrat (301) ;

    une électrode inférieure (101) qui est formée sur une première surface principale du substrat (301) ;

    un premier film isolant (1032) qui est formé sur l'électrode inférieure (101) ;

    une première partie de cavité (102) qui est formée sur le premier film isolant (1032) ;

    un deuxième film isolant (1033) qui est formé pour entourer la première partie de cavité (102) ;

    une électrode supérieure (104) qui est formée sur le deuxième film isolant (1033) et disposée à une position chevauchant la première partie de cavité (102) lorsqu'elle est observée dans une vue de dessus depuis une surface supérieure du substrat (301) ;

    un troisième film isolant (1034) qui est formé sur l'électrode supérieure (104) ;

    une seconde partie de cavité (305) ou une couche de matériau (1501) ayant un module élastique inférieur au troisième film isolant (1034), dans lequel la seconde partie de cavité (305) ou la couche de matériau (1501) est formée sur le troisième film isolant (1034) ;

    un quatrième film isolant (1035) qui est formé pour entourer la seconde partie de cavité (305) ou la couche de matériau (1501) ;

    dans lequel l'élément transducteur ultrasonore comprend en outre, lorsqu'il est observé dans la vue de dessus :

    une partie de fixation (302) qui est formée par les deuxième, troisième et quatrième films isolants (1033-1035) entourant une périphérie externe de la première partie de cavité (102) ;

    une partie mobile (304) qui est une région à l'intérieur de la seconde partie de cavité (305) ou de la couche de matériau (1501) dans une membrane (105), la membrane (105) étant formée par les deuxième, troisième et quatrième films isolants (1033 à 1035) et l'électrode supérieure (104) étant formée sur la première partie de cavité (102) ; et

    une première partie de connexion (3031) et une seconde partie de connexion (3032) qui sont empilées avec un espacement par rapport à la première partie de connexion (3031), les parties de connexion (3031, 3032) étant formées par les deuxième, troisième et quatrième films isolants (1033 à 1035) reliant la partie mobile (304) et la partie de fixation (302),

    caractérisé en ce que la seconde partie de cavité (305) ou la couche de matériau (1501) ayant un module élastique faible par rapport à la fois aux première et seconde parties de connexion (3031, 3032) est disposée de telle sorte qu'une périphérie interne de celle-ci est disposée à une position de chevauchement avec la première partie de cavité (102) comparée à la première partie de cavité (102), et une partie ou la totalité de sa périphérie externe est disposée dans une région à l'extérieur d'un contour (205) d'un profil de la première partie de cavité (102) lorsqu'elle est observée dans la vue de dessus.


     
    2. Élément transducteur ultrasonore selon la revendication 1, dans lequel la seconde partie de cavité (305) ou la couche de matériau (1501) est disposée entre la première partie de connexion (3031) et la seconde partie de connexion (3032).
     
    3. Élément transducteur ultrasonore selon la revendication 1 ou 2, dans lequel la seconde partie de cavité (305, 306) ou la couche de matériau (1501) est disposée à une position bordant deux rangées de périphéries extérieures qui sont continues en forme de ceinture le long de deux côtés dans la direction longitudinale de la première partie de cavité (102) observée dans la vue de dessus, et à une position chevauchant la première partie de cavité (102).
     
    4. Élément transducteur ultrasonore selon la revendication 1, dans lequel une forme de profil de la première partie de cavité (102) comprend une forme rectangulaire, une forme circulaire ou une forme hexagonale lorsqu'elle est observée dans la vue de dessus.
     
    5. Procédé de fabrication d'un élément transducteur ultrasonore qui est formé sur une première surface principale d'un substrat (301), le procédé comprenant :

    (a) la formation d'une première électrode (101) sur la première surface principale du substrat (301) ;

    (b) la formation d'un premier film isolant (1032) sur la première électrode (101) ;

    (c) la formation d'une première couche sacrificielle (501) à une position chevauchant la première électrode (101) sur le premier film isolant (1032) lorsqu'elle est observée dans une vue de dessus depuis une surface supérieure du substrat (301) ;

    (d) la formation d'un deuxième film isolant (1033) sur la première couche sacrificielle (501) ;

    (e) la formation d'une seconde électrode (104) à une position qui est formée sur le deuxième film isolant (1033) et chevauche la première couche sacrificielle (501) lorsqu'elle est observée dans la vue de dessus ;

    (f) la formation d'un troisième film isolant (1034) sur la seconde électrode (104) ;

    (g) la formation d'une seconde couche sacrificielle (901) ou d'une couche de matériau (1501) sur le troisième film isolant (1034) devant chevaucher une périphérie externe de la première couche sacrificielle (501), la couche de matériau (1501) ayant un module d'élasticité faible par rapport au troisième film isolant (1034) ;

    (h) la formation d'un quatrième film isolant (1035) sur le troisième film isolant (1034) et la seconde couche sacrificielle (901) ou la couche de matériau (1501) ;

    (i) la formation d'une ouverture (201) qui traverse le quatrième film isolant (1035), la seconde couche sacrificielle (901) le cas échéant, le troisième film isolant (1034) et le deuxième film isolant (1033), et atteint la première couche sacrificielle (501);

    j) la formation des première et seconde parties de cavité (102, 305) en retirant les première et seconde couches sacrificielles (501, 901) à travers l'ouverture (201) pour former une première partie de connexion (3031) entre la première partie de cavité (102) et la seconde partie de cavité (305) et une seconde partie de connexion (3032) dans une partie supérieure de la seconde partie de cavité (305), ou la formation de la première partie de cavité (102) en retirant la première couche sacrificielle (501) à travers l'ouverture (201) pour former la première partie de connexion (3031) entre la première partie de cavité (102) et la couche de matériau (1501) et la seconde partie de connexion (3032) dans la partie supérieure de la couche de matériau (1501) ; et

    (k) la formation d'un cinquième film isolant (1036) sur le quatrième film isolant (1035) pour sceller l'ouverture (201),

    dans lequel la seconde partie de cavité (305) ou la couche de matériau (1501) ayant un module d'élasticité faible par rapport à la fois aux première et seconde parties de connexion (3031, 3032) est disposée de telle sorte qu'une périphérie interne de celle-ci est disposée à une position chevauchant le première partie de cavité (102) comparée à la première partie de cavité (102), et une partie ou la totalité de sa périphérie externe est disposée dans une région à l'extérieur d'un contour (205) d'un profil de la première partie de cavité (102) lorsqu'elle est observée dans la vue de dessus.
     
    6. Dispositif de prise d'image à ultrasons (2001), comprenant :

    une sonde à ultrasons (2002) qui est pourvue d'un transducteur ultrasonore (2007) dans lequel les éléments transducteurs ultrasonores selon l'une quelconque des revendications 1 à 4 sont agencés en un réseau unidimensionnel ou un réseau bidimensionnel.


     




    Drawing




































































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description